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Eigenvalues of F

F (H1
c (Y)θ) = H1

c (Y)θ−1

F stabilizes H1
c (Y)1 and H1

c (Y)θ0

By Schur’s lemma, only one eigenvalue on H1
c (Y)1: ρ1 ?

I Let X = Y/µq+1 = P1 \ P1(Fq)
I H1

c (X) = H1
c (Y)1

I 0 = |XF | =︸︷︷︸
Lefschetz

q − Tr(F ,H1
c (Y)1︸ ︷︷ ︸
dim. q

).

⇒ ρ1 = 1.
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c (Y)1) − Tr(F ,H1

c (Y)θ0)⇒ ρ+ = −ρ−.
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Eigenvalues of F2

F 2 stabilizes H i
c(Y)θ and its action commutes with G

Schur’s lemma ⇒ F 2 acts by scalar mult. by λθ on H1
c (Y)θ

(well..., except for θ0 where an extra-argument is needed)
Note that λ1 = 1

By Lefschetz Formula, we have, for all ξ ∈ µq+1,

|YξF 2

| = q2︸︷︷︸
action on H2

c

−qλ1 −
∑
θ6=1

θ(ξ)λθ(q − 1)

= q2 − 1 − (q − 1)
∑

θ

θ(ξ)λθ.

On the other hand, |YξF 2
| =

{
q3 − q if ξ = −1

0 otherwise

⇒ So λθ = −θ(−1)q if θ 6= 1
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Modular representations

From now on, `|q + 1, ` odd

Let S be the Sylow subgroup of µq+1.

We identify S∧ and (µq+1)
∧
` .

Blocks?

If α2 6= 1, then {Rα} is a block of defect zero

{R+
α0

} and {R−
α0

} are two blocks of defect zero

(1) If θ is an `-regular linear character of µq+1 such that θ2 6= 1,
then {R ′

θη | η ∈ S∧} is a block of defect S .

(2) {R ′+
θ0
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What has been illustrated?

Blocks are parametrized using the ` ′-part of linear characters of
tori (in general, see Broué-Michel)

Some Morita equivalences: “Jordan decomposition” (in general,
see Broué for tori and B.-Rouquier for a more general situation)

Derived equivalences: Broué’s abelian defect conjecture admits a
“geometric version” (proved only for the “Coxeter” torus of
GLn(Fq) by B.-Rouquier: cyclic defect...)

Role of the Frobenius

What has been omitted?

Non-abelian defect (for ` = 2 in G , see Gonard’s thesis)

Decomposition matrices, Schur algebras

...
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see Broué for tori and B.-Rouquier for a more general situation)
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Some Morita equivalences: “Jordan decomposition” (in general,
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Curiosities

Abhyankar’s conjecture (Raynaud’s Theorem): A finite
group Γ is the Galois group of a Galois étale covering of A1(F)

if and only if it is generated by its Sylow p-subgroups.

Example: Γ = SL2(Fq),

Y −→ A1(F)

(x , y) 7−→ xyq2
− yxq2

q = 7, Y/{±1} is acted on by PSL2(F7) ' GL3(F2): it is the
reduction modulo 7 of the Klein’s quartic (whose group of
automorphism is exactly PSL2(F7), reaching Hurwitz’ bound).
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