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Notation
(W , S) Coxeter group

If s, s ′ ∈ S , we write s ∼ s ′ if s and s ′ are conjugate in W

ϕ : S → Γ , where Γ is an ordered group and ϕ(s) = ϕ(s ′) if
s ∼ s ′.

To this datum, Kazhdan and Lusztig have associated a partition of
W into (left, right, two-sided) cells, and representations of the
associated Hecke algebra.

Remark. If W is a finite or an affine Weyl group, then
KL-cells/polynomials/representations are involved in:

Representations of reductive groups and Lie algebras

Geometry of flag varieties (intersection cohomology)

...
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Kazhdan-Lusztig cells

Notation
A = Z[R] = ⊕

γ∈R
Zvγ, K = Frac(A)

A<0 = Z[R<0] = ⊕
γ<0

Zvγ

Hecke algebra: H = ⊕
w∈W

ATw{
TxTy = Txy if `(xy) = `(x) + `(y)

(Ts − vϕ(s))(Ts + v−ϕ(s)) = 0 if s ∈ S

where ` : W → N = {0, 1, 2, 3, . . . } is the length function

H<0 = ⊕
w∈W

A<0Tw

Involution: vγ = v−γ, Tw = T−1
w−1
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Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)

If w ∈ W, there exists a unique Cw ∈ H such that{
Cw = Cw

Cw ≡ Tw mod H<0

Example. C1 = T1

Cs =


Ts + v−ϕ(s) if ϕ(s) > 0

Ts if ϕ(s) = 0

Ts − vϕ(s) if ϕ(s) < 0
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If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−:

it is a preorder (reflexive
and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module

: VC is called the left cell representation
associated to C.



If x , y ∈ W , we write x
L←− y if there exists h ∈ H such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of H and VC is a
left H-module: VC is called the left cell representation
associated to C.



Comments

One could define x
R←− y (“Cx occurs in some Cyh”) or x

LR←− y
(“Cx occurs in some hCyh

′”)

This leads to 6R , 6LR , ∼R and ∼LR , right/two-sided cells.
I The anti-automorphism Tx 7→ Tx−1 sends Cx to Cx−1 , so

x 6L y ⇐⇒ x−1 6R y−1

I Lusztig conjectures that ∼LR is generated by ∼L and ∼R .

Remark
The relations ∼? can be computed in some cases (for instance in the
symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).

However, the preorder 6L or 6R is in general unknown (even in the
symmetric group). The preorder 6LR seems to be easier (for
instance, it is given by the dominance order on partitions through the
Robinson-Schensted correspondence).
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instance, it is given by the dominance order on partitions through the
Robinson-Schensted correspondence).
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An “easy” remark

Let Sϕ = {s ∈ S | ϕ(s) = 0} and Wϕ = 〈Sϕ〉.
Let I = S \ Sϕ, Ĩ = {wtw−1 | w ∈ Wϕ, t ∈ I }, and W̃ = 〈Ĩ 〉.

Theorem (Dyer)

(W̃ , Ĩ ) is a Coxeter group and W = Wϕ n W̃ .

Corollary

H(W , S , ϕ) = Wϕ nH(W̃ , Ĩ , ϕ̃), where ϕ̃(wtw−1) = ϕ(t)
(w ∈ Wϕ, t ∈ I ).

Corollary
Since Cs = Ts and Csw = CsCw for all s ∈ Sϕ and w ∈ W, the left
cells of (W , S , ϕ) are of the form Wϕ · C, where C is a left cell of
(W̃ , Ĩ , ϕ̃).



An “easy” remark

Let Sϕ = {s ∈ S | ϕ(s) = 0} and Wϕ = 〈Sϕ〉.
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Type B

(W , S) = (Wn, Sn), where Sn = {t, s1, s2, . . . , sn−1} and

i i i · · · it s1 s2 sn−1

ϕ −→ b a a a

We identify Wn with the group of permutations w of
In = {±1,±2, . . . ,±n} such that w(−i) = −w(i) through

t 7→ (−1, 1) and si 7→ (i , i + 1)(−i ,−i − 1)
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}
sh : SDTr(n)→ Pr(n)

SDT
(2)
r (n) = {pairs of standard domino tableaux of the same

shape}
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Theorem (Garfinkle, van Leeuwen)

Wn
∼−→ SDT

(2)
r (n)

w 7−→ (Dr(w), Dr(w
−1))

i i i · · · it s1 s2 sn−1

ϕ −→ b a a a

Conjecture A (Geck-Iancu-Lam-B. 2003)

Assume a, b > 0 and assume that 0 6 r < b/a < r + 1. Then:

w ∼L w ′ if and only if Dr(w
−1) = Dr(w

′−1)

w ∼R w ′ if and only if Dr(w) = Dr(w
′)

w ∼LR w ′ if and only if sh(Dr(w)) = sh(Dr(w
′)) (Lusztig)

w 6LR w ′ if and only if sh(Dr(w)) E sh(Dr(w
′))
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X is a union of left (resp. right, two-sided) combinatorials
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′)) (Lusztig)

w 6LR w ′ if and only if sh(Dr(w)) E sh(Dr(w
′))

Conjecture B (Geck-Iancu-Lam-B. 2003)

Let r > 1 and assume that b = ra. Then the left (resp. right,
two-sided) cells are the minimal subsets X of Wn such that:

X is a union of left (resp. right, two-sided) combinatorials
r -cells;

X is a union of left (resp. right, two-sided) combinatorials
(r − 1)-cells.
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The general case

Let V be the R-vector space of functions ϕ : S/∼ −→ R.

If ω ∈ S/∼, let Hω = {ϕ ∈ V | ϕ(ω) = 0}.

Conjecture C

Assume that S is finite. There exists a finite set of (linear) rational
hyperplanes A in V (containing all Hω, ω ∈ S/∼) such that:

If ϕ and ϕ ′ belong to the same A-facet, then the left (right,
two-sided) cells for (W , S , ϕ) and (W , S , ϕ ′) coincide.

If ϕ ∈ V , then a left (resp. right, two-sided) cell is a minimal
subset X of W such that:

• For each A-chamber C such that ϕ ∈ C, X is a union of left
(resp. right, two-sided) cells for (W ,S , C).

• X is stable by left (resp. right, two-sided) translation by Wϕ.
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The general case

Let V be the R-vector space of functions ϕ : S/∼ −→ R.

If ω ∈ S/∼, let Hω = {ϕ ∈ V | ϕ(ω) = 0}.

Conjecture C (maybe only for finite or affine Weyl groups)
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J. Guilhot’s results

Generalized induction =⇒
Theorem (Guilhot)

If Wϕ is finite, then Wϕ is a union of left cells
for (W , S , C), where C is a chamber such that
ϕ ∈ C.

Left cells in the lowest two-sided cell (W affine) =⇒ compatible
with Conjecture C.

Type G̃2
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