Semicontinuity properties of Kazhdan-Lusztig cells

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)
MSRI (Berkeley) - March 2008

Notation

- (W, S) Coxeter group

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \Gamma$, where Γ is an ordered group

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \Gamma$, where Γ is an ordered group and $\varphi(s)=\varphi\left(s^{\prime}\right)$ if $s \sim s^{\prime}$.

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \Gamma$, where Γ is an ordered group and $\varphi(s)=\varphi\left(s^{\prime}\right)$ if $s \sim s^{\prime}$.

To this datum, Kazhdan and Lusztig have associated a partition of W into (left, right, two-sided) cells, and representations of the associated Hecke algebra.

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \Gamma$, where Γ is an ordered group and $\varphi(s)=\varphi\left(s^{\prime}\right)$ if $s \sim s^{\prime}$.

To this datum, Kazhdan and Lusztig have associated a partition of W into (left, right, two-sided) cells, and representations of the associated Hecke algebra.

Remark. If W is a finite or an affine Weyl group, then KL-cells/polynomials/representations are involved in:

- Representations of reductive groups and Lie algebras

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \Gamma$, where Γ is an ordered group and $\varphi(s)=\varphi\left(s^{\prime}\right)$ if $s \sim s^{\prime}$.

To this datum, Kazhdan and Lusztig have associated a partition of W into (left, right, two-sided) cells, and representations of the associated Hecke algebra.

Remark. If W is a finite or an affine Weyl group, then KL-cells/polynomials/representations are involved in:

- Representations of reductive groups and Lie algebras
- Geometry of flag varieties (intersection cohomology)

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \Gamma$, where Γ is an ordered group and $\varphi(s)=\varphi\left(s^{\prime}\right)$ if $s \sim s^{\prime}$.

To this datum, Kazhdan and Lusztig have associated a partition of W into (left, right, two-sided) cells, and representations of the associated Hecke algebra.

Remark. If W is a finite or an affine Weyl group, then KL-cells/polynomials/representations are involved in:

- Representations of reductive groups and Lie algebras
- Geometry of flag varieties (intersection cohomology)
- ...

Notation

- (W, S) Coxeter group
- If $s, s^{\prime} \in S$, we write $s \sim s^{\prime}$ if s and s^{\prime} are conjugate in W
- $\varphi: S \rightarrow \mathbb{R}$ and $\varphi(s)=\varphi\left(s^{\prime}\right)$ if $s \sim s^{\prime}$.

To this datum, Kazhdan and Lusztig have associated a partition of W into (left, right, two-sided) cells, and representations of the associated Hecke algebra.

Remark. If W is a finite or an affine Weyl group, then KL-cells/polynomials are involved in:

- Representations of reductive groups and Lie algebras
- Geometry of flag varieties (intersection cohomology)
- ...

Contents

- Kazhdan-Lusztig cells

Contents

- Kazhdan-Lusztig cells
- Conjectures for type B (joint with Geck-lancu-Lam)

Contents

- Kazhdan-Lusztig cells
- Conjectures for type B (joint with Geck-lancu-Lam)
- Conjectures for general Coxeter groups (finite or not)

Contents

- Kazhdan-Lusztig cells
- Conjectures for type B (joint with Geck-lancu-Lam)
- Conjectures for general Coxeter groups (finite or not)
- F_{4} (Geck)

Contents

- Kazhdan-Lusztig cells
- Conjectures for type B (joint with Geck-lancu-Lam)
- Conjectures for general Coxeter groups (finite or not)
- F_{4} (Geck)
- Affine Weyl groups (Guilhot)

Kazhdan－Lusztig cells

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]$

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}$

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}, K=\operatorname{Frac}(A)$

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}, K=\operatorname{Frac}(A)$
- $A_{<0}=\mathbb{Z}\left[\mathbb{R}_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} v^{\gamma}$

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}, K=\operatorname{Frac}(A)$
- $A_{<0}=\mathbb{Z}\left[\mathbb{R}_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} v^{\gamma}$
- Hecke algebra: $\mathcal{H}=\underset{w \in W}{\oplus} A T_{w}$

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}, K=\operatorname{Frac}(A)$
- $A_{<0}=\mathbb{Z}\left[\mathbb{R}_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} v^{\gamma}$
- Hecke algebra: $\mathcal{H}=\underset{w \in W}{\oplus} A T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{s}-v^{\varphi(s)}\right)\left(T_{s}+v^{-\varphi(s)}\right)=0 & \text { if } s \in S\end{cases}
$$

where $\ell: W \rightarrow \mathbb{N}=\{0,1,2,3, \ldots\}$ is the length function

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}, K=\operatorname{Frac}(A)$
- $A_{<0}=\mathbb{Z}\left[\mathbb{R}_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} v^{\gamma}$
- Hecke algebra: $\mathcal{H}=\underset{w \in W}{\oplus} A T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{s}-v^{\varphi(s)}\right)\left(T_{s}+v^{-\varphi(s)}\right)=0 & \text { if } s \in S\end{cases}
$$

where $\ell: W \rightarrow \mathbb{N}=\{0,1,2,3, \ldots\}$ is the length function

- $\mathcal{H}_{<0}=\underset{w \in W}{\oplus} A_{<0} T_{w}$

Kazhdan-Lusztig cells

Notation

- $A=\mathbb{Z}[\mathbb{R}]=\underset{\gamma \in \mathbb{R}}{\oplus} \mathbb{Z} v^{\gamma}, K=\operatorname{Frac}(A)$
- $A_{<0}=\mathbb{Z}\left[\mathbb{R}_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} v^{\gamma}$
- Hecke algebra: $\mathcal{H}=\underset{w \in W}{\oplus} A T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{s}-v^{\varphi(s)}\right)\left(T_{s}+v^{-\varphi(s)}\right)=0 & \text { if } s \in S\end{cases}
$$

where $\ell: W \rightarrow \mathbb{N}=\{0,1,2,3, \ldots\}$ is the length function

- $\mathcal{H}_{<0}=\underset{w \in W}{\oplus} A_{<0} T_{w}$
- Involution: $\overline{v^{\gamma}}=v^{-\gamma}, \bar{T}_{w}=T_{w^{-1}}^{-1}$

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W$, there exists a unique $C_{w} \in \mathcal{H}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{<0}
\end{array}\right.
$$

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W$, there exists a unique $C_{w} \in \mathcal{H}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{<0}
\end{array}\right.
$$

Example. $C_{1}=T_{1}$

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W$, there exists a unique $C_{w} \in \mathcal{H}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{<0}
\end{array}\right.
$$

Example. $C_{1}=T_{1}$

$$
C_{s}= \begin{cases}T_{s}+v^{-\varphi(s)} & \text { if } \varphi(s)>0 \\ T_{s} & \text { if } \varphi(s)=0 \\ T_{s}-v^{\varphi(s)} & \text { if } \varphi(s)<0\end{cases}
$$

- If $x, y \in W$, we write $x{ }^{\llcorner } y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- If $x, y \in W$, we write $x{ }^{\llcorner } y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{ }$:
- If $x, y \in W$, we write $x{ }^{L} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let $\leqslant\llcorner$ be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)
- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant L \mathcal{C}}=\underset{x \leqslant L \mathcal{C}}{\oplus} A C_{x} \\ \end{array}\right.$
- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant L \mathcal{C}}=\underset{x \leqslant L \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<{ }_{L} \mathcal{C}}{\oplus} A C_{x}\end{array}\right.$
- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant_{L} \mathcal{C}}=\underset{x \leqslant L \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<{ }_{L} \mathcal{C}}{\oplus} A C_{x} \\ V_{\mathcal{C}}=I_{\leqslant_{L} \mathcal{C}} / I_{<_{L} \mathcal{C}}\end{array}\right.$
- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant_{L} \mathcal{C}}=\underset{x \leqslant L_{L} \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<L_{L} \mathcal{C}}{\oplus} A C_{x} \\ V_{\mathcal{C}}=I_{\leqslant_{L} \mathcal{C}} / I_{<_{L} \mathcal{C}}\end{array}\right.$
- By construction, $I_{\leqslant_{L} \mathcal{C}}$ and $I_{<_{L} \mathcal{C}}$ are left ideals of \mathcal{H} and $V_{\mathcal{C}}$ is a left \mathcal{H}-module
- If $x, y \in W$, we write $x \stackrel{L}{\swarrow} y$ if there exists $h \in \mathcal{H}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant_{L} \mathcal{C}}=\underset{x \leqslant L_{L} \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<{ }_{L} \mathcal{C}}{\oplus} A C_{x} \\ V_{\mathcal{C}}=I_{\leqslant_{L} \mathcal{C}} / I_{<_{L} \mathcal{C}}\end{array}\right.$
- By construction, $I_{\leqslant_{L} \mathcal{C}}$ and $I_{<_{L} \mathcal{C}}$ are left ideals of \mathcal{H} and $V_{\mathcal{C}}$ is a left \mathcal{H}-module: $V_{\mathcal{C}}$ is called the left cell representation associated to \mathcal{C}.

Comments

- One could define $x \stackrel{R}{\leftarrow}$ y (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{\stackrel{L R}{ }}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{\longleftarrow} y$ (" C_{x} occurs in some $h C_{y} h^{\prime \prime \prime}$)
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.

Comments

- One could define $x \stackrel{R}{\leftarrow}$ y (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{\leftarrow} y$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant L_{R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$

Comments

－One could define $x \stackrel{R}{\longleftarrow} y$（＂$C_{x}$ occurs in some $C_{y} h$＂）or $x{ }_{\longleftarrow}^{L R} y$ （＂C_{x} occurs in some $h C_{y} h^{\prime \prime \prime}$ ）
－This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$ ，right／two－sided cells．
－The anti－automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$ ，so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant_{R} y^{-1}
$$

Comments

－One could define $x \stackrel{R}{\leftarrow}$ y（＂C_{x} occurs in some $C_{y} h$＂）or $x \stackrel{L R}{\leftarrow} y$ （＂C_{x} occurs in some $h C_{y} h$＂＇）
－This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$ ，right／two－sided cells．
－The anti－automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$ ，so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant_{R} y^{-1}
$$

－Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R} ．

Comments

- One could define $x \stackrel{R}{\longleftarrow} y\left(\right.$ " C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{L^{L}} y$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R}.

Remark

The relations \sim ? can be computed in some cases

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{L^{R}}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R}.

Remark

The relations \sim ? can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{\stackrel{L R}{ }}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R}.

Remark

The relations \sim ? can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).
However, the preorder \leqslant_{L} or \leqslant_{R} is in general unknown (even in the symmetric group).

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{\stackrel{L R}{ }}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim L R$ is generated by $\sim L$ and $\sim R$.

Remark

The relations \sim ? can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).
However, the preorder \leqslant_{L} or \leqslant_{R} is in general unknown (even in the symmetric group). The preorder $\leqslant L$ seems to be easier (for instance, it is given by the dominance order on partitions through the Robinson-Schensted correspondence).

An "easy" remark

An "easy" remark

Let $S_{\varphi}=\{s \in S \mid \varphi(s)=0\}$ and $W_{\varphi}=\left\langle S_{\varphi}\right\rangle$.

An "easy" remark

Let $S_{\varphi}=\{s \in S \mid \varphi(s)=0\}$ and $W_{\varphi}=\left\langle S_{\varphi}\right\rangle$.
Let $I=S \backslash S_{\varphi}$

An "easy" remark

Let $S_{\varphi}=\{s \in S \mid \varphi(s)=0\}$ and $W_{\varphi}=\left\langle S_{\varphi}\right\rangle$.
Let $I=S \backslash S_{\varphi}, \tilde{I}=\left\{w t w^{-1} \mid w \in W_{\varphi}, t \in I\right\}$, and $\tilde{W}=\langle\tilde{I}\rangle$.

An "easy" remark

Let $S_{\varphi}=\left\{s \in S_{\tilde{I}} \mid \varphi(s)=0\right\}$ and $W_{\varphi}=\left\langle S_{\varphi}\right\rangle$.
Let $I=S \backslash S_{\varphi}, \tilde{I}=\left\{w t w^{-1} \mid w \in W_{\varphi}, t \in I\right\}$, and $\tilde{W}=\langle\tilde{I}\rangle$.
Theorem (Dyer)
(\tilde{W}, \tilde{I}) is a Coxeter group and $W=W_{\varphi} \ltimes \tilde{W}$.

An "easy" remark

Let $S_{\varphi}=\left\{s \in S_{\tilde{l}} \mid \varphi(s)=0\right\}$ and $W_{\varphi}=\left\langle S_{\varphi}\right\rangle$.
Let $I=S \backslash S_{\varphi}, \tilde{I}=\left\{w t w^{-1} \mid w \in W_{\varphi}, t \in I\right\}$, and $\tilde{W}=\langle\tilde{I}\rangle$.
Theorem (Dyer)
(\tilde{W}, \tilde{I}) is a Coxeter group and $W=W_{\varphi} \ltimes \tilde{W}$.

Corollary

$\mathcal{H}(W, S, \varphi)=W_{\varphi} \ltimes \mathcal{H}(\tilde{W}, \tilde{I}, \tilde{\varphi})$, where $\tilde{\varphi}\left(w t w^{-1}\right)=\varphi(t)$
$\left(w \in W_{\varphi}, t \in I\right)$.

An "easy" remark

Let $S_{\varphi}=\left\{s \in S_{\sim}^{\mid} \mid \varphi(s)=0\right\}$ and $W_{\varphi}=\left\langle S_{\varphi}\right\rangle$.
Let $I=S \backslash S_{\varphi}, \tilde{I}=\left\{w t w^{-1} \mid w \in W_{\varphi}, t \in I\right\}$, and $\tilde{W}=\langle\tilde{I}\rangle$.
Theorem (Dyer)
(\tilde{W}, \tilde{I}) is a Coxeter group and $W=W_{\varphi} \ltimes \tilde{W}$.

Corollary

$\mathcal{H}(W, S, \varphi)=W_{\varphi} \ltimes \mathcal{H}(\tilde{W}, \tilde{I}, \tilde{\varphi})$, where $\tilde{\varphi}\left(w t w^{-1}\right)=\varphi(t)$ $\left(w \in W_{\varphi}, t \in I\right)$.

Corollary

Since $C_{s}=T_{s}$ and $C_{s w}=C_{s} C_{w}$ for all $s \in S_{\varphi}$ and $w \in W$, the left cells of (W, S, φ) are of the form $W_{\varphi} \cdot \mathcal{C}$, where \mathcal{C} is a left cell of $(\tilde{W}, \tilde{I}, \tilde{\varphi})$.

Examples

Examples

- Type B

$$
W\left(B_{n}\right)=\mathfrak{S}_{n} \times(\mathbb{Z} / 2 \mathbb{Z})^{n}
$$

Examples

- Type B

$$
W\left(B_{n}\right)=\mathfrak{S}_{n} \times(\mathbb{Z} / 2 \mathbb{Z})^{n}=\langle t\rangle \ltimes W\left(D_{n}\right)
$$

Examples

- Type B

$$
W\left(B_{n}\right)=\mathfrak{S}_{n} \times(\mathbb{Z} / 2 \mathbb{Z})^{n}=\langle t\rangle \ltimes W\left(D_{n}\right)
$$

- Type F_{4}

$W\left(F_{4}\right)$

Examples

- Type B

$$
W\left(B_{n}\right)=\mathfrak{S}_{n} \times(\mathbb{Z} / 2 \mathbb{Z})^{n}=\langle t\rangle \ltimes W\left(D_{n}\right)
$$

- Type F_{4}

Examples

－Type B

$$
W\left(B_{n}\right)=\mathfrak{S}_{n} \times(\mathbb{Z} / 2 \mathbb{Z})^{n}=\langle t\rangle \ltimes W\left(D_{n}\right)
$$

－Type F_{4}

Type B

Type B

$(W, S)=\left(W_{n}, S_{n}\right)$, where $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ and

Type B

$(W, S)=\left(W_{n}, S_{n}\right)$, where $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ and

Type B

$(W, S)=\left(W_{n}, S_{n}\right)$, where $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$ and

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Domino insertion algorithm:

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	6
\bullet	\bullet	7		
\bullet	8			
4				
9				

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	6
\bullet	\bullet	7		
\bullet	8			
4				
9				

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	5
\bullet	\bullet	7		
\bullet	8			
4				
9				

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	5
\bullet	\bullet	6		
\bullet	8	7		
4	-			
9				

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	
	3			
\bullet	\bullet	5		

Domino insertion algorithm：

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	3
\bullet	\bullet	5		
\bullet	6	6		
	7	7		
4		8		
9				

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	3
\bullet	\bullet	5		
\bullet	6	6		
	7	7		
4		8		
9				

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	\bullet	\bullet	1	
	3			
\bullet	\bullet	5		

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

- $\delta_{r}=(r, r-1, \ldots, 1)$
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- sh: $S D T_{r}(n) \rightarrow \mathcal{P}_{r}(n)$
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- sh: $S D T_{r}(n) \rightarrow \mathcal{P}_{r}(n)$
- $S D T_{r}^{(2)}(n)=$ ppairs of standard domino tableaux of the same shape\}

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \xrightarrow{\longrightarrow} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Theorem（Garfinkle，van Leeuwen）

$$
\begin{array}{rl}
W_{n} & \stackrel{\sim}{\longrightarrow} \\
w & S D T_{r}^{(2)}(n) \\
w & \left.\longmapsto D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{array}
$$

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \xrightarrow{\longrightarrow} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Conjecture A (Geck-lancu-Lam-B. 2003)
Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \stackrel{\sim}{\longmapsto} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Conjecture A (Geck-lancu-Lam-B. 2003)
Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \xrightarrow{\longrightarrow} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Conjecture A (Geck-lancu-Lam-B. 2003)
Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a$.

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a$. Then the left (resp. right, two-sided) cells are the minimal subsets X of W_{n} such that:

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a$. Then the left (resp. right, two-sided) cells are the minimal subsets X of W_{n} such that:

- X is a union of left (resp. right, two-sided) combinatorials r-cells;

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r<b / a<r+1$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a$. Then the left (resp. right, two-sided) cells are the minimal subsets X of W_{n} such that:

- X is a union of left (resp. right, two-sided) combinatorials r-cells;
- X is a union of left (resp. right, two-sided) combinatorials ($r-1$)-cells.

The general case

The general case

Let V be the \mathbb{R}-vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$.

The general case

Let V be the \mathbb{R}-vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$. If $\omega \in S / \sim$, let $H_{\omega}=\{\varphi \in V \mid \varphi(\omega)=0\}$.

The general case

Let V be the \mathbb{R}-vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$.
If $\omega \in S / \sim$, let $H_{\omega}=\{\varphi \in V \mid \varphi(\omega)=0\}$.

Conjecture C

Assume that S is finite. There exists a finite set of (linear) rational hyperplanes \mathcal{A} in V (containing all $H_{\omega}, \omega \in S / \sim$) such that:

The general case

Let V be the \mathbb{R}－vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$ ．
If $\omega \in S / \sim$ ，let $H_{\omega}=\{\varphi \in V \mid \varphi(\omega)=0\}$ ．

Conjecture C

Assume that S is finite．There exists a finite set of（linear）rational hyperplanes \mathcal{A} in V（containing all $\left.H_{\omega}, \omega \in S / \sim\right)$ such that：
－If φ and φ^{\prime} belong to the same \mathcal{A}－facet，then the left（right， two－sided）cells for（ W, S, φ ）and（ W, S, φ^{\prime} ）coincide．

The general case

Let V be the \mathbb{R}-vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$.
If $\omega \in S / \sim$, let $H_{\omega}=\{\varphi \in V \mid \varphi(\omega)=0\}$.

Conjecture C

Assume that S is finite. There exists a finite set of (linear) rational hyperplanes \mathcal{A} in V (containing all $H_{\omega}, \omega \in S / \sim$) such that:

- If φ and φ^{\prime} belong to the same \mathcal{A}-facet, then the left (right, two-sided) cells for (W, S, φ) and (W, S, φ^{\prime}) coincide.
- If $\varphi \in V$, then a left (resp. right, two-sided) cell is a minimal subset X of W such that:
- For each \mathcal{A}-chamber \mathcal{C} such that $\varphi \in \overline{\mathcal{C}}, X$ is a union of left (resp. right, two-sided) cells for (W, S, \mathcal{C}).

The general case

Let V be the \mathbb{R}-vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$.
If $\omega \in S / \sim$, let $H_{\omega}=\{\varphi \in V \mid \varphi(\omega)=0\}$.

Conjecture C

Assume that S is finite. There exists a finite set of (linear) rational hyperplanes \mathcal{A} in V (containing all $H_{\omega}, \omega \in S / \sim$) such that:

- If φ and φ^{\prime} belong to the same \mathcal{A}-facet, then the left (right, two-sided) cells for (W, S, φ) and (W, S, φ^{\prime}) coincide.
- If $\varphi \in V$, then a left (resp. right, two-sided) cell is a minimal subset X of W such that:
- For each \mathcal{A}-chamber \mathcal{C} such that $\varphi \in \overline{\mathcal{C}}, X$ is a union of left (resp. right, two-sided) cells for (W, S, \mathcal{C}).
- X is stable by left (resp. right, two-sided) translation by W_{φ}.

The general case

Let V be the \mathbb{R}-vector space of functions $\varphi: S / \sim \longrightarrow \mathbb{R}$.
If $\omega \in S / \sim$, let $H_{\omega}=\{\varphi \in V \mid \varphi(\omega)=0\}$.

Conjecture C (maybe only for finite or affine Weyl groups)

Assume that S is finite. There exists a finite set of (linear) rational hyperplanes \mathcal{A} in V (containing all $H_{\omega}, \omega \in S / \sim$) such that:

- If φ and φ^{\prime} belong to the same \mathcal{A}-facet, then the left (right, two-sided) cells for (W, S, φ) and (W, S, φ^{\prime}) coincide.
- If $\varphi \in V$, then a left (resp. right, two-sided) cell is a minimal subset X of W such that:
- For each \mathcal{A}-chamber \mathcal{C} such that $\varphi \in \overline{\mathcal{C}}, X$ is a union of left (resp. right, two-sided) cells for (W, S, \mathcal{C}).
- X is stable by left (resp. right, two-sided) translation by W_{φ}.

J. Guilhot's results

J. Guilhot's results

- Generalized induction

J．Guilhot＇s results

－Generalized induction \Longrightarrow

J．Guilhot＇s results

－Generalized induction \Longrightarrow
Theorem（Guilhot）
If W_{φ} is finite，then W_{φ} is a union of left cells for (W, S, \mathcal{C}) ，where \mathcal{C} is a chamber such that $\varphi \in \overline{\mathcal{C}}$ ．

J. Guilhot's results

- Generalized induction \Longrightarrow

Theorem (Guilhot)
If W_{φ} is finite, then W_{φ} is a union of left cells for (W, S, \mathcal{C}), where \mathcal{C} is a chamber such that $\varphi \in \overline{\mathcal{C}}$.

- Left cells in the lowest two-sided cell (W affine) \Longrightarrow compatible with Conjecture C.

J. Guilhot's results

- Generalized induction \Longrightarrow

Theorem (Guilhot)
If W_{φ} is finite, then W_{φ} is a union of left cells for (W, S, \mathcal{C}), where \mathcal{C} is a chamber such that $\varphi \in \overline{\mathcal{C}}$.

- Left cells in the lowest two-sided cell (W affine) \Longrightarrow compatible with Conjecture C .
- Type \tilde{G}_{2}

