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dimC V = n <∞

W < GLC(V ), |W | <∞.

Ref(W ) = {s ∈ W | codimCV
s = 1}

Hypothesis. W = 〈Ref(W )〉
(i.e. V /W ≃ Cn)

C = {c : Ref(W )/∼ −→ C}

We fix c ∈ C
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Cherednik algebra at t = 0

Hc = C[V ]⊗ CW ⊗ C[V ∗] (as a vector space)

∀y ∈ V , ∀x ∈ V ∗, [y , x ] =
∑

s∈Ref(W )

cs〈y , s(x) − x〉s

Let
Zc = Z(Hc)

Easy fact.

C[V ]W , C[V ∗]W ⊂ Zc .

Let
P = C[V ]W ⊗ C[V ∗]W ⊂ Zc
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Definition
The Calogero-Moser space associated with the datum (W , c) is the
affine variety

Zc = Spec(Zc).

It is endowed with a morphism

ϕc : Zc −→ Spec(P) = V /W × V ∗/W ≃ C2n.

Theorem (Etingof-Ginzburg, 2002)

Zc is an integrally closed domain, and is a free P-module of rank |W |.

Example (the case where c = 0). Then
H0 = C[V × V ∗]⋊W ,

Z0 = C[V × V ∗]W ,

Z0 = (V × V ∗)/W .
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Two extra-structures

There is a C×-action on Hc (i.e. a Z-grading):
◮ deg(V ) = −1
◮ deg(V ∗) = 1
◮ deg(W ) = 0

So there is a C×-action on Zc and on Zc .

Poisson bracket:

{, } : Zc × Zc −→ Zc

(z , z ′) 7−→ limt→0
[z , z ′]Ht,c

t
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Gordon (2003):
{partitions of n}

∼←→ Z1(Sn)
C×

λ 7−→ zλ

Hypothesis: order(ζ) = d

Fact (Haiman, 2000):
zλ and zµ are in the same irr. comp. of Z1(Sn)

ζ

m
♥d(λ) = ♥d(µ)

Theorem (Haiman, ∼ 2000)

If γ is a d -core and n = |γ|+ dr , then there exists an irreducible
component Z1(Sn)

ζ
γ of Z1(Sn)

ζ such that:

zλ ∈ Z1(Sn)
ζ
γ ⇐⇒ ♥d(λ) = γ.

Z1(Sn)
ζ
γ is diffeo. (conj. isom.) to Zparams(G (d , 1, r)).
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Symplectic singularities

Theorem (Brown-Gordon, 2003)

(a) The symplectic leaves are obtained as follows
◮ (Zc)smooth is a symplectic leaf;
◮ ((Zc)sing)smooth is a symplectic leaf;
◮ (((Zc)sing)sing)smooth is a symplectic leaf;
◮ . . .

(b) Zc is a symplectic singularity (as defined by Beauville).
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Symplectic resolutions

Theorem (Ginzburg-Kaledin 2004, Namikawa 2007)

Z0 = (V × V ∗)/W admits a symplectic resolution if and only if
there exists c ∈ C such that Zc is smooth.

Theorem (Brown-Gordon, 2003)

Zc is smooth if and only if all the simple Hc-modules have
dimension |W |.

Corollary (G.-K., B.-G., Bellamy 2008)

Assume that W is irreducible.
Then Z0 = (V × V ∗)/W admits a symplectic resolution if and only
if W = G (d , 1, n) = Sn ⋉ (µd)

n ⊂ GLn(C) or W = G4 ⊂ GL2(C).
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Cohomology (general case)

Conjecture C (Rouquier-B.)

(C1) H2i+1(Zc) = 0;

(C2) H2•(Zc) ≃ grF(ImΩc).

Conjecture EC (Rouquier-B.)

(EC1) H2i+1
C× (Zc) = 0;

(EC2) H2•
C×(Zc) ≃ ReesF(ImΩc).

Example (B.). (C) and (EC) are true if dimC(V ) = 1.



Example of a symplectic singularity



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.

The interesting case: assume from now on that a = b 6= 0.



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.

The interesting case: assume from now on that a = b 6= 0.
⇒ Zc has only one singular point, named 0



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.

The interesting case: assume from now on that a = b 6= 0.
⇒ Zc has only one singular point, named 0

Easy fact: dimC T0(Zc) = 8.



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.

The interesting case: assume from now on that a = b 6= 0.
⇒ Zc has only one singular point, named 0

Easy fact: dimC T0(Zc) = 8.

Let m0 denote the maximal ideal of Zc corresponding to 0.



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.

The interesting case: assume from now on that a = b 6= 0.
⇒ Zc has only one singular point, named 0

Easy fact: dimC T0(Zc) = 8.

Let m0 denote the maximal ideal of Zc corresponding to 0. Then
{m0,m0} ⊂ m0 because {0} is a symplectic leaf.



Example of a symplectic singularity

W = W (B2) = 〈s, t |s2 = t2 = (st)4 = 1〉

Let a = cs and b = ct .

Minimal presentation of Zc : 8 generators, 9 equations
Zc −֒→ C8, dimZc = 4

Easy fact: Zc is smooth if and only if ab(a2 − b2) 6= 0.

The interesting case: assume from now on that a = b 6= 0.
⇒ Zc has only one singular point, named 0

Easy fact: dimC T0(Zc) = 8.

Let m0 denote the maximal ideal of Zc corresponding to 0. Then
{m0,m0} ⊂ m0 because {0} is a symplectic leaf.

⇒ T0(Zc)
∗ = m0/m

2
0 inherits from {, } a structure of Lie algebra!
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⇒ T0(Zc)
∗ is a Lie algebra for {, }

Computation (thanks to MAGMA): T0(Zc)
∗ ≃ sl3(C) (!)

So Zc −֒→ sl3(C)
∗ ≃ sl3(C) (trace form).

Computation (MAGMA):
TC0(Zc) = {M ∈ sl3(C) | M

2 = 0} = Omin.

So PTC0(Zc) = Omin/C
× is smooth so Beauville classification

theorem applies:

Conclusion (Juteau-B.)

The symplectic singularities (Zc , 0) and (Omin, 0) are equivalent. In
particular, Zc is not rationally smooth.


