Kazhdan-Lusztig theory and Ariki's Theorem

Cédric Bonnafé

(joint work with Nicolas Jacon)

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)

Oberwolfach, March 2009

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

[^0]- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- $R=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right], Q, q$ indeterminates
- $\mathcal{H}_{n}=\mathcal{H}_{R}\left(W_{n}, S_{n}, Q, q\right)$: Hecke algebra of type B_{n} with parameters Q and q.
- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- $R=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right], Q, q$ indeterminates
- $\mathcal{H}_{n}=\mathcal{H}_{R}\left(W_{n}, S_{n}, Q, q\right)$: Hecke algebra of type B_{n} with parameters Q and q. $\mathcal{H}_{n}=\oplus_{w \in W_{n}} R T_{w}$
- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- $R=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right], Q, q$ indeterminates
- $\mathcal{H}_{n}=\mathcal{H}_{R}\left(W_{n}, S_{n}, Q, q\right)$: Hecke algebra of type B_{n} with parameters Q and $q . \mathcal{H}_{n}=\oplus_{w \in W_{n}} R T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{t}-Q\right)\left(T_{t}+Q^{-1}\right)=0 & \\ \left(T_{s_{i}}-q\right)\left(T_{s_{i}}+q^{-1}\right)=0 & \text { if } 1 \leqslant i \leqslant n-1\end{cases}
$$

- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

[^1]- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $\mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right):=$ Grothendieck group of $\mathbb{C} \mathcal{H}_{n} \simeq \mathbb{Z} \operatorname{Irr} \mathbb{C} \mathcal{H}_{n}$
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $\mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right):=$ Grothendieck group of $\mathbb{C} \mathcal{H}_{n} \simeq \mathbb{Z} \operatorname{Irr} \mathbb{C} \mathcal{H}_{n}$
- decomposition map $\mathbf{d}_{n}: \mathcal{R}_{0}\left(K \mathcal{H}_{n}\right) \longrightarrow \mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right)$
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $\mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right):=$ Grothendieck group of $\mathbb{C} \mathcal{H}_{n} \simeq \mathbb{Z} \operatorname{Irr} \mathbb{C} \mathcal{H}_{n}$
- decomposition map $\mathbf{d}_{n}: \mathcal{R}_{0}\left(K \mathcal{H}_{n}\right) \longrightarrow \mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right)$

Hypothesis and notation

- $Q_{0}^{2}=-q_{0}^{2 d}, d \in \mathbb{Z}$
- $e=$ order of $q_{0}^{2}, e>2$.

Fock space:

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\widehat{\mathfrak{s l}}_{e}\right)$

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on r

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on r

Uglov has constructed an involution ${ }^{-}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ and there exists a unique $G(\lambda, r) \in \mathcal{F}_{r}$ such that

$$
\left\{\begin{array}{l}
\overline{G(\lambda, r)}=G(\lambda, r) \\
G(\lambda, r) \equiv|\lambda, r\rangle \quad \bmod v \mathbb{C}[v]
\end{array}\right.
$$

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on r

Uglov has constructed an involution ${ }^{-}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ and there exists a unique $G(\lambda, r) \in \mathcal{F}_{r}$ such that

$$
\left\{\begin{array}{l}
\overline{G(\lambda, r)}=G(\lambda, r) \\
G(\lambda, r) \equiv|\lambda, r\rangle \quad \bmod v \mathbb{C}[v]
\end{array}\right.
$$

Write $G(\mu, r)=\sum_{\lambda \in \operatorname{Bip}} d_{\lambda \mu}^{r}(v)|\lambda, r\rangle\left(\right.$ note that $\left.d_{\lambda \lambda}^{r}(v)=1\right)$.

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on r

Uglov has constructed an involution ${ }^{-}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ and there exists a unique $G(\lambda, r) \in \mathcal{F}_{r}$ such that

$$
\left\{\begin{array}{l}
\overline{G(\lambda, r)}=G(\lambda, r) \\
G(\lambda, r) \equiv|\lambda, r\rangle \quad \bmod v \mathbb{C}[v]
\end{array}\right.
$$

Write $G(\mu, r)=\sum_{\lambda \in \operatorname{Bip}} d_{\lambda \mu}^{r}(v)|\lambda, r\rangle\left(\right.$ note that $\left.d_{\lambda \lambda}^{r}(v)=1\right)$.
$(|\lambda, r\rangle)_{\lambda \in B i p}$ is called the standard basis $(G(\lambda, r))_{\lambda \in B i p}$ is called the Kashiwara-Lusztig canonical basis,

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{D, r}
\end{aligned}
$$

such that

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{\mathcal{e}, r}
\end{aligned}
$$

such that

- $\mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)|\varnothing, r\rangle=\underset{\lambda \in \operatorname{Bip}_{e, r}}{\oplus} \mathbb{C}(v) G(\lambda, r)$, where

$$
\operatorname{Bip}_{e, r}=\coprod_{n \geqslant 0} \operatorname{Bip}_{e, r}(n)
$$

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{D, r}
\end{aligned}
$$

such that

- $\mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)|\varnothing, r\rangle=\underset{\lambda \in \operatorname{Bip}_{e, r}}{\oplus} \mathbb{C}(v) G(\lambda, r)$, where

$$
\operatorname{Bip}_{e, r}=\coprod_{n \geqslant 0} \operatorname{Bip}_{e, r}(n)
$$

- If $\lambda \in \operatorname{Bip}(n)$, then $d_{n}\left[V_{\lambda}\right]=\sum_{\mu \in \operatorname{Bip}_{e, r}(n)} d_{\lambda \mu}^{r}(1)\left[D_{\mu}^{e, r}\right]$

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{D, r}
\end{aligned}
$$

such that

- $\mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)|\varnothing, r\rangle=\underset{\lambda \in \operatorname{Bip}_{e, r}}{\oplus} \mathbb{C}(v) G(\lambda, r)$, where

$$
\operatorname{Bip}_{e, r}=\coprod_{n \geqslant 0} \operatorname{Bip}_{e, r}(n)
$$

- If $\lambda \in \operatorname{Bip}(n)$, then $d_{n}\left[V_{\lambda}\right]=\sum_{\mu \in \operatorname{Bip}_{e, r}(n)} d_{\lambda \mu}^{r}(1)\left[D_{\mu}^{e, r}\right]$

REMARK - $d_{\lambda \mu}^{r}(v)$ is "computable"

Comments:

- $\left|\operatorname{Bip}_{e, r}(n)\right|=\left|\operatorname{Bip}_{e, r+k e}(n)\right|$ if $k \in \mathbb{Z}$ (for a bijection, see Jacon, Jacon-Lecouvey)

Comments:

- $\left|\operatorname{Bip}_{e, r}(n)\right|=\left|\operatorname{Bip}_{e, r+k e}(n)\right|$ if $k \in \mathbb{Z}$ (for a bijection, see Jacon, Jacon-Lecouvey)
- If $r \geqslant n-1, \operatorname{Bip}_{e, r}(n)=\{K$ Kleshchev bipartitions $\}$ (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).

Comments:

- $\left|\operatorname{Bip}_{e, r}(n)\right|=\left|\operatorname{Bip}_{e, r+k e}(n)\right|$ if $k \in \mathbb{Z}$ (for a bijection, see Jacon, Jacon-Lecouvey)
- If $r \geqslant n-1, \operatorname{Bip}_{e, r}(n)=\{K$ Kleshchev bipartitions $\}$ (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).
- $\operatorname{Bip}_{d_{0}, e}(n)=\{$ FLOTW bipartitions $\}$ (Jacon). Here, $d_{0} \equiv d$ $\bmod e$ and $d_{0} \in\{0,1,2, \ldots, e-1\}$.
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]$
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant_{\theta}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant_{\theta}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta "} \ldots$)

- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant_{\theta}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta}$ " \ldots)

- Let ${ }^{-}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}, T_{w} \mapsto T_{w^{-1}}^{-1}, Q \mapsto Q^{-1}, q \mapsto q^{-1}$ (i.e. $\left.e^{\gamma} \mapsto e^{-\gamma}\right)$ antilinear involution.
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant_{\theta}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta}$ " \ldots)

- Let ${ }^{-}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}, T_{w} \mapsto T_{w^{-1}}^{-1}, Q \mapsto Q^{-1}, q \mapsto q^{-1}$ (i.e. $\left.e^{\gamma} \mapsto e^{-\gamma}\right)$ antilinear involution.
- $R_{<_{\theta} 0}=\underset{\gamma \in \mathbb{Z}_{<_{\theta} 0}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$,
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant \theta\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta}$ " \ldots)

- Let ${ }^{-}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}, T_{w} \mapsto T_{w^{-1}}^{-1}, Q \mapsto Q^{-1}, q \mapsto q^{-1}$ (i.e. $\left.e^{\gamma} \mapsto e^{-\gamma}\right)$ antilinear involution.
- $R_{<_{\theta} 0}=\underset{\gamma \in \mathbb{Z}_{<_{\theta} 0}^{2}}{\oplus} \mathbb{Z} e^{\gamma}, \mathcal{H}_{n}^{<_{\theta} 0}=\underset{w \in W_{n}}{\oplus} R_{<_{\theta} 0} T_{w}$.

Theorem (Kazhdan-Lusztig, 1979). For each $w \in W_{n}$, there exists a unique $C_{w}^{\theta} \in \mathcal{H}_{n}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}^{\theta}=C_{w}^{\theta} \\
C_{w}^{\theta} \equiv T_{w} \quad \bmod \mathcal{H}_{n}^{<_{\theta} 0}
\end{array}\right.
$$

Case $n=2$ (write $s=s_{1}$)

$$
\begin{aligned}
C_{1}^{\theta}= & 1, \quad C_{t}^{\theta}=T_{t}+Q^{-1}, \quad C_{s}^{\theta}=T_{s}+q^{-1} \\
C_{s t}^{\theta}= & T_{s t}+Q^{-1} T_{s}+q^{-1} T_{t}+Q^{-1} q^{-1} \\
C_{t s}^{\theta}= & T_{t s}+Q^{-1} T_{s}+q^{-1} T_{t}+Q^{-1} q^{-1} \\
C_{s t s}^{\theta}= & T_{s t s}+q^{-1}\left(T_{s t}+T_{t s}\right)+ \\
& \begin{cases}q^{-2} T_{t}+Q^{-1} q^{-1}\left(1+q^{2}\right)\left(T_{s}+q^{-1}\right) & \text { if } \theta>1 \\
Q^{-1} q^{-1} T_{s}+Q^{-1} q^{-1}\left(1-Q^{2}\right)\left(T_{t}+Q^{-1}\right) & \text { if } 0<\theta<1\end{cases} \\
C_{t s t}^{\theta}= & T_{t s t}+Q^{-1}\left(T_{s t}+T_{t s}\right)+ \\
& \begin{cases}Q^{-1} q^{-1} T_{s}+Q^{-1} q^{-1}\left(1-q^{2}\right)\left(T_{t}+Q^{-1}\right) & \text { if } \theta>1 \\
Q^{-1} q^{-1} T_{t}+Q^{-1} q^{-1}\left(1+q^{2}\right)\left(T_{s}+q^{-1}\right) & \text { if } 0<\theta<1\end{cases} \\
& T_{w_{0}+Q^{-1} T_{s t s}+q^{-1} T_{t s t}+Q^{-1} q^{-1}\left(T_{s t}+T_{t s}\right)}+Q^{-2} q^{-1} T_{s}+Q^{-1} q^{-2} T_{t}+Q^{-2} q^{-2}
\end{aligned}
$$

- If $x, y \in W$, we write $x \stackrel{L, \theta}{\stackrel{ }{\rightleftarrows}} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\rightleftarrows} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- Let \leqslant_{L}^{θ} be the transitive closure of $\stackrel{L, \theta}{\rightleftarrows}$:
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\rightleftarrows} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- Let \leqslant_{L}^{θ} be the transitive closure of $\stackrel{L, \theta}{\rightleftarrows}$: it is a preorder (reflexive and transitive)
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\rightleftarrows} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- Let \leqslant_{L}^{θ} be the transitive closure of $\stackrel{L, \theta}{\rightleftarrows}$: it is a preorder (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\stackrel{L}{\gtrless}} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
 (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)

Definition

A θ-left cell is an equivalence class for the relation \sim_{L}^{θ}.

- If $x, y \in W$, we write $x \stackrel{L, \theta}{\stackrel{L}{\gtrless}} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
 (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)

Definition

A θ-left cell is an equivalence class for the relation $\sim \sim_{L}^{\theta}$.

- If \mathcal{C} is a θ-left cell, we set $\left\{\begin{array}{l}I_{\leqslant \mathcal{L}} \mathcal{C} \\ \\ \underbrace{}_{x \leqslant \mathcal{L}^{\rho} \mathcal{C}} R C_{x}^{\theta}\end{array}\right.$
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\stackrel{L}{\gtrless}} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- Let \leqslant_{L}^{θ} be the transitive closure of $\stackrel{L, \theta}{\stackrel{~}{~} \text { : it is a preorder }}$ (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)

Definition

A θ-left cell is an equivalence class for the relation $\sim \sim_{L}^{\theta}$.

- If \mathcal{C} is a θ-left cell, we set $\left\{\begin{array}{l}I_{\leq i \in \mathcal{C}}=\underset{x \leqslant{ }_{\mathcal{L}} \mathcal{C}}{\oplus} R C_{x}^{\theta} \\ I_{<_{L}^{\theta} \mathcal{C}}=\underset{x<_{L}^{\theta} \mathcal{C}}{\oplus} R C_{x}^{\theta}\end{array}\right.$
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\stackrel{L}{\gtrless}} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- Let \leqslant_{L}^{θ} be the transitive closure of $\stackrel{L, \theta}{\stackrel{~}{~} \text { : it is a preorder }}$ (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)

Definition

A θ-left cell is an equivalence class for the relation $\sim \sim_{L}^{\theta}$.

- If $x, y \in W$, we write $x \stackrel{L, \theta}{\stackrel{L}{\gtrless}} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
 (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)

Definition

A θ-left cell is an equivalence class for the relation $\sim \sim_{L}^{\theta}$.

- By construction, $I_{\leqslant i}^{\mathcal{C}}$ and $I_{L_{i}^{\theta} \mathcal{C}}$ are left ideals of \mathcal{H}_{n} and $V_{\mathcal{C}}^{\theta}$ is a left \mathcal{H}_{n}-module
- If $x, y \in W$, we write $x \stackrel{L, \theta}{\rightleftarrows} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x}^{θ} occurs in $h C_{y}^{\theta}$
- Let \leqslant_{L}^{θ} be the transitive closure of $\stackrel{L, \theta}{\rightleftarrows}$: it is a preorder (reflexive and transitive)
- Let \sim_{L}^{θ} be the equivalence relation associated to \leqslant_{L}^{θ} (i.e. $x \sim_{L}^{\theta} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L}^{\theta} x$)

Definition

A θ-left cell is an equivalence class for the relation \sim_{L}^{θ}.

- By construction, $I_{\Sigma_{i}^{\theta} \mathcal{C}}$ and $I_{<_{L}^{\theta} \mathcal{C}}$ are left ideals of \mathcal{H}_{n} and $V_{\mathcal{C}}^{\theta}$ is a left \mathcal{H}_{n}-module: V_{C}^{\in} is called the left cell representation associated to \mathcal{C}.

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

Theorem（B．，Geck，lancu，Jacon，Lam，Lusztig，Pietraho， Taskin）
Assume that Lusztig＇s conjectures P1，P2，．．．，P15 hold．Then ：
－If \mathcal{C} is a θ－left cell of W_{n} ，then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$ ．

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\Theta} \simeq V_{\lambda(\mathcal{C})}$.

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$.

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$. We write $S_{\lambda}^{\theta}=V_{\mathcal{C}}^{\theta}$ is $\lambda(\mathcal{C})=\lambda$.

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$. We write $S_{\lambda}^{\theta}=V_{C}^{\theta}$ is $\lambda(\mathcal{C})=\lambda$.
- S_{λ}^{Θ} is endowed with an " \mathcal{H}_{n}-invariant" bilinear form ϕ_{λ}^{Θ}.

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$. We write $S_{\lambda}^{\theta}=V_{\mathcal{C}}^{\theta}$ is $\lambda(\mathcal{C})=\lambda$.
- S_{λ}^{Θ} is endowed with an " \mathcal{H}_{n}-invariant" bilinear form ϕ_{λ}^{Θ}. We set

$$
D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{Ker} \mathbb{C} \phi_{\lambda}^{\Theta} .
$$

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$. We write $S_{\lambda}^{\theta}=V_{\mathcal{C}}^{\theta}$ is $\lambda(\mathcal{C})=\lambda$.
- S_{λ}^{Θ} is endowed with an " \mathcal{H}_{n}-invariant" bilinear form ϕ_{λ}^{Θ}. We set

$$
D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{Ker} \mathbb{C} \phi_{\lambda}^{\Theta} .
$$

- Let $\operatorname{Bip}_{\theta}(n)=\left\{\lambda \in \operatorname{Bip}(n) \mid D_{\lambda}^{\theta} \neq 0\right\}$.

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$. We write $S_{\lambda}^{\theta}=V_{\mathcal{C}}^{\theta}$ is $\lambda(\mathcal{C})=\lambda$.
- S_{λ}^{θ} is endowed with an " \mathcal{H}_{n}-invariant" bilinear form ϕ_{λ}^{Θ}. We set

$$
D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{Ker} \mathbb{C} \phi_{\lambda}^{\Theta} .
$$

- Let $\operatorname{Bip}_{\theta}(n)=\left\{\lambda \in \operatorname{Bip}(n) \mid D_{\lambda}^{\theta} \neq 0\right\}$. Then

$$
\operatorname{Irr} \mathbb{C} \mathcal{H}_{n}=\left\{D_{\lambda}^{\theta} \mid \lambda \in \operatorname{Bip}_{\theta}(n)\right\} .
$$

Theorem (B., Geck, lancu, Jacon, Lam, Lusztig, Pietraho, Taskin)
Assume that Lusztig's conjectures P1, P2,..., P15 hold. Then :

- If \mathcal{C} is a θ-left cell of W_{n}, then $K V_{\mathcal{C}}^{\theta} \in \operatorname{Irr} K \mathcal{H}_{n}$. We denove by $\lambda(\mathcal{C})$ the bipartition such that $K V_{\mathcal{C}}^{\theta} \simeq V_{\lambda(\mathcal{C})}$.
- If $K V_{\mathcal{C}}^{\theta} \simeq K V_{\mathcal{C}^{\prime}}^{\theta}$, then $V_{\mathcal{C}}^{\theta} \simeq V_{\mathcal{C}^{\prime}}^{\theta}$. We write $S_{\lambda}^{\theta}=V_{\mathcal{C}}^{\theta}$ is $\lambda(\mathcal{C})=\lambda$.
- S_{λ}^{θ} is endowed with an " \mathcal{H}_{n}-invariant" bilinear form ϕ_{λ}^{Θ}. We set

$$
D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{Ker} \mathbb{C} \phi_{\lambda}^{\Theta} .
$$

- Let $\operatorname{Bip}_{\theta}(n)=\left\{\lambda \in \operatorname{Bip}(n) \mid D_{\lambda}^{\theta} \neq 0\right\}$. Then

$$
\operatorname{Irr} \mathbb{C} \mathcal{H}_{n}=\left\{D_{\lambda}^{\theta} \mid \lambda \in \operatorname{Bip}_{\theta}(n)\right\} .
$$

Theorem (Ariki, BGIJLLPT, Uglov)

Assume that Lusztig's conjectures P1, P2,..., P15 hold. If $r \equiv d$ mod e and $r<\theta<r+e$, then $D_{\lambda}^{\theta} \neq 0$ if and only if $\lambda \in \operatorname{Bip}_{e, r}(n)$. So the map

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{\Theta}
\end{aligned}
$$

is bijective and coincides with the map in Ariki's Theorem.

Theorem (Ariki, BGIJLLPT, Uglov)

Assume that Lusztig's conjectures P1, P2,..., P15 hold. If $r \equiv d$ mod e and $r<\theta<r+e$, then $D_{\lambda}^{\theta} \neq 0$ if and only if $\lambda \in \operatorname{Bip}_{e, r}(n)$. So the map

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{\Theta}
\end{aligned}
$$

is bijective and coincides with the map in Ariki's Theorem. Moreover, the decomposition map is given by

$$
\mathbf{d}_{n}\left[K S_{\lambda}^{\theta}\right]=\sum_{\mu \in \operatorname{Bip}_{P_{e, r}(n)}} d_{\lambda \mu}^{r}(1)\left[D_{\mu}^{\theta}\right] .
$$

Comments -

- Lusztig's conjectures P1, P2,..., P15 hold if $\theta>n-1$ (B., Geck, lancu).

Comments -

- Lusztig's conjectures P1, P2,..., P15 hold if $\theta>n-1$ (B., Geck, lancu). In this case, the S_{λ}^{θ} are the Specht modules of Dipper-James-Murphy (Geck-lancu-Pallikaros 2008).

Comments -

- Lusztig's conjectures P1, P2,..., P15 hold if $\theta>n-1$ (B., Geck, lancu). In this case, the S_{λ}^{θ} are the Specht modules of Dipper-James-Murphy (Geck-lancu-Pallikaros 2008).
- They also hold if $\theta \in\{1 / 2,1,3 / 2\}$ (Lusztig).

Comments -

- Lusztig's conjectures P1, P2,..., P15 hold if $\theta>n-1$ (B., Geck, lancu). In this case, the S_{λ}^{θ} are the Specht modules of Dipper-James-Murphy (Geck-lancu-Pallikaros 2008).
- They also hold if $\theta \in\{1 / 2,1,3 / 2\}$ (Lusztig).
- They will be true for $\theta \in \mathbb{N} / 2$ (Lusztig 201?)

Comments -

- Lusztig's conjectures P1, P2,..., P15 hold if $\theta>n-1$ (B., Geck, lancu). In this case, the S_{λ}^{θ} are the Specht modules of Dipper-James-Murphy (Geck-lancu-Pallikaros 2008).
- They also hold if $\theta \in\{1 / 2,1,3 / 2\}$ (Lusztig).
- They will be true for $\theta \in \mathbb{N} / 2$ (Lusztig 201?)
- The modules S_{λ}^{θ} and D_{λ}^{θ} should depend more on [θ] than on θ.

Comments -

- Lusztig's conjectures P1, P2,..., P15 hold if $\theta>n-1$ (B., Geck, lancu). In this case, the S_{λ}^{θ} are the Specht modules of Dipper-James-Murphy (Geck-lancu-Pallikaros 2008).
- They also hold if $\theta \in\{1 / 2,1,3 / 2\}$ (Lusztig).
- They will be true for $\theta \in \mathbb{N} / 2$ (Lusztig 201?)
- The modules S_{λ}^{θ} and D_{λ}^{θ} should depend more on [θ] than on θ.
- Question - It seems reasonable to expect that, if $\mathcal{C} \leqslant L \mathcal{C}^{\prime}$, then $\boldsymbol{\lambda}\left(\mathcal{C}^{\prime}\right) \unlhd_{r} \boldsymbol{\lambda}(\mathcal{C})$.

Jantzen's filtration

Jantzen's filtration

- $\mathcal{O} \subset K$ discrete valuation ring containing R such that, if we denote by \mathfrak{p} the maximal ideal of \mathcal{O}, then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$.

Jantzen's filtration

- $\mathcal{O} \subset K$ discrete valuation ring containing R such that, if we denote by \mathfrak{p} the maximal ideal of \mathcal{O}, then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$.
- $\mathcal{O} S_{\lambda}^{\ominus}(i)=\left\{x \in \mathcal{O} S_{\lambda}^{\ominus} \mid \forall y \in \mathcal{O} S_{\lambda}^{\ominus}, \mathcal{O} \phi_{\lambda}^{\ominus}(x, y) \in \mathfrak{p}^{i}\right\}$.

Jantzen's filtration

- $\mathcal{O} \subset K$ discrete valuation ring containing R such that, if we denote by \mathfrak{p} the maximal ideal of \mathcal{O}, then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$.
- $\mathcal{O} S_{\lambda}^{\ominus}(i)=\left\{x \in \mathcal{O} S_{\lambda}^{\ominus} \mid \forall y \in \mathcal{O} S_{\lambda}^{\ominus}, \mathcal{O} \phi_{\lambda}^{\theta}(x, y) \in \mathfrak{p}^{i}\right\}$.
- $\mathcal{O} / \mathfrak{p} \subseteq \mathbb{C}$,

Jantzen＇s filtration

－ $\mathcal{O} \subset K$ discrete valuation ring containing R such that，if we denote by \mathfrak{p} the maximal ideal of \mathcal{O} ，then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$ ．
－ $\mathcal{O} S_{\lambda}^{\ominus}(i)=\left\{x \in \mathcal{O} S_{\lambda}^{\ominus} \mid \forall y \in \mathcal{O} S_{\lambda}^{\ominus}, \mathcal{O} \phi_{\lambda}^{\theta}(x, y) \in \mathfrak{p}^{i}\right\}$ ．
－ $\mathcal{O} / \mathfrak{p} \subseteq \mathbb{C}, \mathbb{C} S_{\lambda}^{\Theta}(i)=\mathbb{C} \otimes_{\mathcal{O} / \mathfrak{p}}\left(\mathcal{O} S_{\lambda}^{\theta}(i)+\mathfrak{p} S_{\lambda}^{\theta}\right) / \mathfrak{p} S_{\lambda}^{\theta}$ ．

Jantzen's filtration

- $\mathcal{O} \subset K$ discrete valuation ring containing R such that, if we denote by \mathfrak{p} the maximal ideal of \mathcal{O}, then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$.
- $\mathcal{O} S_{\lambda}^{\ominus}(i)=\left\{x \in \mathcal{O} S_{\lambda}^{\ominus} \mid \forall y \in \mathcal{O} S_{\lambda}^{\ominus}, \mathcal{O} \phi_{\lambda}^{\ominus}(x, y) \in \mathfrak{p}^{i}\right\}$.
- $\mathcal{O} / \mathfrak{p} \subseteq \mathbb{C}, \mathbb{C} S_{\lambda}^{\Theta}(i)=\mathbb{C} \otimes_{\mathcal{O} / \mathfrak{p}}\left(\mathcal{O} S_{\lambda}^{\ominus}(i)+\mathfrak{p} S_{\lambda}^{\ominus}\right) / \mathfrak{p} S_{\lambda}^{\Theta}$.
- Then, for some $m_{0} \gg 0$,

$$
0=\mathbb{C} S_{\lambda}^{\ominus}\left(m_{0}\right) \subseteq \mathbb{C} S_{\lambda}^{\ominus}\left(m_{0}-1\right) \subseteq \cdots \subseteq \mathbb{C} S_{\lambda}^{\ominus}(1) \subseteq \mathbb{C} S_{\lambda}^{\Theta}(0)=\mathbb{C} S_{\lambda}^{\ominus} .
$$

Jantzen's filtration

- $\mathcal{O} \subset K$ discrete valuation ring containing R such that, if we denote by \mathfrak{p} the maximal ideal of \mathcal{O}, then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$.
- $\mathcal{O} S_{\lambda}^{\ominus}(i)=\left\{x \in \mathcal{O} S_{\lambda}^{\ominus} \mid \forall y \in \mathcal{O} S_{\lambda}^{\ominus}, \mathcal{O} \phi_{\lambda}^{\ominus}(x, y) \in \mathfrak{p}^{i}\right\}$.
- $\mathcal{O} / \mathfrak{p} \subseteq \mathbb{C}, \mathbb{C} S_{\lambda}^{\Theta}(i)=\mathbb{C} \otimes_{\mathcal{O} / \mathfrak{p}}\left(\mathcal{O} S_{\lambda}^{\ominus}(i)+\mathfrak{p} S_{\lambda}^{\ominus}\right) / \mathfrak{p} S_{\lambda}^{\Theta}$.
- Then, for some $m_{0} \gg 0$,

$$
0=\mathbb{C} S_{\lambda}^{\ominus}\left(m_{0}\right) \subseteq \mathbb{C} S_{\lambda}^{\ominus}\left(m_{0}-1\right) \subseteq \cdots \subseteq \mathbb{C} S_{\lambda}^{\ominus}(1) \subseteq \mathbb{C} S_{\lambda}^{\Theta}(0)=\mathbb{C} S_{\lambda}^{\ominus} .
$$

Jantzen's filtration

- $\mathcal{O} \subset K$ discrete valuation ring containing R such that, if we denote by \mathfrak{p} the maximal ideal of \mathcal{O}, then $\mathfrak{p} \cap R=\operatorname{Ker}(R \rightarrow \mathbb{C})$.
- $\mathcal{O} S_{\lambda}^{\ominus}(i)=\left\{x \in \mathcal{O} S_{\lambda}^{\ominus} \mid \forall y \in \mathcal{O} S_{\lambda}^{\ominus}, \mathcal{O} \phi_{\lambda}^{\ominus}(x, y) \in \mathfrak{p}^{i}\right\}$.
- $\mathcal{O} / \mathfrak{p} \subseteq \mathbb{C}, \mathbb{C} S_{\lambda}^{\ominus}(i)=\mathbb{C} \otimes_{\mathcal{O} / \mathfrak{p}}\left(\mathcal{O} S_{\lambda}^{\ominus}(i)+\mathfrak{p} S_{\lambda}^{\ominus}\right) / \mathfrak{p} S_{\lambda}^{\ominus}$.
- Then, for some $m_{0} \gg 0$,

$$
0=\mathbb{C} S_{\lambda}^{\ominus}\left(m_{0}\right) \subseteq \mathbb{C} S_{\lambda}^{\ominus}\left(m_{0}-1\right) \subseteq \cdots \subseteq \mathbb{C} S_{\lambda}^{\ominus}(1) \subseteq \mathbb{C} S_{\lambda}^{\ominus}(0)=\mathbb{C} S_{\lambda}^{\ominus} .
$$

Question: If $r<\theta<r+e$ and $r \equiv d \bmod e$, then

$$
d_{\lambda, \mu}^{r}(v) \stackrel{?}{=} \sum_{i \geqslant 0}\left[\mathbb{C} S_{\lambda}^{\Theta}(i) / k S_{\lambda}^{\ominus}(i+1): D_{\mu}^{\ominus}\right] v^{i} .
$$

[^0]:

[^1]:

