Geometry of Calogero-Moser spaces

Cédric Bonnafé

CNRS (UMR 5149) - Université de Montpellier
Poitiers, November 2016

Set－up

Set-up

- $\operatorname{dim}_{\mathbb{C}} V=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$.
- $\operatorname{Ref}(W)=\left\{s \in W \mid \operatorname{codim}_{\mathbb{C}} V^{s}=1\right\}$

Set-up

- $\operatorname{dim}_{\mathbb{C}} V=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$.
- $\operatorname{Ref}(W)=\left\{s \in W \mid \operatorname{codim}_{\mathbb{C}} V^{s}=1\right\}$

Hypothesis. $W=\langle\operatorname{Ref}(W)\rangle$

Set-up

- $\operatorname{dim}_{\mathbb{C}} V=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$.
- $\operatorname{Ref}(W)=\left\{s \in W \mid \operatorname{codim}_{\mathbb{C}} V^{s}=1\right\}$

Hypothesis. $W=\langle\operatorname{Ref}(W)\rangle$

$$
\text { (i.e. } V / W \simeq \mathbb{C}^{n} \text {) }
$$

Set-up

- $\operatorname{dim}_{\mathbb{C}} V=n<\infty$
- $W<\mathbf{G L}_{\mathbb{C}}(V), \quad|W|<\infty$.
- $\operatorname{Ref}(W)=\left\{s \in W \mid \operatorname{codim}_{\mathbb{C}} V^{s}=1\right\}$

Hypothesis. $W=\langle\operatorname{Ref}(W)\rangle$

$$
\text { (i.e. } V / W \simeq \mathbb{C}^{n} \text {) }
$$

- $\mathcal{C}=\{c: \operatorname{Ref}(W) / \sim \longrightarrow \mathbb{C}\}$
- We fix $c \in \mathcal{C}$

Cherednik algebra at $t=0$

Cherednik algebra at $t=0$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*},[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

Cherednik algebra at $t=0$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*},[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

Cherednik algebra at $t=0$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*},[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

Let

$$
Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)
$$

Cherednik algebra at $t=0$

$$
\begin{aligned}
& \mathbf{H}_{c}=\mathbb{C}[V] \otimes \mathbb{C} W \otimes \mathbb{C}\left[V^{*}\right] \quad \text { (as a vector space) } \\
& \forall y \in V, \forall x \in V^{*},[y, x]=\sum_{s \in \operatorname{Ref}(W)} c_{s}\langle y, s(x)-x\rangle s
\end{aligned}
$$

Let

$$
Z_{c}=\mathrm{Z}\left(\mathbf{H}_{c}\right)
$$

$$
\begin{aligned}
& \text { Easy fact. } \\
& \mathbb{C}[V]^{w}, \mathbb{C}\left[V^{*}\right]^{w} \subset Z_{c}
\end{aligned}
$$

Let

$$
P=\mathbb{C}[V]^{W} \otimes \mathbb{C}\left[V^{*}\right]^{W} \subset Z_{c}
$$

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right) .
$$

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right)
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W
$$

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right)
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W \simeq \mathbb{C}^{2 n} .
$$

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right) .
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W \simeq \mathbb{C}^{2 n} .
$$

Theorem (Etingof-Ginzburg, 2002)

Z_{c} is an integrally closed domain, and is a free P-module of rank $|W|$.

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right) .
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W \simeq \mathbb{C}^{2 n} .
$$

Theorem (Etingof-Ginzburg, 2002)

Z_{c} is an integrally closed domain, and is a free P-module of rank $|W|$.

Example (the case where $c=0$).

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right) .
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W \simeq \mathbb{C}^{2 n} .
$$

Theorem (Etingof-Ginzburg, 2002)

Z_{c} is an integrally closed domain, and is a free P-module of rank $|W|$.

Example (the case where $c=0$). Then

$$
\mathbf{H}_{0}=\mathbb{C}\left[V \times V^{*}\right] \rtimes W,
$$

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right) .
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W \simeq \mathbb{C}^{2 n} .
$$

Theorem (Etingof-Ginzburg, 2002)

Z_{c} is an integrally closed domain, and is a free P-module of rank $|W|$.

Example (the case where $c=0$). Then

$$
\begin{aligned}
\mathrm{H}_{0} & =\mathbb{C}\left[V \times V^{*}\right] \rtimes W, \\
Z_{0} & =\mathbb{C}\left[V \times V^{*}\right]^{W},
\end{aligned}
$$

Definition

The Calogero-Moser space associated with the datum (W, c) is the affine variety

$$
\mathcal{Z}_{c}=\operatorname{Spec}\left(Z_{c}\right) .
$$

It is endowed with a morphism

$$
\varphi_{c}: \mathcal{Z}_{c} \longrightarrow \operatorname{Spec}(P)=V / W \times V^{*} / W \simeq \mathbb{C}^{2 n} .
$$

Theorem (Etingof-Ginzburg, 2002)

Z_{c} is an integrally closed domain, and is a free P-module of rank $|W|$.

Example (the case where $c=0$). Then

$$
\begin{aligned}
\mathbf{H}_{0} & =\mathbb{C}\left[V \times V^{*}\right] \rtimes W, \\
Z_{0} & =\mathbb{C}\left[V \times V^{*}\right] W, \\
\mathcal{Z}_{0} & =\left(V \times V^{*}\right) / W .
\end{aligned}
$$

Two extra-structures

Two extra-structures

- There is a \mathbb{C}^{\times}-action on \mathbf{H}_{c} (i.e. a \mathbb{Z}-grading):

Two extra-structures

- There is a \mathbb{C}^{\times}-action on \mathbf{H}_{c} (i.e. a \mathbb{Z}-grading):
- $\operatorname{deg}(V)=-1$
- $\operatorname{deg}\left(V^{*}\right)=1$
- $\operatorname{deg}(W)=0$

Two extra-structures

- There is a \mathbb{C}^{\times}-action on \mathbf{H}_{c} (i.e. a \mathbb{Z}-grading):
- $\operatorname{deg}(V)=-1$
- $\operatorname{deg}\left(V^{*}\right)=1$
- $\operatorname{deg}(W)=0$

So there is a \mathbb{C}^{\times}-action on Z_{c} and on \mathcal{Z}_{c}.

Two extra－structures

－There is a \mathbb{C}^{\times}－action on \mathbf{H}_{c}（i．e．a \mathbb{Z}－grading）：
－ $\operatorname{deg}(V)=-1$
－ $\operatorname{deg}\left(V^{*}\right)=1$
－ $\operatorname{deg}(W)=0$
So there is a \mathbb{C}^{\times}－action on Z_{c} and on \mathcal{Z}_{c} ．
－Poisson bracket：

$$
\begin{array}{rlcc}
\{,\}: Z_{c} \times Z_{c} & \longrightarrow & Z_{c} \\
\left(z, z^{\prime}\right) & \longmapsto \lim _{t \rightarrow 0} \frac{\left[z, z^{\prime}\right]_{\mathbf{H}_{t, c}}}{t}
\end{array}
$$

－ $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.

- $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976):
- $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$
\qquad
- $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$
λ $\longmapsto \quad \rho_{\lambda}$
- $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976): \{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$ λ $\longmapsto \quad \rho_{\lambda}$
- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976): \{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$ λ $\longmapsto \quad \rho_{\lambda}$
- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):
－ $\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$ ．
－Steinberg（1952），Lusztig（1976）： \｛partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip．char．of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$ λ $\longmapsto \quad \rho_{\lambda}$
－Hypothesis： $\operatorname{order}(q \bmod \ell)=d$
－Fact（Fong－Srinivasan，1980＇s）：
ρ_{λ} and ρ_{μ} are in the same ℓ－block

$$
\nabla_{d}(\lambda) \stackrel{\mathbb{I}}{=} \nabla_{d}(\mu)
$$

- $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976): \{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$ λ \longmapsto ρ_{λ}
- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):
ρ_{λ} and ρ_{μ} are in the same ℓ-block

$$
\Gamma_{d}(\lambda) \stackrel{\mathbb{\mathbb { I }}}{=} \wp_{d}(\mu)
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{q}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\overline{\operatorname{dan}} \mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right), q=p^{?}, \ell \neq p$.
- Steinberg (1952), Lusztig (1976): \{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$ λ \longmapsto ρ_{λ}
- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):
ρ_{λ} and ρ_{μ} are in the same ℓ-block

$$
\Gamma_{d}(\lambda) \stackrel{\mathbb{\mathbb { I }}}{=} \wp_{d}(\mu)
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{q}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\overline{\operatorname{dan}} \mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Steinberg (1952), Lusztig (1976):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)\right\}$
λ \longmapsto ρ_{λ}
- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):
ρ_{λ} and ρ_{μ} are in the same ℓ-block

$$
\wp_{d}(\lambda) \stackrel{\mathbb{\pi}}{=} \wp_{d}(\mu)
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{q}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\overline{\mathbb{Q}_{\gamma}} \mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow}\left\{\right.$ Unip. char. of $\left.\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)\right\}$

$$
\lambda
$$

\longmapsto ρ_{λ}

- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):
ρ_{λ} and ρ_{μ} are in the same ℓ-block

$$
\wp_{d}(\lambda) \stackrel{\mathbb{\pi}}{=} \wp_{d}(\mu)
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{q}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\overline{\mathbb{Q}_{\gamma}} \mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow} \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}$

- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):

$$
\begin{aligned}
& \rho_{\lambda} \text { and } \rho_{\mu} \text { are in the same } \ell \text {-block } \\
& \qquad \varrho_{d}(\lambda) \stackrel{\|}{=} \wp_{d}(\mu)
\end{aligned}
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{\ell}\right) \Longleftrightarrow \nabla_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\bar{Q}_{\mathbf{Q}} \mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow} \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}$

$$
\lambda \quad \longmapsto \quad z_{\lambda}
$$

- Hypothesis: $\operatorname{order}(q \bmod \ell)=d$
- Fact (Fong-Srinivasan, 1980's):

$$
\begin{gathered}
\rho_{\lambda} \text { and } \rho_{\mu} \text { are in the same } \ell \text {-block } \\
\qquad \rho_{d}(\lambda) \stackrel{\Uparrow}{=} \wp_{d}(\mu)
\end{gathered}
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\varphi}(r), \overline{\mathbb{Q}}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
$-\operatorname{End}_{\overline{(⿹ 勹}_{q}} \mathbf{G L}_{r}\left(\mathbb{F}_{q}\right)\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow} \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}$

$$
\lambda
$$

$$
\longmapsto
$$

$$
z_{\lambda}
$$

- Hypothesis: $\operatorname{order}(\zeta)=d$
- Fact (Fong-Srinivasan, 1980's):

$$
\begin{aligned}
& \rho_{\lambda} \text { and } \rho_{\mu} \text { are in the same } l \text {-block } \\
& \qquad \rho_{d}(\lambda) \stackrel{\pi}{=} \wp_{d}(\mu)
\end{aligned}
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\varphi}(r), \overline{\mathbb{Q}}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
$-\operatorname{End}_{\overline{(⿹ 勹}_{q}} \mathbf{G L}_{r}\left(\mathbb{F}_{q}\right)\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow} \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}$

z_{λ}
- Hypothesis: $\operatorname{order}(\zeta)=d$
- Fact (Haiman, 2000):
ρ_{λ} and ρ_{μ} are in the same ℓ-block

$$
\zeta_{d}(\lambda) \stackrel{\mathbb{I}}{=} \wp_{d}(\mu)
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{l}\right) \Longleftrightarrow \Omega_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\bar{Q}_{\mathbf{Q}} \mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow} \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}$

$$
\lambda
$$

$$
\longmapsto
$$

$$
z_{\lambda}
$$

- Hypothesis: $\operatorname{order}(\zeta)=d$
- Fact (Haiman, 2000):
z_{λ} and z_{μ} are in the same irr. comp. of $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\zeta}$

$$
\Theta_{d}(\lambda) \stackrel{\mathbb{i}}{=} \wp_{d}(\mu)
$$

Conjecture (Broué-Malle-Michel, 1993)

If γ is a d-core and $n=|\gamma|+d r$, then there exists a Deligne-Lusztig variety $\mathbf{X}_{\gamma}(r)$ for G such that:

- $\rho_{\lambda} \mid H_{c}^{\bullet}\left(\mathbf{X}_{\odot}(r), \overline{\mathbb{Q}}_{q}\right) \Longleftrightarrow \rho_{d}(\lambda)=\gamma$.
- $\operatorname{End}_{\overline{\mathbb{Q}}_{q} \mathbf{G L}_{r}\left(\mathbb{F}_{q}\right)}\left(H_{c}^{\bullet}\left(\mathbf{X}_{\gamma}(r)\right)\right) \simeq \operatorname{Hecke}_{\text {params }}(G(d, 1, r))$
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)$, smooth, \mathbb{C}^{\times}-action, $\zeta \in \mathbb{C}^{\times}$
- Gordon (2003):
\{partitions of $n\} \stackrel{\sim}{\longleftrightarrow} \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\mathbb{C}^{\times}}$

z_{λ}
- Hypothesis: $\operatorname{order}(\zeta)=d$
- Fact (Haiman, 2000):
z_{λ} and z_{μ} are in the same irr. comp. of $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\zeta}$

$$
\Theta_{d}(\lambda) \stackrel{\mathbb{i}}{=} \wp_{d}(\mu)
$$

Theorem (Haiman, ~ 2000)

If γ is a d-core and $n=|\gamma|+d r$, then there exists an irreducible component $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)_{\gamma}^{\zeta}$ of $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)^{\zeta}$ such that:

- $z_{\lambda} \in \mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)_{\gamma}^{\zeta} \Longleftrightarrow \wp_{d}(\lambda)=\gamma$.
- $\mathcal{Z}_{1}\left(\mathfrak{S}_{n}\right)_{\gamma}^{\zeta}$ is diffeo. (conj. isom.) to $\mathcal{Z}_{\text {params }}(G(d, 1, r))$.

Symplectic singularities

Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows

Symplectic singularities

Theorem (Brown-Gordon, 2003)
(a) The symplectic leaves are obtained as follows
$\left(\mathcal{Z}_{c}\right)_{\text {smooth }}$ is a symplectic leaf;

Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
$\left(\mathcal{Z}_{c}\right)_{\text {smooth }}$ is a symplectic leaf;
$\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)$

Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
$\left(\mathcal{Z}_{c}\right)_{\text {smooth }}$ is a symplectic leaf;
$\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)_{\text {smooth }}$

Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
$\left(\mathcal{Z}_{c}\right)_{\text {smooth }}$ is a symplectic leaf;
$\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)_{\text {smooth }}$ is a symplectic leaf;

Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
$\left(\mathcal{Z}_{c}\right)_{\text {smooth }}$ is a symplectic leaf;
$\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)_{\text {smooth }}$ is a symplectic leaf;
$\left(\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)_{\text {sing }}\right)_{\text {smooth }}$ is a symplectic leaf;

Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
$\left(\mathcal{Z}_{c}\right)_{\text {smooth }}$ is a symplectic leaf;
$\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)_{\text {smooth }}$ is a symplectic leaf; $\left(\left(\left(\mathcal{Z}_{c}\right)_{\text {sing }}\right)_{\text {sing }}\right)_{\text {smooth }}$ is a symplectic leaf;
(b) \mathcal{Z}_{c} is a symplectic singularity (as defined by Beauville).

Symplectic resolutions

Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)
$\mathcal{Z}_{0}=\left(V \times V^{*}\right) / W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that \mathcal{Z}_{c} is smooth.

Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)
$\mathcal{Z}_{0}=\left(V \times V^{*}\right) / W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that \mathcal{Z}_{c} is smooth.

Theorem (Brown-Gordon, 2003)
\mathcal{Z}_{c} is smooth if and only if all the simple \mathbf{H}_{c}-modules have dimension $|W|$.

Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)
$\mathcal{Z}_{0}=\left(V \times V^{*}\right) / W$ admits a symplectic resolution if and only if there exists $c \in \mathcal{C}$ such that \mathcal{Z}_{c} is smooth.

Theorem (Brown-Gordon, 2003)
\mathcal{Z}_{c} is smooth if and only if all the simple \mathbf{H}_{c}-modules have dimension $|W|$.

Corollary (G.-K., B.-G., Bellamy 2008)

Assume that W is irreducible.
Then $\mathcal{Z}_{0}=\left(V \times V^{*}\right) / W$ admits a symplectic resolution if and only if $W=G(d, 1, n)=\mathfrak{S}_{n} \ltimes\left(\boldsymbol{\mu}_{d}\right)^{n} \subset \mathbf{G L}_{n}(\mathbb{C})$ or $W=G_{4} \subset \mathbf{G L}_{2}(\mathbb{C})$.

Cohomology

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}, \mathbb{C}\right)=0$

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(2) $H^{2 \bullet}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(2) $H^{2 \bullet}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(2) $H^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(EC1) $H_{\mathbb{C} \times}^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(2) $H^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(EC1) $H_{\mathbb{C}^{\times}}^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(EC2) $H_{\mathbb{C}^{\times} \times}^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(2) $H^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(EC1) $H_{\mathbb{C}^{\times}}^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(EC2) $H_{\mathbb{C}^{\times} \times}^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Theorem (Vasserot, 2001)
(EC) holds if $W=\mathfrak{S}_{n}\left(\tilde{\mathcal{Z}}_{0}=\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)\right)$.

Theorem (Vasserot, 2001)
(EC) holds if $W=\mathfrak{S}_{n}\left(\tilde{\mathcal{Z}}_{0}=\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)\right)$.

Other cases. $W=W\left(B_{2}\right)$ or G_{4} (Shan-B. 2016).

Theorem (Vasserot, 2001)
(EC) holds if $W=\mathfrak{S}_{n}\left(\tilde{\mathcal{Z}}_{0}=\operatorname{Hilb}_{n}\left(\mathbb{C}^{2}\right)\right)$.

Other cases. $W=W\left(B_{2}\right)$ or G_{4} (Shan-B. 2016).
Question. What about the general case?

Cohomology

Theorem (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(1) $H^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(2) $H^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that $\tilde{\mathcal{Z}}_{0} \rightarrow \mathcal{Z}_{0}$ is a symplectic resolution.
(EC1) $H_{\mathbb{C}^{\times}}^{2 i+1}\left(\tilde{\mathcal{Z}}_{0}\right)=0$;
(EC2) $H_{\mathbb{C}^{\times} \times}^{2 \cdot}\left(\tilde{\mathcal{Z}}_{0}\right) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Cohomology (smooth case)

Theorem (Ginzburg-Kaledin, 2004)
Assume that \mathcal{Z}_{c} is smooth.
(1) $H^{2 i+1}\left(\mathcal{Z}_{c}\right)=0$;
(2) $H^{2 \bullet}\left(\mathcal{Z}_{c}\right) \simeq \operatorname{gr}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Conjecture EC (Ginzburg-Kaledin, 2004)
Assume that \mathcal{Z}_{c} is smooth.
(EC1) $H_{\mathbb{C} \times}^{2 i+1}\left(\mathcal{Z}_{c}\right)=0$;
(EC2) $H_{\mathbb{C}^{\times}}^{2 \cdot}\left(\mathcal{Z}_{c}\right) \simeq \operatorname{Rees}_{\mathcal{F}}(\mathrm{Z}(\mathbb{C} W))$.

Cohomology (general case)

Conjecture C (Rouquier-B.)

(C1) $H^{2 i+1}\left(\mathcal{Z}_{c}\right)=0$;
(C2) $H^{2 \bullet}\left(\mathcal{Z}_{c}\right) \simeq \operatorname{gr}_{\mathcal{F}}\left(\operatorname{Im} \Omega_{c}\right)$.

Conjecture EC (Rouquier-B.)
(EC1) $H_{\mathbb{C} \times}^{2 i+1}\left(\mathcal{Z}_{c}\right)=0$;
(EC2) $H_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathcal{Z}_{c}\right) \simeq \operatorname{Rees}_{\mathcal{F}}\left(\operatorname{Im} \Omega_{c}\right)$.

Cohomology (general case)

Conjecture C (Rouquier-B.)

(C1) $H^{2 i+1}\left(\mathcal{Z}_{c}\right)=0$;
(C2) $H^{2 \bullet}\left(\mathcal{Z}_{c}\right) \simeq \operatorname{gr}_{\mathcal{F}}\left(\operatorname{Im} \Omega_{c}\right)$.

Conjecture EC (Rouquier-B.)

(EC1) $H_{\mathbb{C}^{\times}}^{2 i+1}\left(\mathcal{Z}_{c}\right)=0$;
(EC2) $H_{\mathbb{C}^{\times}}^{2 \bullet}\left(\mathcal{Z}_{c}\right) \simeq \operatorname{Rees}_{\mathcal{F}}\left(\operatorname{Im} \Omega_{c}\right)$.

Example (B.). (C) and (EC) are true if $\operatorname{dim}_{\mathbb{C}}(V)=1$.

Example of a symplectic singularity

Example of a symplectic singularity

$$
W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle
$$

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \hookrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \longrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

- Easy fact: \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$.

Example of a symplectic singularity

－$W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
－Let $a=c_{s}$ and $b=c_{t}$ ．
－Minimal presentation of $\mathcal{Z}_{c}: 8$ generators， 9 equations

$$
\mathcal{Z}_{c} \longrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

－Easy fact： \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$ ．
－The interesting case：assume from now on that $a=b \neq 0$ ．

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \longrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

- Easy fact: \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$.
- The interesting case: assume from now on that $a=b \neq 0$.
$\Rightarrow \mathcal{Z}_{c}$ has only one singular point, named 0

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \longrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

- Easy fact: \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$.
- The interesting case: assume from now on that $a=b \neq 0$.
$\Rightarrow \mathcal{Z}_{c}$ has only one singular point, named 0
- Easy fact: $\operatorname{dim}_{\mathbb{C}} T_{0}\left(\mathcal{Z}_{c}\right)=8$.

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \longrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

- Easy fact: \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$.
- The interesting case: assume from now on that $a=b \neq 0$.
$\Rightarrow \mathcal{Z}_{c}$ has only one singular point, named 0
- Easy fact: $\operatorname{dim}_{\mathbb{C}} T_{0}\left(\mathcal{Z}_{c}\right)=8$.
- Let \mathfrak{m}_{0} denote the maximal ideal of Z_{c} corresponding to 0 .

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \longrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

- Easy fact: \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$.
- The interesting case: assume from now on that $a=b \neq 0$.
$\Rightarrow \mathcal{Z}_{c}$ has only one singular point, named 0
- Easy fact: $\operatorname{dim}_{\mathbb{C}} T_{0}\left(\mathcal{Z}_{c}\right)=8$.
- Let \mathfrak{m}_{0} denote the maximal ideal of Z_{c} corresponding to 0 . Then $\left\{\mathfrak{m}_{0}, \mathfrak{m}_{0}\right\} \subset \mathfrak{m}_{0}$ because $\{0\}$ is a symplectic leaf.

Example of a symplectic singularity

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- Let $a=c_{s}$ and $b=c_{t}$.
- Minimal presentation of $\mathcal{Z}_{c}: 8$ generators, 9 equations

$$
\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}, \quad \operatorname{dim} \mathcal{Z}_{c}=4
$$

- Easy fact: \mathcal{Z}_{c} is smooth if and only if $a b\left(a^{2}-b^{2}\right) \neq 0$.
- The interesting case: assume from now on that $a=b \neq 0$.
$\Rightarrow \mathcal{Z}_{c}$ has only one singular point, named 0
- Easy fact: $\operatorname{dim}_{\mathbb{C}} T_{0}\left(\mathcal{Z}_{c}\right)=8$.
- Let \mathfrak{m}_{0} denote the maximal ideal of Z_{c} corresponding to 0 . Then $\left\{\mathfrak{m}_{0}, \mathfrak{m}_{0}\right\} \subset \mathfrak{m}_{0}$ because $\{0\}$ is a symplectic leaf.
$\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}=\mathfrak{m}_{0} / \mathfrak{m}_{0}^{2}$ inherits from $\{$,$\} a structure of Lie algebra!$

Example (continued)

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (!)

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (!)
- So $\mathcal{Z}_{c} \longleftrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})(!)$
- So $\mathcal{Z}_{c} \longrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).
- Computation (MAGMA):

$$
T C_{0}\left(\mathcal{Z}_{c}\right)=\left\{M \in \mathfrak{s l}_{3}(\mathbb{C}) \mid M^{2}=0\right\}
$$

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})(!)$
- So $\mathcal{Z}_{c} \longleftrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).
- Computation (MAGMA):

$$
T C_{0}\left(\mathcal{Z}_{c}\right)=\left\{M \in \mathfrak{s l}_{3}(\mathbb{C}) \mid M^{2}=0\right\}=\overline{\mathcal{O}}_{\text {min }}
$$

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})(!)$
- So $\mathcal{Z}_{c} \longleftrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).
- Computation (MAGMA):

$$
T C_{0}\left(\mathcal{Z}_{c}\right)=\left\{M \in \mathfrak{s l}_{3}(\mathbb{C}) \mid M^{2}=0\right\}=\overline{\mathcal{O}}_{\text {min }} .
$$

- So $P T C_{0}\left(\mathcal{Z}_{c}\right)=\mathcal{O}_{\text {min }} / \mathbb{C}^{\times}$is smooth

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (!)
- So $\mathcal{Z}_{c} \longleftrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).
- Computation (MAGMA): $T C_{0}\left(\mathcal{Z}_{c}\right)=\left\{M \in \mathfrak{s l}_{3}(\mathbb{C}) \mid M^{2}=0\right\}=\overline{\mathcal{O}}_{\text {min }}$.
- So $P T C_{0}\left(\mathcal{Z}_{c}\right)=\mathcal{O}_{\text {min }} / \mathbb{C}^{\times}$is smooth so Beauville classification theorem applies:

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (!)
- So $\mathcal{Z}_{c} \longrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).
- Computation (MAGMA): $T C_{0}\left(\mathcal{Z}_{c}\right)=\left\{M \in \mathfrak{s l}_{3}(\mathbb{C}) \mid M^{2}=0\right\}=\overline{\mathcal{O}}_{\text {min }}$.
- So $P T C_{0}\left(\mathcal{Z}_{c}\right)=\mathcal{O}_{\text {min }} / \mathbb{C}^{\times}$is smooth so Beauville classification theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities $\left(\mathcal{Z}_{c}, 0\right)$ and $\left(\overline{\mathcal{O}}_{\text {min }}, 0\right)$ are equivalent.

Example (continued)

- $W=W\left(B_{2}\right)=\left\langle s, t \mid s^{2}=t^{2}=(s t)^{4}=1\right\rangle$
- $a=c_{s}=c_{t}$,
- $\mathcal{Z}_{c} \longleftrightarrow \mathbb{C}^{8}=T_{0}\left(\mathcal{Z}_{c}\right)$
- $\Rightarrow T_{0}\left(\mathcal{Z}_{c}\right)^{*}$ is a Lie algebra for $\{$,
- Computation (thanks to MAGMA): $T_{0}\left(\mathcal{Z}_{c}\right)^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (!)
- So $\mathcal{Z}_{c} \longrightarrow \mathfrak{s l}_{3}(\mathbb{C})^{*} \simeq \mathfrak{s l}_{3}(\mathbb{C})$ (trace form).
- Computation (MAGMA):

$$
T C_{0}\left(\mathcal{Z}_{c}\right)=\left\{M \in \mathfrak{s l}_{3}(\mathbb{C}) \mid M^{2}=0\right\}=\overline{\mathcal{O}}_{\text {min }}
$$

- So $P T C_{0}\left(\mathcal{Z}_{c}\right)=\mathcal{O}_{\text {min }} / \mathbb{C}^{\times}$is smooth so Beauville classification theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities $\left(\mathcal{Z}_{c}, 0\right)$ and $\left(\overline{\mathcal{O}}_{\text {min }}, 0\right)$ are equivalent. In particular, \mathcal{Z}_{c} is not rationally smooth.

