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Weyl group

Notation
(Wn, Sn) Weyl group of type Bn

Sn = {t, s1, s2, . . . , sn−1}

i i i · · · it s1 s2 sn−1

` : Wn → N = {0, 1, 2, . . . } length function

Γ : totally ordered abelian group

ϕ : Sn −→ Γ satisfying ϕ(s) = ϕ(s ′) if s and s ′ are conjugate
in Wn, i.e.

b := ϕ(t), a := ϕ(s1) = · · · = ϕ(sn−1).

For simplification, a, b > 0.
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Hecke algebra

Notation
A = Z[Γ ] = ⊕

γ∈Γ
Zeγ, A<0 = Z[Γ<0] = ⊕

γ<0
Zeγ

Q = eb, q = ea (Q and q are not necessarily algebraically
independent)

Hecke algebra: Hn = ⊕
w∈Wn

ATw


TxTy = Txy if `(xy) = `(x) + `(y)

(Tt − Q)(Tt + Q−1) = 0

(Tsi − q)(Tsi + q−1) = 0 if 1 6 i 6 n − 1.

H<0
n = ⊕

w∈Wn

A<0Tw

Involution: eγ = e−γ, Tw = T−1
w−1
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Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)

If w ∈ Wn, there exists a unique Cw ∈ Hn such that{
Cw = Cw

Cw ≡ Tw mod H<0
n

Example. C1 = T1, Ct = Tt + Q−1, Csi = Tsi + q−1

Cs1ts1 = Ts1ts1 + q−1(Ts1t + Tts1) + q−2Tt

+Q−1q−1(Ts1 + q−1)×


(1 + q2) if b > a,

1 if b = a,

(1 − Q2) if b < a
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Two different situations:

(1) Γ = Z, v = e1, A = Z[v , v−1], a, b ∈ Z>0.

(2) Γ = Z2, a = (0, 1), b = (1, 0), A = Z[Q, Q−1, q, q−1]

One can then choose different orders on Γ : for instance, if
ξ ∈ R>0 \ Q, one can define 6ξ on Z2 by

(m, n) 6ξ (0, 0)⇐⇒ mξ + n 6 0.

Remarks. • Situation (1) occurs in representation theory of finite
reductive groups with 2b/a ∈ Z

• General situation (1) AND situation (2) arise in the study of
modular representations of Hn: works of

Ariki (decomposition matrices and Fock space)

Uglov, Jacon, Geck-Jacon: parametrization of simple
kHn-modules, canonical sets

Geck: cellular structures on Hn coming from KL-theory

Jacon-B.
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If x , y ∈ Wn, we write x
L←− y if there exists h ∈ Hn such that

Cx occurs in hCy

Let 6L be the transitive closure of
L←−: it is a preorder (reflexive

and transitive)

Let ∼L be the equivalence relation associated to 6L (i.e. x ∼L y
if and only if x 6L y and y 6L x)

Definition
A left cell is an equivalence class for the relation ∼L.

If C is a left cell, we set


I6LC = ⊕

x6LC
ACx

I<LC = ⊕
x<LC

ACx

VC = I6LC/I<LC

By construction, I6LC and I<LC are left ideals of Hn and VC is a
left Hn-module: VC is called the left cell representation
associated to C.
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Comments

One could define x
R←− y (“Cx occurs in some Cyh”) or x

LR←− y
(“Cx occurs in some hCyh

′”)

This leads to 6R , 6LR , ∼R and ∼LR , right/two-sided cells.
I The anti-automorphism Tx 7→ Tx−1 sends Cx to Cx−1 , so

x 6L y ⇐⇒ x−1 6R y−1

I Lusztig conjectures that ∼LR is generated by ∼L and ∼R .

Remark
The relations ∼? can be computed in some cases (for instance in the
symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).

However, the preorder 6L or 6R is in general unknown (even in the
symmetric group). The preorder 6LR seems to be easier (for
instance, it is given by the dominance order on partitions through the
Robinson-Schensted correspondence).
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Domino insertion algorithm:

We identify Wn with the group of permutations w of
In = {±1,±2, . . . ,±n} such that w(−i) = −w(i) through

t 7→ (−1, 1) and si 7→ (i , i + 1)(−i ,−i − 1)

Example: w =

(
1 2 3 4 5 6 7 8 9
7 −8 −9 1 6 −4 5 3 −2

)
∈ W9

• • •
• •
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SDTr(n) = {standard domino tableaux with 2-core δr and n
dominoes} (filled with 1, 2,. . . , n)

Pr(n) =
{
partitions with 2-core δr and 2-weight n

}
sh : SDTr(n)→ Pr(n)

SDT
(2)
r (n) = {pairs of standard domino tableaux of the same
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Theorem (B. 2008)

For all choices of ϕ : Sn → Γ>0, a Kazhdan-Lusztig cell is a union of
“combinatorial cells”.

Corollary

If b 6∈ {a, 2a, . . . , (n − 1)a} and if Lusztig’s Conjectures P1,..., P15
hold, then Conjectures A and B hold.

Remark - It should be possible to remove the hypothesis on b in
the previous corollary using work of Pietraho.
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Independently, Taskin (2008) and Pietraho (2008) have found descriptions

of combinatorial cells in terms of plactic relations.

Lemma (1)

Let w ∈ Wn, let i ∈ I+
n−1 and assume that one of the following holds:

(1) i > 2 and w(i) < w(i − 1) < w(i + 1),

(2) i 6 n − 2 and w(i) < w(i + 2) < w(i + 1).

Then w ∼R wsi .

Lemma (2)

Let w ∈ Wn and let i ∈ I+
n−1 be such that b > ia and

w(i)w(i + 1) < 0. Then w ∼R wsi .

Lemma (3)

Let w ∈ Wn and let i ∈ I+
n−1 be such that b 6 ia and

|w(1)| > |w(2)| > · · · > |w(i + 1)|. Then w ∼R wt.
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Lemma 2 is implied by

Lemma
Let l ∈ {1, . . . , n − 1} and assume that b >(n − 1)a. Then the
coefficient of Calσ[l+1,n]

in CtCsn−1···sl+1sl s1s2···sl−1alσ[l+1,n]
is non-zero!

Lemma 3 is implied by

Lemma
Let l ∈ {1, . . . , n − 1} and assume that b 6(n − 1)a. Then

al−1σ[l ,n]
L←− alσ[l ,n].



Lemma 2 is implied by

Lemma
Let l ∈ {1, . . . , n − 1} and assume that b >(n − 1)a. Then the
coefficient of Calσ[l+1,n]

in CtCsn−1···sl+1sl s1s2···sl−1alσ[l+1,n]
is non-zero!

Lemma 3 is implied by

Lemma
Let l ∈ {1, . . . , n − 1} and assume that b 6(n − 1)a. Then

al−1σ[l ,n]
L←− alσ[l ,n].



Lemma 2 is implied by

Lemma
Let l ∈ {1, . . . , n − 1} and assume that b >(n − 1)a. Then the
coefficient of Calσ[l+1,n]

in CtCsn−1···sl+1sl s1s2···sl−1alσ[l+1,n]
is non-zero!

Lemma 3 is implied by

Lemma
Let l ∈ {1, . . . , n − 1} and assume that b 6(n − 1)a. Then

al−1σ[l ,n]
L←− alσ[l ,n].


	Main Talk

