Geometry of Calogero-Moser spaces

Cédric Bonnafé

CNRS (UMR 5149) - Université de Montpellier

Poitiers, November 2016

<ロ> (四) (四) (三) (三) (三) (三)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $\dim_{\mathbb{C}} V = n < \infty$
- $W < \operatorname{GL}_{\mathbb{C}}(V)$, $|W| < \infty$.
- $\operatorname{Ref}(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} V^s = 1 \}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- dim_{\mathbb{C}} $V = n < \infty$
- $W < \operatorname{GL}_{\mathbb{C}}(V)$, $|W| < \infty$.
- $\operatorname{Ref}(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} V^s = 1 \}$

Hypothesis. $W = \langle \operatorname{Ref}(W) \rangle$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- dim_{\mathbb{C}} $V = n < \infty$
- $W < \operatorname{GL}_{\mathbb{C}}(V)$, $|W| < \infty$.
- $\operatorname{Ref}(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} V^s = 1 \}$

Hypothesis. $W = \langle \operatorname{Ref}(W) \rangle$ (i.e. $V/W \simeq \mathbb{C}^n$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- dim_{\mathbb{C}} $V = n < \infty$
- $W < \operatorname{GL}_{\mathbb{C}}(V)$, $|W| < \infty$.
- $\operatorname{Ref}(W) = \{ s \in W \mid \operatorname{codim}_{\mathbb{C}} V^s = 1 \}$

Hypothesis. $W = \langle \operatorname{Ref}(W) \rangle$ (i.e. $V/W \simeq \mathbb{C}^n$)

◆□> ◆□> ◆臣> ◆臣> 臣 のへで

•
$$\mathcal{C} = \{ \boldsymbol{c} : \operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C} \}$$

• We fix $c \in C$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

$$\mathbf{H}_{c} = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}] \quad (\text{as a vector space})$$
$$\forall y \in V, \ \forall x \in V^{*}, \ [y, x] = \sum_{s \in \operatorname{Ref}(W)} c_{s} \langle y, s(x) - x \rangle s$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\mathbf{H}_{c} = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}] \quad (\text{as a vector space})$$
$$\forall y \in V, \ \forall x \in V^{*}, \ [y, x] = \sum_{s \in \operatorname{Ref}(W)} c_{s} \langle y, s(x) - x \rangle s$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

$$\mathbf{H}_{c} = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}] \quad (\text{as a vector space})$$
$$\forall y \in V, \ \forall x \in V^{*}, \ [y, x] = \sum_{s \in \operatorname{Ref}(W)} c_{s} \langle y, s(x) - x \rangle s$$

Let

 $Z_c = Z(\mathbf{H}_c)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\mathbf{H}_{c} = \mathbb{C}[V] \otimes \mathbb{C}W \otimes \mathbb{C}[V^{*}] \quad (\text{as a vector space})$$
$$\forall y \in V, \ \forall x \in V^{*}, \ [y, x] = \sum_{s \in \operatorname{Ref}(W)} c_{s} \langle y, s(x) - x \rangle s$$

Let

 $Z_c = Z(\mathbf{H}_c)$

Easy fact.

$$\mathbb{C}[V]^{W}, \mathbb{C}[V^*]^{W} \subset Z_c.$$

Let

$$P = \mathbb{C}[V]^W \otimes \mathbb{C}[V^*]^W \subset Z_c$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● □

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{\boldsymbol{c}} = \operatorname{Spec}(\boldsymbol{Z}_{\boldsymbol{c}}).$$

<ロ> (四) (四) (三) (三) (三) (三)

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

<ロ> (四) (四) (三) (三) (三) (三)

It is endowed with a morphism

$$\rho_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(P) = V/W \times V^*/W$$

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

It is endowed with a morphism

$$\varphi_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(P) = V/W \times V^*/W \simeq \mathbb{C}^{2n}.$$

<ロ> (四) (四) (三) (三) (三) (三)

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

It is endowed with a morphism

$$\varphi_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(\boldsymbol{P}) = \boldsymbol{V}/\boldsymbol{W} \times \boldsymbol{V}^*/\boldsymbol{W} \simeq \mathbb{C}^{2n}.$$

Theorem (Etingof-Ginzburg, 2002)

 Z_c is an integrally closed domain, and is a free *P*-module of rank |W|.

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

It is endowed with a morphism

$$\varphi_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(P) = V/W \times V^*/W \simeq \mathbb{C}^{2n}.$$

Theorem (Etingof-Ginzburg, 2002)

 Z_c is an integrally closed domain, and is a free *P*-module of rank |W|.

Example (the case where c = 0).

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

It is endowed with a morphism

$$\varphi_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(\boldsymbol{P}) = \boldsymbol{V}/\boldsymbol{W} \times \boldsymbol{V}^*/\boldsymbol{W} \simeq \mathbb{C}^{2n}.$$

Theorem (Etingof-Ginzburg, 2002)

 Z_c is an integrally closed domain, and is a free *P*-module of rank |W|.

《口》 《聞》 《理》 《理》 三国

Example (the case where c = 0). Then $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W,$

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

It is endowed with a morphism

$$\varphi_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(\boldsymbol{P}) = \boldsymbol{V}/\boldsymbol{W} \times \boldsymbol{V}^*/\boldsymbol{W} \simeq \mathbb{C}^{2n}.$$

Theorem (Etingof-Ginzburg, 2002)

 Z_c is an integrally closed domain, and is a free *P*-module of rank |W|.

《口》 《聞》 《理》 《理》 三国

Example (the case where c = 0). Then $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W,$ $Z_0 = \mathbb{C}[V \times V^*]^W,$

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$\boldsymbol{\mathcal{Z}}_{c} = \operatorname{Spec}(\boldsymbol{Z}_{c}).$$

It is endowed with a morphism

$$\varphi_c: \boldsymbol{\mathcal{Z}}_c \longrightarrow \operatorname{Spec}(\boldsymbol{P}) = \boldsymbol{V}/\boldsymbol{W} \times \boldsymbol{V}^*/\boldsymbol{W} \simeq \mathbb{C}^{2n}.$$

Theorem (Etingof-Ginzburg, 2002)

 Z_c is an integrally closed domain, and is a free *P*-module of rank |W|.

▲□▶ ▲圖▶ ▲厘▶ ▲厘▶ 三厘 - 釣A@

Example (the case where c = 0). Then $\mathbf{H}_0 = \mathbb{C}[V \times V^*] \rtimes W,$ $Z_0 = \mathbb{C}[V \times V^*]^W,$ $\mathcal{Z}_0 = (V \times V^*)/W.$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

• There is a \mathbb{C}^{\times} -action on \mathbf{H}_c (i.e. a \mathbb{Z} -grading):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

• There is a \mathbb{C}^{\times} -action on \mathbf{H}_c (i.e. a \mathbb{Z} -grading):

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- ▶ $\deg(V) = -1$
- ▶ $\deg(V^*) = 1$
- $\deg(W) = 0$

• There is a \mathbb{C}^{\times} -action on \mathbf{H}_c (i.e. a \mathbb{Z} -grading):

- ▶ $\deg(V) = -1$
- ▶ $\deg(V^*) = 1$
- $\deg(W) = 0$

So there is a \mathbb{C}^{\times} -action on Z_c and on \mathcal{Z}_c .

◆□> ◆□> ◆臣> ◆臣> 臣 のへで

• There is a \mathbb{C}^{\times} -action on \mathbf{H}_c (i.e. a \mathbb{Z} -grading):

▶
$$\deg(V) = -1$$

- $\deg(V^*) = 1$
- $\deg(W) = 0$

So there is a \mathbb{C}^{\times} -action on Z_c and on \mathcal{Z}_c .

• Poisson bracket:

$$\{,\}: \begin{array}{ccc} Z_c \times Z_c & \longrightarrow & Z_c \\ (z,z') & \longmapsto & \lim_{t \to 0} \frac{[z,z']_{\mathbf{H}_{t,c}}}{t} \end{array}$$

◆□> ◆□> ◆臣> ◆臣> 臣 のへで

•
$$\operatorname{GL}_n(\mathbb{F}_q)$$
, $q = p^2$, $\ell \neq p$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $\operatorname{GL}_n(\mathbb{F}_q), q = p^?, \ell \neq p.$
- Steinberg (1952), Lusztig (1976):

- $\operatorname{GL}_n(\mathbb{F}_q), q = p^?, \ell \neq p.$
- Steinberg (1952), Lusztig (1976):

{partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\mathbf{GL}_n(\mathbb{F}_q)$ }

• $\operatorname{GL}_n(\mathbb{F}_q), q = p^?, \ell \neq p.$

• Steinberg (1952), Lusztig (1976):

 $\{ \begin{array}{cc} \text{partitions of } n \} & \stackrel{\sim}{\longleftrightarrow} \{ \begin{array}{cc} \text{Unip. char. of } \mathbf{GL}_n(\mathbb{F}_q) \} \\ \lambda & \longmapsto & \rho_{\lambda} \end{array}$

- $\operatorname{GL}_n(\mathbb{F}_q)$, $q = p^?$, $\ell \neq p$.
- Steinberg (1952), Lusztig (1976): {partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\operatorname{\mathbf{GL}}_n(\mathbb{F}_q)$ } $\lambda \longmapsto \rho_{\lambda}$

(日) (四) (문) (문) (문)

• Hypothesis: $order(q \mod \ell) = d$

- $\operatorname{GL}_n(\mathbb{F}_q)$, $q = p^?$, $\ell \neq p$.
- Steinberg (1952), Lusztig (1976): {partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\operatorname{\mathbf{GL}}_n(\mathbb{F}_q)$ } $\lambda \longmapsto \rho_{\lambda}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- Hypothesis: order $(q \mod \ell) = d$
- Fact (Fong-Srinivasan, 1980's):

• $\operatorname{GL}_n(\mathbb{F}_q)$, $q = p^2$, $\ell \neq p$.

• Steinberg (1952), Lusztig (1976): {partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\mathbf{GL}_n(\mathbb{F}_q)$ } $\lambda \longmapsto \rho_{\lambda}$

• Hypothesis: order $(q \mod \ell) = d$

• Fact (Fong-Srinivasan, 1980's):

 ρ_{λ} and ρ_{μ} are in the same $\ell\text{-block}$

• $\operatorname{GL}_n(\mathbb{F}_q)$, $q = p^2$, $\ell \neq p$.

• Steinberg (1952), Lusztig (1976): {partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\mathbf{GL}_n(\mathbb{F}_q)$ } $\lambda \longmapsto \rho_{\lambda}$

• Hypothesis: order $(q \mod \ell) = d$

• Fact (Fong-Srinivasan, 1980's):

 ρ_λ and ρ_μ are in the same $\ell\text{-block}$

Conjecture (Broué-Malle-Michel, 1993)

- $\rho_{\lambda} \mid H_{c}^{\bullet}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$
- End_{$\overline{\mathbb{Q}}_{c}$ GL_n(\mathbb{F}_{q}) $\left(H_{c}^{\bullet}(\mathbf{X}_{\gamma}(r))\right) \simeq \operatorname{Hecke}_{\mathsf{params}}(G(d, 1, r))$}

• $\operatorname{GL}_n(\mathbb{F}_q)$, $q = p^2$, $\ell \neq p$.

• Steinberg (1952), Lusztig (1976): {partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\mathbf{GL}_n(\mathbb{F}_q)$ } $\lambda \longmapsto \rho_{\lambda}$

• Hypothesis: order $(q \mod \ell) = d$

• Fact (Fong-Srinivasan, 1980's):

 ρ_λ and ρ_μ are in the same $\ell\text{-block}$

Conjecture (Broué-Malle-Michel, 1993)

- $\rho_{\lambda} \mid H_{c}^{\bullet}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$
- End_{$\overline{\mathbb{Q}}_{c}$ GL_n(\mathbb{F}_{q}) $\left(H_{c}^{\bullet}(\mathbf{X}_{\gamma}(r))\right) \simeq \operatorname{Hecke}_{\mathsf{params}}(G(d, 1, r))$}

• $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, \mathbb{C}^{\times} -action, $\zeta \in \mathbb{C}^{\times}$

• Steinberg (1952), Lusztig (1976): {partitions of n} $\stackrel{\sim}{\longleftrightarrow}$ {Unip. char. of $\mathbf{GL}_n(\mathbb{F}_q)$ } $\lambda \qquad \longmapsto \qquad \rho_{\lambda}$

• Hypothesis: $order(q \mod \ell) = d$

• Fact (Fong-Srinivasan, 1980's):

 $\rho_{\lambda} \text{ and } \rho_{\mu} \text{ are in the same } \ell\text{-block}$ $\bigcirc_{d}(\lambda) = \heartsuit_{d}(\mu)$

Conjecture (Broué-Malle-Michel, 1993)

- $\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$
- End_{Q(GL_n(\mathbb{F}_q)} $\left(H_c^{\bullet}(\mathbf{X}_{\gamma}(r)) \right) \simeq \operatorname{Hecke}_{\mathsf{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, \mathbb{C}^{\times} -action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):

 $\{ \text{partitions of } n \} \xleftarrow{\sim} \{ \text{Unip. char. of } \mathbf{GL}_n(\mathbb{F}_q) \}$ $\lambda \qquad \longmapsto \qquad \rho_{\lambda}$

• Hypothesis: $order(q \mod \ell) = d$

• Fact (Fong-Srinivasan, 1980's):

Conjecture (Broué-Malle-Michel, 1993)

- $\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$
- $\operatorname{End}_{\overline{\mathbb{Q}}_{c}\operatorname{GL}_{n}(\mathbb{F}_{q})}\left(H^{\bullet}_{c}(\mathbf{X}_{\gamma}(r))\right) \simeq \operatorname{Hecke}_{\operatorname{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, $\mathbb{C}^{ imes}$ -action, $\zeta \in \mathbb{C}^{ imes}$
- Gordon (2003):

 $\{ \begin{array}{cc} \text{partitions of } n \} & \stackrel{\sim}{\longleftrightarrow} & \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\mathbb{C}^{\times}} \\ \lambda & \longmapsto & \rho_{\lambda} \end{array}$

- Hypothesis: $\operatorname{order}(q \mod \ell) = d$
- Fact (Fong-Srinivasan, 1980's):

Conjecture (Broué-Malle-Michel, 1993)

If γ is a *d*-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for *G* such that:

•
$$\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$$

• $\operatorname{End}_{\overline{\mathbb{Q}}_{\mathbf{GL}_n(\mathbb{F}_q)}}(H^{\bullet}_{c}(\mathbf{X}_{\gamma}(r))) \simeq \operatorname{Hecke}_{\operatorname{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, $\mathbb{C}^{ imes}$ -action, $\zeta \in \mathbb{C}^{ imes}$
- Gordon (2003):

 $\begin{array}{ccc} \{\text{partitions of } n\} & \stackrel{\sim}{\longleftrightarrow} & \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\mathbb{C}^{\times}} \\ & \lambda & \longmapsto & z_{\lambda} \end{array}$

- Hypothesis: $\operatorname{order}(q \mod \ell) = d$
- Fact (Fong-Srinivasan, 1980's):

Conjecture (Broué-Malle-Michel, 1993)

If γ is a *d*-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for *G* such that:

•
$$\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$$

• $\operatorname{End}_{\overline{\mathbb{Q}}_{\mathbf{GL}_n(\mathbb{F}_q)}}(H^{\bullet}_{c}(\mathbf{X}_{\gamma}(r))) \simeq \operatorname{Hecke}_{\operatorname{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, $\mathbb{C}^{ imes}$ -action, $\zeta \in \mathbb{C}^{ imes}$
- Gordon (2003):

 $\begin{array}{ccc} \{\text{partitions of } n\} & \stackrel{\sim}{\longleftrightarrow} & \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\mathbb{C}^{\times}} \\ & \lambda & \longmapsto & z_{\lambda} \end{array}$

- Hypothesis: $order(\zeta) = d$
- Fact (Fong-Srinivasan, 1980's):

 $\rho_{\lambda} \text{ and } \rho_{\mu} \text{ are in the same } \ell\text{-block}$ $\bigcirc_{d}(\lambda) = \heartsuit_{d}(\mu)$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a *d*-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for *G* such that:

•
$$\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$$

• $\operatorname{End}_{\overline{\mathbb{Q}}_{c}\operatorname{\mathbf{GL}}_{n}(\mathbb{F}_{q})}\left(H^{\bullet}_{c}(\mathbf{X}_{\gamma}(r))\right) \simeq \operatorname{Hecke}_{\operatorname{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, $\mathbb{C}^{ imes}$ -action, $\zeta \in \mathbb{C}^{ imes}$
- Gordon (2003):

 $\begin{array}{ccc} \{\text{partitions of } n\} & \stackrel{\sim}{\longleftrightarrow} & \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\mathbb{C}^{\times}} \\ & \lambda & \longmapsto & z_{\lambda} \end{array}$

- Hypothesis: $order(\zeta) = d$
- Fact (Haiman, 2000):

Conjecture (Broué-Malle-Michel, 1993)

If γ is a *d*-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for *G* such that:

•
$$\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$$

• $\operatorname{End}_{\overline{\mathbb{Q}}_{\mathbf{GL}_n(\mathbb{F}_q)}}(H^{\bullet}_{c}(\mathbf{X}_{\gamma}(r))) \simeq \operatorname{Hecke}_{\operatorname{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, $\mathbb{C}^{ imes}$ -action, $\zeta \in \mathbb{C}^{ imes}$
- Gordon (2003):

 $\{ \text{partitions of } n \} \xleftarrow{\sim} \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\mathbb{C}^{\times}} \\ \lambda \longmapsto z_{\lambda}$

- Hypothesis: $order(\zeta) = d$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a *d*-core and $n = |\gamma| + dr$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for *G* such that:

•
$$\rho_{\lambda} \mid H^{\bullet}_{c}(\mathbf{X}_{\heartsuit}(r), \overline{\mathbb{Q}}_{\ell}) \Longleftrightarrow \heartsuit_{d}(\lambda) = \gamma.$$

• $\operatorname{End}_{\overline{\mathbb{Q}}_{c}\operatorname{\mathbf{GL}}_{n}(\mathbb{F}_{q})}\left(H^{\bullet}_{c}(\mathbf{X}_{\gamma}(r))\right) \simeq \operatorname{Hecke}_{\operatorname{params}}(G(d, 1, r))$

- $\boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)$, smooth, $\mathbb{C}^{ imes}$ -action, $\zeta \in \mathbb{C}^{ imes}$
- Gordon (2003):

 $\{ \text{partitions of } n \} \xleftarrow{\sim} \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\mathbb{C}^{\times}} \\ \lambda \longmapsto z_{\lambda}$

- Hypothesis: $order(\zeta) = d$

Theorem (Haiman, ~ 2000)

If γ is a *d*-core and $n = |\gamma| + dr$, then there exists an irreducible component $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}_{\gamma}$ of $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}$ such that:

•
$$z_{\lambda} \in \boldsymbol{\mathcal{Z}}_1(\mathfrak{S}_n)^{\zeta}_{\gamma} \Longleftrightarrow \boldsymbol{\heartsuit}_d(\lambda) = \gamma.$$

• $\mathcal{Z}_1(\mathfrak{S}_n)^{\zeta}_{\gamma}$ is diffeo. (conj. isom.) to $\mathcal{Z}_{\text{params}}(G(d, 1, r))$.

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
 (Z_c)_{smooth} is a symplectic leaf;

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
 (Z_c)_{smooth} is a symplectic leaf;
 ((Z_c)_{sing})

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
 (Z_c)_{smooth} is a symplectic leaf;
 ((Z_c)_{sing})_{smooth}

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
 (Z_c)_{smooth} is a symplectic leaf;
 ((Z_c)_{sing})_{smooth} is a symplectic leaf;

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows $(\mathcal{Z}_c)_{smooth}$ is a symplectic leaf; $((\mathcal{Z}_c)_{sing})_{smooth}$ is a symplectic leaf; $(((\mathcal{Z}_c)_{sing})_{sing})_{smooth}$ is a symplectic leaf; ...

《口》 《聞》 《理》 《理》 三国

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
(\$\mathcal{Z}_c\$)_{smooth}\$ is a symplectic leaf;
((\$\mathcal{Z}_c\$)_{sing}\$)_{smooth}\$ is a symplectic leaf;
(((\$\mathcal{Z}_c\$)_{sing}\$)_{smooth}\$ is a symplectic leaf;
...

(b) \mathcal{Z}_c is a symplectic singularity (as defined by Beauville).

<ロト (四) (注) (注) (注) (注) (注)

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 - 釣��

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007) $\mathcal{Z}_0 = (V \times V^*)/W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that \mathcal{Z}_c is smooth.

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007) $\mathcal{Z}_0 = (V \times V^*)/W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that \mathcal{Z}_c is smooth.

Theorem (Brown-Gordon, 2003)

 \mathcal{Z}_c is smooth if and only if all the simple \mathbf{H}_c -modules have dimension |W|.

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007) $\mathcal{Z}_0 = (V \times V^*)/W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that \mathcal{Z}_c is smooth.

Theorem (Brown-Gordon, 2003)

 \mathcal{Z}_c is smooth if and only if all the simple \mathbf{H}_c -modules have dimension |W|.

Corollary (G.-K., B.-G., Bellamy 2008)

Assume that W is irreducible.

Then $\mathcal{Z}_0 = (V \times V^*)/W$ admits a symplectic resolution if and only if $W = G(d, 1, n) = \mathfrak{S}_n \ltimes (\mu_d)^n \subset \operatorname{GL}_n(\mathbb{C})$ or $W = G_4 \subset \operatorname{GL}_2(\mathbb{C})$.

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 - 釣��

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbf{Z}}_0 \to \mathbf{Z}_0$ is a symplectic resolution.

(日) (四) (문) (문) (문)

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbb{Z}}_0, \mathbb{C}) = 0$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbb{Z}}_0) = 0;$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbb{Z}}_0) = 0;$ (2) $H^{2\bullet}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W)).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbf{Z}}_0 \to \mathbf{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbf{Z}}_0) = 0$; (2) $H^{2\bullet}(\tilde{\mathbf{Z}}_0) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Conjecture EC (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbf{Z}}_0 \to \mathbf{Z}_0$ is a symplectic resolution.

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbf{Z}}_0 \to \mathbf{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbf{Z}}_0) = 0$; (2) $H^{2\bullet}(\tilde{\mathbf{Z}}_0) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Conjecture EC (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbf{Z}}_0 \to \mathbf{Z}_0$ is a symplectic resolution. (EC1) $H^{2i+1}_{\mathbb{C}^{\times}}(\tilde{\mathbf{Z}}_0) = 0$;

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbb{Z}}_0) = 0;$ (2) $H^{2\bullet}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W)).$

Conjecture EC (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (EC1) $H^{2i+1}_{\mathbb{C}^*}(\tilde{\mathbb{Z}}_0) = 0$; (EC2) $H^{2\bullet}_{\mathbb{C}^*}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbb{Z}}_0) = 0;$ (2) $H^{2\bullet}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W)).$

Conjecture EC (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (EC1) $H^{2i+1}_{\mathbb{C}^*}(\tilde{\mathbb{Z}}_0) = 0$; (EC2) $H^{2\bullet}_{\mathbb{C}^*}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Theorem (Vasserot, 2001) (EC) holds if $W = \mathfrak{S}_n$ ($\tilde{\boldsymbol{Z}}_0 = \operatorname{Hilb}_n(\mathbb{C}^2)$).

(□) (@) (E) (E) E

Theorem (Vasserot, 2001) (EC) holds if $W = \mathfrak{S}_n$ ($\tilde{\mathbf{Z}}_0 = \operatorname{Hilb}_n(\mathbb{C}^2)$).

<ロ> (四) (四) (三) (三) (三) (三)

Other cases. $W = W(B_2)$ or G_4 (Shan-B. 2016).

Theorem (Vasserot, 2001) (EC) holds if $W = \mathfrak{S}_n$ ($\tilde{\mathbf{Z}}_0 = \operatorname{Hilb}_n(\mathbb{C}^2)$).

Other cases. $W = W(B_2)$ or G_4 (Shan-B. 2016).

Question. What about the general case?

Theorem (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (1) $H^{2i+1}(\tilde{\mathbb{Z}}_0) = 0;$ (2) $H^{2\bullet}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W)).$

Conjecture EC (Ginzburg-Kaledin, 2004) Assume that $\tilde{\mathbb{Z}}_0 \to \mathbb{Z}_0$ is a symplectic resolution. (EC1) $H^{2i+1}_{\mathbb{C}^*}(\tilde{\mathbb{Z}}_0) = 0$; (EC2) $H^{2\bullet}_{\mathbb{C}^*}(\tilde{\mathbb{Z}}_0) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Cohomology (smooth case)

Theorem (Ginzburg-Kaledin, 2004) Assume that \mathcal{Z}_c is smooth. (1) $H^{2i+1}(\mathcal{Z}_c) = 0$; (2) $H^{2\bullet}(\mathcal{Z}_c) \simeq \operatorname{gr}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Conjecture EC (Ginzburg-Kaledin, 2004) Assume that \mathcal{Z}_c is smooth. (EC1) $H^{2i+1}_{\mathbb{C}^{\times}}(\mathcal{Z}_c) = 0$; (EC2) $H^{2\circ}_{\mathbb{C}^{\times}}(\mathcal{Z}_c) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathbb{Z}(\mathbb{C}W))$.

Cohomology (general case)

```
Conjecture C (Rouquier-B.)

(C1) H^{2i+1}(\mathcal{Z}_c) = 0;

(C2) H^{2\bullet}(\mathcal{Z}_c) \simeq \operatorname{gr}_{\mathcal{F}}(\operatorname{Im} \Omega_c).
```

```
Conjecture EC (Rouquier-B.)

(EC1) H^{2i+1}_{\mathbb{C}^{\times}}(\mathbb{Z}_c) = 0;

(EC2) H^{2c}_{\mathbb{C}^{\times}}(\mathbb{Z}_c) \simeq \operatorname{Rees}_{\mathcal{F}}(\operatorname{Im} \Omega_c).
```

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Cohomology (general case)

```
Conjecture C (Rouquier-B.)

(C1) H^{2i+1}(\mathcal{Z}_c) = 0;

(C2) H^{2\bullet}(\mathcal{Z}_c) \simeq \operatorname{gr}_{\mathcal{F}}(\operatorname{Im} \Omega_c).
```

```
Conjecture EC (Rouquier-B.)

(EC1) H^{2i+1}_{\mathbb{C}^{\times}}(\mathcal{Z}_c) = 0;

(EC2) H^{2\bullet}_{\mathbb{C}^{\times}}(\mathcal{Z}_c) \simeq \operatorname{Rees}_{\mathcal{F}}(\operatorname{Im}\Omega_c).
```

Example (B.). (C) and (EC) are true if $\dim_{\mathbb{C}}(V) = 1$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

Example of a symplectic singularity

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 臣 のへで

Example of a symplectic singularity

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

Example of a symplectic singularity

• $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$

• Let $a = c_s$ and $b = c_t$.

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- Let $a = c_s$ and $b = c_t$.
- Minimal presentation of Z_c : 8 generators, 9 equations

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- Let $a = c_s$ and $b = c_t$.
- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let
$$a = c_s$$
 and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: \mathbf{Z}_c is smooth if and only if $ab(a^2 b^2) \neq 0$.

◆□> ◆□> ◆臣> ◆臣> 臣 のへで

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let
$$a = c_s$$
 and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: $\boldsymbol{\mathcal{Z}}_c$ is smooth if and only if $ab(a^2 b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$.

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let
$$a = c_s$$
 and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: \mathbf{Z}_c is smooth if and only if $ab(a^2 b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$. $\Rightarrow Z_c$ has only one singular point, named 0

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let
$$a = c_s$$
 and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: \mathbf{Z}_c is smooth if and only if $ab(a^2 b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$. $\Rightarrow Z_c$ has only one singular point, named 0

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• Easy fact: dim_{\mathbb{C}} $T_0(\mathcal{Z}_c) = 8$.

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let
$$a = c_s$$
 and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: \mathbf{Z}_c is smooth if and only if $ab(a^2 b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$. $\Rightarrow Z_c$ has only one singular point, named 0
- Easy fact: dim_{\mathbb{C}} $T_0(\boldsymbol{\mathcal{Z}}_c) = 8$.
- Let \mathfrak{m}_0 denote the maximal ideal of Z_c corresponding to 0.

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let $a = c_s$ and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: \mathbf{Z}_c is smooth if and only if $ab(a^2 b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$. $\Rightarrow \mathcal{Z}_c$ has only one singular point, named 0
- Easy fact: dim_{\mathbb{C}} $T_0(\boldsymbol{\mathcal{Z}}_c) = 8$.
- Let m₀ denote the maximal ideal of Z_c corresponding to 0. Then {m₀, m₀} ⊂ m₀ because {0} is a symplectic leaf.

◆□> ◆□> ◆臣> ◆臣> 臣 のへで

•
$$W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$$

• Let
$$a = c_s$$
 and $b = c_t$.

- Minimal presentation of Z_c : 8 generators, 9 equations $Z_c \longrightarrow \mathbb{C}^8$, dim $Z_c = 4$
- Easy fact: \mathbf{Z}_c is smooth if and only if $ab(a^2 b^2) \neq 0$.
- The interesting case: assume from now on that $a = b \neq 0$. $\Rightarrow \mathcal{Z}_c$ has only one singular point, named 0
- Easy fact: dim_{\mathbb{C}} $T_0(\mathcal{Z}_c) = 8$.
- Let \mathfrak{m}_0 denote the maximal ideal of Z_c corresponding to 0. Then $\{\mathfrak{m}_0, \mathfrak{m}_0\} \subset \mathfrak{m}_0$ because $\{0\}$ is a symplectic leaf.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

 $\Rightarrow T_0(\mathcal{Z}_c)^* = \mathfrak{m}_0/\mathfrak{m}_0^2$ inherits from $\{,\}$ a structure of Lie algebra!

◆□▶ ◆舂▶ ◆差▶ ◆差▶ 差 - 釣��

• $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_{c} \hookrightarrow \mathbb{C}^{8} = T_{0}(\boldsymbol{\mathcal{Z}}_{c})$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_{c} \hookrightarrow \mathbb{C}^{8} = T_{0}(\boldsymbol{\mathcal{Z}}_{c})$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\boldsymbol{\mathcal{Z}}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_{c} \longrightarrow \mathbb{C}^{8} = T_{0}(\boldsymbol{\mathcal{Z}}_{c})$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ のへで

• So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_c \longrightarrow \mathbb{C}^8 = T_0(\boldsymbol{\mathcal{Z}}_c)$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)

- So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\boldsymbol{Z}_c) = \{ \boldsymbol{M} \in \mathfrak{sl}_3(\mathbb{C}) \mid \boldsymbol{M}^2 = 0 \}$

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_c \longrightarrow \mathbb{C}^8 = T_0(\boldsymbol{\mathcal{Z}}_c)$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)

- So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{\mathcal{O}}_{\min}.$

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_c \longrightarrow \mathbb{C}^8 = T_0(\boldsymbol{\mathcal{Z}}_c)$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{\mathcal{O}}_{\min}.$
- So $PTC_0(\boldsymbol{\mathcal{Z}}_c) = \mathcal{O}_{\min}/\mathbb{C}^{\times}$ is smooth

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_c \longrightarrow \mathbb{C}^8 = T_0(\boldsymbol{\mathcal{Z}}_c)$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)
- So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{\mathcal{O}}_{\min}.$
- So PTC₀(Z_c) = O_{min}/C[×] is smooth so Beauville classification theorem applies:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_c \hookrightarrow \mathbb{C}^8 = T_0(\boldsymbol{\mathcal{Z}}_c)$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)
- So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{\mathcal{O}}_{\min}.$
- So PTC₀(Z_c) = O_{min}/C[×] is smooth so Beauville classification theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities $(\boldsymbol{\mathcal{Z}}_{c}, 0)$ and $(\overline{\mathcal{O}}_{\min}, 0)$ are equivalent.

- $W = W(B_2) = \langle s, t | s^2 = t^2 = (st)^4 = 1 \rangle$
- $a = c_s = c_t$,
- $\boldsymbol{\mathcal{Z}}_c \hookrightarrow \mathbb{C}^8 = T_0(\boldsymbol{\mathcal{Z}}_c)$
- \Rightarrow $T_0(\boldsymbol{\mathcal{Z}}_c)^*$ is a Lie algebra for $\{,\}$
- Computation (thanks to MAGMA): $T_0(\mathcal{Z}_c)^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (!)
- So $\mathcal{Z}_c \longrightarrow \mathfrak{sl}_3(\mathbb{C})^* \simeq \mathfrak{sl}_3(\mathbb{C})$ (trace form).
- Computation (MAGMA): $TC_0(\mathcal{Z}_c) = \{ M \in \mathfrak{sl}_3(\mathbb{C}) \mid M^2 = 0 \} = \overline{\mathcal{O}}_{\min}.$
- So PTC₀(Z_c) = O_{min}/C[×] is smooth so Beauville classification theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities $(\mathcal{Z}_c, 0)$ and $(\overline{\mathcal{O}}_{\min}, 0)$ are equivalent. In particular, \mathcal{Z}_c is not rationally smooth.