Aiguille du Midi

- Departure: 12h55 at the Amis de la Nature
- Consequently: please be ready to pick your lunch bag at the restaurant at 12h30
- VERY COLD!!!
- Sun glasses...
- Pay individually in Chamonix for the lift (around 42 euros)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The bus is paid by the conference

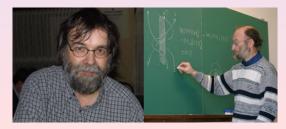
Calogero-Moser cells

(joint work with R. Rouquier)

Cédric Bonnafé

CNRS (UMR 5149) - Université de Montpellier 2

Les Houches - Janvier 2011



◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 吾 めんで

• (W, S) finite Coxeter system

- (W, S) finite Coxeter system
- $c:S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate

- (W, S) finite Coxeter system
- $c:S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate
- Hecke algebra $\mathscr{H}(W, c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$

- (W, S) finite Coxeter system
- $c:S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Hecke algebra $\mathscr{H}(W, c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$
- Kazhdan-Lusztig basis (1979, 1984, 1999)

- (W, S) finite Coxeter system
- $c:S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate
- Hecke algebra $\mathscr{H}(W,c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$
- Kazhdan-Lusztig basis (1979, 1984, 1999)

 \implies Partition of W into *c*-KL-cells (left, right, two-sided) + partial order

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- (W, S) finite Coxeter system
- $c: S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate
- Hecke algebra $\mathscr{H}(W,c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$
- Kazhdan-Lusztig basis (1979, 1984, 1999)

 \implies Partition of W into c-KL-cells (left, right, two-sided) + partial order

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\implies W \rightarrow \mathbb{Z}\operatorname{Irr}(W)$ (cell module)

- (W, S) finite Coxeter system
- $c: S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate
- Hecke algebra $\mathscr{H}(W,c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$
- Kazhdan-Lusztig basis (1979, 1984, 1999)

 \implies Partition of W into c-KL-cells (left, right, two-sided) + partial order

 $\implies W \rightarrow \mathbb{Z}\operatorname{Irr}(W)$ (cell module)

 \implies If Γ is a *c*-KL-two-sided cell, $\operatorname{Irr}_{\Gamma}^{\operatorname{KL}}(W) \subset \operatorname{Irr}(W)$ (*c*-KL-family)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- (W, S) finite Coxeter system
- $c: S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate
- Hecke algebra $\mathscr{H}(W,c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$
- Kazhdan-Lusztig basis (1979, 1984, 1999)

 \implies Partition of W into c-KL-cells (left, right, two-sided) + partial order

- $\implies W \rightarrow \mathbb{Z}\operatorname{Irr}(W)$ (cell module)
- \implies If Γ is a *c*-KL-two-sided cell, $\operatorname{Irr}_{\Gamma}^{\operatorname{KL}}(W) \subset \operatorname{Irr}(W)$ (*c*-KL-family)

$$\Longrightarrow \operatorname{Irr}(W) = \bigcup_{\Gamma} \operatorname{Irr}_{\Gamma}^{\operatorname{KL}}(W)$$

- (W, S) finite Coxeter system
- $c: S \to \mathbb{R}$ such that $c_s = c_{s'}$ is s and s' are W-conjugate
- Hecke algebra $\mathscr{H}(W,c)$ over $\mathbb{Z}[q^{\mathbb{R}}]$
- Kazhdan-Lusztig basis (1979, 1984, 1999)

 \implies Partition of W into c-KL-cells (left, right, two-sided) + partial order

- $\implies W \rightarrow \mathbb{Z}\operatorname{Irr}(W)$ (cell module)
- \implies If Γ is a *c*-KL-two-sided cell, $\operatorname{Irr}_{\Gamma}^{\operatorname{KL}}(W) \subset \operatorname{Irr}(W)$ (*c*-KL-family)

$$\Longrightarrow \operatorname{Irr}(W) = \bigcup_{\Gamma} \operatorname{Irr}_{\Gamma}^{\operatorname{KL}}(W)$$

Interests

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 めんの

• Links with the geometry of flag varieties (singularities of Schubert cells)

- Links with the geometry of flag varieties (singularities of Schubert cells)
- Representations of complex Lie algebras, of reductive groups in positive characteristic...

- Links with the geometry of flag varieties (singularities of Schubert cells)
- Representations of complex Lie algebras, of reductive groups in positive characteristic...
- Representations of finite reductive groups

• Links with the geometry of flag varieties (singularities of Schubert cells)

- Representations of complex Lie algebras, of reductive groups in positive characteristic...
- Representations of finite reductive groups
- Unipotent classes

- Links with the geometry of flag varieties (singularities of Schubert cells)
- Representations of complex Lie algebras, of reductive groups in positive characteristic...
- Representations of finite reductive groups
- Unipotent classes
- Decomposition numbers of Hecke algebras at root of unity...

(ロ) (部) (注) (注) [

- Links with the geometry of flag varieties (singularities of Schubert cells)
- Representations of complex Lie algebras, of reductive groups in positive characteristic...
- Representations of finite reductive groups
- Unipotent classes
- Decomposition numbers of Hecke algebras at root of unity...

(ロ) (部) (注) (注) [

W complex reflection group?

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

W complex reflection group?

Difficulty. Kazhdan-Lusztig basis highly depends on the choice of *S*.

Difficulty. Kazhdan-Lusztig basis highly depends on the choice of *S*.

Strategy. Use rational Cherednik algebras at t = 0 to construct partitions of W (resp. Irr(W)) into Calogero-Moser cells (resp. families), a map $W \to \mathbb{Z} Irr(W)$ and attach to a cell Γ a subset $Irr_{\Gamma}^{CM}(W)$ of Irr(W)

Difficulty. Kazhdan-Lusztig basis highly depends on the choice of *S*.

Strategy. Use rational Cherednik algebras at t = 0 to construct partitions of W (resp. Irr(W)) into Calogero-Moser cells (resp. families), a map $W \to \mathbb{Z} Irr(W)$ and attach to a cell Γ a subset $Irr_{\Gamma}^{CM}(W)$ of Irr(W)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

• Our construction depends on an "uncontrolable" choice

• Our construction depends on an "uncontrolable" choice

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

• We don't get the partial order

• Our construction depends on an "uncontrolable" choice

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- We don't get the partial order
- Hard to compute

- Our construction depends on an "uncontrolable" choice
- We don't get the partial order
- Hard to compute (one month for completing B_2)

• Our construction depends on an "uncontrolable" choice

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

- We don't get the partial order
- Hard to compute (one month for completing B_2)

Strengths.

• Our construction depends on an "uncontrolable" choice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- We don't get the partial order
- Hard to compute (one month for completing B_2)

Strengths.

• shares many properties with KL-two-sided cells

• Our construction depends on an "uncontrolable" choice

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- We don't get the partial order
- Hard to compute (one month for completing B_2)

Strengths.

- shares many properties with KL-two-sided cells
- The semicontinuity is trivial

- Our construction depends on an "uncontrolable" choice
- We don't get the partial order
- Hard to compute (one month for completing B₂)

Strengths.

- shares many properties with KL-two-sided cells
- The semicontinuity is trivial
- Coincide with KL two-sided cells for A_2 , B_2 , G_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Our construction depends on an "uncontrolable" choice
- We don't get the partial order
- Hard to compute (one month for completing B_2)

Strengths.

- shares many properties with KL-two-sided cells
- The semicontinuity is trivial
- Coincide with KL two-sided cells for A_2 , B_2 , G_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• Very flexible (tons of notions of cells)

- Our construction depends on an "uncontrolable" choice
- We don't get the partial order
- Hard to compute (one month for completing B_2)

Strengths.

- shares many properties with KL-two-sided cells
- The semicontinuity is trivial
- Coincide with KL two-sided cells for A_2 , B_2 , G_2

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- Very flexible (tons of notions of cells)
- Geometric methods

Set-up

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Set-up

- $\dim_{\mathbb{C}} V < \infty$
- $W \subset \operatorname{GL}_{\mathbb{C}}(V)$
- $|W| < \infty$
- $W = \langle \mathsf{R}\acute{e}f(W) \rangle$, where $\mathsf{R}\acute{e}f(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} \operatorname{Ker}(s - \operatorname{Id}_{V}) = 1 \}.$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 善吾 めへぐ

Set-up

- dim $_{\mathbb{C}} V < \infty$
- $W \subset \operatorname{GL}_{\mathbb{C}}(V)$
- $|W| < \infty$
- $W = \langle \mathsf{R}\acute{e}f(W) \rangle$, where $\mathsf{R}\acute{e}f(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} \operatorname{Ker}(s - \operatorname{Id}_{V}) = 1 \}.$

•
$$\mathscr{C} = \{ c : \mathsf{R}\acute{e}f(W) / \sim \longrightarrow \mathbb{C} \}$$

- $C_s: \mathscr{C} \to \mathbb{C}, \ c \mapsto c_s$
- $\mathbb{C}[\mathscr{C}] = \mathcal{S}(\mathscr{C}^*) = \mathbb{C}[(C_s)_{s \in \mathsf{R\acute{e}f}(W)/\sim}]$

Set-up

- dim $_{\mathbb{C}} V < \infty$
- $W \subset \operatorname{GL}_{\mathbb{C}}(V)$
- $|W| < \infty$
- $W = \langle \mathsf{Réf}(W) \rangle$, where $\mathsf{Réf}(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} \operatorname{Ker}(s - \operatorname{Id}_V) = 1 \}.$

•
$$\mathscr{C} = \{ c : \operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C} \}$$

- $C_s: \mathscr{C} \to \mathbb{C}, \ c \mapsto c_s$
- $\mathbb{C}[\mathscr{C}] = \mathcal{S}(\mathscr{C}^*) = \mathbb{C}[(\mathcal{C}_s)_{s \in \mathsf{Réf}(W)/\sim}]$
- if $s \in \mathsf{R\acute{e}f}(W)$, let $lpha_s \in V^*$ and $lpha_s^{ee} \in V$ be such that

 $\operatorname{Ker}(s - \operatorname{Id}_V) = \operatorname{Ker}(\alpha_s)$ and $\operatorname{Im}(s - \operatorname{Id}_V) = \mathbb{C}\alpha_s^{\vee}$.

Set-up

- dim $_{\mathbb{C}} V < \infty$
- $W \subset \operatorname{GL}_{\mathbb{C}}(V)$
- $|W| < \infty$
- $W = \langle \mathsf{R}\acute{e}f(W) \rangle$, where $\mathsf{R}\acute{e}f(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} \operatorname{Ker}(s - \operatorname{Id}_{V}) = 1 \}.$

•
$$\mathscr{C} = \{ c : \mathsf{R}\acute{e}f(W) / \sim \longrightarrow \mathbb{C} \}$$

- $C_s: \mathscr{C} \to \mathbb{C}, \ c \mapsto c_s$
- $\mathbb{C}[\mathscr{C}] = \mathcal{S}(\mathscr{C}^*) = \mathbb{C}[(C_s)_{s \in \mathsf{Réf}(W)/\sim}]$
- if $s \in \mathsf{R\acute{e}f}(W)$, let $lpha_s \in V^*$ and $lpha_s^{ee} \in V$ be such that

 $\operatorname{Ker}(s - \operatorname{Id}_V) = \operatorname{Ker}(\alpha_s)$ and $\operatorname{Im}(s - \operatorname{Id}_V) = \mathbb{C}\alpha_s^{\vee}$.

•
$$\varepsilon: W \to \mathbb{C}^{\times}$$
, $w \mapsto \det(w)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rational Cherednik algebra

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 のへで

Rational Cherednik algebra

 \bullet H is the $\mathbb{C}[\mathscr{C}]\text{-algebra}$ such that

$$\mathbf{H} \underbrace{=}_{vector \ space} \mathbb{C}[T] \otimes \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*]$$
$$T(x, y) = T\langle x, y \rangle + \sum_{s \in \mathsf{R}\acute{e}f(W)} (1 - \varepsilon(s)) \ C_s \ \frac{\langle x, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, y \rangle}{\langle \alpha_s, \alpha_s^{\vee} \rangle} \ s.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Rational Cherednik algebra at t = 0

 \bullet H is the $\mathbb{C}[\mathscr{C}]\text{-algebra}$ such that

$$\begin{split} \mathbf{H} &= \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*] \\ [x,y] &= \sum_{s \in \mathsf{R}\acute{e}f(W)} (1 - \varepsilon(s)) \ C_s \ \frac{\langle x, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, y \rangle}{\langle \alpha_s, \alpha_s^{\vee} \rangle} \ s. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Rational Cherednik algebra at t = 0

 \bullet H is the $\mathbb{C}[\mathscr{C}]\text{-algebra}$ such that

 $\mathbf{H} \underbrace{=}_{vector \ space} \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*]$ $[x, y] = \sum_{s \in \mathsf{R}\acute{e}f(W)} (1 - \varepsilon(s)) \ C_s \ \frac{\langle x, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, y \rangle}{\langle \alpha_s, \alpha_s^{\vee} \rangle} \ s.$

• Specialisation at $c \in \mathscr{C}$

$$\mathbf{H}_{c} \underbrace{=}_{vector \ space} \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}]$$
$$[x, y] = \sum_{s \in \mathsf{R}\acute{e}f(W)} (1 - \varepsilon(s)) \ c_{s} \ \frac{\langle x, \alpha_{s} \rangle \cdot \langle \alpha_{s}^{\vee}, y \rangle}{\langle \alpha_{s}, \alpha_{s}^{\vee} \rangle} \ s.$$

Rational Cherednik algebra at t = 0

 \bullet H is the $\mathbb{C}[\mathscr{C}]\text{-algebra}$ such that

$$\mathbf{H} \underbrace{=}_{vector \ space} \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^*]$$
$$[x, y] = \sum_{s \in \mathsf{R}\acute{e}f(W)} (1 - \varepsilon(s)) \ C_s \ \frac{\langle x, \alpha_s \rangle \cdot \langle \alpha_s^{\vee}, y \rangle}{\langle \alpha_s, \alpha_s^{\vee} \rangle} \ s.$$

• Specialisation at $c \in \mathscr{C}$

$$\mathbf{H}_{c} \underbrace{=}_{vector \ space} \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}]$$
$$[x, y] = \sum_{s \in \mathsf{R}\acute{e}f(W)} (1 - \varepsilon(s)) \ c_{s} \ \frac{\langle x, \alpha_{s} \rangle \cdot \langle \alpha_{s}^{\vee}, y \rangle}{\langle \alpha_{s}, \alpha_{s}^{\vee} \rangle} \ s.$$
$$\mathbf{H}_{c} = \mathbb{C}_{c} \otimes_{\mathbb{C}[W]} \mathbf{H}.$$

◆□▶ ◆舂▶ ◆吾▶ ◆吾▶ 吾 の�?

Freeness

• $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \subset \mathbb{Z}(\mathbf{H}) \eqqcolon Q$

Freeness

- $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \subset \mathbb{Z}(\mathsf{H}) =: Q$
- **H** is a free *P*-module of rank $|W|^3$

Freeness

• $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \subset \mathbb{Z}(\mathsf{H}) =: Q$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- **H** is a free *P*-module of rank $|W|^3$
- Q is a free P-module of rank |W|

Freeness

- $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \quad \subset \quad \operatorname{Z}(\mathsf{H}) \eqqcolon Q$
- **H** is a free *P*-module of rank $|W|^3$
- Q is a free P-module of rank |W| (in particular, Q is Cohen-Macaulay)

Freeness

- $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \quad \subset \quad \operatorname{Z}(\mathsf{H}) \eqqcolon Q$
- **H** is a free *P*-module of rank $|W|^3$
- Q is a free P-module of rank |W| (in particular, Q is Cohen-Macaulay)
- Satake isomorphism: the natural map $Q \to \operatorname{End}_{H}(He) = (eHe)^{\operatorname{op}}$ is an isomorphism (with $e = \frac{1}{|W|} \sum_{w \in W} w$)

Freeness

- $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \quad \subset \quad \operatorname{Z}(\mathsf{H}) \eqqcolon Q$
- **H** is a free *P*-module of rank $|W|^3$
- Q is a free P-module of rank |W| (in particular, Q is Cohen-Macaulay)
- Satake isomorphism: the natural map $Q \to \operatorname{End}_{\mathsf{H}}(\mathsf{H} e) = (e\mathsf{H} e)^{\operatorname{op}}$ is an isomorphism (with $e = \frac{1}{|W|} \sum_{w \in W} w$)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e)$

Freeness

- $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \subset \mathbb{Z}(\mathsf{H}) \eqqcolon Q$
- **H** is a free *P*-module of rank $|W|^3$
- Q is a free P-module of rank |W| (in particular, Q is Cohen-Macaulay)
- Satake isomorphism: the natural map $Q \to \operatorname{End}_{H}(He) = (eHe)^{\operatorname{op}}$ is an isomorphism (with $e = \frac{1}{|W|} \sum_{w \in W} w$)
- $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e)$

Graduation(s)

• $\mathbb{N} \times \mathbb{N}$ -graduation : deg $^{\mathbb{N} \times \mathbb{N}}(V) = (1,0)$, deg $^{\mathbb{N} \times \mathbb{N}}(V^*) = (0,1)$, deg $^{\mathbb{N} \times \mathbb{N}}(W) = (0,0)$, deg $^{\mathbb{N} \times \mathbb{N}}(\mathscr{C}) = (1,1)$.

Freeness

- $P = \mathbb{C}[\mathscr{C}] \otimes \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \quad \subset \quad \operatorname{Z}(\mathsf{H}) \eqqcolon Q$
- **H** is a free *P*-module of rank $|W|^3$
- Q is a free P-module of rank |W| (in particular, Q is Cohen-Macaulay)
- Satake isomorphism: the natural map $Q \to \operatorname{End}_{H}(He) = (eHe)^{\operatorname{op}}$ is an isomorphism (with $e = \frac{1}{|W|} \sum_{w \in W} w$)
- $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e)$

Graduation(s)

• $\mathbb{N} \times \mathbb{N}$ -graduation : deg^{$\mathbb{N} \times \mathbb{N}$}(V) = (1,0), deg^{$\mathbb{N} \times \mathbb{N}$}(V^*) = (0,1), deg^{$\mathbb{N} \times \mathbb{N}$}(W) = (0,0), deg^{$\mathbb{N} \times \mathbb{N}$}(\mathscr{C}) = (1,1).

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Specialisation

- \mathbf{H}_c is not $\mathbb{N} \times \mathbb{N}$ -graded
- Q and Q_c are normal integral domains

• $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W$ and $Q_0 = \mathbb{C}[V \times V^*]^W$

• $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W$ and $Q_0 = \mathbb{C}[V \times V^*]^W$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

• $\mathbf{H}_0 e \simeq \mathbb{C}[V \times V^*]$

- $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W$ and $Q_0 = \mathbb{C}[V \times V^*]^W$
- $\mathbf{H}_0 e \simeq \mathbb{C}[V \times V^*]$
- $\mathbb{C}(V \times V^*) \rtimes W = \operatorname{End}_{\mathbb{C}(V \times V^*)^W}(\mathbb{C}(V \times V^*))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W$ and $Q_0 = \mathbb{C}[V \times V^*]^W$
- $\mathbf{H}_0 e \simeq \mathbb{C}[V \times V^*]$
- $\mathbb{C}[V \times V^*] \rtimes W = \operatorname{End}_{\mathbb{C}[V \times V^*]^W}(\mathbb{C}[V \times V^*])$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W$ and $Q_0 = \mathbb{C}[V \times V^*]^W$
- $\mathbf{H}_0 e \simeq \mathbb{C}[V \times V^*]$
- C[V × V*] ⋊ W = End_{C[V×V*]}^W(C[V × V*]) (because W does not contain any reflection...

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W$ and $Q_0 = \mathbb{C}[V \times V^*]^W$
- $\mathbf{H}_0 e \simeq \mathbb{C}[V \times V^*]$
- C[V × V*] ⋊ W = End_{C[V×V*]}^W(C[V × V*]) (because W does not contain any reflection... for its action on V × V*)

• Relatively classical: take a point $p = (c, v, v^*) \in \mathscr{P} = \mathscr{C} \times V/W \times V^*/W$ and view $\mathbb{C} = \mathbb{C}_{c,v,v^*}$ as a *P*-algebra via evaluation at *p*

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• Relatively classical: take a point $p = (c, v, v^*) \in \mathscr{P} = \mathscr{C} \times V/W \times V^*/W$ and view $\mathbb{C} = \mathbb{C}_{c,v,v^*}$ as a *P*-algebra via evaluation at $p \Longrightarrow \mathbf{H}_{c,v,v^*} = \mathbb{C}_{c,v,v^*} \otimes_P \mathbf{H}$.

Restricted Cherednik algebra

Take v = 0 and $v^* = 0$. You get

$$\overline{\mathsf{H}}_{c} \underbrace{=}_{vector \ space} \mathbb{C}[V]^{\mathsf{co}(W)} \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\mathsf{co}(W)}.$$

(日) (월) (문) (문) (문)

• Relatively classical: take a point $p = (c, v, v^*) \in \mathscr{P} = \mathscr{C} \times V/W \times V^*/W$ and view $\mathbb{C} = \mathbb{C}_{c,v,v^*}$ as a *P*-algebra via evaluation at $p \Longrightarrow \mathbf{H}_{c,v,v^*} = \mathbb{C}_{c,v,v^*} \otimes_P \mathbf{H}$.

Restricted Cherednik algebra

Take v = 0 and $v^* = 0$. You get

$$\overline{\mathsf{H}}_{c} \underbrace{=}_{vector \ space} \mathbb{C}[V]^{\mathsf{co}(W)} \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\mathsf{co}(W)}$$

This will lead to Calogero-Moser families (Gordon).

• Relatively classical: take a point $p = (c, v, v^*) \in \mathscr{P} = \mathscr{C} \times V/W \times V^*/W$ and view $\mathbb{C} = \mathbb{C}_{c,v,v^*}$ as a *P*-algebra via evaluation at $p \Longrightarrow \mathbf{H}_{c,v,v^*} = \mathbb{C}_{c,v,v^*} \otimes_P \mathbf{H}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Restricted Cherednik algebra Take v = 0 and $v^* = 0$. You get $\overline{H}_c \underbrace{=}_{vector \ space} \mathbb{C}[V]^{co(W)} \otimes \mathbb{C}W \otimes \mathbb{C}[V^*]^{co(W)}.$

This will lead to Calogero-Moser families (Gordon).

• New (!): take $\mathbf{K} = \operatorname{Frac}(P)$

• Relatively classical: take a point $p = (c, v, v^*) \in \mathscr{P} = \mathscr{C} \times V/W \times V^*/W$ and view $\mathbb{C} = \mathbb{C}_{c,v,v^*}$ as a *P*-algebra via evaluation at $p \Longrightarrow \mathbf{H}_{c,v,v^*} = \mathbb{C}_{c,v,v^*} \otimes_P \mathbf{H}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Restricted Cherednik algebra Take v = 0 and $v^* = 0$. You get $\overline{\mathbf{H}}_c \underbrace{=}_{vector \ space} \mathbb{C}[V]^{\operatorname{co}(W)} \otimes \mathbb{C}W \otimes \mathbb{C}[V^*]^{\operatorname{co}(W)}.$

This will lead to Calogero-Moser families (Gordon).

 New (!): take K = Frac(P) This will lead to Calogero-Moser cells (B.-Rouquier)

Take $c \in \mathscr{C}$ and let

$$\overline{\mathbf{H}}_{c}^{-} = \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} = W \ltimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} \subset \overline{\mathbf{H}}_{c}.$$

Take $c \in \mathscr{C}$ and let

$$\overline{\mathbf{H}}_{c}^{-} = \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} = W \ltimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} \subset \overline{\mathbf{H}}_{c}.$$

Si $\chi \in \operatorname{Irr}(W)$, let $\mathscr{M}_{c}(\chi) = \overline{H}_{c} \otimes_{\overline{H}_{c}^{-}} \widetilde{V_{\chi}}$.

Take $c \in \mathscr{C}$ and let

$$\overline{\mathbf{H}}_{c}^{-} = \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} = W \ltimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} \subset \overline{\mathbf{H}}_{c}.$$

- Si $\chi \in \operatorname{Irr}(W)$, let $\mathscr{M}_{c}(\chi) = \overline{H}_{c} \otimes_{\overline{H}_{c}^{-}} \widetilde{V_{\chi}}$. Then (Gordon):
 - $\mathcal{M}_{c}(\chi)$ is indecomposable with a unique simple quotient $\mathscr{L}_{c}(\chi)$.

Take $c \in \mathscr{C}$ and let

$$\overline{\mathbf{H}}_{c}^{-} = \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} = W \ltimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} \subset \overline{\mathbf{H}}_{c}.$$

Si $\chi \in \operatorname{Irr}(W)$, let $\mathscr{M}_{c}(\chi) = \overline{H}_{c} \otimes_{\overline{H}_{c}^{-}} \widetilde{V_{\chi}}$. Then (Gordon):

- $\mathscr{M}_{c}(\chi)$ is indecomposable with a unique simple quotient $\mathscr{L}_{c}(\chi)$.
- $\operatorname{Irr}(W) \longrightarrow \operatorname{Irr}(\overline{\mathbf{H}}_c), \ \chi \mapsto \mathscr{L}_c(\chi) \text{ is a bijection.}$

Take $c \in \mathscr{C}$ and let

$$\overline{\mathbf{H}}_{c}^{-} = \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} = W \ltimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} \subset \overline{\mathbf{H}}_{c}.$$

Si $\chi \in \operatorname{Irr}(W)$, let $\mathscr{M}_{c}(\chi) = \overline{H}_{c} \otimes_{\overline{H}_{c}^{-}} \widetilde{V_{\chi}}$. Then (Gordon):

M_c(χ) is indecomposable with a unique simple quotient *L_c*(χ).
Irr(W) → Irr(H_c), χ ↦ *L_c*(χ) is a bijection.

 $\mathscr{K}_{0}(\overline{\mathbf{H}}_{c})\simeq \mathbb{Z}\operatorname{Irr}(W).$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Restricted Cherednik algebra (Gordon, 2003)

Take $c \in \mathscr{C}$ and let

$$\overline{\mathbf{H}}_{c}^{-} = \mathbb{C}W \otimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} = W \ltimes \mathbb{C}[V^{*}]^{\operatorname{co}(W)} \subset \overline{\mathbf{H}}_{c}.$$

Si $\chi \in \operatorname{Irr}(W)$, let $\mathscr{M}_{c}(\chi) = \overline{H}_{c} \otimes_{\overline{H}_{c}^{-}} \widetilde{V_{\chi}}$. Then (Gordon):

- $\mathcal{M}_{c}(\chi)$ is indecomposable with a unique simple quotient $\mathscr{L}_{c}(\chi)$.
- $\operatorname{Irr}(W) \longrightarrow \operatorname{Irr}(\overline{\mathbf{H}}_c), \ \chi \mapsto \mathscr{L}_c(\chi) \text{ is a bijection.}$

 $\mathscr{K}_0(\overline{\mathbf{H}}_c) \simeq \mathbb{Z}\operatorname{Irr}(W).$

Calogero-Moser families

The *c*-Calogero-Moser families are the subsets of Irr(W) corresponding to the blocks of \overline{H}_c .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\overline{Q}_c = \mathbb{C}_{c,0,0} \otimes_P Q$. Then

 $\bar{Q}_c \subseteq \mathrm{Z}(\overline{\mathbf{H}}_c)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let $\overline{Q}_c = \mathbb{C}_{c,0,0} \otimes_P Q$. Then

 $\bar{Q}_c \subseteq \operatorname{Z}(\overline{\mathbf{H}}_c)$

but, in general, the inclusion is strict.

Let $\overline{Q}_c = \mathbb{C}_{c,0,0} \otimes_P Q$. Then

$$\overline{Q}_c \subseteq \operatorname{Z}(\overline{\mathbf{H}}_c)$$

but, in general, the inclusion is strict. However (Müller)

$$\mathsf{Idem}_{\mathsf{pr}}(\bar{Q}_c) = \mathsf{Idem}_{\mathsf{pr}}(\mathsf{Z}(\overline{\mathbf{H}}_c)).$$

Theorem (B.-Rouquier 2010)

If \mathscr{F} is a Calogero-Moser family corresponding to a primitive idempotent $b \in Idem_{pr}(\bar{Q}_c)$, then

$$\dim_{\mathbb{C}} \bar{Q}_c b = \sum_{\chi \in \operatorname{Irr}(W)} \chi(1)^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

Recall that

 $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recall that

 $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e).$

So

 $\mathsf{KH}\simeq \operatorname{End}_{\mathsf{K}Q}(\mathsf{KH}e).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Recall that

 $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e).$

So

 $\mathsf{KH}\simeq \operatorname{End}_{\mathsf{K}Q}(\mathsf{KH}e).$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

But Q is an integral domain (and normal) so

 $\mathbf{K}Q = \operatorname{Frac}(Q)$

Recall that

 $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e).$

So

 $\mathsf{KH} \simeq \operatorname{End}_{\mathsf{K}Q}(\mathsf{KH}e).$

But Q is an integral domain (and normal) so

 $\mathbf{K}Q = \operatorname{Frac}(Q) =: \mathbf{L}.$

Moreover,

 $[\mathbf{L}:\mathbf{K}] = |W|$ and $\dim_{\mathbf{K}}(\mathbf{KH}e) = |W|^2$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Recall that

 $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e).$

So

 $\mathsf{KH} \simeq \operatorname{End}_{\mathsf{K}Q}(\mathsf{KH}e).$

But Q is an integral domain (and normal) so

 $\mathbf{K}Q = \operatorname{Frac}(Q) =: \mathbf{L}.$

Moreover,

 $[\mathbf{L}:\mathbf{K}] = |W|$ and $\dim_{\mathbf{K}}(\mathbf{KH}e) = |W|^2$.

So $\dim_{\mathbf{L}}(\mathbf{KH}e) = |W|$ and

 $\mathbf{KH} \simeq \mathrm{Mat}_{|W|}(\mathbf{L}).$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

Recall that

 $\mathbf{H} \simeq \operatorname{End}_{Q}(\mathbf{H}e).$

So

 $\mathsf{KH} \simeq \operatorname{End}_{\mathsf{K}Q}(\mathsf{KH}e).$

But Q is an integral domain (and normal) so

 $\mathbf{K}Q = \operatorname{Frac}(Q) =: \mathbf{L}.$

Moreover,

 $[\mathbf{L}:\mathbf{K}] = |W|$ and $\dim_{\mathbf{K}}(\mathbf{KH}e) = |W|^2$.

So $\dim_{\mathbf{L}}(\mathbf{KH}e) = |W|$ and

 $\mathbf{KH} \simeq \mathrm{Mat}_{|W|}(\mathbf{L}).$

NOT SPLIT

◆ロ▶ ◆母▶ ◆臣▶ ◆臣▶ 臣 のへで

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Let **M** be the Galois closure of the extension L/K and let G = Gal(M/K) and H = Gal(M/L).

Let **M** be the Galois closure of the extension L/K and let G = Gal(M/K) and H = Gal(M/L).

Then, as $[\mathbf{L}:\mathbf{K}] = |W|$, one gets

|G/H| = |W|.

Let **M** be the Galois closure of the extension L/K and let G = Gal(M/K) and H = Gal(M/L).

Then, as $[\mathbf{L}:\mathbf{K}] = |W|$, one gets

|G/H| = |W|.

Then

$$\begin{array}{cccc} \mathbf{M} \otimes_{\mathbf{K}} \mathbf{L} & \longrightarrow & \oplus_{gH \in G/H} \mathbf{M} \\ m \otimes_{\mathbf{K}} I & \longmapsto & \oplus_{gH \in G/H} mg(I). \end{array}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let **M** be the Galois closure of the extension L/K and let G = Gal(M/K) and H = Gal(M/L). Then, as [L : K] = |W|, one gets

|G/H| = |W|.

Then

$$\begin{array}{cccc} \mathbf{M} \otimes_{\mathbf{K}} \mathbf{L} & \longrightarrow & \oplus_{gH \in G/H} \mathbf{M} \\ m \otimes_{\mathbf{K}} I & \longmapsto & \oplus_{gH \in G/H} mg(I). \end{array}$$

So

 $\mathsf{MH} \simeq \bigoplus_{gH \in G/H} \mathsf{Mat}_{|W|}(\mathsf{M})$

and

 $\operatorname{Irr}(\mathbf{MH}) \xleftarrow{\sim} G/H.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Let **M** be the Galois closure of the extension L/K and let G = Gal(M/K) and H = Gal(M/L). Then, as [L : K] = |W|, one gets

|G/H| = |W|.

Then

$$\begin{array}{cccc} \mathbf{M} \otimes_{\mathbf{K}} \mathbf{L} & \longrightarrow & \oplus_{gH \in G/H} \mathbf{M} \\ m \otimes_{\mathbf{K}} I & \longmapsto & \oplus_{gH \in G/H} mg(I). \end{array}$$

So

 $\mathsf{MH} \simeq \bigoplus_{gH \in G/H} \mathsf{Mat}_{|W|}(\mathsf{M})$

and

 $\operatorname{Irr}(\mathbf{MH}) \xleftarrow{\sim} G/H.$

 $|\operatorname{Irr}(\mathbf{MH})| = |G/H| = |W|$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0.

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0. Recall that $Q_0 = Q/\mathfrak{p}_0 Q \simeq \mathbb{C}[(V \times V^*)/W]$.

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0. Recall that $Q_0 = Q/\mathfrak{p}_0 Q \simeq \mathbb{C}[(V \times V^*)/W]$. So

 $\mathfrak{q}_0 = \mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$

and we fix a prime ideal \mathfrak{r}_0 of R lying above \mathfrak{q}_0 .

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0. Recall that $Q_0 = Q/\mathfrak{p}_0 Q \simeq \mathbb{C}[(V \times V^*)/W]$. So

 $\mathfrak{q}_0 = \mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and we fix a prime ideal \mathfrak{r}_0 of R lying above \mathfrak{q}_0 . $D_0 = G_{\mathfrak{r}_0}^{dec} = \{g \in G \mid g(\mathfrak{r}_0) = \mathfrak{r}_0\}$ $I_0 = G_{\mathfrak{r}_0}^{in} = \{g \in G \mid \forall r \in R, g(r) \equiv r \mod \mathfrak{r}_0\}$

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0. Recall that $Q_0 = Q/\mathfrak{p}_0 Q \simeq \mathbb{C}[(V \times V^*)/W]$. So

 $\mathfrak{q}_0 = \mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$

and we fix a prime ideal \mathfrak{r}_0 of R lying above \mathfrak{q}_0 . $D_0 = G_{\mathfrak{r}_0}^{\text{dec}} = \{g \in G \mid g(\mathfrak{r}_0) = \mathfrak{r}_0\}$ $I_0 = G_{\mathfrak{r}_0}^{\text{in}} = \{g \in G \mid \forall r \in R, g(r) \equiv r \mod \mathfrak{r}_0\}$

Then

 $\mathsf{Gal}(k_R(\mathfrak{r}_0)/k_P(\mathfrak{p}_0)) \simeq D_0/I_0.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0. Recall that $Q_0 = Q/\mathfrak{p}_0 Q \simeq \mathbb{C}[(V \times V^*)/W]$. So

 $\mathfrak{q}_0 = \mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$

and we fix a prime ideal \mathfrak{r}_0 of R lying above \mathfrak{q}_0 . $D_0 = G_{\mathfrak{r}_0}^{dec} = \{g \in G \mid g(\mathfrak{r}_0) = \mathfrak{r}_0\}$

 $I_0 = G_{\mathfrak{r}_0}^{\mathsf{in}} = \{g \in G \mid \forall \ r \in R, \ g(r) \equiv r \mod \mathfrak{r}_0\}$

Then

$$\operatorname{Gal}(k_R(\mathfrak{r}_0)/k_P(\mathfrak{p}_0)) \simeq D_0/I_0.$$

But, since $\mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$, we also have:

•
$$G = D_0 \cdot H = H \cdot D_0$$

•
$$I_0 = 1$$

• $k_R(\mathfrak{r}_0)/k_P(\mathfrak{p}_0)$ is the Galois closure of $k_Q(\mathfrak{q}_0)/k_P(\mathfrak{p}_0)$.

Let $\mathfrak{p}_0 = \operatorname{Ker}(P \to \mathbb{C}[V/W \times V^*/W]) \iff$ evaluation at c = 0. Recall that $Q_0 = Q/\mathfrak{p}_0 Q \simeq \mathbb{C}[(V \times V^*)/W]$. So

 $\mathfrak{q}_0 = \mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$

and we fix a prime ideal \mathfrak{r}_0 of R lying above \mathfrak{q}_0 . $D_0 = G_{\mathfrak{r}_0}^{\text{dec}} = \{g \in G \mid g(\mathfrak{r}_0) = \mathfrak{r}_0\}$

 $I_0 = G_{\mathfrak{r}_0}^{\mathsf{in}} = \{ g \in G \mid \forall r \in R, g(r) \equiv r \mod \mathfrak{r}_0 \}$

Then

$$\mathsf{Gal}(k_R(\mathfrak{r}_0)/k_P(\mathfrak{p}_0)) \simeq D_0/I_0.$$

But, since $\mathfrak{p}_0 Q \in \operatorname{Spec}(Q)$, we also have:

•
$$G = D_0 \cdot H = H \cdot D_0$$

•
$$I_0 = 1$$

• $k_R(\mathfrak{r}_0)/k_P(\mathfrak{p}_0)$ is the Galois closure of $k_Q(\mathfrak{q}_0)/k_P(\mathfrak{p}_0)$.

But

$$k_{\mathcal{P}}(\mathfrak{p}_0) \simeq \mathbb{C}(V \times V^*)^{W \times W} \subset k_{\mathcal{Q}}(\mathfrak{q}_0) = \mathbb{C}(V \times V^*)^{\Delta W} \subset \mathbb{C}(V \times V^*).$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

So

 $D_0 \simeq (W \times W) / \Delta Z(W)$

 $D_0 \cap H \simeq \Delta W / \Delta Z(W)$

and so $W \stackrel{\sim}{\longleftrightarrow} (W \times W) / \Delta W$

So

 $D_0 \simeq (\textit{W} \times \textit{W}) / \Delta \mathrm{Z}(\textit{W})$

 $D_0 \cap H \simeq \Delta W / \Delta Z(W)$

and so $W \stackrel{\sim}{\longleftrightarrow} (W \times W) / \Delta W \stackrel{\sim}{\longleftrightarrow} D_0 / (D_0 \cap H)$

So

 $D_0 \simeq (\textit{W} \times \textit{W}) / \Delta \mathrm{Z}(\textit{W})$

 $D_0 \cap H \simeq \Delta W / \Delta Z(W)$

and so $W \stackrel{\sim}{\longleftrightarrow} (W \times W) / \Delta W \stackrel{\sim}{\longleftrightarrow} D_0 / (D_0 \cap H) \stackrel{\sim}{\longleftrightarrow} G / H$

So

 $D_0 \simeq (W \times W) / \Delta Z(W)$

 $D_0 \cap H \simeq \Delta W / \Delta Z(W)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and so $W \stackrel{\sim}{\longleftrightarrow} (W \times W) / \Delta W \stackrel{\sim}{\longleftrightarrow} D_0 / (D_0 \cap H) \stackrel{\sim}{\longleftrightarrow} G / H \stackrel{\sim}{\longleftrightarrow} \operatorname{Irr}(\mathsf{MH}).$

So

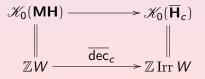
 $D_0 \simeq (W \times W) / \Delta Z(W)$

 $D_0 \cap H \simeq \Delta W / \Delta Z(W)$

and so $W \stackrel{\sim}{\longleftrightarrow} (W \times W) / \Delta W \stackrel{\sim}{\longleftrightarrow} D_0 / (D_0 \cap H) \stackrel{\sim}{\longleftrightarrow} G / H \stackrel{\sim}{\longleftrightarrow} \operatorname{Irr}(\mathsf{MH}).$

 $\mathscr{K}_0(\mathsf{MH})\simeq\mathbb{Z}W$

and the decomposition map (modulo $\bar{\mathfrak{r}}_c$) gives a map



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Let $\overline{\mathfrak{p}}_{c} = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$,

Let $\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$, so that

$$\overline{\mathbf{H}}_{c} = \mathbf{H}/\overline{\mathfrak{p}}_{c}\mathbf{H}.$$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 のへで

Let
$$\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$$
, so that

$$\overline{\mathbf{H}}_{c} = \mathbf{H}/\overline{\mathfrak{p}}_{c}\mathbf{H}.$$

Let $\bar{\mathfrak{r}}_c$ be a prime ideal of R lying above $\bar{\mathfrak{p}}_c$.

Let $\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$, so that

$$\overline{\mathbf{H}}_{c}=\mathbf{H}/\overline{\mathfrak{p}}_{c}\mathbf{H}.$$

Let $\bar{\mathfrak{r}}_c$ be a prime ideal of R lying above $\bar{\mathfrak{p}}_c$. Then $P/\bar{\mathfrak{p}}_c \simeq \mathbb{C}_{c,0,0} \simeq R/\bar{\mathfrak{r}}_c$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Let
$$\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$$
, so that

$$\overline{\mathbf{H}}_{c}=\mathbf{H}/\bar{\mathfrak{p}}_{c}\mathbf{H}.$$

Let $\bar{\mathfrak{r}}_c$ be a prime ideal of R lying above $\bar{\mathfrak{p}}_c$. Then $P/\bar{\mathfrak{p}}_c \simeq \mathbb{C}_{c,0,0} \simeq R/\bar{\mathfrak{r}}_c$. So

 $R\mathbf{H}/\bar{\mathfrak{r}}_{c}\mathbf{H}\simeq\overline{\mathbf{H}}_{c}.$

Let
$$\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$$
, so that

$$\overline{\mathbf{H}}_{c}=\mathbf{H}/\bar{\mathfrak{p}}_{c}\mathbf{H}.$$

Let $\bar{\mathfrak{r}}_c$ be a prime ideal of R lying above $\bar{\mathfrak{p}}_c$. Then $P/\bar{\mathfrak{p}}_c \simeq \mathbb{C}_{c,0,0} \simeq R/\bar{\mathfrak{r}}_c$. So

$$R\mathbf{H}/\bar{\mathfrak{r}}_{c}\mathbf{H}\simeq\overline{\mathbf{H}}_{c}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Calogero-Moser cells (first definition)

A *c*-Calogero-Moser two-sided cell is a subset of W associated with a block of $R_{\bar{\mathfrak{r}}_c} \mathbf{H}$.

Let
$$\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$$
, so that

$$\overline{\mathbf{H}}_{c}=\mathbf{H}/\bar{\mathfrak{p}}_{c}\mathbf{H}.$$

Let $\bar{\mathfrak{r}}_c$ be a prime ideal of R lying above $\bar{\mathfrak{p}}_c$. Then $P/\bar{\mathfrak{p}}_c \simeq \mathbb{C}_{c,0,0} \simeq R/\bar{\mathfrak{r}}_c$. So

$$R\mathbf{H}/\bar{\mathbf{r}}_{c}\mathbf{H}\simeq\overline{\mathbf{H}}_{c}.$$

Calogero-Moser cells (first definition)

A *c*-Calogero-Moser two-sided cell is a subset of W associated with a block of $R_{\bar{\mathfrak{r}}_c} \mathbf{H}$.

If Γ is a *c*-Calogero-Moser cell, we denote by $\operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)$ the subset of $\operatorname{Irr}(W) \stackrel{\sim}{\leftrightarrow} \operatorname{Irr}(\overline{\mathbf{H}}_{c})$ associated with the corresponding block of $\overline{\mathbf{H}}_{c}$.

Let
$$\bar{\mathfrak{p}}_c = \operatorname{Ker}(P \to \mathbb{C}_{c,0,0})$$
, so that

$$\overline{\mathbf{H}}_{c}=\mathbf{H}/\bar{\mathfrak{p}}_{c}\mathbf{H}.$$

Let $\bar{\mathfrak{r}}_c$ be a prime ideal of R lying above $\bar{\mathfrak{p}}_c$. Then $P/\bar{\mathfrak{p}}_c \simeq \mathbb{C}_{c,0,0} \simeq R/\bar{\mathfrak{r}}_c$. So

$$R\mathbf{H}/\bar{\mathbf{r}}_{c}\mathbf{H}\simeq\overline{\mathbf{H}}_{c}.$$

Calogero-Moser cells (first definition)

A *c*-Calogero-Moser two-sided cell is a subset of W associated with a block of $R_{\bar{\mathfrak{r}}_c} \mathbf{H}$.

If Γ is a *c*-Calogero-Moser cell, we denote by $\operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)$ the subset of $\operatorname{Irr}(W) \stackrel{\sim}{\leftrightarrow} \operatorname{Irr}(\overline{\mathbf{H}}_{c})$ associated with the corresponding block of $\overline{\mathbf{H}}_{c}$.

Conjecture (Gordon-Martino 2006, almost true)

If (W, S) is a Coxeter system and if c is real-valued, then the c-Calogero-Moser families coincide with the c-Kazhdan-Lusztig families.

(日) (四) (문) (문) (문)

Conjecture (Gordon-Martino 2006, almost true)

If (W, S) is a Coxeter system and if c is real-valued, then the c-Calogero-Moser families coincide with the c-Kazhdan-Lusztig families.

True in types A, D, dihedral; type B and some c's, type F_4 for generic c's (Gordon-Martino, Bellamy,...)

< □ > < @ > < 注 > < 注 > □ ≥

Conjecture (Gordon-Martino 2006, almost true)

If (W, S) is a Coxeter system and if c is real-valued, then the c-Calogero-Moser families coincide with the c-Kazhdan-Lusztig families.

True in types A, D, dihedral; type B and some c's, type F_4 for generic c's (Gordon-Martino, Bellamy,...)

Conjecture (B.-Rouquier 2010)

If (W, S) is a Coxeter system and if c is real-valued, then there exists a prime ideal $\bar{\mathfrak{r}}_c$ lying above $\bar{\mathfrak{p}}_c$ such that the c-Calogero-Moser cells coincide with the c-Kazhdan-Lusztig two-sided cells. Moreover, if Γ is a CM/KL-cell, then

 $\operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W) = \operatorname{Irr}_{\Gamma}^{\operatorname{KL}}(W).$

Properties

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 のへで

B.-Rouquier (2010): $|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)} \chi(1)^2$

• Assume that all reflections in W have order 2. Then:

- B.-Rouquier (2010): $|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)} \chi(1)^2$
 - Assume that all reflections in *W* have order 2. Then:
 - If \mathscr{F} is a CM-family, then $\mathscr{F}\varepsilon$ is a CM-family ($\varepsilon = \det$)

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへぐ

- B.-Rouquier (2010): $|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)} \chi(1)^2$
 - Assume that all reflections in *W* have order 2. Then:
 - If \mathscr{F} is a CM-family, then $\mathscr{F}\varepsilon$ is a CM-family ($\varepsilon = \det$)
 - ▶ If moreover $-1 \in W$ (write $w_0 = -1$) and if Γ is a CM-cell, then $w_0\Gamma = \Gamma w_0$ are CM-cells

- B.-Rouquier (2010): $|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)} \chi(1)^2$
 - Assume that all reflections in *W* have order 2. Then:
 - If \mathscr{F} is a CM-family, then $\mathscr{F}\varepsilon$ is a CM-family ($\varepsilon = \det$)
 - ► If moreover $-1 \in W$ (write $w_0 = -1$) and if Γ is a CM-cell, then $w_0\Gamma = \Gamma w_0$ are CM-cells and $\operatorname{Irr}_{w_0\Gamma}^{\operatorname{CM}}(W) = \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)\varepsilon$

- B.-Rouquier (2010): $|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)} \chi(1)^2$
 - Assume that all reflections in W have order 2. Then:
 - If \mathscr{F} is a CM-family, then $\mathscr{F}\varepsilon$ is a CM-family ($\varepsilon = \det$)
 - ► If moreover $-1 \in W$ (write $w_0 = -1$) and if Γ is a CM-cell, then $w_0\Gamma = \Gamma w_0$ are CM-cells and $\operatorname{Irr}_{w_0\Gamma}^{\operatorname{CM}}(W) = \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)\varepsilon$

- Generic, left, right cells...
- Part of the semicontinuity properties are trivial.

- B.-Rouquier (2010): $|\Gamma| = \sum_{\chi \in \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)} \chi(1)^2$
 - Assume that all reflections in W have order 2. Then:
 - If \mathscr{F} is a CM-family, then $\mathscr{F}\varepsilon$ is a CM-family ($\varepsilon = \det$)
 - ► If moreover $-1 \in W$ (write $w_0 = -1$) and if Γ is a CM-cell, then $w_0\Gamma = \Gamma w_0$ are CM-cells and $\operatorname{Irr}_{w_0\Gamma}^{\operatorname{CM}}(W) = \operatorname{Irr}_{\Gamma}^{\operatorname{CM}}(W)\varepsilon$

- Generic, left, right cells...
- Part of the semicontinuity properties are trivial.

Aiguille du Midi

- Departure: 12h55 at the Amis de la Nature
- Consequently: please be ready to pick your lunch bag at the restaurant at 12h30
- VERY COLD!!!
- Sun glasses...
- Pay individually in Chamonix for the lift (around 42 euros)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

• The bus is paid by the conference