On Kazhdan-Lusztig cells in type *B*

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)

Solstice 2008 (Paris) - June 2008

Solstice 2008 (Paris) - June 2008

- (W_n, S_n) Weyl group of type B_n
- $S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

$$\underbrace{t \quad s_1 \quad s_2 \quad \dots \quad s_{n-1}}_{\bigcirc \longrightarrow \bigcirc \bigcirc } \cdots \cdots \xrightarrow{\bigcirc \bigcirc }$$

• $\ell: W_n \to \mathbb{N} = \{0, 1, 2, \dots\}$ length function

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

 $t \quad s_1 \quad s_2 \quad \dots \quad s_{n-1}$

- 12

- $\ell: W_n \to \mathbb{N} = \{0, 1, 2, \dots\}$ length function
- Γ : totally ordered abelian group

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

 $t \quad s_1 \quad s_2 \quad \dots \quad s_{n-1}$

- $\ell: \textit{W}_n \rightarrow \mathbb{N} = \{0, 1, 2, \dots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_n \longrightarrow \Gamma$ satisfying $\varphi(s) = \varphi(s')$ if s and s' are conjugate in W_n

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

 $t \quad s_1 \quad s_2 \quad \dots \quad s_{n-1}$

- $\ell: W_n \to \mathbb{N} = \{0, 1, 2, \dots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_n \longrightarrow \Gamma$ satisfying $\varphi(s) = \varphi(s')$ if s and s' are conjugate in W_n , i.e.

$$b := \varphi(t), \quad a := \varphi(s_1) = \cdots = \varphi(s_{n-1}).$$

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

• t s_1 s_2 s_{n-1}

а

• $\ell: W_n \to \mathbb{N} = \{0, 1, 2, \ldots\}$ length function

• Γ : totally ordered abelian group

b

• $\varphi: S_n \longrightarrow \Gamma$ satisfying $\varphi(s) = \varphi(s')$ if s and s' are conjugate in W_n , i.e.

а

$$b := \varphi(t), \quad a := \varphi(s_1) = \cdots = \varphi(s_{n-1}).$$

 \bigcirc

Notation

• (W_n, S_n) Weyl group of type B_n

•
$$S_n = \{t, s_1, s_2, \dots, s_{n-1}\}$$

- $\ell: W_n \to \mathbb{N} = \{0, 1, 2, \dots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_n \longrightarrow \Gamma$ satisfying $\varphi(s) = \varphi(s')$ if s and s' are conjugate in W_n , i.e.

$$b := \varphi(t), \quad a := \varphi(s_1) = \cdots = \varphi(s_{n-1}).$$

• For simplification, a, b > 0.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Notation

• $A = \mathbb{Z}[\Gamma]$

•
$$A = \mathbb{Z}[\Gamma] = \bigoplus_{\gamma \in \Gamma} \mathbb{Z}e^{\gamma}$$

•
$$A = \mathbb{Z}[\Gamma] = \bigoplus_{\gamma \in \Gamma} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \bigoplus_{\gamma < 0} \mathbb{Z}e^{\gamma}$$

•
$$A = \mathbb{Z}[\Gamma] = \bigoplus_{\gamma \in \Gamma} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \bigoplus_{\gamma < 0} \mathbb{Z}e^{\gamma}$$

• $Q = e^{b}, \ q = e^{a}$

Notation

•
$$A = \mathbb{Z}[\Gamma] = \underset{\gamma \in \Gamma}{\oplus} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \underset{\gamma < 0}{\oplus} \mathbb{Z}e^{\gamma}$$

• $Q = e^{b}$, $q = e^{a}$ (Q and q are not necessarily algebraically independent)

•
$$A = \mathbb{Z}[\Gamma] = \underset{\gamma \in \Gamma}{\oplus} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \underset{\gamma < 0}{\oplus} \mathbb{Z}e^{\gamma}$$

- $Q = e^{b}$, $q = e^{a}$ (Q and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_n = \underset{w \in W_n}{\oplus} AT_w$

•
$$A = \mathbb{Z}[\Gamma] = \underset{\gamma \in \Gamma}{\oplus} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \underset{\gamma < 0}{\oplus} \mathbb{Z}e^{\gamma}$$

- $Q = e^{b}$, $q = e^{a}$ (Q and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_n = \underset{w \in W_n}{\oplus} AT_w$

$$\begin{cases} T_x T_y = T_{xy} & \text{if } \ell(xy) = \ell(x) + \ell(y) \\ (T_t - Q)(T_t + Q^{-1}) = 0 \\ (T_{s_i} - q)(T_{s_i} + q^{-1}) = 0 & \text{if } 1 \leqslant i \leqslant n - 1. \end{cases}$$

•
$$A = \mathbb{Z}[\Gamma] = \underset{\gamma \in \Gamma}{\oplus} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \underset{\gamma < 0}{\oplus} \mathbb{Z}e^{\gamma}$$

- $Q = e^{b}$, $q = e^{a}$ (Q and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_n = \underset{w \in W_n}{\oplus} AT_w$

$$\begin{cases} T_x T_y = T_{xy} & \text{if } \ell(xy) = \ell(x) + \ell(y) \\ (T_t - Q)(T_t + Q^{-1}) = 0 \\ (T_{s_i} - q)(T_{s_i} + q^{-1}) = 0 & \text{if } 1 \leqslant i \leqslant n - 1. \end{cases}$$

•
$$\mathcal{H}_n^{<0} = \bigoplus_{w \in W_n} A_{<0} T_w$$

Notation

•
$$A = \mathbb{Z}[\Gamma] = \underset{\gamma \in \Gamma}{\oplus} \mathbb{Z}e^{\gamma}, \ A_{<0} = \mathbb{Z}[\Gamma_{<0}] = \underset{\gamma < 0}{\oplus} \mathbb{Z}e^{\gamma}$$

- $Q = e^{b}$, $q = e^{a}$ (Q and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_n = \bigoplus_{w \in W_n} AT_w$

$$\begin{cases} T_x T_y = T_{xy} & \text{if } \ell(xy) = \ell(x) + \ell(y) \\ (T_t - Q)(T_t + Q^{-1}) = 0 \\ (T_{s_i} - q)(T_{s_i} + q^{-1}) = 0 & \text{if } 1 \leqslant i \leqslant n - 1. \end{cases}$$

•
$$\mathcal{H}_n^{<0} = \bigoplus_{w \in W_n} A_{<0} T_w$$

• Involution: $\overline{e^{\gamma}} = e^{-\gamma}$, $\overline{T}_w = T_{w^{-1}}^{-1}$

$$\left\{ egin{array}{l} \overline{C}_w = C_w \ C_w \equiv T_w \mod \mathcal{H}_n^{<0} \end{array}
ight.$$

< □ > < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

$$\begin{cases} \overline{C}_w = C_w \\ C_w \equiv T_w \mod \mathcal{H}_n^{<0} \end{cases}$$

Example. $C_1 = T_1$,

$$\begin{cases} \overline{C}_w = C_w \\ C_w \equiv T_w \mod \mathcal{H}_n^{<0} \end{cases}$$

< □ > < (四 > < (回 >) < (u >

Example. $C_1 = T_1$, $C_t = T_t + Q^{-1}$, $C_{s_i} = T_{s_i} + q^{-1}$

$$egin{cases} \overline{C}_w = C_w \ C_w \equiv T_w \mod \mathcal{H}_n^{<0} \end{cases}$$

Example.
$$C_1 = T_1$$
, $C_t = T_t + Q^{-1}$, $C_{s_i} = T_{s_i} + q^{-1}$

$$\begin{split} \mathcal{C}_{s_{1}ts_{1}} &= \mathcal{T}_{s_{1}ts_{1}} + q^{-1}(\mathcal{T}_{s_{1}t} + \mathcal{T}_{ts_{1}}) + q^{-2}\mathcal{T}_{t} \\ &+ Q^{-1}q^{-1}(\mathcal{T}_{s_{1}} + q^{-1}) \times \begin{cases} (1+q^{2}) & \text{if } b > a, \\ 1 & \text{if } b = a, \\ (1-Q^{2}) & \text{if } b < a \end{cases} \end{split}$$

《曰》 《聞》 《臣》 《臣》 三臣

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 臣 めんで

(1) $\Gamma = \mathbb{Z}$, $v = e^1$, $A = \mathbb{Z}[v, v^{-1}]$, $a, b \in \mathbb{Z}_{>0}$.

(1)
$$\Gamma = \mathbb{Z}, v = e^1, A = \mathbb{Z}[v, v^{-1}], a, b \in \mathbb{Z}_{>0}.$$

(2) $\Gamma = \mathbb{Z}^2, a = (0, 1), b = (1, 0)$

(1)
$$\Gamma = \mathbb{Z}, v = e^1, A = \mathbb{Z}[v, v^{-1}], a, b \in \mathbb{Z}_{>0}.$$

(2) $\Gamma = \mathbb{Z}^2, a = (0, 1), b = (1, 0), A = \mathbb{Z}[Q, Q^{-1}, q, q^{-1}]$

Remarks. • Situation (1) occurs in representation theory of finite reductive groups with $2b/a \in \mathbb{Z}$

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Remarks. • Situation (1) occurs in representation theory of finite reductive groups with $2b/a \in \mathbb{Z}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

• General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_n :

Remarks. • Situation (1) occurs in representation theory of finite reductive groups with $2b/a \in \mathbb{Z}$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_n : works of
 - Ariki (decomposition matrices and Fock space)

Remarks. • Situation (1) occurs in representation theory of finite reductive groups with $2b/a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_n : works of
 - Ariki (decomposition matrices and Fock space)
 - Uglov, Jacon, Geck-Jacon: parametrization of simple $k\mathcal{H}_n$ -modules, canonical sets

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Remarks. • Situation (1) occurs in representation theory of finite reductive groups with $2b/a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_n : works of
 - Ariki (decomposition matrices and Fock space)
 - Uglov, Jacon, Geck-Jacon: parametrization of simple $k\mathcal{H}_n$ -modules, canonical sets
 - Geck: cellular structures on \mathcal{H}_n coming from KL-theory

Remarks. • Situation (1) occurs in representation theory of finite reductive groups with $2b/a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_n : works of
 - Ariki (decomposition matrices and Fock space)
 - Uglov, Jacon, Geck-Jacon: parametrization of simple $k\mathcal{H}_n$ -modules, canonical sets
 - Geck: cellular structures on \mathcal{H}_n coming from KL-theory

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 三臣……

Jacon-B.

• If $x, y \in W_n$, we write $x \xleftarrow{\ } y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >
• If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

• Let \leq_L be the transitive closure of \leftarrow^L :

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

- If $x, y \in W_n$, we write $x \xleftarrow{l} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

《曰》 《圖》 《理》 《理》 三世

Definition

A *left cell* is an equivalence class for the relation \sim_L .

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

A *left cell* is an equivalence class for the relation \sim_L .

• If \mathcal{C} is a left cell, we set $\left\langle \right\rangle$

$$I_{\leq_L \mathcal{C}} = \bigoplus_{x \leq_I \mathcal{C}} AC_x$$

< □ > < (四 > < (回 >) < (u >

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

A *left cell* is an equivalence class for the relation \sim_L .

L

• If \mathcal{C} is a left cell, we set \langle

$$\left\{\begin{array}{l}
I_{\leq_L \mathcal{C}} = \bigoplus_{\substack{x \leq_L \mathcal{C} \\ x <_L \mathcal{C}}} AC_x\\
I_{<_L \mathcal{C}} = \bigoplus_{\substack{x <_L \mathcal{C}}} AC_x
\end{array}\right.$$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

A *left cell* is an equivalence class for the relation \sim_L .

• If \mathcal{C} is a left cell, we set

$$\begin{cases} I_{\leq_{L}C} = \bigoplus_{x \leq_{L}C} AC_{x} \\ I_{\leq_{L}C} = \bigoplus_{x <_{L}C} AC_{x} \\ V_{C} = I_{\leq_{L}C}/I_{<_{L}C} \end{cases}$$

< □ > < (四 > < (回 >) < (u >

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

A *left cell* is an equivalence class for the relation \sim_L .

• If \mathcal{C} is a left cell, we set \langle

$$\begin{cases} I_{\leq_{L}C} = \bigoplus_{x \leq_{L}C} AC_{x} \\ I_{<_{L}C} = \bigoplus_{x <_{L}C} AC_{x} \\ V_{C} = I_{\leq_{L}C}/I_{<_{L}C} \end{cases}$$

• By construction, $I_{\leq_L C}$ and $I_{<_L C}$ are left ideals of \mathcal{H}_n and V_C is a left \mathcal{H}_n -module

- If $x, y \in W_n$, we write $x \xleftarrow{L} y$ if there exists $h \in \mathcal{H}_n$ such that C_x occurs in hC_y
- Let ≤_L be the transitive closure of ^L: it is a preorder (reflexive and transitive)
- Let \sim_L be the equivalence relation associated to \leq_L (i.e. $x \sim_L y$ if and only if $x \leq_L y$ and $y \leq_L x$)

A *left cell* is an equivalence class for the relation \sim_L .

• If
$$\mathcal{C}$$
 is a left cell, we set

$$\begin{cases} I_{\leq_{L}C} = \bigoplus_{\substack{x \leq_{L}C}} AC_{x} \\ I_{<_{L}C} = \bigoplus_{\substack{x <_{L}C}} AC_{x} \\ V_{C} = I_{\leq_{L}C}/I_{<_{L}C} \end{cases}$$

• By construction, $I_{\leq_L C}$ and $I_{<_L C}$ are left ideals of \mathcal{H}_n and V_C is a left \mathcal{H}_n -module: V_C is called the **left cell representation** associated to C.

• One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h'$ ")

• One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h$ ")

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

• This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.

• One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h'$ ")

◆□> ◆圖> ◆目> ◆目> 三日

- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$

- One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h'$ ")
- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - ► The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$, so $x \leq_L y \iff x^{-1} \leq_R y^{-1}$

(日) (문) (문) (문) (문)

- One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h$ ")
- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - ► The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$, so $x \leq_L y \iff x^{-1} \leq_R y^{-1}$
 - Lusztig **conjectures** that \sim_{LR} is generated by \sim_{L} and \sim_{R} .

(日) (四) (문) (문) (문) (문)

- One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h$ ")
- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - ► The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$, so $x \leq_L y \iff x^{-1} \leq_R y^{-1}$
 - Lusztig **conjectures** that \sim_{LR} is generated by \sim_{L} and \sim_{R} .

Remark

The relations $\sim_{?}$ can be computed in some cases

- One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h$ ")
- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - ► The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$, so $x \leq_L y \iff x^{-1} \leq_R y^{-1}$
 - Lusztig **conjectures** that \sim_{LR} is generated by \sim_{L} and \sim_{R} .

Remark

The relations $\sim_{?}$ can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence: Kazhdan-Lusztig 1979).

- One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h$ ")
- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - ► The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$, so $x \leq_L y \iff x^{-1} \leq_R y^{-1}$
 - Lusztig **conjectures** that \sim_{LR} is generated by \sim_{L} and \sim_{R} .

Remark

The relations $\sim_{?}$ can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence: Kazhdan-Lusztig 1979).

However, the preorder \leq_L or \leq_R is in general unknown (even in the symmetric group).

- One could define $x \xleftarrow{R} y$ (" C_x occurs in some $C_y h$ ") or $x \xleftarrow{LR} y$ (" C_x occurs in some $hC_y h'$ ")
- This leads to \leq_R , \leq_{LR} , \sim_R and \sim_{LR} , right/two-sided cells.
 - ► The anti-automorphism $T_x \mapsto T_{x^{-1}}$ sends C_x to $C_{x^{-1}}$, so $x \leq_L y \iff x^{-1} \leq_R y^{-1}$
 - Lusztig **conjectures** that \sim_{LR} is generated by \sim_{L} and \sim_{R} .

Remark

The relations $\sim_{?}$ can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence: Kazhdan-Lusztig 1979).

However, the preorder \leq_L or \leq_R is in general unknown (even in the symmetric group). The preorder \leq_{LR} seems to be easier (for instance, it is given by the dominance order on partitions through the Robinson-Schensted correspondence).

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i) through

$$t \mapsto (-1,1) \quad \text{and} \quad s_i \mapsto (i,i+1)(-i,-i-1)$$

Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$

•	•	•
•	•	
•		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i) through

$$t \mapsto (-1,1) \quad \text{and} \quad s_i \mapsto (i,i+1)(-i,-i-1)$$

Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$

◆□> ◆□> ◆三> ◆三> ● 三 のへで

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i) through

$$t \mapsto (-1,1) \quad \text{and} \quad s_i \mapsto (i,i+1)(-i,-i-1)$$

Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

◆□> ◆□> ◆三> ◆三> ● 三 のへで

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i) through

 $t \mapsto (-1,1) \quad \text{and} \quad s_i \mapsto (i,i+1)(-i,-i-1)$ Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i) through

 $t \mapsto (-1,1) \quad \text{and} \quad s_i \mapsto (i,i+1)(-i,-i-1)$ Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$ \uparrow

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i + 1)(-i, -i - 1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

• • • 7	
• •	_
•	
8	
9	
	・ロト 4日ト 4 目ト 4 目 ・ 9 Q ()

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i + 1)(-i, -i - 1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i + 1)(-i, -i - 1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i + 1)(-i, -i - 1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that w(-i) = -w(i) through $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$ **Example:** $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$ \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i + 1)(-i, -i - 1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, ..., \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$
 \uparrow

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \\ & & & \uparrow \end{pmatrix} \in W_9$

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \\ & & \uparrow \end{pmatrix} \in W_9$

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \\ & & \uparrow \end{pmatrix} \in W_9$

We identify
$$W_n$$
 with the group of permutations w of
 $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that $w(-i) = -w(i)$ through
 $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$
Example: $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \\ & & & \uparrow \end{pmatrix} \in W_9$

We identify W_n with the group of permutations w of $I_n = \{\pm 1, \pm 2, \dots, \pm n\}$ such that w(-i) = -w(i) through $t \mapsto (-1, 1)$ and $s_i \mapsto (i, i+1)(-i, -i-1)$ **Example:** $w = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2 \end{pmatrix} \in W_9$

• $\delta_r = (r, r-1, \ldots, 1)$

◆□▶ ◆舂▶ ◆臣▶ ◆臣▶ 臣 の�?

- $\delta_r = (r, r-1, \ldots, 1)$
- SDT_r(n) = {standard domino tableaux with 2-core δ_r and n dominoes} (filled with 1, 2,..., n)

< □ > < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□

- $\delta_r = (r, r-1, \ldots, 1)$
- SDT_r(n) = {standard domino tableaux with 2-core δ_r and n dominoes} (filled with 1, 2,..., n)

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

• $\mathcal{P}_r(n) = \{ \text{partitions with 2-core } \delta_r \text{ and 2-weight } n \}$

- $\delta_r = (r, r-1, \ldots, 1)$
- SDT_r(n) = {standard domino tableaux with 2-core δ_r and n dominoes} (filled with 1, 2,..., n)

《曰》 《圖》 《理》 《理》 三世

- $\mathcal{P}_r(n) = \{ \text{partitions with 2-core } \delta_r \text{ and 2-weight } n \}$
- $\operatorname{sh}: SDT_r(n) \to \mathcal{P}_r(n)$

- $\delta_r = (r, r-1, \ldots, 1)$
- SDT_r(n) = {standard domino tableaux with 2-core δ_r and n dominoes} (filled with 1, 2,..., n)
- $\mathcal{P}_r(n) = \{ \text{partitions with 2-core } \delta_r \text{ and 2-weight } n \}$
- $\mathbf{sh}: SDT_r(n) \to \mathcal{P}_r(n)$
- SDT⁽²⁾_r(n) = {pairs of standard domino tableaux of the same shape}

(日) (四) (문) (문) (문) (문)

$$\begin{array}{rcl} \mathcal{W}_n & \stackrel{\sim}{\longrightarrow} & SDT_r^{(2)}(n) \\ w & \longmapsto & (D_r(w), D_r(w^{-1})) \end{array}$$

$$\begin{array}{rcl} \mathcal{W}_n & \stackrel{\sim}{\longrightarrow} & SDT_r^{(2)}(n) \\ w & \longmapsto & (D_r(w), D_r(w^{-1})) \end{array}$$

< □ > < (□ > < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >) < (□ >

$$\begin{array}{rcl} W_n & \stackrel{\sim}{\longrightarrow} & SDT_r^{(2)}(n) \\ w & \longmapsto & (D_r(w), D_r(w^{-1})) \end{array}$$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume *a*, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$

$$\begin{array}{rcl} W_n & \stackrel{\sim}{\longrightarrow} & SDT_r^{(2)}(n) \\ w & \longmapsto & (D_r(w), D_r(w^{-1})) \end{array}$$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume a, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)

$$\begin{array}{rcl} W_n & \stackrel{\sim}{\longrightarrow} & SDT_r^{(2)}(n) \\ w & \longmapsto & (D_r(w), D_r(w^{-1})) \end{array}$$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume *a*, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$

• $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)

• $w \leq_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) \trianglelefteq \operatorname{sh}(D_r(w'))$

Assume a, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

• $w \leq_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) \trianglelefteq \operatorname{sh}(D_r(w'))$

Assume *a*, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)
- $w \leq_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) \trianglelefteq \operatorname{sh}(D_r(w'))$

Conjecture B (Geck-Iancu-Lam-B. 2003)

Let $r \ge 1$ and assume that b = ra > 0.

Assume *a*, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)
- $w \leq_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) \trianglelefteq \operatorname{sh}(D_r(w'))$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \ge 1$ and assume that b = ra > 0. Then the left (resp. right, two-sided) cells are the **minimal** subsets X of W_n such that:

◆□ > → ● > → ● > → ● >

臣

Assume *a*, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)
- $w \leq_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) \trianglelefteq \operatorname{sh}(D_r(w'))$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \ge 1$ and assume that b = ra > 0. Then the left (resp. right, two-sided) cells are the **minimal** subsets X of W_n such that:

• X is a union of left (resp. right, two-sided) combinatorials *r*-cells;

Assume *a*, b > 0 and assume that $0 \le ra < b < (r+1)a$. Then:

- $w \sim_L w'$ if and only if $D_r(w^{-1}) = D_r(w'^{-1})$
- $w \sim_R w'$ if and only if $D_r(w) = D_r(w')$
- $w \sim_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) = \operatorname{sh}(D_r(w'))$ (Lusztig)
- $w \leq_{LR} w'$ if and only if $\operatorname{sh}(D_r(w)) \trianglelefteq \operatorname{sh}(D_r(w'))$

Conjecture B (Geck-Iancu-Lam-B. 2003)

Let $r \ge 1$ and assume that b = ra > 0. Then the left (resp. right, two-sided) cells are the **minimal** subsets X of W_n such that:

- X is a union of left (resp. right, two-sided) combinatorials *r*-cells;
- X is a union of left (resp. right, two-sided) combinatorials (r-1)-cells.

Theorem (B. 2008)

For all choices of $\varphi: S_n \to \Gamma_{>0}$, a Kazhdan-Lusztig cell is a union of "combinatorial cells".

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (B. 2008)

For all choices of $\varphi : S_n \to \Gamma_{>0}$, a Kazhdan-Lusztig cell is a union of "combinatorial cells".

Corollary If $b \notin \{a, 2a, ..., (n-1)a\}$ and if Lusztig's Conjectures **P1,..., P15** hold, then Conjectures A and B hold.

《曰》 《聞》 《臣》 《臣》 三臣

Theorem (B. 2008)

For all choices of $\varphi : S_n \to \Gamma_{>0}$, a Kazhdan-Lusztig cell is a union of "combinatorial cells".

Corollary If $b \notin \{a, 2a, ..., (n-1)a\}$ and if Lusztig's Conjectures **P1,..., P15** hold, then Conjectures A and B hold.

REMARK - It should be possible to remove the hypothesis on b in the previous corollary using work of Pietraho.

《曰》 《聞》 《臣》 《臣》 三臣

◆□▶ ◆御▶ ◆臣▶ ◆臣▶ 臣 の�?

Lemma (1)

Let $w \in W_n$, let $i \in I_{n-1}^+$ and assume that one of the following holds: (1) $i \ge 2$ and w(i) < w(i-1) < w(i+1), (2) $i \le n-2$ and w(i) < w(i+2) < w(i+1). Then $w \sim_R ws_i$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Lemma (1)

Let $w \in W_n$, let $i \in I_{n-1}^+$ and assume that one of the following holds: (1) $i \ge 2$ and w(i) < w(i-1) < w(i+1), (2) $i \le n-2$ and w(i) < w(i+2) < w(i+1). Then $w \sim_R ws_i$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Lemma (2)

Let $w \in W_n$ and let $i \in I_{n-1}^+$ be such that $b \ge ia$ and w(i)w(i+1) < 0. Then $w \sim_R ws_i$.

Lemma (1)

Let $w \in W_n$, let $i \in I_{n-1}^+$ and assume that one of the following holds: (1) $i \ge 2$ and w(i) < w(i-1) < w(i+1), (2) $i \le n-2$ and w(i) < w(i+2) < w(i+1). Then $w \sim_R ws_i$.

コト イヨト ヨー ショ

Lemma (2)

Let $w \in W_n$ and let $i \in I_{n-1}^+$ be such that $b \ge ia$ and w(i)w(i+1) < 0. Then $w \sim_R ws_i$.

Lemma (3)

Let $w \in W_n$ and let $i \in I_{n-1}^+$ be such that $b \leq ia$ and $|w(1)| > |w(2)| > \cdots > |w(i+1)|$. Then $w \sim_R wt$.

Lemma 2 is implied by

Lemma

Let $l \in \{1, ..., n-1\}$ and assume that $b \ge (n-1)a$. Then the coefficient of $C_{a_l\sigma_{[l+1,n]}}$ in $C_tC_{s_{n-1}\cdots s_{l+1}s_ls_1s_2\cdots s_{l-1}a_l\sigma_{[l+1,n]}}$ is non-zero!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Lemma 2 is implied by

Lemma

Let $l \in \{1, ..., n-1\}$ and assume that $b \ge (n-1)a$. Then the coefficient of $C_{a_l\sigma_{[l+1,n]}}$ in $C_tC_{s_{n-1}\cdots s_{l+1}s_ls_1s_2\cdots s_{l-1}a_l\sigma_{[l+1,n]}}$ is non-zero!

Lemma 3 is implied by

Lemma

Let
$$l \in \{1, ..., n-1\}$$
 and assume that $b \leq (n-1)a$. Then $a_{l-1}\sigma_{[l,n]} \xleftarrow{L} a_{l}\sigma_{[l,n]}$.

Lemma 2 is implied by

Lemma

Let $l \in \{1, ..., n-1\}$ and assume that $b \ge (n-1)a$. Then the coefficient of $C_{a_l\sigma_{[l+1,n]}}$ in $C_tC_{s_{n-1}\cdots s_{l+1}s_ls_1s_2\cdots s_{l-1}a_l\sigma_{[l+1,n]}}$ is non-zero!

Lemma 3 is implied by

Lemma

Let
$$l \in \{1, ..., n-1\}$$
 and assume that $b \leq (n-1)a$. Then $a_{l-1}\sigma_{[l,n]} \xleftarrow{L} a_{l}\sigma_{[l,n]}$.