On Kazhdan-Lusztig cells in type B

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)
Solstice 2008 (Paris) - June 2008

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function

Weyl group

Notation

－$\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
－$S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

－$\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
－Γ ：totally ordered abelian group

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_{n} \longrightarrow \Gamma$ satisfying $\varphi(s)=\varphi\left(s^{\prime}\right)$ if s and s^{\prime} are conjugate in W_{n}

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_{n} \longrightarrow \Gamma$ satisfying $\varphi(s)=\varphi\left(s^{\prime}\right)$ if s and s^{\prime} are conjugate in W_{n}, i.e.

$$
b:=\varphi(t), \quad a:=\varphi\left(s_{1}\right)=\cdots=\varphi\left(s_{n-1}\right)
$$

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_{n} \longrightarrow \Gamma$ satisfying $\varphi(s)=\varphi\left(s^{\prime}\right)$ if s and s^{\prime} are conjugate in W_{n}, i.e.

$$
b:=\varphi(t), \quad a:=\varphi\left(s_{1}\right)=\cdots=\varphi\left(s_{n-1}\right)
$$

Weyl group

Notation

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- Γ : totally ordered abelian group
- $\varphi: S_{n} \longrightarrow \Gamma$ satisfying $\varphi(s)=\varphi\left(s^{\prime}\right)$ if s and s^{\prime} are conjugate in W_{n}, i.e.

$$
b:=\varphi(t), \quad a:=\varphi\left(s_{1}\right)=\cdots=\varphi\left(s_{n-1}\right)
$$

- For simplification, $a, b>0$.

Hecke algebra

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]$

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}$

Hecke algebra

Notation

$$
\text { - } A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}
$$

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}$
- $Q=e^{b}, q=e^{a}$

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}$
- $Q=e^{b}, q=e^{a}(Q$ and q are not necessarily algebraically independent)

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}$
- $Q=e^{b}, q=e^{a}(Q$ and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_{n}=\underset{w \in W_{n}}{\oplus} A T_{w}$

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}$
- $Q=e^{b}, q=e^{a}$ (Q and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_{n}=\underset{w \in W_{n}}{\oplus} A T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{t}-Q\right)\left(T_{t}+Q^{-1}\right)=0 & \\ \left(T_{s_{i}}-q\right)\left(T_{s_{i}}+q^{-1}\right)=0 & \text { if } 1 \leqslant i \leqslant n-1 .\end{cases}
$$

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}$
- $Q=e^{b}, q=e^{a}(Q$ and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_{n}=\underset{w \in W_{n}}{\oplus} A T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{t}-Q\right)\left(T_{t}+Q^{-1}\right)=0 & \\ \left(T_{s_{i}}-q\right)\left(T_{s_{i}}+q^{-1}\right)=0 & \text { if } 1 \leqslant i \leqslant n-1 .\end{cases}
$$

- $\mathcal{H}_{n}^{<0}=\underset{w \in W_{n}}{\oplus} A_{<0} T_{w}$

Hecke algebra

Notation

- $A=\mathbb{Z}[\Gamma]=\underset{\gamma \in \Gamma}{\oplus} \mathbb{Z} e^{\gamma}, A_{<0}=\mathbb{Z}\left[\Gamma_{<0}\right]=\underset{\gamma<0}{\oplus} \mathbb{Z} e^{\gamma}$
- $Q=e^{b}, q=e^{a}$ (Q and q are not necessarily algebraically independent)
- Hecke algebra: $\mathcal{H}_{n}=\underset{w \in W_{n}}{\oplus} A T_{w}$

$$
\begin{cases}T_{x} T_{y}=T_{x y} & \text { if } \ell(x y)=\ell(x)+\ell(y) \\ \left(T_{t}-Q\right)\left(T_{t}+Q^{-1}\right)=0 & \\ \left(T_{s_{i}}-q\right)\left(T_{s_{i}}+q^{-1}\right)=0 & \text { if } 1 \leqslant i \leqslant n-1 .\end{cases}
$$

- $\mathcal{H}_{n}^{<0}=\underset{w \in W_{n}}{\oplus} A_{<0} T_{w}$
- Involution: $\overline{e^{\gamma}}=e^{-\gamma}, \bar{T}_{w}=T_{w^{-1}}^{-1}$

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W_{n}$, there exists a unique $C_{w} \in \mathcal{H}_{n}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{n}^{<0}
\end{array}\right.
$$

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W_{n}$, there exists a unique $C_{w} \in \mathcal{H}_{n}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{n}^{<0}
\end{array}\right.
$$

Example. $C_{1}=T_{1}$,

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W_{n}$, there exists a unique $C_{w} \in \mathcal{H}_{n}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{n}^{<0}
\end{array}\right.
$$

Example. $C_{1}=T_{1}, C_{t}=T_{t}+Q^{-1}, \quad C_{s_{i}}=T_{s_{i}}+q^{-1}$

Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If $w \in W_{n}$, there exists a unique $C_{w} \in \mathcal{H}_{n}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}=C_{w} \\
C_{w} \equiv T_{w} \quad \bmod \mathcal{H}_{n}^{<0}
\end{array}\right.
$$

Example. $C_{1}=T_{1}, C_{t}=T_{t}+Q^{-1}, \quad C_{s_{i}}=T_{s_{i}}+q^{-1}$

$$
\begin{gathered}
\quad C_{s_{1} t s_{1}}=T_{s_{1} t s_{1}}+q^{-1}\left(T_{s_{1} t}+T_{t s_{1}}\right)+q^{-2} T_{t} \\
+Q^{-1} q^{-1}\left(T_{s_{1}}+q^{-1}\right) \times \begin{cases}\left(1+q^{2}\right) & \text { if } b>a, \\
1 & \text { if } b=a, \\
\left(1-Q^{2}\right) & \text { if } b<a\end{cases}
\end{gathered}
$$

Two different situations:

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0)$

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0
$$

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0 .
$$

Remarks. - Situation (1) occurs in representation theory of finite reductive groups with $2 b / a \in \mathbb{Z}$

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0 .
$$

Remarks. - Situation (1) occurs in representation theory of finite reductive groups with $2 b / a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_{n} :

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0 .
$$

Remarks. - Situation (1) occurs in representation theory of finite reductive groups with $2 b / a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_{n} : works of
- Ariki (decomposition matrices and Fock space)

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0 .
$$

Remarks. - Situation (1) occurs in representation theory of finite reductive groups with $2 b / a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_{n} : works of
- Ariki (decomposition matrices and Fock space)
- Uglov, Jacon, Geck-Jacon: parametrization of simple $k \mathcal{H}_{n}$-modules, canonical sets

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0 .
$$

Remarks. - Situation (1) occurs in representation theory of finite reductive groups with $2 b / a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_{n} : works of
- Ariki (decomposition matrices and Fock space)
- Uglov, Jacon, Geck-Jacon: parametrization of simple $k \mathcal{H}_{n}$-modules, canonical sets
- Geck: cellular structures on \mathcal{H}_{n} coming from KL-theory

Two different situations:

(1) $\Gamma=\mathbb{Z}, v=e^{1}, A=\mathbb{Z}\left[v, v^{-1}\right], a, b \in \mathbb{Z}_{>0}$.
(2) $\Gamma=\mathbb{Z}^{2}, a=(0,1), b=(1,0), A=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right]$

One can then choose different orders on Γ : for instance, if $\xi \in \mathbb{R}_{>0} \backslash \mathbb{Q}$, one can define $\leqslant \xi$ on \mathbb{Z}^{2} by

$$
(m, n) \leqslant \xi(0,0) \Longleftrightarrow m \xi+n \leqslant 0 .
$$

Remarks. - Situation (1) occurs in representation theory of finite reductive groups with $2 b / a \in \mathbb{Z}$

- General situation (1) AND situation (2) arise in the study of modular representations of \mathcal{H}_{n} : works of
- Ariki (decomposition matrices and Fock space)
- Uglov, Jacon, Geck-Jacon: parametrization of simple $k \mathcal{H}_{n}$-modules, canonical sets
- Geck: cellular structures on \mathcal{H}_{n} coming from KL-theory
- Jacon-B.
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let $\leqslant L$ be the transitive closure of $\stackrel{L}{\longleftarrow}$:
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let $\leqslant\llcorner$ be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant L \mathcal{C}}=\underset{x \leqslant L \mathcal{C}}{\oplus} A C_{x} \\ \end{array}\right.$
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant L \mathcal{C}}=\underset{x \leqslant L \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<{ }_{L} \mathcal{C}}{\oplus} A C_{x}\end{array}\right.$
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant_{L} \mathcal{C}}=\underset{x \leqslant L \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<{ }_{L} \mathcal{C}}{\oplus} A C_{x} \\ V_{\mathcal{C}}=I_{\leqslant_{L} \mathcal{C}} / I_{<_{L} \mathcal{C}}\end{array}\right.$
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant L \mathcal{C}}=\underset{x \leqslant L_{L} \mathcal{C}}{\oplus} A C_{x} \\ I_{L_{L} \mathcal{C}}=\underset{x<L_{L} \mathcal{C}}{\oplus} A C_{x} \\ V_{\mathcal{C}}=I_{\leqslant L \mathcal{C}} / I_{<_{L} \mathcal{C}}\end{array}\right.$
- By construction, $I_{\leqslant L \mathcal{C}}$ and $I_{<_{L} \mathcal{C}}$ are left ideals of \mathcal{H}_{n} and $V_{\mathcal{C}}$ is a left \mathcal{H}_{n}-module
- If $x, y \in W_{n}$, we write $x \stackrel{L}{\longleftarrow} y$ if there exists $h \in \mathcal{H}_{n}$ such that C_{x} occurs in $h C_{y}$
- Let \leqslant_{L} be the transitive closure of $\stackrel{L}{\longleftarrow}$: it is a preorder (reflexive and transitive)
- Let \sim_{L} be the equivalence relation associated to \leqslant_{L} (i.e. $x \sim_{L} y$ if and only if $x \leqslant_{L} y$ and $y \leqslant_{L} x$)

Definition

A left cell is an equivalence class for the relation \sim_{L}.

- If \mathcal{C} is a left cell, we set $\left\{\begin{array}{l}I_{\leqslant_{L} \mathcal{C}}=\underset{x \leqslant L_{L} \mathcal{C}}{\oplus} A C_{x} \\ I_{<_{L} \mathcal{C}}=\underset{x<L_{L} \mathcal{C}}{\oplus} A C_{x} \\ V_{\mathcal{C}}=I_{\leqslant_{L} \mathcal{C}} / I_{<_{L} \mathcal{C}}\end{array}\right.$
- By construction, $I_{\leqslant L \mathcal{C}}$ and $I_{<_{L} \mathcal{C}}$ are left ideals of \mathcal{H}_{n} and $V_{\mathcal{C}}$ is a left \mathcal{H}_{n}-module: $V_{\mathcal{C}}$ is called the left cell representation associated to \mathcal{C}.

Comments

- One could define $x \stackrel{R}{\leftarrow}$ y (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{\stackrel{L R}{ }}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{\longleftarrow} y$ (" C_{x} occurs in some $h C_{y} h^{\prime \prime \prime}$)
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.

Comments

- One could define $x \stackrel{R}{\leftarrow}$ y (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{\leftarrow} y$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant L_{R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$

Comments

－One could define $x \stackrel{R}{\longleftarrow} y$（＂$C_{x}$ occurs in some $C_{y} h$＂）or $x{ }_{\longleftarrow}^{L R} y$ （＂C_{x} occurs in some $h C_{y} h^{\prime \prime \prime}$ ）
－This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$ ，right／two－sided cells．
－The anti－automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$ ，so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant_{R} y^{-1}
$$

Comments

－One could define $x \stackrel{R}{\leftarrow}$ y（＂C_{x} occurs in some $C_{y} h$＂）or $x \stackrel{L R}{\leftarrow} y$ （＂C_{x} occurs in some $h C_{y} h$＂＇）
－This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$ ，right／two－sided cells．
－The anti－automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$ ，so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant_{R} y^{-1}
$$

－Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R} ．

Comments

- One could define $x \stackrel{R}{\longleftarrow} y\left(\right.$ " C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{L^{L}} y$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R}.

Remark

The relations \sim ? can be computed in some cases

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{L^{R}}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R}.

Remark

The relations \sim ? can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{\stackrel{L R}{ }}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim_{L R}$ is generated by \sim_{L} and \sim_{R}.

Remark

The relations \sim ? can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).
However, the preorder \leqslant_{L} or \leqslant_{R} is in general unknown (even in the symmetric group).

Comments

- One could define $x \stackrel{R}{\longleftarrow} y$ (" C_{x} occurs in some $C_{y} h$ ") or $x \stackrel{L R}{ }_{\stackrel{L R}{ }}^{y}$ (" C_{x} occurs in some $h C_{y} h$ "')
- This leads to $\leqslant_{R}, \leqslant_{L R}, \sim_{R}$ and $\sim_{L R}$, right/two-sided cells.
- The anti-automorphism $T_{x} \mapsto T_{x^{-1}}$ sends C_{x} to $C_{x^{-1}}$, so

$$
x \leqslant L y \Longleftrightarrow x^{-1} \leqslant R y^{-1}
$$

- Lusztig conjectures that $\sim L R$ is generated by $\sim L$ and $\sim R$.

Remark

The relations \sim ? can be computed in some cases (for instance in the symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).
However, the preorder \leqslant_{L} or \leqslant_{R} is in general unknown (even in the symmetric group). The preorder $\leqslant L$ seems to be easier (for instance, it is given by the dominance order on partitions through the Robinson-Schensted correspondence).

Domino insertion algorithm:

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm：

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example：$w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	-	-	3
\bullet	-	5	,
\bullet	4	6	
2		7	
		8	
9			

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

\bullet	-	-	3
\bullet	-	5	-
\bullet	$\begin{array}{\|l\|l\|} \hline 4 & 6 \\ \hline & 7 \end{array}$		
2			
8	8		
	9		

Domino insertion algorithm:

We identify W_{n} with the group of permutations w of $I_{n}=\{ \pm 1, \pm 2, \ldots, \pm n\}$ such that $w(-i)=-w(i)$ through

$$
t \mapsto(-1,1) \quad \text { and } \quad s_{i} \mapsto(i, i+1)(-i,-i-1)
$$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right) \in W_{9}$

- $\delta_{r}=(r, r-1, \ldots, 1)$
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- sh: $S D T_{r}(n) \rightarrow \mathcal{P}_{r}(n)$
- $\delta_{r}=(r, r-1, \ldots, 1)$
- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\} (filled with $1,2, \ldots, n$)
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- sh: $S D T_{r}(n) \rightarrow \mathcal{P}_{r}(n)$
- $S D T_{r}^{(2)}(n)=$ ppairs of standard domino tableaux of the same shape\}

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \xrightarrow{\longrightarrow} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Theorem（Garfinkle，van Leeuwen）

$$
\begin{array}{rl}
W_{n} & \stackrel{\sim}{\longrightarrow} \\
w & S D T_{r}^{(2)}(n) \\
w & \left.\longmapsto D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{array}
$$

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \stackrel{\sim}{\longmapsto} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Conjecture A (Geck-lancu-Lam-B. 2003)
Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Theorem（Garfinkle，van Leeuwen）

$$
\begin{aligned}
W_{n} & \stackrel{\sim}{\longmapsto} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Conjecture A（Geck－lancu－Lam－B．2003）
Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$ ．Then：
－$w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
－$w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
－$w \sim L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$（Lusztig）

Theorem (Garfinkle, van Leeuwen)

$$
\begin{aligned}
W_{n} & \xrightarrow{\longrightarrow} S D T_{r}^{(2)}(n) \\
w & \longmapsto\left(D_{r}(w), D_{r}\left(w^{-1}\right)\right)
\end{aligned}
$$

Conjecture A (Geck-lancu-Lam-B. 2003)
Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a>0$.

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a>0$. Then the left (resp. right, two-sided) cells are the minimal subsets X of W_{n} such that:

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a>0$. Then the left (resp. right, two-sided) cells are the minimal subsets X of W_{n} such that:

- X is a union of left (resp. right, two-sided) combinatorials r-cells;

Conjecture A (Geck-lancu-Lam-B. 2003)

Assume $a, b>0$ and assume that $0 \leqslant r a<b<(r+1) a$. Then:

- $w \sim_{L} w^{\prime}$ if and only if $D_{r}\left(w^{-1}\right)=D_{r}\left(w^{\prime-1}\right)$
- $w \sim_{R} w^{\prime}$ if and only if $D_{r}(w)=D_{r}\left(w^{\prime}\right)$
- $w \sim_{L R} w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right)=\operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$ (Lusztig)
- $w \leqslant L R w^{\prime}$ if and only if $\operatorname{sh}\left(D_{r}(w)\right) \unlhd \operatorname{sh}\left(D_{r}\left(w^{\prime}\right)\right)$

Conjecture B (Geck-lancu-Lam-B. 2003)

Let $r \geqslant 1$ and assume that $b=r a>0$. Then the left (resp. right, two-sided) cells are the minimal subsets X of W_{n} such that:

- X is a union of left (resp. right, two-sided) combinatorials r-cells;
- X is a union of left (resp. right, two-sided) combinatorials ($r-1$)-cells.

Theorem (B. 2008)

For all choices of $\varphi: S_{n} \rightarrow \Gamma_{>0}$, a Kazhdan-Lusztig cell is a union of "combinatorial cells".

Theorem (B. 2008)
For all choices of $\varphi: S_{n} \rightarrow \Gamma_{>0}$, a Kazhdan-Lusztig cell is a union of "combinatorial cells".

Corollary
 If $b \notin\{a, 2 a, \ldots,(n-1) a\}$ and if Lusztig's Conjectures P1, \ldots, P15 hold, then Conjectures A and B hold.

Theorem (B. 2008)

For all choices of $\varphi: S_{n} \rightarrow \Gamma_{>0}$, a Kazhdan-Lusztig cell is a union of "combinatorial cells".

Corollary
 If $b \notin\{a, 2 a, \ldots,(n-1) a\}$ and if Lusztig's Conjectures P1,..., P15 hold, then Conjectures A and B hold.

Remark - It should be possible to remove the hypothesis on b in the previous corollary using work of Pietraho.

Independently, Taskin (2008) and Pietraho (2008) have found descriptions of combinatorial cells in terms of plactic relations.

Independently, Taskin (2008) and Pietraho (2008) have found descriptions of combinatorial cells in terms of plactic relations.

Lemma (1)

Let $w \in W_{n}$, let $i \in I_{n-1}^{+}$and assume that one of the following holds:
(1) $i \geqslant 2$ and $w(i)<w(i-1)<w(i+1)$,
(2) $i \leqslant n-2$ and $w(i)<w(i+2)<w(i+1)$.

Then $w \sim_{R} w s_{i}$.

Independently, Taskin (2008) and Pietraho (2008) have found descriptions of combinatorial cells in terms of plactic relations.

Lemma (1)

Let $w \in W_{n}$, let $i \in I_{n-1}^{+}$and assume that one of the following holds:
(1) $i \geqslant 2$ and $w(i)<w(i-1)<w(i+1)$,
(2) $i \leqslant n-2$ and $w(i)<w(i+2)<w(i+1)$.

Then $w \sim_{R} w s_{i}$.
Lemma (2)
Let $w \in W_{n}$ and let $i \in I_{n-1}^{+}$be such that $b \geqslant i a$ and $w(i) w(i+1)<0$. Then $w \sim_{R} w s_{i}$.

Independently, Taskin (2008) and Pietraho (2008) have found descriptions of combinatorial cells in terms of plactic relations.

Lemma (1)

Let $w \in W_{n}$, let $i \in I_{n-1}^{+}$and assume that one of the following holds:
(1) $i \geqslant 2$ and $w(i)<w(i-1)<w(i+1)$,
(2) $i \leqslant n-2$ and $w(i)<w(i+2)<w(i+1)$.

Then $w \sim_{R} w s_{i}$.

Lemma (2)

Let $w \in W_{n}$ and let $i \in I_{n-1}^{+}$be such that $b \geqslant i a$ and $w(i) w(i+1)<0$. Then $w \sim_{R} w s_{i}$.

Lemma (3)

Let $w \in W_{n}$ and let $i \in I_{n-1}^{+}$be such that $b \leqslant i a$ and $|w(1)|>|w(2)|>\cdots>|w(i+1)|$. Then $w \sim_{R} w t$.

Lemma 2 is implied by

Lemma

Let $I \in\{1, \ldots, n-1\}$ and assume that $b \geqslant(n-1) a$. Then the coefficient of $C_{a_{l} \sigma_{[\mid+1, n]}}$ in $C_{t} C_{s_{n-1} \cdots s_{l+1} s_{l} s_{1} s_{2} \cdots s_{l-1} a_{l} \sigma_{[\mid+1, n]}}$ is non-zero!

Lemma 2 is implied by

Lemma

Let $I \in\{1, \ldots, n-1\}$ and assume that $b \geqslant(n-1) a$. Then the coefficient of $C_{a_{l} \sigma_{[l+1, n]}}$ in $C_{t} C_{s_{n-1} \cdots s_{l+1} s_{l} s_{1} s_{2} \cdots s_{l-1} a_{l} \sigma_{[l+1, n]}}$ is non-zero!

Lemma 3 is implied by

Lemma

Let $I \in\{1, \ldots, n-1\}$ and assume that $b \leqslant(n-1) a$. Then $a_{l-1} \sigma_{[l, n]} \stackrel{L}{\longleftarrow} a_{l} \sigma_{[I, n]}$.

Lemma 2 is implied by

Lemma

Let $I \in\{1, \ldots, n-1\}$ and assume that $b \geqslant(n-1) a$. Then the coefficient of $C_{a_{l} \sigma_{[l+1, n]}}$ in $C_{t} C_{s_{n-1} \cdots s_{l+1} s_{l} s_{1} s_{2} \cdots s_{l-1} a_{l} \sigma_{[l+1, n]}}$ is non-zero!

Lemma 3 is implied by

Lemma

Let $I \in\{1, \ldots, n-1\}$ and assume that $b \leqslant(n-1) a$. Then $a_{l-1} \sigma_{[l, n]} \stackrel{L}{\longleftarrow} a_{l} \sigma_{[I, n]}$.

