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° ﬁ,(CW) = @cod(w) < Cw
o F(CW) . Z(CW) C F;,(CW)

Fo(CW)=C C F(CW) cC #H(CW)C---C Z,(CW)=CW is
a filtration of CW/.

@ If Ais a subalgebra of CW, we define .%;(A) = AN Z%;(CW)
@ Reesz(A) =P, ., h.Zi(A) C Clhh® A

A if & #0,

o C[hl/(h— &) ® Reesz(A) ~ {Gradf(A) if&E=0
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Example: W =6, ¢ GL,(C)

Part(n) +— Irr(&,)
A — X

Y4(A) € Part  — its d-core
A 0 .
Ald] € Party — its d-quotient

Al =lva(A)l + d [ALd]I.

Theorem (Fong-Srinivasan, 1982)

Assume that o(q mod £) = d. Two unipotent characters p, and p,
of GL,(FF,) lie in the same {-block if and only if y4(A) = vq(p).
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Example: W =&, C GL,(C) (continued)

—IvlEN

@ Fix a d-core y such that r =
o S, xu,~G(d1r)c GL,(C)

Party(r) «— TIrr(G(d,1,r))
po— X

o Let
oy Z(C6,) — z(CaG(d,1,r))

S {ex;‘z;] o =y
" 0 if ya(A) #,

Theorem (B.-Maksimau-Shan, 2017)
¢y (Fi(Z(CS,)) C Fi(Z(CG(d, 1, r)))

(i.e.  (Idcp ®@y)(ReeszZ(CS,)) C ReeszZ(CG(d,1,r))

).
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o c:Ref(W)/~ — C

H.=C[V]® CW @ C[V*] (as a vector space)
Vy e V, Vx e V¥, [y,x] = Z cs(y,s(x) —x)s

seRef(W)

o Z =7(H.)
@ Z. = Specmax(Z.) (Calogero-Moser space)

Example - Assume that ¢ = 0.
Ho=C[Vx V] x W

Zo = C[V x VW
Zy=(V x V*)/W.
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Calogero-Moser space (continued)

Theorem (Etingof-Ginzburg, 2002)

(a) Z. is integral and integrally closed (i.e. 2 is irreducible and
normal)

(b) If Z, is smooth, then

H.mod — Z.-mod
M — eM = (eH.) ®u, M

is a Morita equivalence (here, e = gz >, .\ w).
(c) If Z. is smooth, then

H2i+1(£ﬁc) =0
Hz'(ﬁfc)\\:/_/GradegZ(CW)

C-alg
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o H_ is Z-graded with

deg(V) =—1, deg(V*)=1 and deg(W)=0.

= Z. is Z-graded (i.e. admits a C*-action)
= %, admits a C*-action.

Theorem (Gordon, 2003)
If Z. is smooth, then

FC S T (W)

Cc
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o If 2 is an algebraic variety endowed with a C*-action, one can
define its equivariant cohomology H?., (Z7).

o HZ. (pt) ~ C[h], with deg(h) = 2.
= H2. (Z") is a C[h]-algebra.

Theorem (folklore)

Assume that H>*1(.2") = 0 for all i. Then:
(a) HYH(27) =0 for all i.

(b) H*(Z") ~ C[h)/{h) @ H (Z').

(¢c) The canonical map 7% : H2, (27) — H2.(2°") is injective.

v

Remark - 12, (2°C") = Clhl @ H>*(2).
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Theorem,
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Clh/(h) ® HZ(Z.)

H>*(Z) ~ {
GradzZ(CW) ~ C[hl/(h) ® ReeszZ(CW).

By folklore Theorem and Gordon Theorem,
i tH2(Z,) — HZ(ZE) ~ Clh @ Z(CW).

An easy argument based on comparison of dimensions shows that it
is sufficient to prove that

(%) ReeszZ(CW) C Im(i%. ).
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Theorem (B.-Maksimau, 2017)
gl(en)ud - H gcy(G(d)l)ry))

d-cores y
s.t. d | n—yl

where r, = (n—|y|)/d.

Fix such a d-core y. By functoriality of equivariant cohomology, we
get two maps

a

2 (24(6,) — H2.(Z. (G(d,1,1,))
b
H2, (24(6,)C") —— 128, (%, (G(d, 1, 1))
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(1) One can deduce from this work a proof of a conjecture of
Ginzburg-Kaledin on the cohomology of symplectic resolutions of
(V x V*)/W (B.-Shan, 2017).

(2) With R. Rouquier (2017), we have general conjectures about
» equivariant cohomology of possibly singular Calogero-Moser
spaces,
» fixed points under the action of py

+ The combinatoric fits with observations made in the
representation theory of finite reductive groups

» Lusztig families of unipotent characters
» partition into blocks of unipotent characters (d-Harish-Chandra

theory)
? Theory of spetses (Broué-Malle-Michel).



