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Weyl group

Notation
e (W,,S,) Weyl group of type B,

o Sn :{t)SI)SZ»*")Sn—l}
t St S Sp—1
c—C—C——O0— - - - —O
b a a a

o l:W,—->N=/{0,1,2,...} length function
o [ totally ordered abelian group
e ¢:S, — T satisfying @(s) = @(s’) if s and s’ are conjugate
in W,, i.e.
b:=o(t), a=¢(s)=-=0@s1).
e For simplification, a, b > 0.
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Notation
e A=7Z[N= ®Ze¥, Ao =Z[To]l = @ Ze"
ver v<0
e Q=¢ g=¢" (@ and q are not necessarily algebraically
independent)
o Hecke algebra: H,= & AT,
weW,
T.T,=T, if {(xy) =L(x)+ £(y)
(T — Q)T+ Q1) =
(T —q)(Ts, +q¢ 1) =0 ifl1<i<n—1

° H;O = O A<OTW

weW,
o Involution: e¥=¢, T, =T 1}
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Theorem (Kazhdan-Lusztig 1979, Lusztig 1983)
If w € W, there exists a unique C,, € H, such that

?W - CW
Cy, =T, modH:?

Example. G, =T, G=T,+Q"', (,=T,+q"

CsltS]_ == T51t51 + q_l( Tslt + Ttsl) + q_2 Tt’
(14+q%) ifb>a,
+Q g MTy+q ) xq1 if b= a,
(1—Q%) ifb<a
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k'H ,-modules, canonical sets

@ Geck: cellular structures on H,, coming from KL-theory
@ Jacon-B.
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. L . .
@ Let <, be the transitive closure of «—: it is a preorder (reflexive
and transitive)

@ Let ~; be the equivalence relation associated to <, (i.e. x ~, y
if and only if x <, y and y < x)

Definition
A left cell is an equivalence class for the relation ~.

l<,c = @ AC
x< C

o If C is a left cell, we set l.c= & AC
X<LC

Ve =lIgc/l<c
@ By construction, I<,c and I ¢ are left ideals of H, and V¢ is a
left H,-module: V¢ is called the left cell representation
associated to C.
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e One could define x <%~ y (“Cx occurs in some C,h") or x Ry
(“Cx occurs in some hC, h"™")

@ This leads to <g, </gr, ~r and ~ g, right/two-sided cells.

» The anti-automorphism T, — T,-1 sends C, to C,-1, so
x< yéessxt<py?

» Lusztig conjectures that ~; g is generated by ~; and ~g.

Remark

The relations ~; can be computed in some cases (for instance in the
symmetric group using the Robinson-Schensted correspondence:
Kazhdan-Lusztig 1979).

However, the preorder <, or <g is in general unknown (even in the
symmetric group). The preorder <,z seems to be easier (for
instance, it is given by the dominance order on partitions through the
Robinson-Schensted correspondence).
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o, =(r,r—1,...,1)

SDT,(n) = {standard domino tableaux with 2-core &, and n
dominoes} (filled with 1, 2,..., n)

P.(n) = {partitions with 2-core &, and 2-weight n}

sh: SDT,(n) — P,(n)

SDT,(ZJ(n) = {pairs of standard domino tableaux of the same
shape}
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Let r > 1 and assume that b = ra > 0. Then the left (resp. right,
two-sided) cells are the minimal subsets X of W, such that:
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Theorem (B. 2008)

For all choices of ¢ : S, — T~o, a Kazhdan-Lusztig cell is a union of
“combinatorial cells”.

Corollary

If b ¢{a,2a,...,(n—1)a} and if Lusztig’'s Conjectures P1,..., P15
hold, then Conjectures A and B hold.

REMARK - It should be possible to remove the hypothesis on b in
the previous corollary using work of Pietraho.
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Independently, Taskin (2008) and Pietraho (2008) have found descriptions
of combinatorial cells in terms of plactic relations.

Lemma (1)

Let w e W,, leti € I and assume that one of the following holds:
(1) iZ2and w(i) <w(i—1) < w(i+1),
(2) i<n—2and w(i) <w(i+2)<w(i+1).

Then w ~g ws;.

Lemma (2)

Let w € W, and let i € I | be such that b > ia and
w(i)w(i+1) <0. Then w ~g ws;.

Lemma (3)

Let w € W, and let i € I} | be such that b < ia and
w(1)] > |w(2)| > - >|w(i+1)]. Then w ~g wt.
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