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Set-up (continued)

Fi(CW ) =
⊕

cod(w) 6 i Cw

Fi(CW ) · Fj(CW ) ⊂ Fi+j(CW )

F0(CW ) = C ⊂ F1(CW ) ⊂ F2(CW ) ⊂ · · · ⊂ Fn(CW ) = CW is
a filtration of CW .

If A is a subalgebra of CW , we define Fi(A) = A ∩ Fi(CW )

ReesF (A) =
⊕

i > 0 h
iFi(A) ⊂ C[h]⊗ A

C[h]/〈h − ξ〉 ⊗ ReesF (A) ≃

{
A if ξ 6= 0,

GradF (A) if ξ = 0.
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Part(n)
∼←→ Irr(Sn)

λ 7−→ χλ

λ 7−→

{
γd(λ) ∈ Part → its d -core

λ[d ] ∈ Partd → its d -quotient

|λ| = |γd(λ)|+ d |λ[d ]|.

Theorem (Fong-Srinivasan, 1982)

Assume that o(q mod ℓ) = d . Two unipotent characters ρλ and ρµ

of GLn(Fq) lie in the same ℓ-block if and only if γd(λ) = γd(µ).
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Fix a d -core γ such that r =
n − |γ|

d
∈ N

Sr ⋉ µ
r
d ≃ G (d , 1, r) ⊂ GLr (C)

Partd(r)
∼←→ Irr(G (d , 1, r))

µ 7−→ χ(d)
µ

Let
ϕγ : Z(CSn) −→ Z(CG (d , 1, r))

eχλ 7−→

{
e
χ
(d)

λ[d]

if γd(λ) = γ,

0 if γd(λ) 6= γ,

Theorem (B.-Maksimau-Shan, 2017)

ϕγ(Fi(Z(CSn)) ⊂ Fi(Z(CG (d , 1, r)))

(i .e. (IdC[h] ⊗ϕγ)(ReesFZ(CSn)) ⊂ ReesFZ(CG (d , 1, r)) ).
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c : Ref(W )/ ∼ −→ C

Hc = C[V ]⊗ CW ⊗ C[V ∗] (as a vector space)

∀y ∈ V , ∀x ∈ V ∗, [y , x ] =
∑

s∈Ref(W )

cs〈y , s(x) − x〉s

Zc = Z(Hc)

Z c = Specmax(Zc) (Calogero-Moser space)

Example - Assume that c = 0.

H0 = C[V × V ∗]⋊W

Z0 = C[V × V ∗]W

Z 0 = (V × V ∗)/W .
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Theorem (Etingof-Ginzburg, 2002)

(a) Zc is integral and integrally closed (i.e. Z c is irreducible and
normal)
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Theorem (Etingof-Ginzburg, 2002)

(a) Zc is integral and integrally closed (i.e. Z c is irreducible and
normal)

(b) If Z c is smooth, then

Hc-mod −→ Zc-mod

M 7−→ eM = (eHc)⊗Hc
M

is a Morita equivalence (here, e = 1
|W |

∑
w∈W w).

(c) If Z c is smooth, then






H2i+1(Z c) = 0

H2•(Z c) ≃︸︷︷︸
C-alg

GradFZ(CW )
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Calogero-Moser space (continued)

Hc is Z-graded with

deg(V ) = −1, deg(V ∗) = 1 and deg(W ) = 0.

⇒ Zc is Z-graded (i.e. admits a C×-action)

⇒ Z c admits a C×-action.

Theorem (Gordon, 2003)

If Z c is smooth, then

Z
C×

c

∼←→ Irr(W )
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If X is an algebraic variety endowed with a C×-action, one can
define its equivariant cohomology H•

C×(X ).

H•

C×(pt) ≃ C[h], with deg(h) = 2.

⇒ H•

C×(X ) is a C[h]-algebra.

Theorem (folklore)

Assume that H2i+1(X ) = 0 for all i . Then:

(a) H2i+1
C× (X ) = 0 for all i .

(b) H2•(X ) ≃ C[h]/〈h〉 ⊗ H2•
C×(X ).

(c) The canonical map i∗
X

: H2•
C×(X ) −→ H2•

C×(X
C×

) is injective.

Remark - H2•
C×(X

C×

) = C[h]⊗ H2•(X ).
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H2•(Z c) ≃

{
C[h]/〈h〉 ⊗H2•

C×(Z c)

GradFZ(CW ) ≃ C[h]/〈h〉 ⊗ ReesFZ(CW ).

By folklore Theorem and Gordon Theorem,

i∗
Zc

: H2•
C×(Z c) −֒→ H2•

C×(Z
C×

c ) ≃ C[h]⊗ Z(CW ).

An easy argument based on comparison of dimensions shows that it
is sufficient to prove that

(⋆) ReesFZ(CW ) ⊂ Im(i∗Zc
).
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(⋆) ReesFZ(CW ) ⊂ Im(i∗
Zc
).

If E is a graded CW -module, then Hc ⊗CW E is a graded projective
Hc-module, hence eHc ⊗CW E is a graded projective Zc-module.
⇒ equivariant Chern character ch(eHc ⊗CW E ) ∈ Ĥ2•

C×(Z c).

Theorem (Bellamy, 2009)

i∗Zc
(ch(eHc ⊗CW E )) =

∑

χ∈Irr(W )

qbχ
〈χ,C[V ]co(W ) ⊗ E 〉grW
〈χ,C[V ]co(W )〉grW

eWχ

where q = exp(h) and bχ = val〈χ,C[V ]co(W )〉grW .

⇒ (⋆) holds (!). QED
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Theorem (B.-Maksimau, 2017)

Z 1(Sn)
µd =

∐

d-cores γ
s.t. d | n − |γ|

Z cγ(G (d , 1, rγ))

where rγ = (n − |γ|)/d .

Fix such a d -core γ. By functoriality of equivariant cohomology, we
get two maps

H2•
C×(Z 1(Sn))

ϕa
γ

//
� _

��

H2•
C×(Z cγ(G (d , 1, rγ)))� _

��

H2•
C×(Z 1(Sn)

C×

)
ϕb

γ
// H2•

C×(Z cγ(G (d , 1, rγ))
C×

)
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spaces,
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◮ partition into blocks of unipotent characters (d -Harish-Chandra
theory)

? Theory of spetses (Broué-Malle-Michel).


