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Deligne (SGA 41
2
, 1976). “Les exposés I à VI de SGA 4 donnent

la théorie générale des topologies de Grothendieck. Très détaillés, ils
peuvent être précieux lors de l’étude de topologies exotiques, telle celle
qui donne naissance à la topologie cristalline. Pour la topologie étale,
si proche de l’intuition classique, un garde-fou si imposant n’est pas
nécessaire : il suffit de connâıtre (par exemple), le livre de Godement,
et d’avoir un peu de foi. (...)”

“Chapters I-VI of SGA 4 develop the general theory of Grothendieck
topologies. Very detailed, they may be a valuable tool for studying
exotic topologies, such as the one yielding the crystalline topology.
For étale topology, so close to classical intuition, such imposing
safetynet is not necessary : it is sufficient to know (for instance),
Godement’s book, and to have some faith. (...)”
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Let p be a prime number, F = Fp

Let V be an algebraic variety over F
Let Γ be a group acting on V

Let ` be a prime number 6= p

 To this datum is associated a family of finite dimensional
Q̀ -vector spaces H i

c(V), which are acted on by Γ .

We denote by H∗
c (V) the element of the Grothendieck group of the

category of finite dimensional Q̀ Γ -modules equal to

H∗
c (V) =

∑
i

(−1)i [H i
c(V)]
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The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G
(aij) 7−→ (aq

ij),

GF = GLn(Fq).



The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G
(aij) 7−→ (aq

ij),

GF = GLn(Fq).



The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G
(aij) 7−→ (aq

ij),

GF = GLn(Fq).



The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G
(aij) 7−→ (aq

ij),

GF = GLn(Fq).



The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G
(aij) 7−→ (aq

ij),

GF = GLn(Fq).



The general frame.

G connected reductive group /F

F : G → G Frobenius endomorphism /Fq

Let G = GF = {g ∈ G | F (g) = g }: finite reductive group

Example - G = GLn(F),

F : G −→ G
(aij) 7−→ (aq

ij),

GF = GLn(Fq).



Let
L : G −→ G

g 7−→ g−1F (g)

be the Lang map.

Then L is surjective and

L (g) = L (g ′) ⇐⇒ ∃ x ∈ GF , g ′ = xg .

Let Z a subvariety of G (locally closed): then GF acts (on the left)
on L −1(Z).
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Deligne-Lusztig (1976) - Construction of a class of “interesting”
varieties

Lusztig (1976-77-78-79-80-81-82-83-84) -
I Parametrization of irreducible characters
I Computation of their degrees
I Algorithm for values at a semisimple element
I ...
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Drinfeld (1974) - Starting example: SL2(Fq) acts
on {(x , y) ∈ F2 | xyq − yxq = 1}
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The group G × (µq+1 o 〈F 〉) acts on A2 and stabilizes

Y = {(x , y) ∈ A2 | xyq − yxq = 1}

If θ ∈ (µq+1)
∧, let H i

c(Y)θ denote the θ-isotypic component of
H i

c(Y): it is a Q̀ G -module.

Let R ′
θ = −[H∗

c (Y)θ] = [H1
c (Y)θ] − [H2

c (Y)θ]

This is Deligne-Lusztig induction.
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Quotient by µq+1.

The map
π : Y −→ P1

(x , y) 7−→ [x : y ]

is G -equivariant.

The image of π is P1 \ P1(Fq).

π(x , y) = π(x ′, y ′) ⇐⇒ ∃ ξ ∈ µq+1, (x ′, y ′) = ξ(x , y).

Y

π
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First decomposition of H∗
c (Y)

H i
c(Y) = 0 if i 6∈ {1, 2} (since Y is affine of dim. 1: rule (1aff))

H2
c (Y) = 1G×T (because Y is irreducible: rule (2))

H∗
c (Y)1 =︸︷︷︸

rule (5∗)

H∗
c (P1 \ P1(Fq)) =︸︷︷︸

rule (3∗)

H∗
c (P1) − H∗

c (P1(Fq))

= 2.1G − (1G + StG )︸ ︷︷ ︸
rule(20)

= 1G − StG

⇒ H1
c (Y)1 = StG .

F (H1
c (Y))θ = H1

c (Y)θ−1 (as G -modules)
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= 2.1G − (1G + StG )︸ ︷︷ ︸
rule(20)

= 1G − StG

⇒ H1
c (Y)1 = StG .

F (H1
c (Y))θ = H1

c (Y)θ−1 (as G -modules)



Quotient by U.

The map
υ : Y −→ A1 \ {0}

(x , y) 7−→ y

is µq+1-equivariant.

υ is surjective.

υ(x , y) = υ(x ′, y ′) ⇐⇒ ∃ u ∈ U , (x ′, y ′) = u · (x , y).

Y

υ
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dim H1
c (Y)θ?

Rule (6) ⇒ if ξ ∈ µq+1, ξ 6= 1, then

Tr(ξ, H∗
c (Y)) = Tr(1, H∗

c (Yξ)).

But Yξ = ∅. So Tr(ξ, H∗
c (Y)) = 0.

Therefore, as a µq+1-module, H∗
c (Y) is a multiple of the regular

representation Q̀ µq+1.So

dim R ′
θ = dim R ′

1 = q − 1.
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dim H1
c (Y)θ?
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Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G A1



Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G A1



Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G A1



Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G A1



Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G A1



Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G //______ A1



Quotient by G .

The map
γ : Y −→ A1

(x , y) 7−→ xyq2
− yxq2

is µq+1-equivariant.

γ is surjective.

γ(x , y) = γ(x ′, y ′) ⇐⇒ ∃ g ∈ G , (x ′, y ′) = u · (x , y).

Y

γ

!!CC
CC

CC
CC

CC
CC

CC
CC

C

��
Y/G ∼ //______ A1



All irreducibles characters?

1G : degree 1

StG : degree q

Rα, α2 6= 1: degree q + 1 (there are (q − 3)/2 such characters)

R±
α0

: degree (q + 1)/2

R ′
θ, θ2 6= 1: degree q − 1 (there are (q − 1)/2 such characters)

R ′±
θ0

: degree d±

So d+ + d− = q − 1 and

d2
+ + d2

− 6 |G | − (sum of squares of others) =
(q − 1)2

2
.

So d+ = d− =
q − 1

2
and

Irr G = {1G , StG , Rα, R±
α0

, R ′
θ, R

′±
θ0

}
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What has been illustrated?

2 “unipotent charaters”: 1G , StG (in general, the number of
unipotent characters DOES NOT depend on q)

Mackey formula for Deligne-Lusztig induction

Parametrization of characters using character of finite subtori (in
general, “Jordan decomposition”)

Degrees are polynomials in q

“Cuspidal characters” appear in the cohomology associated to
“non-split” tori

What has been hidden?

Étale topology...
• •
N

^

Character values

Weyl groups
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