Introduction to Deligne-Lusztig Theory

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)
Berkeley (MSRI), Feb. 2008
Γ group acting on \mathscr{X} ：
Γ group acting on \mathscr{X} :

- set
Γ group acting on \mathscr{X} ：
－set
－poset
Γ group acting on \mathscr{X} :
- set
- poset
- K-vector space
Γ group acting on \mathscr{X} :
- set
- poset
- K-vector space
- variety
Γ group acting on \mathscr{X} :
- set
- poset
- K-vector space
- variety
- ...

[^0]Γ group acting on \mathscr{X} :

- set
- poset
- K-vector space
- variety
- ...

[^1]Γ group acting on \mathscr{X} :

- set $\rightsquigarrow K[\mathscr{X}]$
- poset
- K-vector space
- variety
- ...
Γ group acting on \mathscr{X} :
- set $\rightsquigarrow K[\mathscr{X}]$
- poset \rightsquigarrow complex of chains
- K-vector space
- variety
- ...
Γ group acting on \mathscr{X} :
- set $\rightsquigarrow K[\mathscr{X}]$
- poset \rightsquigarrow complex of chains \rightsquigarrow cohomology groups
- K-vector space
- variety
- ...
Γ group acting on \mathscr{X} :
- set $\rightsquigarrow K[\mathscr{X}]$
- poset \rightsquigarrow complex of chains \rightsquigarrow cohomology groups
- K-vector space
- variety \rightsquigarrow étale, ℓ-adic cohomology
- ...
Γ group acting on \mathscr{X} :
- set $\rightsquigarrow K[\mathscr{X}]$
- poset \rightsquigarrow complex of chains \rightsquigarrow cohomology groups
- K-vector space
- variety \rightsquigarrow étale, ℓ-adic cohomology
- ...

Deligne (SGA $4 \frac{1}{2}$, 1976). "Les exposés I à VI de SGA 4 donnent la théorie générale des topologies de Grothendieck. Très détaillés, ils peuvent être précieux lors de l'étude de topologies exotiques, telle celle qui donne naissance à la topologie cristalline. Pour la topologie étale, si proche de l'intuition classique, un garde-fou si imposant n'est pas nécessaire : il suffit de connaître (par exemple), le livre de Godement, et d'avoir un peu de foi. (...)"

Deligne (SGA $4 \frac{1}{2}$, 1976). "Les exposés I à VI de SGA 4 donnent la théorie générale des topologies de Grothendieck. Très détaillés, ils peuvent être précieux lors de l'étude de topologies exotiques, telle celle qui donne naissance à la topologie cristalline. Pour la topologie étale, si proche de l'intuition classique, un garde-fou si imposant n'est pas nécessaire : il suffit de connaître (par exemple), le livre de Godement, et d'avoir un peu de foi. (...)"
"Chapters I-VI of SGA 4 develop the general theory of Grothendieck topologies. Very detailed, they may be a valuable tool for studying exotic topologies, such as the one yielding the crystalline topology. For étale topology, so close to classical intuition, such imposing safetynet is not necessary : it is sufficient to know (for instance), Godement's book, and to have some faith. (...)"
－Let p be a prime number， $\mathbb{F}=\overline{\mathbb{F}}_{p}$

- Let p be a prime number, $\mathbb{F}=\overline{\mathbb{F}}_{p}$
- Let V be an algebraic variety over \mathbb{F}
－Let p be a prime number， $\mathbb{F}=\overline{\mathbb{F}}_{p}$
－Let V be an algebraic variety over \mathbb{F}
－Let Γ be a group acting on \mathbf{V}
- Let p be a prime number, $\mathbb{F}=\overline{\mathbb{F}}_{p}$
- Let V be an algebraic variety over \mathbb{F}
- Let Γ be a group acting on \mathbf{V}
- Let ℓ be a prime number $\neq p$
－Let p be a prime number， $\mathbb{F}=\overline{\mathbb{F}}_{p}$
－Let V be an algebraic variety over \mathbb{F}
－Let Γ be a group acting on \mathbf{V}
－Let ℓ be a prime number $\neq p$
\rightsquigarrow To this datum is associated a family of finite dimensional $\overline{\mathbb{Q}}_{\ell}$－vector spaces $H_{c}^{i}(\mathbf{V})$ ，which are acted on by Γ ．
- Let p be a prime number, $\mathbb{F}=\overline{\mathbb{F}}_{p}$
- Let V be an algebraic variety over \mathbb{F}
- Let Γ be a group acting on V
- Let ℓ be a prime number $\neq p$
\rightsquigarrow To this datum is associated a family of finite dimensional $\overline{\mathbb{Q}}_{e}$-vector spaces $H_{c}^{i}(\mathbf{V})$, which are acted on by Γ.

We denote by $H_{c}^{*}(\mathbf{V})$ the element of the Grothendieck group of the category of finite dimensional $\overline{\mathbb{Q}} \Gamma$-modules equal to

$$
H_{c}^{*}(\mathbf{V})=\sum_{i}(-1)^{i}\left[H_{c}^{i}(\mathbf{V})\right]
$$

$H_{c}^{i}\left(\mathbf{P}^{1}\right) ?$

$H_{c}^{i}\left(P^{1}\right) ?$

$$
\mathbf{P}^{1}=\mathbf{A}^{1} \cup\{\infty\}:
$$

$H_{c}^{\mathbf{i}}\left(\mathbf{P}^{1}\right) ?$

$\mathbf{P}^{1}=\mathbf{A}^{1} \cup\{\infty\}$: rule (3) \Rightarrow

$$
0 \longrightarrow H_{c}^{0}\left(\mathbf{A}^{1}\right) \longrightarrow H_{c}^{0}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{0}(\{\infty\})
$$

$$
\longrightarrow H_{c}^{1}\left(\mathbf{A}^{1}\right) \longrightarrow H_{c}^{1}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{1}(\{\infty\})
$$

$$
\longrightarrow H_{c}^{2}\left(\mathbf{A}^{1}\right) \longrightarrow H_{c}^{2}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{2}(\{\infty\}) \longrightarrow 0
$$

$H_{c}^{i}\left(\mathbf{P}^{1}\right) ?$

$$
\mathbf{P}^{1}=\mathbf{A}^{1} \cup\{\infty\}: \text { rule }(3) \Rightarrow
$$

$$
0 \longrightarrow 0 \longrightarrow H_{c}^{0}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{0}(\{\infty\})
$$

$$
\longrightarrow 0 \longrightarrow H_{c}^{1}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{1}(\{\infty\})
$$

$$
\longrightarrow \overline{\mathbb{Q}}_{l} \longrightarrow H_{c}^{2}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{2}(\{\infty\}) \longrightarrow 0
$$

$H_{c}^{i}\left(P^{1}\right) ?$

$$
\mathbf{P}^{1}=\mathbf{A}^{1} \cup\{\infty\}: \text { rule }(3) \Rightarrow
$$

$$
0 \longrightarrow 0 \longrightarrow H_{c}^{0}\left(\mathbf{P}^{1}\right) \longrightarrow \overline{\mathbb{Q}}_{l}
$$

$$
\longrightarrow 0 \longrightarrow H_{c}^{1}\left(\mathbf{P}^{1}\right) \longrightarrow 0
$$

$$
\longrightarrow \overline{\mathbb{Q}}_{e} \longrightarrow H_{c}^{2}\left(\mathbf{P}^{1}\right) \longrightarrow 0 \quad \longrightarrow 0
$$

$H_{c}^{i}\left(P^{1}\right) ?$

$\mathbf{P}^{1}=\mathbf{A}^{1} \cup\{\infty\}:$ rule $(3) \Rightarrow$

$$
\begin{aligned}
& 0 \longrightarrow 0 \longrightarrow H_{c}^{0}\left(\mathbf{P}^{1}\right) \longrightarrow \overline{\mathbb{Q}}_{l} \\
& \longrightarrow 0 \longrightarrow H_{c}^{1}\left(\mathbf{P}^{1}\right) \longrightarrow 0 \\
& \longrightarrow \overline{\mathbb{Q}}_{l} \longrightarrow H_{c}^{2}\left(\mathbf{P}^{1}\right) \longrightarrow 0 \longrightarrow 0 \\
& H_{c}^{i}\left(\mathbf{P}^{1}\right)= \begin{cases}\overline{\mathbb{Q}_{e}} & \text { if } i=0,2 \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$H_{c}^{i}\left(P^{1}\right) ?$

$\mathbf{P}^{1}=\mathbf{A}^{1} \cup\{\infty\}:$ rule $(3) \Rightarrow$

$$
\begin{gathered}
0 \longrightarrow 0 \longrightarrow H_{c}^{0}\left(\mathbf{P}^{1}\right) \longrightarrow H_{c}^{1}\left(\mathbf{P}^{1}\right) \longrightarrow \overline{\mathbb{Q}}_{l} \\
\longrightarrow 0 \\
\longrightarrow H_{c}^{2}\left(\mathbf{P}^{1}\right) \longrightarrow 0 \\
\overline{\mathbb{Q}}_{l} \longrightarrow 0 \\
H_{c}^{i}\left(\mathbf{P}^{1}\right)=\left\{\begin{array}{ll}
\overline{\mathbb{Q}}_{l} & \text { if } i=0,2 \\
0 & \text { otherwise }
\end{array} \quad \text { as G-modules! (rule }(7)\right)
\end{gathered}
$$

The general frame.

The general frame.

- G connected reductive group $/ \mathbb{F}$

The general frame.

- G connected reductive group $/ \mathbb{F}$
- $F: \mathrm{G} \rightarrow \mathrm{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$

The general frame.

- G connected reductive group $/ \mathbb{F}$
- $F: \mathrm{G} \rightarrow \mathrm{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
- Let $G=\mathbf{G}^{F}=\{g \in \mathbf{G} \mid F(g)=g\}$: finite reductive group

The general frame.

- G connected reductive group $/ \mathbb{F}$
- $F: \mathrm{G} \rightarrow \mathrm{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
- Let $G=\mathbf{G}^{F}=\{g \in \mathbf{G} \mid F(g)=g\}$: finite reductive group

Example - $\mathbf{G}=\mathbf{G L}_{n}(\mathbb{F})$,

$$
\begin{array}{cccc}
F: & \mathbf{G} & \longrightarrow \mathbf{G} \\
\left(a_{i j}\right) & \longmapsto & \left(a_{i j}^{q}\right),
\end{array}
$$

The general frame.

- G connected reductive group $/ \mathbb{F}$
- $F: \mathrm{G} \rightarrow \mathrm{G}$ Frobenius endomorphism $/ \mathbb{F}_{q}$
- Let $G=\mathbf{G}^{F}=\{g \in \mathbf{G} \mid F(g)=g\}$: finite reductive group

Example - $\mathbf{G}=\mathbf{G} \mathbf{L}_{n}(\mathbb{F})$,

$$
\begin{array}{cccc}
F: & \mathbf{G} & \longrightarrow \mathbf{G} \\
\left(a_{i j}\right) & \longmapsto & \left(a_{i j}^{q}\right),
\end{array}
$$

$$
\mathbf{G}^{F}=\mathbf{G L}_{n}\left(\mathbb{F}_{q}\right)
$$

Let

$$
\begin{array}{rlc}
\mathscr{L}: \mathbf{G} & \longrightarrow & \mathbf{G} \\
g & \longmapsto g^{-1} F(g)
\end{array}
$$

be the Lang map.

Let

$$
\begin{array}{rlc}
\mathscr{L}: \mathrm{G} & \longrightarrow \mathrm{G} \\
\mathrm{~g} & \longmapsto g^{-1} F(g)
\end{array}
$$

be the Lang map.Then \mathscr{L} is surjective and

$$
\mathscr{L}(g)=\mathscr{L}\left(g^{\prime}\right) \Longleftrightarrow \exists x \in \mathbf{G}^{F}, g^{\prime}=x g .
$$

Let

$$
\begin{array}{rlc}
\mathscr{L}: \mathrm{G} & \longrightarrow \mathrm{G} \\
\mathrm{~g} & \longmapsto g^{-1} F(g)
\end{array}
$$

be the Lang map.Then \mathscr{L} is surjective and

$$
\mathscr{L}(g)=\mathscr{L}\left(g^{\prime}\right) \Longleftrightarrow \exists x \in \mathbf{G}^{F}, g^{\prime}=x g .
$$

Let Z a subvariety of G (locally closed): then G^{\digamma} acts (on the left) on $\mathscr{L}^{-1}(\mathbf{Z})$.

- Deligne-Lusztig (1976) - Construction of a class of "interesting" varieties
－Deligne－Lusztig（1976）－Construction of a class of＂interesting＂ varieties
－Lusztig（1976－77－78－79－80－81－82－83－84）－
－Parametrization of irreducible characters
- Deligne-Lusztig (1976) - Construction of a class of "interesting" varieties
- Lusztig (1976-77-78-79-80-81-82-83-84) -
- Parametrization of irreducible characters
- Computation of their degrees
- Deligne-Lusztig (1976) - Construction of a class of "interesting" varieties
- Lusztig (1976-77-78-79-80-81-82-83-84) -
- Parametrization of irreducible characters
- Computation of their degrees
- Algorithm for values at a semisimple element
- Deligne-Lusztig (1976) - Construction of a class of "interesting" varieties
- Lusztig (1976-77-78-79-80-81-82-83-84) -
- Parametrization of irreducible characters
- Computation of their degrees
- Algorithm for values at a semisimple element

Drinfeld (1974) - Starting example: $\mathbf{S L}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\left\{(x, y) \in \mathbb{F}^{2} \mid x y^{q}-y x^{q}=1\right\}$

- Deligne-Lusztig (1976) - Construction of a class of "interesting" varieties
- Lusztig (1976-77-78-79-80-81-82-83-84) -
- Parametrization of irreducible characters
- Computation of their degrees
- Algorithm for values at a semisimple element
- ...

Drinfeld (1974) - Starting example: $\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$ acts on $\left\{(x, y) \in \mathbb{F}^{2} \mid x y^{q}-y x^{q}=1\right\}$

- Deligne-Lusztig (1976) - Construction of a class of "interesting" varieties
- Lusztig (1976-77-78-79-80-81-82-83-84) -
- Parametrization of irreducible characters
- Computation of their degrees
- Algorithm for values at a semisimple element
- ...
- The group $G \times\left(\mu_{q+1} \rtimes\langle F\rangle\right)$ acts on \mathbf{A}^{2} and stabilizes

$$
\mathbf{Y}=\left\{(x, y) \in \mathbf{A}^{2} \mid x y^{q}-y x^{q}=1\right\}
$$

- The group $G \times\left(\mu_{q+1} \rtimes\langle F\rangle\right)$ acts on \mathbf{A}^{2} and stabilizes

$$
\mathbf{Y}=\left\{(x, y) \in \mathbf{A}^{2} \mid x y^{q}-y x^{q}=1\right\}
$$

- If $\theta \in\left(\mu_{q+1}\right)^{\wedge}$, let $H_{c}^{i}(\mathbf{Y})_{\theta}$ denote the θ-isotypic component of $H_{c}^{i}(\mathbf{Y})$
- The group $G \times\left(\mu_{q+1} \rtimes\langle F\rangle\right)$ acts on \mathbf{A}^{2} and stabilizes

$$
\mathbf{Y}=\left\{(x, y) \in \mathbf{A}^{2} \mid x y^{q}-y x^{q}=1\right\}
$$

- If $\theta \in\left(\mu_{q+1}\right)^{\wedge}$, let $H_{c}^{i}(\mathbf{Y})_{\theta}$ denote the θ-isotypic component of $H_{c}^{i}(\mathbf{Y})$: it is a $\overline{\mathbb{Q}}_{l} G$-module.
- The group $G \times\left(\mu_{q+1} \rtimes\langle F\rangle\right)$ acts on \mathbf{A}^{2} and stabilizes

$$
\mathbf{Y}=\left\{(x, y) \in \mathbf{A}^{2} \mid x y^{q}-y x^{q}=1\right\}
$$

- If $\theta \in\left(\mu_{q+1}\right)^{\wedge}$, let $H_{c}^{i}(\mathbf{Y})_{\theta}$ denote the θ-isotypic component of $H_{c}^{i}(\mathbf{Y})$: it is a $\overline{\mathbb{Q}}_{l} G$-module.
- Let $R_{\theta}^{\prime}=-\left[H_{c}^{*}(\mathbf{Y})_{\theta}\right]=\left[H_{c}^{1}(\mathbf{Y})_{\theta}\right]-\left[H_{c}^{2}(\mathbf{Y})_{\theta}\right]$
- The group $G \times\left(\mu_{q+1} \rtimes\langle F\rangle\right)$ acts on \mathbf{A}^{2} and stabilizes

$$
\mathbf{Y}=\left\{(x, y) \in \mathbf{A}^{2} \mid x y^{q}-y x^{q}=1\right\}
$$

- If $\theta \in\left(\mu_{q+1}\right)^{\wedge}$, let $H_{c}^{i}(\mathbf{Y})_{\theta}$ denote the θ-isotypic component of $H_{c}^{i}(\mathbf{Y})$: it is a $\overline{\mathbb{Q}}_{l} G$-module.
- Let $R_{\theta}^{\prime}=-\left[H_{c}^{*}(\mathbf{Y})_{\theta}\right]=\left[H_{c}^{1}(\mathbf{Y})_{\theta}\right]-\left[H_{c}^{2}(\mathbf{Y})_{\theta}\right]$

This is Deligne-Lusztig induction.

Quotient by $\mu_{\mathbf{q}+1}$ ．

Quotient by μ_{q+1} ．

－The map

$$
\begin{array}{cccc}
\pi: & \mathbf{Y} & \longrightarrow & \mathbf{P}^{1} \\
(x, y) & \longmapsto & {[x: y]}
\end{array}
$$

is G－equivariant．

Quotient by μ_{q+1}.

- The map

$$
\begin{array}{cccc}
\pi: & \mathbf{Y} & \longrightarrow & \mathbf{P}^{1} \\
(x, y) & \longmapsto & {[x: y]}
\end{array}
$$

is G-equivariant.

- The image of π is $\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$.

Quotient by $\mu_{\mathbf{q}+1}$ ．

－The map

$$
\begin{array}{cccc}
\pi: & \mathbf{Y} & \longrightarrow & \mathbf{P}^{1} \\
(x, y) & \longmapsto & {[x: y]}
\end{array}
$$

is G－equivariant．
－The image of π is $\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$ ．
－$\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists \xi \in \mu_{q+1},\left(x^{\prime}, y^{\prime}\right)=\xi(x, y)$ ．

Quotient by μ_{q+1}.

- The map

$$
\begin{array}{cccc}
\pi: & \mathbf{Y} & \longrightarrow & \mathbf{P}^{1} \\
(x, y) & \longmapsto & {[x: y]}
\end{array}
$$

is G-equivariant.

- The image of π is $\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$.
- $\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists \xi \in \mu_{q+1},\left(x^{\prime}, y^{\prime}\right)=\xi(x, y)$.

Quotient by μ_{q+1}.

- The map

$$
\begin{array}{cccc}
\pi: & \mathbf{Y} & \longrightarrow & \mathbf{P}^{1} \\
(x, y) & \longmapsto & {[x: y]}
\end{array}
$$

is G-equivariant.

- The image of π is $\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$.
- $\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists \xi \in \mu_{q+1},\left(x^{\prime}, y^{\prime}\right)=\xi(x, y)$.

Quotient by μ_{q+1}.

- The map

$$
\begin{array}{cccc}
\pi: & \mathbf{Y} & \longrightarrow & \mathbf{P}^{1} \\
(x, y) & \longmapsto & {[x: y]}
\end{array}
$$

is G-equivariant.

- The image of π is $\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$.
- $\pi(x, y)=\pi\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists \xi \in \mu_{q+1},\left(x^{\prime}, y^{\prime}\right)=\xi(x, y)$.

First decomposition of $H_{c}^{*}(\mathbf{Y})$

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))
- $H_{c}^{*}(\mathbf{Y})_{1} \underbrace{=}_{\text {rule }\left(5^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right)$

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))
- $H_{c}^{*}(\mathbf{Y})_{1} \underbrace{=}_{\text {rule }\left(5^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \underbrace{=}_{\text {rule }\left(3^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1}\right)-H_{c}^{*}\left(\mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right)$

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))

$$
\text { - } \begin{aligned}
& H_{c}^{*}(\mathbf{Y})_{1} \underbrace{=}_{\text {rule }\left(5^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \\
&=2.1_{G}-\underbrace{=}_{\text {rule }\left(3^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1}\right)-H_{c}^{*}\left(\mathbf{P}^{1}\right)
\end{aligned}
$$

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))

$$
\text { - } \begin{aligned}
& H_{c}^{*}(\mathbf{Y})_{1} \underbrace{=}_{\text {rule }\left(5^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \underbrace{=}_{\text {rule }\left(3^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1}\right)-H_{c}^{*}\left(\mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \\
&=2.1_{G}-\underbrace{\left(1_{G}+\operatorname{St}_{G}\right)}_{\text {rule }\left(2_{0}\right)}=1_{G}-\operatorname{St}_{G}
\end{aligned}
$$

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))

$$
\text { - } \begin{aligned}
& H_{c}^{*}(\mathbf{Y})_{1} \underbrace{=}_{\text {rule }\left(5^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \underbrace{=}_{\text {rule }\left(3^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1}\right)-H_{c}^{*}\left(\mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \\
&=2.1_{G}-\underbrace{\left(1_{G}+\operatorname{St}_{G}\right)}_{\text {rule }\left(2_{0}\right)}=1_{G}-\operatorname{St}_{G}
\end{aligned}
$$

$$
\Rightarrow H_{c}^{1}(\mathbf{Y})_{1}=\operatorname{St}_{G}
$$

First decomposition of $H_{c}^{*}(\mathbf{Y})$

- $H_{c}^{i}(\mathbf{Y})=0$ if $i \notin\{1,2\}$ (since \mathbf{Y} is affine of dim. 1: rule $\left(1_{\text {aff }}\right)$)
- $H_{c}^{2}(\mathbf{Y})=1_{G \times T}$ (because \mathbf{Y} is irreducible: rule (2))
- $H_{c}^{*}(\mathbf{Y})_{1} \underbrace{=}_{\text {rule }\left(5^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right) \underbrace{=}_{\text {rule }\left(3^{*}\right)} H_{c}^{*}\left(\mathbf{P}^{1}\right)-H_{c}^{*}\left(\mathbf{P}^{1}\left(\mathbb{F}_{q}\right)\right)$

$$
=2.1_{G}-\underbrace{\left(1_{G}+\operatorname{St}_{G}\right)}_{\text {rule }\left(2_{0}\right)}=1_{G}-\mathrm{St}_{G}
$$

$\Rightarrow H_{c}^{1}(\mathbf{Y})_{1}=\operatorname{St}_{G}$.

- $F\left(H_{c}^{1}(\mathbf{Y})\right)_{\theta}=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$ (as G-modules)

Quotient by U.

Quotient by U.

- The map

$$
\begin{array}{cccc}
v: & \longrightarrow & \mathbf{A}^{1} \backslash\{0\} \\
(x, y) & \longmapsto & y
\end{array}
$$

is μ_{q+1}-equivariant.

Quotient by U.

- The map

$$
\begin{array}{ccc}
v: & \longrightarrow & \mathbf{A}^{1} \backslash\{0\} \\
(x, y) & \longmapsto & y
\end{array}
$$

is μ_{q+1}-equivariant.

- v is surjective.

Quotient by U.

- The map

$$
\begin{array}{ccc}
v: & \longrightarrow & \mathbf{A}^{1} \backslash\{0\} \\
(x, y) & \longmapsto & y
\end{array}
$$

is μ_{q+1}-equivariant.

- v is surjective.
- $\boldsymbol{v}(x, y)=\boldsymbol{v}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists u \in U,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

Quotient by U.

- The map

$$
\begin{array}{cccc}
v: & \longrightarrow & \mathbf{A}^{1} \backslash\{0\} \\
(x, y) & \longmapsto & y
\end{array}
$$

is μ_{q+1}-equivariant.

- v is surjective.
- $\boldsymbol{v}(x, y)=\boldsymbol{v}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists u \in U,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

Quotient by U.

- The map

$$
\begin{array}{ccc}
v: & \longrightarrow & \mathbf{A}^{1} \backslash\{0\} \\
(x, y) & \longmapsto & y
\end{array}
$$

is μ_{q+1}-equivariant.

- v is surjective.
- $\boldsymbol{v}(x, y)=\boldsymbol{v}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists u \in U,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

Quotient by U.

- The map

$$
\begin{array}{cccc}
v: & \longrightarrow & \mathbf{A}^{1} \backslash\{0\} \\
(x, y) & \longmapsto & y
\end{array}
$$

is μ_{q+1}-equivariant.

- v is surjective.
- $\boldsymbol{v}(x, y)=\boldsymbol{v}\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists u \in U,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

$\operatorname{dim} H_{c}^{1}(\mathbf{Y})_{\theta} ?$

$\operatorname{dim} H_{c}^{1}(\mathbf{Y})_{\theta} ?$

Rule (6) \Rightarrow if $\xi \in \mu_{q+1}, \xi \neq 1$, then

$$
\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=\operatorname{Tr}\left(1, H_{c}^{*}\left(\mathbf{Y}^{\xi}\right)\right)
$$

$\operatorname{dim} H_{c}^{1}(\mathbf{Y})_{\theta} ?$

Rule (6) \Rightarrow if $\xi \in \mu_{q+1}, \xi \neq 1$, then

$$
\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=\operatorname{Tr}\left(1, H_{c}^{*}\left(\mathbf{Y}^{\xi}\right)\right)
$$

But $\mathbf{Y}^{\xi}=\varnothing$. So $\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=0$.

$\operatorname{dim} H_{c}^{1}(\mathbf{Y})_{\theta}$?

Rule (6) \Rightarrow if $\xi \in \mu_{q+1}, \xi \neq 1$, then

$$
\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=\operatorname{Tr}\left(1, H_{c}^{*}\left(\mathbf{Y}^{\xi}\right)\right)
$$

But $\mathbf{Y}^{\xi}=\varnothing$. So $\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=0$.
Therefore, as a μ_{q+1}-module, $H_{c}^{*}(\mathbf{Y})$ is a multiple of the regular representation $\overline{\mathbb{Q}}_{\ell} \mu_{q+1}$.

$\operatorname{dim} H_{c}^{1}(\mathbf{Y})_{\theta}$?

Rule (6) \Rightarrow if $\xi \in \mu_{q+1}, \xi \neq 1$, then

$$
\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=\operatorname{Tr}\left(1, H_{c}^{*}\left(\mathbf{Y}^{\xi}\right)\right)
$$

But $\mathbf{Y}^{\xi}=\varnothing$. So $\operatorname{Tr}\left(\xi, H_{c}^{*}(\mathbf{Y})\right)=0$.
Therefore, as a μ_{q+1}-module, $H_{c}^{*}(\mathbf{Y})$ is a multiple of the regular representation $\overline{\mathbb{Q}}_{\ell} \mu_{q+1}$. So

$$
\operatorname{dim} R_{\theta}^{\prime}=\operatorname{dim} R_{1}^{\prime}=q-1
$$

Quotient by G.

Quotient by G.

- The map

$$
\begin{array}{cccc}
\gamma: & \mathrm{Y} & \longrightarrow & \mathbf{A}^{1} \\
(x, y) & \longmapsto & x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

is μ_{q+1}-equivariant.

Quotient by G.

- The map

$$
\begin{array}{cccc}
\gamma: & \mathrm{Y} & \longrightarrow & \mathbf{A}^{1} \\
(x, y) & \longmapsto & x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

is μ_{q+1}-equivariant.

- γ is surjective.

Quotient by G.

- The map

$$
\begin{array}{cccc}
\left.\boldsymbol{\gamma}: \begin{array}{ccc}
\mathbf{Y} & \longrightarrow & \mathbf{A}^{1} \\
(x, y) & \longmapsto & x y^{q^{2}}-y x^{q^{2}}
\end{array} . . \begin{array}{ll}
&
\end{array}\right)
\end{array}
$$

is μ_{q+1}-equivariant.

- γ is surjective.
- $\gamma(x, y)=\gamma\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists g \in G,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

Quotient by G.

- The map

$$
\begin{array}{cccc}
\gamma: & \mathbf{Y} & \longrightarrow & \mathbf{A}^{1} \\
(x, y) & \longmapsto & x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

is μ_{q+1}-equivariant.

- γ is surjective.
- $\gamma(x, y)=\gamma\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists g \in G,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

Quotient by G.

- The map

$$
\begin{array}{cccc}
\gamma: & \mathbf{Y} & \longrightarrow & \mathbf{A}^{1} \\
(x, y) & \longmapsto & x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

is μ_{q+1}-equivariant.

- γ is surjective.
- $\gamma(x, y)=\gamma\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists g \in G,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

Quotient by G.

- The map

$$
\begin{array}{cccc}
\gamma: & \mathbf{Y} & \longrightarrow & \mathbf{A}^{1} \\
(x, y) & \longmapsto & x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

is μ_{q+1}-equivariant.

- γ is surjective.
- $\gamma(x, y)=\gamma\left(x^{\prime}, y^{\prime}\right) \Longleftrightarrow \exists g \in G,\left(x^{\prime}, y^{\prime}\right)=u \cdot(x, y)$.

All irreducibles characters？

All irreducibles characters？

－ 1_{G} ：degree 1
－ St_{G} ：degree q

All irreducibles characters？

－ 1_{G} ：degree 1
－ St_{G} ：degree q
－$R_{\alpha}, \alpha^{2} \neq 1$ ：degree $q+1$（there are $(q-3) / 2$ such characters）
－$R_{\alpha_{0}}^{ \pm}$：degree $(q+1) / 2$

All irreducibles characters?

- 1_{G} : degree 1
- St $_{G}$: degree q
- $R_{\alpha}, \alpha^{2} \neq 1$: degree $q+1$ (there are $(q-3) / 2$ such characters)
- $R_{\alpha_{0}}^{ \pm}$: degree $(q+1) / 2$
- $R_{\theta}^{\prime}, \theta^{2} \neq 1$: degree $q-1$ (there are $(q-1) / 2$ such characters)
- $R_{\theta_{0}}^{\prime \pm}$: degree $d_{ \pm}$

All irreducibles characters?

- 1_{G} : degree 1
- St $_{G}$: degree q
- $R_{\alpha}, \alpha^{2} \neq 1$: degree $q+1$ (there are $(q-3) / 2$ such characters)
- $R_{\alpha_{0}}^{ \pm}$: degree $(q+1) / 2$
- $R_{\theta}^{\prime}, \theta^{2} \neq 1$: degree $q-1$ (there are $(q-1) / 2$ such characters)
- $R_{\theta_{0}}^{\prime \pm}$: degree $d_{ \pm}$

So $d_{+}+d_{-}=q-1$ and

$$
d_{+}^{2}+d_{-}^{2} \leqslant|G|-(\text { sum of squares of others })
$$

All irreducibles characters?

- 1_{G} : degree 1
- St $_{G}$: degree q
- $R_{\alpha}, \alpha^{2} \neq 1$: degree $q+1$ (there are $(q-3) / 2$ such characters)
- $R_{\alpha_{0}}^{ \pm}$: degree $(q+1) / 2$
- $R_{\theta}^{\prime}, \theta^{2} \neq 1$: degree $q-1$ (there are $(q-1) / 2$ such characters)
- $R_{\theta_{0}}^{\prime \pm}$: degree $d_{ \pm}$

So $d_{+}+d_{-}=q-1$ and

$$
d_{+}^{2}+d_{-}^{2} \leqslant|G|-(\text { sum of squares of others })=\frac{(q-1)^{2}}{2}
$$

All irreducibles characters?

- 1_{G} : degree 1
- St $_{G}$: degree q
- $R_{\alpha}, \alpha^{2} \neq 1$: degree $q+1$ (there are $(q-3) / 2$ such characters)
- $R_{\alpha_{0}}^{ \pm}$: degree $(q+1) / 2$
- $R_{\theta}^{\prime}, \theta^{2} \neq 1$: degree $q-1$ (there are $(q-1) / 2$ such characters)
- $R_{\theta_{0}}^{\prime \pm}$: degree $d_{ \pm}$

So $d_{+}+d_{-}=q-1$ and

$$
d_{+}^{2}+d_{-}^{2} \leqslant|G|-(\text { sum of squares of others })=\frac{(q-1)^{2}}{2}
$$

So $d_{+}=d_{-}=\frac{q-1}{2}$ and

$$
\operatorname{Irr} G=\left\{1_{G}, \operatorname{St}_{G}, R_{\alpha}, R_{\alpha_{0}}^{ \pm}, R_{\theta}^{\prime}, R_{\theta_{0}}^{\prime \pm}\right\}
$$

What has been illustrated？

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)
- Mackey formula for Deligne-Lusztig induction

What has been illustrated？

－ 2 ＂unipotent charaters＂： $1_{G}, \mathrm{St}_{G}$（in general，the number of unipotent characters DOES NOT depend on q）
－Mackey formula for Deligne－Lusztig induction
－Parametrization of characters using character of finite subtori

What has been illustrated？

－ 2 ＂unipotent charaters＂： $1_{G}, \mathrm{St}_{G}$（in general，the number of unipotent characters DOES NOT depend on q）
－Mackey formula for Deligne－Lusztig induction
－Parametrization of characters using character of finite subtori（in general，＂Jordan decomposition＂）

What has been illustrated？

－ 2 ＂unipotent charaters＂： $1_{G}, \mathrm{St}_{G}$（in general，the number of unipotent characters DOES NOT depend on q）
－Mackey formula for Deligne－Lusztig induction
－Parametrization of characters using character of finite subtori（in general，＂Jordan decomposition＂）
－Degrees are polynomials in q

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)
- Mackey formula for Deligne-Lusztig induction
- Parametrization of characters using character of finite subtori (in general, "Jordan decomposition")
- Degrees are polynomials in q
- "Cuspidal characters" appear in the cohomology associated to "non-split" tori

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)
- Mackey formula for Deligne-Lusztig induction
- Parametrization of characters using character of finite subtori (in general, "Jordan decomposition")
- Degrees are polynomials in q
- "Cuspidal characters" appear in the cohomology associated to "non-split" tori

What has been hidden?

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)
- Mackey formula for Deligne-Lusztig induction
- Parametrization of characters using character of finite subtori (in general, "Jordan decomposition")
- Degrees are polynomials in q
- "Cuspidal characters" appear in the cohomology associated to "non-split" tori

What has been hidden?

- Étale topology... •••

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)
- Mackey formula for Deligne-Lusztig induction
- Parametrization of characters using character of finite subtori (in general, "Jordan decomposition")
- Degrees are polynomials in q
- "Cuspidal characters" appear in the cohomology associated to "non-split" tori

What has been hidden?

- Étale topology... •••
- Character values

What has been illustrated?

- 2 "unipotent charaters": $1_{G}, \mathrm{St}_{G}$ (in general, the number of unipotent characters DOES NOT depend on q)
- Mackey formula for Deligne-Lusztig induction
- Parametrization of characters using character of finite subtori (in general, "Jordan decomposition")
- Degrees are polynomials in q
- "Cuspidal characters" appear in the cohomology associated to "non-split" tori

What has been hidden?

- Étale topology... •••
- Character values
- Weyl groups

Some references

- Deligne-Lusztig, Representations of finite reductive groups, Ann. of Math. 103 (1976), 103-161
- Lusztig, Representations of finite Chevalley groups, CBMS Proc. Conf. (1977)
- Lusztig's orange book, Characters of finite reductive groups, Ann. of Math. Studies (1984)

[^0]:

[^1]:

