Equivariant cohomology and fixed points of smooth Calogero-Moser spaces

Cédric Bonnafé

CNRS (UMR 5149) - Université de Montpellier

Banff, Canada, October 2017

Set－up

Set-up

- $\operatorname{dim}_{\mathbb{C}}(V)=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$

Set-up

- $\operatorname{dim}_{\mathbb{C}}(V)=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$
- $\operatorname{cod}(w)=\operatorname{codim}_{\mathbb{C}}\left(V^{w}\right)$
- $\operatorname{cod}\left(w w^{\prime}\right) \leqslant \operatorname{cod}(w)+\operatorname{cod}\left(w^{\prime}\right)$

Set-up

- $\operatorname{dim}_{\mathbb{C}}(V)=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$
- $\operatorname{cod}(w)=\operatorname{codim}_{\mathbb{C}}\left(V^{w}\right)$
- $\operatorname{cod}\left(w w^{\prime}\right) \leqslant \operatorname{cod}(w)+\operatorname{cod}\left(w^{\prime}\right)$
- $\operatorname{Ref}(W)=\operatorname{cod}^{-1}(1)$.
- Hypothesis: $W=\langle\operatorname{Ref}(W)\rangle$

Set-up

- $\operatorname{dim}_{\mathbb{C}}(V)=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$
- $\operatorname{cod}(w)=\operatorname{codim}_{\mathbb{C}}\left(V^{w}\right)$
- $\operatorname{cod}\left(w w^{\prime}\right) \leqslant \operatorname{cod}(w)+\operatorname{cod}\left(w^{\prime}\right)$
- $\operatorname{Ref}(W)=\operatorname{cod}^{-1}(1)$.
- Hypothesis: $W=\langle\operatorname{Ref}(W)\rangle$

Set-up (continued)

Set-up (continued)

- $\mathscr{F}_{i}(\mathbb{C} W)=\bigoplus_{\operatorname{cod}(w)} \leqslant i \mathbb{C} w$
- $\mathscr{F}_{i}(\mathbb{C} W) \cdot \mathscr{F}_{j}(\mathbb{C} W) \subset \mathscr{F}_{i+j}(\mathbb{C W})$

Set-up (continued)

- $\mathscr{F}_{i}(\mathbb{C W})=\bigoplus_{\operatorname{cod}(w)} \leqslant i \mathbb{C} w$
- $\mathscr{F}_{i}(\mathbb{C} W) \cdot \mathscr{F}_{j}(\mathbb{C} W) \subset \mathscr{F}_{i+j}(\mathbb{C} W)$
$\mathscr{F}_{0}(\mathbb{C} W)=\mathbb{C} \subset \mathscr{F}_{1}(\mathbb{C} W) \subset \mathscr{F}_{2}(\mathbb{C} W) \subset \cdots \subset \mathscr{F}_{n}(\mathbb{C} W)=\mathbb{C} W$ is
a filtration of $\mathbb{C} W$.

Set-up (continued)

- $\mathscr{F}_{i}(\mathbb{C} W)=\bigoplus_{\operatorname{cod}(w) \leqslant i} \mathbb{C} w$
- $\mathscr{F}_{i}(\mathbb{C W}) \cdot \mathscr{\mathscr { F }}_{j}(\mathbb{C} W) \subset \mathscr{F}_{i+j}(\mathbb{C} W)$
$\mathscr{F}_{0}(\mathbb{C} W)=\mathbb{C} \subset \mathscr{F}_{1}(\mathbb{C} W) \subset \mathscr{F}_{2}(\mathbb{C} W) \subset \cdots \subset \mathscr{F}_{n}(\mathbb{C} W)=\mathbb{C} W$ is a filtration of $\mathbb{C} W$.
- If A is a subalgebra of $\mathbb{C} W$, we define $\mathscr{F}_{i}(A)=A \cap \mathscr{F}_{i}(\mathbb{C} W)$

Set-up (continued)

- $\mathscr{F}_{i}(\mathbb{C} W)=\bigoplus_{\operatorname{cod}(w) \leqslant i} \mathbb{C} w$
- $\mathscr{\mathscr { F }}_{i}(\mathbb{C} W) \cdot \mathscr{\mathscr { F }}_{j}(\mathbb{C} W) \subset \mathscr{F}_{i+j}(\mathbb{C} W)$
$\mathscr{F}_{0}(\mathbb{C} W)=\mathbb{C} \subset \mathscr{F}_{1}(\mathbb{C} W) \subset \mathscr{F}_{2}(\mathbb{C} W) \subset \cdots \subset \mathscr{F}_{n}(\mathbb{C} W)=\mathbb{C} W$ is a filtration of $\mathbb{C} W$.
- If A is a subalgebra of $\mathbb{C} W$, we define $\mathscr{F}_{i}(A)=A \cap \mathscr{F}_{i}(\mathbb{C} W)$
- $\operatorname{Rees}_{\mathscr{F}}(A)=\bigoplus_{i \geqslant 0} h^{i} \mathscr{F}_{i}(A) \subset \mathbb{C}[h] \otimes A$

Set-up (continued)

- $\mathscr{F}_{i}(\mathbb{C} W)=\bigoplus_{\operatorname{cod}(w) \leqslant i} \mathbb{C} w$
- $\mathscr{F}_{i}(\mathbb{C W}) \cdot \mathscr{\mathscr { F }}_{j}(\mathbb{C} W) \subset \mathscr{F}_{i+j}(\mathbb{C} W)$
$\mathscr{F}_{0}(\mathbb{C} W)=\mathbb{C} \subset \mathscr{F}_{1}(\mathbb{C} W) \subset \mathscr{F}_{2}(\mathbb{C} W) \subset \cdots \subset \mathscr{F}_{n}(\mathbb{C} W)=\mathbb{C} W$ is a filtration of $\mathbb{C} W$.
- If A is a subalgebra of $\mathbb{C} W$, we define $\mathscr{F}_{i}(A)=A \cap \mathscr{F}_{i}(\mathbb{C} W)$
- $\operatorname{Rees}_{\mathscr{F}}(A)=\bigoplus_{i \geqslant 0} h^{i} \mathscr{F}_{i}(A) \subset \mathbb{C}[h] \otimes A$
- $\mathbb{C}[h] /\langle h-\xi\rangle \otimes \operatorname{Rees}_{\mathscr{F}}(A) \simeq \begin{cases}A & \text { if } \xi \neq 0, \\ \operatorname{Grad}_{\mathscr{F}}(A) & \text { if } \xi=0 .\end{cases}$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L} L_{n}(\mathbb{C})$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L} L_{n}(\mathbb{C})$

$$
\begin{aligned}
\operatorname{Part}(n) & \stackrel{\sim}{\longleftrightarrow} \operatorname{Irr}\left(\mathfrak{S}_{n}\right) \\
\lambda & \longmapsto \chi_{\lambda}
\end{aligned}
$$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L} L_{n}(\mathbb{C})$

$$
\begin{aligned}
& \operatorname{Part}(n) \stackrel{\sim}{\longleftrightarrow} \operatorname{Irr}\left(\mathfrak{S}_{n}\right) \\
& \lambda \longmapsto \chi_{\lambda} \\
& \lambda \longmapsto \begin{cases}\gamma_{d}(\lambda) \in \text { Part } & \rightarrow \text { its } d \text {-core } \\
\lambda[d] \in \text { Part }_{d} & \rightarrow \text { its } d \text {-quotient }\end{cases}
\end{aligned}
$$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$

$$
\begin{gathered}
\operatorname{Part}(n) \\
\lambda \stackrel{\sim}{\longmapsto} \operatorname{Irr}\left(\mathfrak{S}_{n}\right) \\
\lambda \longmapsto \begin{cases}\chi_{\lambda}\end{cases} \\
\begin{array}{ll}
\gamma_{d}(\lambda) \in \text { Part } & \rightarrow \text { its } d \text {-core } \\
\lambda[d] \in \text { Part }_{d} & \rightarrow \text { its } d \text {-quotient }
\end{array} \\
|\lambda|=\left|\gamma_{d}(\lambda)\right|+d|\lambda[d]| .
\end{gathered}
$$

Example：$W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$

$$
\begin{gathered}
\operatorname{Part}(n) \\
\lambda \stackrel{\sim}{\longmapsto} \operatorname{Irr}\left(\mathfrak{S}_{n}\right) \\
\lambda \longmapsto \begin{cases}\begin{array}{l}
\gamma_{d}(\lambda) \in \text { Part }
\end{array} & \rightarrow \text { its } d \text {-core } \\
\lambda[d] \in \operatorname{Part}_{d} & \rightarrow \text { its } d \text {-quotient }\end{cases} \\
|\lambda|=\left|\gamma_{d}(\lambda)\right|+d|\lambda[d]| .
\end{gathered}
$$

Theorem（Fong－Srinivasan，1982）
Assume that $o(q \bmod \ell)=d$ ．Two unipotent characters ρ_{λ} and ρ_{μ} of $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)$ lie in the same ℓ－block if and only if $\gamma_{d}(\lambda)=\gamma_{d}(\mu)$ ．

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

- Fix a d-core γ such that $r=\frac{n-|\gamma|}{d} \in \mathbb{N}$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

- Fix a d-core γ such that $r=\frac{n-|\gamma|}{d} \in \mathbb{N}$
- $\mathfrak{S}_{r} \ltimes \mu_{d}^{r} \simeq G(d, 1, r) \subset \mathbf{G L}_{r}(\mathbb{C})$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

- Fix a d-core γ such that $r=\frac{n-|\gamma|}{d} \in \mathbb{N}$
- $\mathfrak{S}_{r} \ltimes \mu_{d}^{r} \simeq G(d, 1, r) \subset \mathbf{G L}_{r}(\mathbb{C})$

$$
\begin{aligned}
\operatorname{Part}_{d}(r) & \longleftrightarrow \operatorname{Irr}(G(d, 1, r)) \\
\mu & \longmapsto \chi_{\mu}^{(d)}
\end{aligned}
$$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

- Fix a d-core γ such that $r=\frac{n-|\gamma|}{d} \in \mathbb{N}$
- $\mathfrak{S}_{r} \ltimes \mu_{d}^{r} \simeq G(d, 1, r) \subset \mathbf{G L}_{r}(\mathbb{C})$

$$
\begin{aligned}
\operatorname{Part}_{d}(r) & \longleftrightarrow \sim \operatorname{Irr}(G(d, 1, r)) \\
\mu & \longmapsto \chi_{\mu}^{(d)}
\end{aligned}
$$

- Let

$$
\begin{aligned}
& \varphi_{\gamma}: \mathrm{Z}\left(\mathbb{C G}_{n}\right) \longrightarrow \quad \mathrm{Z}(\mathbb{C} G(d, 1, r)) \\
& e_{x_{\lambda}} \longmapsto \begin{cases}e_{\chi_{\lambda(d)}} & \text { if } \gamma_{d}(\lambda)=\gamma, \\
0 & \text { if } \gamma_{d}(\lambda) \neq \gamma,\end{cases}
\end{aligned}
$$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

- Fix a d-core γ such that $r=\frac{n-|\gamma|}{d} \in \mathbb{N}$
- $\mathfrak{S}_{r} \ltimes \boldsymbol{\mu}_{d}^{r} \simeq G(d, 1, r) \subset \mathbf{G L}_{r}(\mathbb{C})$

$$
\begin{aligned}
\operatorname{Part}_{d}(r) & \longleftrightarrow \sim \operatorname{Irr}(G(d, 1, r)) \\
\mu & \longmapsto \chi_{\mu}^{(d)}
\end{aligned}
$$

- Let

$$
\begin{aligned}
\varphi_{\gamma}: \mathrm{Z}\left(\mathbb{C}_{n}\right) & \left.\longrightarrow \begin{array}{ll}
\mathrm{Z}(\mathbb{C} G(d, 1, r)) \\
e_{\chi_{\lambda}} & \longmapsto \begin{cases}e_{\chi_{\lambda}(d)} & \text { if } \gamma_{d}(\lambda)=\gamma, \\
0 & \text { if } \gamma_{d}(\lambda) \neq \gamma,\end{cases}
\end{array} . \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Theorem (B.-Maksimau-Shan, 2017)

$$
\varphi_{\gamma}\left(\mathscr{F}_{i}\left(\mathrm{Z}\left(\mathbb{C} \mathfrak{S}_{n}\right)\right) \subset \mathscr{F}_{i}(\mathrm{Z}(\mathbb{C} G(d, 1, r)))\right.
$$

Example: $W=\mathfrak{S}_{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ (continued)

- Fix a d-core γ such that $r=\frac{n-|\gamma|}{d} \in \mathbb{N}$
- $\mathfrak{S}_{r} \ltimes \mu_{d}^{r} \simeq G(d, 1, r) \subset \mathbf{G L}_{r}(\mathbb{C})$

$$
\begin{aligned}
\operatorname{Part}_{d}(r) & \stackrel{\sim}{\longmapsto} \operatorname{Irr}(G(d, 1, r)) \\
\mu & \longmapsto \chi_{\mu}^{(d)}
\end{aligned}
$$

- Let

$$
\begin{aligned}
\varphi_{\gamma}: \mathrm{Z}\left(\mathbb{C}_{n}\right) & \left.\longrightarrow \begin{array}{rl}
\mathrm{Z}(\mathbb{C} G(d, 1, r)) \\
e_{\mathrm{X}_{\lambda}} & \longmapsto \begin{cases}e_{\chi_{\lambda}(d)} & \text { if } \gamma_{d}(\lambda)=\gamma, \\
0 & \text { if } \gamma_{d}(\lambda) \neq \gamma,\end{cases}
\end{array} . \begin{array}{l}
\end{array}\right)
\end{aligned}
$$

Theorem (B.-Maksimau-Shan, 2017)

$$
\varphi_{\gamma}\left(\mathscr{F}_{i}\left(\mathrm{Z}\left(\mathbb{C} \mathfrak{S}_{n}\right)\right) \subset \mathscr{F}_{i}(\mathrm{Z}(\mathbb{C} G(d, 1, r)))\right.
$$

(i.e. $\quad\left(\operatorname{Id}_{\mathbb{C}[h]} \otimes \varphi_{\gamma}\right)\left(\operatorname{Rees}_{\mathscr{F}} \mathrm{Z}\left(\mathbb{C}_{n}\right)\right) \subset \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} G(d, 1, r)) \quad$).

Calogero-Moser spaces

Calogero－Moser spaces

－c： $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

Calogero－Moser spaces

－c： $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

Calogero-Moser spaces

- c: $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

- $Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)$
- $\mathscr{Z}_{c}=\operatorname{Specmax}\left(Z_{c}\right)$ (Calogero-Moser space)

Calogero-Moser spaces

- c: $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

- $Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)$
- $\mathscr{Z}_{c}=\operatorname{Specmax}\left(Z_{c}\right)$ (Calogero-Moser space)

Example - Assume that $c=0$.

Calogero-Moser spaces

- c: $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

- $Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)$
- $\mathscr{Z}_{c}=\operatorname{Specmax}\left(Z_{c}\right)$ (Calogero-Moser space)

Example - Assume that $c=0$.

$$
\mathbf{H}_{0}=\mathbb{C}\left[V \times V^{*}\right] \rtimes W
$$

Calogero-Moser spaces

- c: $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

- $Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)$
- $\mathscr{Z}_{c}=\operatorname{Specmax}\left(Z_{c}\right)$ (Calogero-Moser space)

Example - Assume that $c=0$.

$$
\begin{aligned}
\mathbf{H}_{0} & =\mathbb{C}\left[V \times V^{*}\right] \rtimes W \\
Z_{0} & =\mathbb{C}\left[V \times V^{*}\right]^{W}
\end{aligned}
$$

Calogero-Moser spaces

- c: $\operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*}, \quad[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

- $Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)$
- $\mathscr{Z}_{c}=\operatorname{Specmax}\left(Z_{c}\right)$ (Calogero-Moser space)

Example - Assume that $c=0$.

$$
\begin{aligned}
\mathbf{H}_{0} & =\mathbb{C}\left[V \times V^{*}\right] \rtimes W \\
Z_{0} & =\mathbb{C}\left[V \times V^{*}\right]^{W} \\
\mathscr{Z}_{0} & =\left(V \times V^{*}\right) / W
\end{aligned}
$$

Calogero-Moser space (continued)

Calogero－Moser space（continued）

Theorem（Etingof－Ginzburg，2002）
（a）Z_{c} is integral and integrally closed

Calogero-Moser space (continued)

Theorem (Etingof-Ginzburg, 2002)
(a) Z_{c} is integral and integrally closed (i.e. \mathscr{Z}_{c} is irreducible and normal)

Calogero-Moser space (continued)

Theorem (Etingof-Ginzburg, 2002)
(a) Z_{c} is integral and integrally closed (i.e. \mathscr{Z}_{c} is irreducible and normal)
(b) If \mathscr{Z}_{c} is smooth, then

$$
\begin{aligned}
\mathbf{H}_{c}-\bmod & \longrightarrow Z_{c}-\bmod \\
M & \longmapsto e M
\end{aligned}
$$

is a Morita equivalence (here, $e=\frac{1}{|W|} \sum_{w \in W} w$).

Calogero-Moser space (continued)

Theorem (Etingof-Ginzburg, 2002)
(a) Z_{c} is integral and integrally closed (i.e. \mathscr{Z}_{c} is irreducible and normal)
(b) If \mathscr{Z}_{c} is smooth, then

$$
\begin{array}{cl}
\mathbf{H}_{c}-\bmod & \longrightarrow Z_{c}-\bmod \\
M & \longmapsto e M=\left(e \mathbf{H}_{c}\right) \otimes_{\mathbf{H}_{c}} M
\end{array}
$$

is a Morita equivalence (here, $e=\frac{1}{|W|} \sum_{w \in W} w$).

Calogero-Moser space (continued)

Theorem (Etingof-Ginzburg, 2002)
(a) Z_{c} is integral and integrally closed (i.e. \mathscr{Z}_{c} is irreducible and normal)
(b) If \mathscr{Z}_{c} is smooth, then

$$
\begin{array}{cl}
\mathbf{H}_{c}-\bmod & \longrightarrow Z_{c}-\bmod \\
M & \longmapsto e M=\left(e \mathbf{H}_{c}\right) \otimes_{\mathbf{H}_{c}} M
\end{array}
$$

is a Morita equivalence (here, $e=\frac{1}{|W|} \sum_{w \in W} w$).
(c) If \mathscr{Z}_{c} is smooth, then

$$
\left\{\begin{array}{l}
\mathrm{H}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0 \\
\mathrm{H}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \underbrace{\simeq}_{\mathbb{C} \text {-alg }} \operatorname{Grad}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W)
\end{array}\right.
$$

Calogero-Moser space (continued)

Calogero-Moser space (continued)

- \mathbf{H}_{c} is \mathbb{Z}-graded with

$$
\operatorname{deg}(V)=-1, \quad \operatorname{deg}\left(V^{*}\right)=1 \quad \text { and } \quad \operatorname{deg}(W)=0
$$

Calogero-Moser space (continued)

- \mathbf{H}_{c} is \mathbb{Z}-graded with

$$
\operatorname{deg}(V)=-1, \quad \operatorname{deg}\left(V^{*}\right)=1 \quad \text { and } \quad \operatorname{deg}(W)=0
$$

$\Rightarrow Z_{c}$ is \mathbb{Z}-graded (i.e. admits a \mathbb{C}^{\times}-action)

Calogero-Moser space (continued)

- \mathbf{H}_{c} is \mathbb{Z}-graded with

$$
\operatorname{deg}(V)=-1, \quad \operatorname{deg}\left(V^{*}\right)=1 \quad \text { and } \quad \operatorname{deg}(W)=0
$$

$\Rightarrow Z_{c}$ is \mathbb{Z}-graded (i.e. admits a \mathbb{C}^{\times}-action)
$\Rightarrow \mathscr{Z}_{c}$ admits a \mathbb{C}^{\times}-action .

Calogero-Moser space (continued)

- \mathbf{H}_{c} is \mathbb{Z}-graded with

$$
\operatorname{deg}(V)=-1, \quad \operatorname{deg}\left(V^{*}\right)=1 \quad \text { and } \quad \operatorname{deg}(W)=0
$$

$\Rightarrow Z_{c}$ is \mathbb{Z}-graded (i.e. admits a \mathbb{C}^{\times}-action)
$\Rightarrow \mathscr{Z}_{c}$ admits a \mathbb{C}^{\times}-action .
Theorem (Gordon, 2003)
If \mathscr{Z}_{c} is smooth, then

$$
\mathscr{Z}_{c}^{\mathbb{C}^{\times}} \stackrel{\sim}{\longleftrightarrow} \operatorname{Irr}(W)
$$

Equivariant cohomology

Equivariant cohomology

－If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}－action，one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$ ．

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C} \times}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$.

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C} \times}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$.
$\Rightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$ is a $\mathbb{C}[h]$-algebra.

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$.
$\Rightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$ is a $\mathbb{C}[h]$-algebra.

Theorem (folklore)

Assume that $\mathrm{H}^{2 i+1}(\mathscr{X})=0$ for all i. Then:

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$.
$\Rightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$ is a $\mathbb{C}[h]$-algebra.

Theorem (folklore)

Assume that $\mathrm{H}^{2 i+1}(\mathscr{X})=0$ for all i. Then:
(a) $\mathrm{H}_{\mathbb{C} \times}^{2 i+1}(\mathscr{X})=0$ for all i.

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$.
$\Rightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$ is a $\mathbb{C}[h]$-algebra.

Theorem (folklore)

Assume that $\mathrm{H}^{2 i+1}(\mathscr{X})=0$ for all i. Then:
(a) $\mathrm{H}_{\mathbb{C} \times}^{2 i+1}(\mathscr{X})=0$ for all i.
(b) $\mathrm{H}^{2 \bullet}(\mathscr{X}) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}(\mathscr{X})$.

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\cdot}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$. $\Rightarrow \mathrm{H}_{\mathbb{C}^{\times}}(\mathscr{X})$ is a $\mathbb{C}[h]$-algebra.

Theorem (folklore)

Assume that $\mathrm{H}^{2 i+1}(\mathscr{X})=0$ for all i. Then:
(a) $\mathrm{H}_{\mathbb{C} \times}^{2 i+1}(\mathscr{X})=0$ for all i.
(b) $\mathrm{H}^{2 \bullet}(\mathscr{X}) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}(\mathscr{X})$.
(c) The canonical map $i_{\mathscr{X}}^{*}: \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}(\mathscr{X}) \longrightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{X}^{\mathbb{C}^{\times}}\right)$is injective.

Equivariant cohomology

- If \mathscr{X} is an algebraic variety endowed with a \mathbb{C}^{\times}-action, one can define its equivariant cohomology $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$.
- $\mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathrm{pt}) \simeq \mathbb{C}[h]$, with $\operatorname{deg}(h)=2$. $\Rightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{\bullet}(\mathscr{X})$ is a $\mathbb{C}[h]$-algebra.

Theorem (folklore)

Assume that $\mathrm{H}^{2 i+1}(\mathscr{X})=0$ for all i. Then:
(a) $\mathrm{H}_{\mathbb{C} \times}^{2 i+1}(\mathscr{X})=0$ for all i.
(b) $\mathrm{H}^{2 \bullet}(\mathscr{X}) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}(\mathscr{X})$.
(c) The canonical map $i_{\mathscr{X}}^{*}: \mathrm{H}_{\mathbb{C}^{\times}}^{2 \cdot}(\mathscr{X}) \longrightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{X}^{\mathbb{C}^{\times}}\right)$is injective.

Remark - $\mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{X}^{\mathbb{C}^{\times}}\right)=\mathbb{C}[h] \otimes \mathrm{H}^{2 \bullet}(\mathscr{X})$.

Equivariant cohomology of smooth \mathscr{Z}_{c}

Equivariant cohomology of smooth \mathscr{Z}_{c}

Theorem (B.-Shan 2017)
If \mathscr{Z}_{c} is smooth, then
(a) $\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0$.
(b) $\mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \underset{\mathbb{C} \text {-alg }}{\simeq} \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W)$.

Equivariant cohomology of smooth \mathscr{Z}_{c}

Theorem (B.-Shan 2017)
If \mathscr{Z}_{c} is smooth, then
(a) $\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0$.
(b) $\mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \underset{\mathbb{C} \text {-alg }}{\simeq} \operatorname{Rees} \mathscr{F} \mathrm{Z}(\mathbb{C} W)$.

Sketch of the proof. By folklore Theorem and Etingof-Ginzburg Theorem,

$$
\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0
$$

Equivariant cohomology of smooth \mathscr{Z}_{c}

Theorem (B.-Shan 2017)
If \mathscr{Z}_{c} is smooth, then
(a) $\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0$.
(b) $\mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \underbrace{\simeq}_{\mathbb{C} \text {-alg }} \operatorname{Rees} \mathscr{F} \mathrm{Z}(\mathbb{C} W)$.

Sketch of the proof. By folklore Theorem and Etingof-Ginzburg Theorem,

$$
\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0
$$

$$
\mathrm{H}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}^{\bullet} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \\
\end{array}\right.
$$

Equivariant cohomology of smooth \mathscr{Z}_{c}

Theorem (B.-Shan 2017)
If \mathscr{Z}_{c} is smooth, then
(a) $\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0$.
(b) $\mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \underbrace{\simeq}_{\mathbb{C} \text {-alg }} \operatorname{Rees} \mathscr{F} \mathrm{Z}(\mathbb{C} W)$.

Sketch of the proof. By folklore Theorem and Etingof-Ginzburg Theorem,

$$
\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0
$$

$$
\mathrm{H}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \\
\operatorname{Grad}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W)
\end{array}\right.
$$

Equivariant cohomology of smooth \mathscr{Z}_{c}

Theorem (B.-Shan 2017)
If \mathscr{Z}_{c} is smooth, then
(a) $\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0$.
(b) $\mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \underbrace{\simeq}_{\mathbb{C} \text {-alg }} \operatorname{Rees} \mathscr{F} \mathrm{Z}(\mathbb{C} W)$.

Sketch of the proof. By folklore Theorem and Etingof-Ginzburg Theorem,

$$
\mathrm{H}_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathscr{Z}_{c}\right)=0
$$

$$
\mathrm{H}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \\
\operatorname{Grad}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W)
\end{array}\right.
$$

Sketch of the proof (continued)

$$
\mathrm{H}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}}^{2 \cdot}\left(\mathscr{Z}_{c}\right) \\
\operatorname{Grad} \mathbb{Z}(\mathbb{C} W) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) .
\end{array}\right.
$$

Sketch of the proof (continued)

$$
\mathrm{H}^{2 \cdot}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}}^{2 \cdot}\left(\mathscr{Z}_{c}\right) \\
\operatorname{Grad}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) .
\end{array}\right.
$$

By folklore Theorem and Gordon Theorem,

$$
i_{\mathscr{P}_{c}}^{*}: \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet \bullet}\left(\mathscr{Z}_{c}\right) \longleftrightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{Z}_{c}^{\mathbb{C}^{\times}}\right)
$$

Sketch of the proof (continued)

$$
\mathrm{H}^{2 \cdot}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C}}^{2 \cdot}\left(\mathscr{Z}_{c}\right) \\
\operatorname{Grad}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \operatorname{Rees} \mathscr{F} \mathrm{Z}(\mathbb{C} W) .
\end{array}\right.
$$

By folklore Theorem and Gordon Theorem,

$$
i_{\mathscr{P}_{c}^{*}}^{*}: \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \longleftrightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{2 \cdot}\left(\mathscr{Z}_{c}^{\mathbb{C}^{\times}}\right) \simeq \mathbb{C}[h] \otimes \mathrm{Z}(\mathbb{C} W) .
$$

Sketch of the proof (continued)

$$
\mathrm{H}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \simeq\left\{\begin{array}{l}
\mathbb{C}[h] /\langle h\rangle \otimes \mathrm{H}_{\mathbb{C} \times}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \\
\operatorname{Grad}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) \simeq \mathbb{C}[h] /\langle h\rangle \otimes \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W)
\end{array}\right.
$$

By folklore Theorem and Gordon Theorem,

$$
i_{\mathscr{Z}_{c}}^{*}: \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{Z}_{c}\right) \longleftrightarrow \mathrm{H}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{Z}_{c}^{\mathbb{C}^{\times}}\right) \simeq \mathbb{C}[h] \otimes \mathrm{Z}(\mathbb{C} W)
$$

An easy argument based on comparison of dimensions shows that it is sufficient to prove that

$$
\text { Rees } \mathscr{F} Z(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{P}_{c}}^{*}\right)
$$

Sketch of the proof (continued)

(\star
$\operatorname{Rees}_{\mathscr{F}} Z(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{C}_{c}^{*}}^{*}\right)$.

Sketch of the proof (continued)

(\star

$$
\operatorname{Rees}_{\mathscr{F}} Z(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{F}_{c}}^{*}\right) .
$$

If E is a graded $\mathbb{C} W$-module, then $\mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective H_{c}-module,

Sketch of the proof (continued)

(\star

$$
\operatorname{Rees}_{\mathscr{F}} Z(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{C}_{c}}^{*}\right) .
$$

If E is a graded $\mathbb{C} W$-module, then $\mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective \mathbf{H}_{c}-module, hence $e \mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective Z_{c}-module.

Sketch of the proof (continued)

$$
\operatorname{Rees}_{\mathscr{F}} Z(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{C}_{c}}^{*}\right) .
$$

If E is a graded $\mathbb{C} W$-module, then $\mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective \mathbf{H}_{c}-module, hence $e \mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective Z_{c}-module. \Rightarrow equivariant Chern character $\operatorname{ch}\left(e \mathbf{H}_{c} \otimes_{\mathbb{C} W} E\right) \in \hat{\mathrm{H}}_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathscr{Z}_{c}\right)$.

Sketch of the proof (continued)

$$
(\star) \quad \operatorname{Rees} \mathscr{Z}(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{F}_{c}}^{*}\right) .
$$

If E is a graded $\mathbb{C} W$-module, then $\mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective \mathbf{H}_{c}-module, hence $e \mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective Z_{c}-module. \Rightarrow equivariant Chern character $\operatorname{ch}\left(e \mathbf{H}_{c} \otimes \mathbb{C} w E\right) \in \hat{H}_{\mathbb{C}^{x}}^{2 \bullet}\left(\mathscr{Z}_{c}\right)$.

Theorem (Bellamy, 2009)

$$
i_{\mathscr{F}_{c}}^{*}\left(\operatorname{ch}\left(e \mathbf{H}_{c} \otimes \mathbb{C} W E\right)\right)=\sum_{\chi \in \operatorname{Irr}(W)} q^{b_{x}} \frac{\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)} \otimes E\right\rangle_{W}^{\mathrm{gr}}}{\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)}\right\rangle_{W}^{\mathrm{gr}}} e_{\chi}^{W}
$$

where $q=\exp (h)$ and $b_{\chi}=\operatorname{val}\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)}\right\rangle_{W}^{g r}$.

Sketch of the proof (continued)

(\star) $\quad \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{F}_{c}}^{*}\right)$.
If E is a graded $\mathbb{C} W$-module, then $\mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective \mathbf{H}_{c}-module, hence $e \mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective Z_{c}-module. \Rightarrow equivariant Chern character $\operatorname{ch}\left(e \mathbf{H}_{c} \otimes \mathbb{C} w E\right) \in \hat{\mathrm{H}}_{\mathbb{C}^{x}}^{2 \bullet}\left(\mathscr{Z}_{c}\right)$.

Theorem (Bellamy, 2009)

$$
i_{\mathscr{F}_{c}}^{*}\left(\operatorname{ch}\left(e \mathbf{H}_{c} \otimes \mathbb{C} W E\right)\right)=\sum_{\chi \in \operatorname{Irr}(W)} q^{b_{x}} \frac{\left\langle\chi, \mathbb{C}[V]^{\mathrm{co}}(W)\right.}{\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)}\right\rangle_{W}^{\mathrm{gr}}} \frac{\mathrm{~W}}{\mathrm{gr}} e_{\chi}^{W}
$$

where $q=\exp (h)$ and $b_{\chi}=\operatorname{val}\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)}\right\rangle_{W}^{g r}$.
$\Rightarrow(\star)$ holds (!).

Sketch of the proof (continued)

(\star) $\quad \operatorname{Rees}_{\mathscr{F}} \mathrm{Z}(\mathbb{C} W) \subset \operatorname{Im}\left(i_{\mathscr{F}_{c}}^{*}\right)$.
If E is a graded $\mathbb{C} W$-module, then $\mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective \mathbf{H}_{c}-module, hence $e \mathbf{H}_{c} \otimes_{\mathbb{C} W} E$ is a graded projective Z_{c}-module. \Rightarrow equivariant Chern character $\operatorname{ch}\left(e \mathbf{H}_{c} \otimes \mathbb{C} w E\right) \in \hat{\mathrm{H}}_{\mathbb{C}^{x}}^{2 \bullet}\left(\mathscr{Z}_{c}\right)$.

Theorem (Bellamy, 2009)

$$
i_{\mathscr{F}_{c}}^{*}\left(\operatorname{ch}\left(e \mathbf{H}_{c} \otimes \mathbb{C} W E\right)\right)=\sum_{\chi \in \operatorname{Irr}(W)} q^{b_{x}} \frac{\left\langle\chi, \mathbb{C}[V]^{\mathrm{co}}(W)\right.}{\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)}\right\rangle_{W}^{\mathrm{gr}}} \frac{\mathrm{~W}}{\mathrm{gr}} e_{\chi}^{W}
$$

where $q=\exp (h)$ and $b_{\chi}=\operatorname{val}\left\langle\chi, \mathbb{C}[V]^{\operatorname{co}(W)}\right\rangle_{W}^{g r}$.
$\Rightarrow(\star)$ holds (!). QED

Back to example: $W=\mathfrak{S}_{n}$

Back to example: $W=\mathfrak{S}_{n}$

Theorem (B.-Maksimau, 2017)

$$
\mathscr{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mu_{d}}=
$$

Back to example: $W=\mathfrak{S}_{n}$

Theorem (B.-Maksimau, 2017)

$$
\mathscr{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mu_{d}}=\coprod_{\begin{array}{c}
d \text {-cores } \gamma \\
\text { s.t. } d|n-|\gamma|
\end{array}} \mathscr{Z}_{c_{\gamma}}\left(G\left(d, 1, r_{\gamma}\right)\right)
$$

where $r_{\gamma}=(n-|\gamma|) / d$.

Back to example: $W=\mathfrak{S}_{n}$

Theorem (B.-Maksimau, 2017)

$$
\mathscr{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mu_{d}}=\coprod_{\begin{array}{c}
d \text {-cores } \gamma \\
\text { s.t. } d|n-|\gamma|
\end{array}} \mathscr{Z}_{c_{\gamma}}\left(G\left(d, 1, r_{\gamma}\right)\right)
$$

where $r_{\gamma}=(n-|\gamma|) / d$.
Fix such a d-core γ.

Back to example: $W=\mathfrak{S}_{n}$

Theorem (B.-Maksimau, 2017)

$$
\mathscr{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mu_{d}}=\coprod_{\substack{\text { d-cores } \gamma \\ \text { s.t. } d|n-|\gamma|}} \mathscr{Z}_{c_{\gamma}}\left(G\left(d, 1, r_{\gamma}\right)\right)
$$

where $r_{\gamma}=(n-|\gamma|) / d$.
Fix such a d-core γ. By functoriality of equivariant cohomology, we get two maps

$$
\begin{aligned}
& \int_{\mathbb{C}^{\times} \times}^{2 \cdot}\left(\mathscr{Z}_{1}\left(\mathfrak{S}_{n}\right)\right) \xrightarrow{\varphi_{\gamma}^{a}}{ }^{\prod_{\mathbb{C}^{\times}}^{2 \cdot}\left(\mathscr{Z}_{c_{\gamma}}\left(G\left(d, 1, r_{\gamma}\right)\right)\right)} \\
& \mathrm{H}_{\mathbb{C}^{\times}}^{2 \cdot}\left(\mathscr{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}\right) \xrightarrow{\varphi_{\gamma}^{b}} \mathrm{H}_{\mathbb{C}^{\times}}^{2 \cdot}\left(\mathscr{Z}_{c_{\gamma}}\left(G\left(d, 1, r_{\gamma}\right)\right) \mathbb{C}^{\mathbb{C}^{\times}}\right)
\end{aligned}
$$

Back to example: $W=\mathfrak{S}_{n}$ (continued)

Back to example: $W=\mathfrak{S}_{n}$ (continued)

This leads to a commutative diagram

$$
\begin{aligned}
& \operatorname{Rees} \mathscr{F}^{\mathrm{Z}\left(\mathbb{C} \mathfrak{S}_{n}\right) \xrightarrow{\varphi_{\gamma}^{a}} \mathrm{Rees}_{\mathscr{F}} \mathrm{Z}\left(\mathbb{C} G\left(d, 1, r_{\gamma}\right)\right)} \\
& \\
& \\
& \mathbb{C}[h] \otimes \mathrm{Z}\left(\mathbb{C} \mathfrak{S}_{n}\right) \xrightarrow{\varphi_{\gamma}^{b}} \mathbb{C}[h] \otimes \mathrm{Z}\left(\mathbb{C} G\left(d, 1, r_{\gamma}\right)\right)
\end{aligned}
$$

Back to example: $W=\mathfrak{S}_{n}$ (continued)

This leads to a commutative diagram

Using a theorem of Przezdziecki (2016), $\varphi_{\gamma}^{b}=\operatorname{Id}_{\mathbb{C}[h]} \otimes \varphi_{\gamma}(!)$.

Back to example: $W=\mathfrak{S}_{n}$ (continued)

This leads to a commutative diagram

Using a theorem of Przezdziecki (2016), $\varphi_{\gamma}^{b}=\operatorname{Id}_{\mathbb{C}[h]} \otimes \varphi_{\gamma}(!)$. QED

Some comments

Some comments

（1）One can deduce from this work a proof of a conjecture of Ginzburg－Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W($ B．－Shan，2017）．

Some comments

(1) One can deduce from this work a proof of a conjecture of Ginzburg-Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W(B .-S h a n, 2017)$.
(2) With R. Rouquier (2017), we have general conjectures about

- equivariant cohomology of possibly singular Calogero-Moser spaces,

Some comments

(1) One can deduce from this work a proof of a conjecture of Ginzburg-Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W(B .-S h a n, 2017)$.
(2) With R. Rouquier (2017), we have general conjectures about

- equivariant cohomology of possibly singular Calogero-Moser spaces,
- fixed points under the action of μ_{d}

Some comments

(1) One can deduce from this work a proof of a conjecture of Ginzburg-Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W$ (B.-Shan, 2017).
(2) With R. Rouquier (2017), we have general conjectures about

- equivariant cohomology of possibly singular Calogero-Moser spaces,
- fixed points under the action of μ_{d}
+ The combinatoric fits with observations made in the representation theory of finite reductive groups

Some comments

(1) One can deduce from this work a proof of a conjecture of Ginzburg-Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W$ (B.-Shan, 2017).
(2) With R. Rouquier (2017), we have general conjectures about

- equivariant cohomology of possibly singular Calogero-Moser spaces,
- fixed points under the action of μ_{d}
+ The combinatoric fits with observations made in the representation theory of finite reductive groups
- Lusztig families of unipotent characters

Some comments

(1) One can deduce from this work a proof of a conjecture of Ginzburg-Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W$ (B.-Shan, 2017).
(2) With R. Rouquier (2017), we have general conjectures about

- equivariant cohomology of possibly singular Calogero-Moser spaces,
- fixed points under the action of μ_{d}
+ The combinatoric fits with observations made in the representation theory of finite reductive groups
- Lusztig families of unipotent characters
- partition into blocks of unipotent characters (d-Harish-Chandra theory)

Some comments

(1) One can deduce from this work a proof of a conjecture of Ginzburg-Kaledin on the cohomology of symplectic resolutions of $\left(V \times V^{*}\right) / W$ (B.-Shan, 2017).
(2) With R. Rouquier (2017), we have general conjectures about

- equivariant cohomology of possibly singular Calogero-Moser spaces,
- fixed points under the action of μ_{d}
+ The combinatoric fits with observations made in the representation theory of finite reductive groups
- Lusztig families of unipotent characters
- partition into blocks of unipotent characters (d-Harish-Chandra theory)
? Theory of spetses (Broué-Malle-Michel).

