Introduction to Deligne-Lusztig Theory

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)
Berkeley (MSRI), Feb. 2008

Eigenvalues of \mathbf{F}

Eigenvalues of \mathbf{F}

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$

Eigenvalues of \mathbf{F}

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$

Eigenvalues of F

－$F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
－F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
－By Schur＇s lemma，only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?

$$
\text { Let } \mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)
$$

Eigenvalues of \mathbf{F}

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
- $0=\left|\mathbf{X}^{F}\right|$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
- $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\text {dim. } q})$.

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
- $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\operatorname{dim} . q})$.

$$
\Rightarrow \rho_{1}=1
$$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
- $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\text {dim. } q})$.

$$
\Rightarrow \rho_{1}=1
$$

- By Schur's lemma, two eigenvalues on $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}: \rho_{+}, \rho_{-}$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
- $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\text {dim. } q})$.

$$
\Rightarrow \rho_{1}=1
$$

- By Schur's lemma, two eigenvalues on $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}: \rho_{+}, \rho_{-}$with multiplicities $(q-1) / 2$
- $0=\left|\mathbf{Y}^{F}\right|$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?
- Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
- $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
- $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\text {dim. } q})$.

$$
\Rightarrow \rho_{1}=1
$$

- By Schur's lemma, two eigenvalues on $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}: \rho_{+}, \rho_{-}$with multiplicities $(q-1) / 2$
- $0=\left|\mathbf{Y}^{F}\right|=q-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})\right)$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?

> - Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
> - $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
> - $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\text {dim. } q})$.

$$
\Rightarrow \rho_{1}=1
$$

- By Schur's lemma, two eigenvalues on $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}: \rho_{+}, \rho_{-}$with multiplicities $(q-1) / 2$
- $0=\left|\mathbf{Y}^{F}\right|=q-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})\right)=$ $q-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})_{1}\right)-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})_{\theta_{0}}\right)$

Eigenvalues of F

- $F\left(H_{c}^{1}(\mathbf{Y})_{\theta}\right)=H_{c}^{1}(\mathbf{Y})_{\theta^{-1}}$
- F stabilizes $H_{c}^{1}(\mathbf{Y})_{1}$ and $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}$
- By Schur's lemma, only one eigenvalue on $H_{c}^{1}(\mathbf{Y})_{1}: \rho_{1}$?

> - Let $\mathbf{X}=\mathbf{Y} / \mu_{q+1}=\mathbf{P}^{1} \backslash \mathbf{P}^{1}\left(\mathbb{F}_{q}\right)$
> - $H_{c}^{1}(\mathbf{X})=H_{c}^{1}(\mathbf{Y})_{1}$
> - $0=\left|\mathbf{X}^{F}\right| \underbrace{=}_{\text {Lefschetz }} q-\operatorname{Tr}(F, \underbrace{H_{c}^{1}(\mathbf{Y})_{1}}_{\text {dim. } q})$.

$$
\Rightarrow \rho_{1}=1
$$

- By Schur's lemma, two eigenvalues on $H_{c}^{1}(\mathbf{Y})_{\theta_{0}}: \rho_{+}, \rho_{-}$with multiplicities $(q-1) / 2$

$$
\begin{aligned}
- & 0=\left|\mathbf{Y}^{F}\right|=q-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})\right)= \\
& q-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})_{1}\right)-\operatorname{Tr}\left(F, H_{c}^{1}(\mathbf{Y})_{\theta_{0}}\right) \\
\Rightarrow & \rho_{+}=-\rho_{-}
\end{aligned}
$$

Eigenvalues of \mathbf{F}^{2}

Eigenvalues of \mathbf{F}^{2}

－F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed)

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\left|\mathbf{Y}^{\xi F^{2}}\right|
$$

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\left|\mathbf{Y}^{\xi F^{2}}\right|=\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1}
$$

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\left|\mathbf{Y}^{\xi F^{2}}\right|=\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1} \theta(\xi)
$$

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\left|\mathbf{Y}^{\xi F^{2}}\right|=\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1} \theta(\xi) \lambda_{\theta}
$$

Eigenvalues of \mathbf{F}^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\left|\mathbf{Y}^{\Sigma F^{2}}\right|=\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1} \theta(\xi) \lambda_{\theta}(q-1)
$$

Eigenvalues of F^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\begin{aligned}
\left|\mathbf{Y}^{\xi F^{2}}\right| & =\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1} \theta(\xi) \lambda_{\theta}(q-1) \\
& =q^{2}-1-(q-1) \sum_{\theta} \theta(\xi) \lambda_{\theta}
\end{aligned}
$$

Eigenvalues of F^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\begin{aligned}
\left|\mathbf{Y}^{\xi F^{2}}\right| & =\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1} \theta(\xi) \lambda_{\theta}(q-1) \\
& =q^{2}-1-(q-1) \sum_{\theta} \theta(\xi) \lambda_{\theta}
\end{aligned}
$$

- On the other hand, $\left|\mathbf{Y}^{\xi F^{2}}\right|= \begin{cases}q^{3}-q & \text { if } \xi=-1 \\ 0 & \text { otherwise }\end{cases}$

Eigenvalues of F^{2}

- F^{2} stabilizes $H_{c}^{i}(\mathbf{Y})_{\theta}$ and its action commutes with G
- Schur's lemma $\Rightarrow F^{2}$ acts by scalar mult. by λ_{θ} on $H_{c}^{1}(\mathbf{Y})_{\theta}$ (well..., except for θ_{0} where an extra-argument is needed) Note that $\lambda_{1}=1$
- By Lefschetz Formula, we have, for all $\xi \in \mu_{q+1}$,

$$
\begin{aligned}
\left|\mathbf{Y}^{\xi F^{2}}\right| & =\underbrace{q^{2}}_{\text {action on } H_{c}^{2}}-q \lambda_{1}-\sum_{\theta \neq 1} \theta(\xi) \lambda_{\theta}(q-1) \\
& =q^{2}-1-(q-1) \sum_{\theta} \theta(\xi) \lambda_{\theta}
\end{aligned}
$$

- On the other hand, $\left|\mathbf{Y}^{\xi F^{2}}\right|= \begin{cases}q^{3}-q & \text { if } \xi=-1 \\ 0 & \text { otherwise }\end{cases}$ \Rightarrow So $\lambda_{\theta}=-\theta(-1) q$ if $\theta \neq 1$

Modular representations

Modular representations

From now on, $\ell \mid q+1, \ell$ odd

Modular representations

From now on，$\ell \mid q+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1} ．

Modular representations

From now on, $\ell \mid q+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right)_{\ell}^{\wedge}$.

Modular representations

From now on, $\ell \mid q+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right)_{\ell}^{\wedge}$.
Blocks?

Modular representations

From now on, $\ell \mid q+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right)_{\ell}^{\wedge}$.

Blocks?

- If $\alpha^{2} \neq 1$, then $\left\{R_{\alpha}\right\}$ is a block of defect zero

Modular representations

From now on, $\ell \mid q+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right)_{\ell}^{\wedge}$.

Blocks?

- If $\alpha^{2} \neq 1$, then $\left\{R_{\alpha}\right\}$ is a block of defect zero
- $\left\{R_{\alpha_{0}}^{+}\right\}$and $\left\{R_{\alpha_{0}}^{-}\right\}$are two blocks of defect zero

Modular representations

From now on, $\ell \mid \mathbf{q}+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right) \wedge$.

Blocks?

- If $\alpha^{2} \neq 1$, then $\left\{R_{\alpha}\right\}$ is a block of defect zero
- $\left\{R_{\alpha_{0}}^{+}\right\}$and $\left\{R_{\alpha_{0}}^{-}\right\}$are two blocks of defect zero
(1) If θ is an ℓ-regular linear character of μ_{q+1} such that $\theta^{2} \neq 1$, then $\left\{R_{\theta \eta}^{\prime} \mid \eta \in S^{\wedge}\right\}$ is a block of defect S.

Modular representations

From now on, $\ell \mid \mathbf{q}+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right) \hat{\ell}$.

Blocks?

- If $\alpha^{2} \neq 1$, then $\left\{R_{\alpha}\right\}$ is a block of defect zero
- $\left\{R_{\alpha_{0}}^{+}\right\}$and $\left\{R_{\alpha_{0}}^{-}\right\}$are two blocks of defect zero
(1) If θ is an ℓ-regular linear character of μ_{q+1} such that $\theta^{2} \neq 1$, then $\left\{R_{\theta \eta}^{\prime} \mid \eta \in S^{\wedge}\right\}$ is a block of defect S.
(2) $\left\{R_{\theta_{0}}^{\prime+}, R_{\theta_{0}}^{\prime-}\right\} \cup\left\{R_{\theta_{0} \eta}^{\prime} \mid \eta \in S^{\wedge}, \eta \neq 1\right\}$ is a block of defect S

Modular representations

From now on, $\ell \mid \mathbf{q}+1, \ell$ odd
Let S be the Sylow subgroup of μ_{q+1}.
We identify S^{\wedge} and $\left(\mu_{q+1}\right) \wedge$.

Blocks?

- If $\alpha^{2} \neq 1$, then $\left\{R_{\alpha}\right\}$ is a block of defect zero
- $\left\{R_{\alpha_{0}}^{+}\right\}$and $\left\{R_{\alpha_{0}}^{-}\right\}$are two blocks of defect zero
(1) If θ is an ℓ-regular linear character of μ_{q+1} such that $\theta^{2} \neq 1$, then $\left\{R_{\theta \eta}^{\prime} \mid \eta \in S^{\wedge}\right\}$ is a block of defect S.
(2) $\left\{R_{\theta_{0}}^{\prime+}, R_{\theta_{0}}^{\prime-}\right\} \cup\left\{R_{\theta_{0} \eta}^{\prime} \mid \eta \in S^{\wedge}, \eta \neq 1\right\}$ is a block of defect S
(3) $\left\{1_{G}, \operatorname{St}_{G}\right\} \cup\left\{R_{\eta}^{\prime} \mid \eta \in S^{\wedge}, \eta \neq 1\right\}$: principal block (defect S).

What has been illustrated？

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: "Jordan decomposition" (in general, see Broué for tori and B.-Rouquier for a more general situation)

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: "Jordan decomposition" (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué's abelian defect conjecture admits a "geometric version" (proved only for the "Coxeter" torus of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ by B.-Rouquier: cyclic defect...)

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: "Jordan decomposition" (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué's abelian defect conjecture admits a "geometric version" (proved only for the "Coxeter" torus of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: "Jordan decomposition" (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué's abelian defect conjecture admits a "geometric version" (proved only for the "Coxeter" torus of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been omitted?

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: "Jordan decomposition" (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué's abelian defect conjecture admits a "geometric version" (proved only for the "Coxeter" torus of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been omitted?

- Non-abelian defect (for $\ell=2$ in G, see Gonard's thesis)

What has been illustrated?

- Blocks are parametrized using the ℓ^{\prime}-part of linear characters of tori (in general, see Broué-Michel)
- Some Morita equivalences: "Jordan decomposition" (in general, see Broué for tori and B.-Rouquier for a more general situation)
- Derived equivalences: Broué's abelian defect conjecture admits a "geometric version" (proved only for the "Coxeter" torus of $\mathrm{GL}_{n}\left(\mathbb{F}_{q}\right)$ by B.-Rouquier: cyclic defect...)
- Role of the Frobenius

What has been omitted?

- Non-abelian defect (for $\ell=2$ in G, see Gonard's thesis)
- Decomposition matrices, Schur algebras
- ...

Curiosities

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.
Example: $\Gamma=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$,

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.
Example: $\Gamma=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
\begin{array}{ccc}
\mathbf{Y} & \longrightarrow & \mathbf{A}^{1}(\mathbb{F}) \\
(x, y) & \longmapsto x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.
Example: $\Gamma=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
\begin{array}{ccc}
\mathrm{Y} & \longrightarrow & \mathrm{~A}^{1}(\mathbb{F}) \\
(x, y) & \longmapsto x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

- $q=7, \mathbf{Y} /\{ \pm 1\}$ is acted on by $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.
Example: $\Gamma=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
\begin{array}{ccc}
\mathrm{Y} & \longrightarrow & \mathrm{~A}^{1}(\mathbb{F}) \\
(x, y) & \longmapsto x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

- $q=7, \mathbf{Y} /\{ \pm 1\}$ is acted on by $\operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right) \simeq \mathbf{G L}_{3}\left(\mathbb{F}_{2}\right)$:

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.
Example: $\Gamma=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
\begin{array}{clc}
\mathrm{Y} & \longrightarrow & \mathrm{~A}^{1}(\mathbb{F}) \\
(x, y) & \longmapsto x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

- $q=7, \mathbf{Y} /\{ \pm 1\}$ is acted on by $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right) \simeq \mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$: it is the reduction modulo 7 of the Klein's quartic

Curiosities

- Abhyankar's conjecture (Raynaud's Theorem): A finite group Γ is the Galois group of a Galois étale covering of $\mathbf{A}^{1}(\mathbb{F})$ if and only if it is generated by its Sylow p-subgroups.
Example: $\Gamma=\mathrm{SL}_{2}\left(\mathbb{F}_{q}\right)$,

$$
\begin{array}{ccc}
\mathbf{Y} & \longrightarrow & \mathbf{A}^{1}(\mathbb{F}) \\
(x, y) & \longmapsto x y^{q^{2}}-y x^{q^{2}}
\end{array}
$$

- $q=7, \mathbf{Y} /\{ \pm 1\}$ is acted on by $\operatorname{PSL}_{2}\left(\mathbb{F}_{7}\right) \simeq \mathrm{GL}_{3}\left(\mathbb{F}_{2}\right)$: it is the reduction modulo 7 of the Klein's quartic (whose group of automorphism is exactly $\mathrm{PSL}_{2}\left(\mathbb{F}_{7}\right)$, reaching Hurwitz' bound).

