Cellular structures on Hecke algebras of type B

Cédric Bonnafé

CNRS (UMR 6623) - Université de Franche-Comté (Besançon)
Sydney, June 2007

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures

4 Conjectures

- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures

4 Conjectures

- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences
(5) Comments

Joint work with Nicolas Jacon (Besançon, France)

Joint work with Nicolas Jacon (Besançon, France)

- Cellular structureS

Joint work with Nicolas Jacon (Besançon, France)

- Cellular structures
- Canonical basis of Fock space: Ariki's Theorem

Joint work with Nicolas Jacon (Besançon, France)

- Cellular structures
- Canonical basis of Fock space: Ariki's Theorem
- Kazhdan-Lusztig theory and cellular structures: Geck's Theorem

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map

(2) Ariki's Theorem

- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures
(4) Conjectures
- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences
(5) Comments
- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}

- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- $\left(W_{n}, S_{n}\right)$ Weyl group of type B_{n}
- $S_{n}=\left\{t, s_{1}, s_{2}, \ldots, s_{n-1}\right\}$

- $\ell: W_{n} \rightarrow \mathbb{N}=\{0,1,2, \ldots\}$ length function
- $R=\mathbb{Z}\left[Q, Q^{-1}, q, q^{-1}\right], Q, q$ indeterminates
- $\mathcal{H}_{n}=\mathcal{H}_{R}\left(W_{n}, S_{n}, Q, q\right)$: Hecke algebra of type B_{n} with parameters Q and q.
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $\mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right):=$ Grothendieck group of $\mathbb{C} \mathcal{H}_{n} \simeq \mathbb{Z} \operatorname{Irr} \mathbb{C} \mathcal{H}_{n}$
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $\mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right):=$ Grothendieck group of $\mathbb{C} \mathcal{H}_{n} \simeq \mathbb{Z} \operatorname{Irr} \mathbb{C} \mathcal{H}_{n}$
- decomposition map $\mathbf{d}_{n}: \mathcal{R}_{0}\left(K \mathcal{H}_{n}\right) \longrightarrow \mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right)$
- $K=\operatorname{Frac}(R), K \mathcal{H}_{n}=K \otimes_{R} \mathcal{H}_{n}$ split semisimple

$$
\operatorname{Irr} K \mathcal{H}_{n}=\left\{V_{\lambda} \mid \lambda \in \operatorname{Bip}(n)\right\}
$$

where $\operatorname{Bip}(n)=\{$ bipartitions of $n\}$.

- $Q_{0}, q_{0} \in \mathbb{C}^{\times}$, specialization $\longrightarrow \mathbb{C} \mathcal{H}_{n}=\mathbb{C} \otimes_{R} \mathcal{H}_{n}$
- $\mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right):=$ Grothendieck group of $\mathbb{C} \mathcal{H}_{n} \simeq \mathbb{Z} \operatorname{Irr} \mathbb{C} \mathcal{H}_{n}$
- decomposition map $\mathbf{d}_{n}: \mathcal{R}_{0}\left(K \mathcal{H}_{n}\right) \longrightarrow \mathcal{R}_{0}\left(\mathbb{C} \mathcal{H}_{n}\right)$

Hypothesis and notation

- $Q_{0}^{2}=-q_{0}^{2 d}, d \in \mathbb{Z}$
- $e=$ order of $q_{0}^{2}, e>2$.

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures

4) Conjectures

- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences
(5) Comments

Fock space:

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\widehat{\mathfrak{s}}_{e}\right)$

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)$ depending on r

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on \mathbf{r}

Uglov has constructed an involution ${ }^{-}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ and there exists a unique $G(\lambda, r) \in \mathcal{F}_{r}$ such that

$$
\left\{\begin{array}{l}
\overline{G(\lambda, r)}=G(\lambda, r) \\
G(\lambda, r) \equiv|\lambda, r\rangle \quad \bmod v \mathbb{C}[v]
\end{array}\right.
$$

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on r

Uglov has constructed an involution ${ }^{-}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ and there exists a unique $G(\lambda, r) \in \mathcal{F}_{r}$ such that

$$
\left\{\begin{array}{l}
\overline{G(\lambda, r)}=G(\lambda, r) \\
G(\lambda, r) \equiv|\lambda, r\rangle \quad \bmod v \mathbb{C}[v]
\end{array}\right.
$$

Write $G(\mu, r)=\sum_{\lambda \in \operatorname{Bip}} d_{\lambda \mu}^{r}(v)|\lambda, r\rangle\left(\right.$ note that $\left.d_{\lambda \lambda}^{r}(v)=1\right)$.

Fock space:

- $\operatorname{Bip}=\coprod_{n \geqslant 0} \operatorname{Bip}(n), r \geqslant 0, v$ indeterminate
- Fock space: $\mathcal{F}_{r}:=\underset{\lambda \in \operatorname{Bip}}{\oplus} \mathbb{C}(v)|\lambda, r\rangle$
- \mathcal{F}_{r} is endowed with an action of $\mathcal{U}_{v}\left(\hat{\mathfrak{s l}}_{e}\right)$ depending on \mathbf{r}

Uglov has constructed an involution ${ }^{-}: \mathcal{F}_{r} \rightarrow \mathcal{F}_{r}$ and there exists a unique $G(\lambda, r) \in \mathcal{F}_{r}$ such that

$$
\left\{\begin{array}{l}
\overline{G(\lambda, r)}=G(\lambda, r) \\
G(\lambda, r) \equiv|\lambda, r\rangle \quad \bmod v \mathbb{C}[v]
\end{array}\right.
$$

Write $G(\mu, r)=\sum_{\lambda \in \operatorname{Bip}} d_{\lambda \mu}^{r}(v)|\lambda, r\rangle\left(\right.$ note that $d_{\lambda \lambda}^{r}(v)=1$).
$(|\lambda, r\rangle)_{\lambda \in B i p}$ is called the standard basis
$(G(\lambda, r))_{\lambda \in B i p}$ is called the Kashiwara-Lusztig canonical basis

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that

 $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection$$
\begin{array}{rlr}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{e, r}
\end{array}
$$

such that

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that

 $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{e, r}
\end{aligned}
$$

such that

$$
\begin{aligned}
& \text { - } \mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)|\varnothing, r\rangle=\underset{\lambda \in \operatorname{Bip}_{e, r}}{\oplus} \mathbb{C}(v) G(\lambda, r) \text {, where } \\
& \operatorname{Bip}_{e, r}=\coprod_{n \geqslant 0} \operatorname{Bip}_{e, r}(n)
\end{aligned}
$$

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that

 $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection$$
\begin{array}{rlr}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{e, r}
\end{array}
$$

such that

$$
\begin{aligned}
& -\mathcal{U}_{v}\left(\widehat{\mathfrak{s}}_{e}\right)|\varnothing, r\rangle=\underset{\lambda \in \operatorname{Bip}_{e, r}}{\oplus} \mathbb{C}(v) G(\lambda, r), \text { where } \\
& \operatorname{Bip}_{e, r}=\coprod_{n \geqslant 0} \operatorname{Bip}_{e, r}(n)
\end{aligned}
$$

- If $\lambda \in \operatorname{Bip}(n)$, then $\mathbf{d}_{n}\left[V_{\lambda}\right]=\sum_{\mu \in \operatorname{Bip}_{e, r}(n)} d_{\lambda \mu}^{r}(1)\left[D_{\mu}^{e, r}\right]$

Ariki's Theorem (Ariki, Uglov, Geck-Jacon). Assume that

 $r \equiv d \bmod e$. There exists a subset $\operatorname{Bip}_{e, r}(n)$ of $\operatorname{Bip}(n)$ and a bijection$$
\begin{array}{rlr}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{e, r}
\end{array}
$$

such that

$$
\begin{aligned}
& \text { - } \mathcal{U}_{v}\left(\hat{\mathfrak{s}}_{e}\right)|\varnothing, r\rangle=\underset{\lambda \in \operatorname{Bip}_{e, r}}{\oplus} \mathbb{C}(v) G(\lambda, r) \text {, where } \\
& \operatorname{Bip}_{e, r}=\coprod_{n \geqslant 0} \operatorname{Bip}_{e, r}(n)
\end{aligned}
$$

- If $\lambda \in \operatorname{Bip}(n)$, then $d_{n}\left[V_{\lambda}\right]=\sum_{\mu \in \operatorname{Bip}_{e, r}(n)} d_{\lambda \mu}^{r}(1)\left[D_{\mu}^{e, r}\right]$

REMARK - $d_{\lambda \mu}^{r}(v)$ is "computable"

Comments:

- $\left|\operatorname{Bip}_{e, r}(n)\right|=\left|\operatorname{Bip}_{e, r+k e}(n)\right|$ if $k \in \mathbb{Z}$ (for a bijection, see Jacon, Jacon-Lecouvey)

Comments:

- $\left|\operatorname{Bip}_{e, r}(n)\right|=\left|\operatorname{Bip}_{e, r+k e}(n)\right|$ if $k \in \mathbb{Z}$ (for a bijection, see Jacon, Jacon-Lecouvey)
- If $r \geqslant n-1, \operatorname{Bip}_{e, r}(n)=\{K$ leshchev bipartitions $\}$ (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).

Comments:

- $\left|\operatorname{Bip}_{e, r}(n)\right|=\left|\operatorname{Bip}_{e, r+k e}(n)\right|$ if $k \in \mathbb{Z}$ (for a bijection, see Jacon, Jacon-Lecouvey)
- If $r \geqslant n-1, \operatorname{Bip}_{e, r}(n)=\{K$ leshchev bipartitions $\}$ (see Ariki: it is related to the Dipper-James-Mathas or to the Graham-Lehrer cellular structure).
- $\operatorname{Bip}_{d_{0}, e}(n)=\{$ FLOTW bipartitions $\}$ (Jacon). Here, $d_{0} \equiv d$ $\bmod e$ and $d_{0} \in\{0,1,2, \ldots, e-1\}$.

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures
(4) Conjectures
- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences
(5) Comments
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]$
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant \theta\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant \theta\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta "} \ldots$)

- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant_{\theta}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta "} \ldots$)

- Let ${ }^{-}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}, T_{w} \mapsto T_{w^{-1}}^{-1}, Q \mapsto Q^{-1}, q \mapsto q^{-1}$ (i.e. $\left.e^{\gamma} \mapsto e^{-\gamma}\right)$ antilinear involution.
- $R=\mathbb{Z}\left[\mathbb{Z}^{2}\right]=\underset{\gamma \in \mathbb{Z}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.
- $Q=e^{(1,0)}, q=e^{(0,1)}$.

For Kazhdan-Lusztig theory (with unequal parameters) you need another ingredient: a total order on \mathbb{Z}^{2} (compatible with addition).

- Fix $\theta \in \mathbb{R}^{+}$, irrational (!): let \leqslant_{θ} be the total order on \mathbb{Z}^{2} defined by

$$
(m, n) \leqslant_{\theta}\left(m^{\prime}, n^{\prime}\right) \Longleftrightarrow m \theta+n \leqslant m^{\prime} \theta+n^{\prime}
$$

(roughly speaking, " $Q=q^{\theta "} \ldots$)

- Let ${ }^{-}: \mathcal{H}_{n} \rightarrow \mathcal{H}_{n}, T_{w} \mapsto T_{w^{-1}}^{-1}, Q \mapsto Q^{-1}, q \mapsto q^{-1}$ (i.e. $\left.e^{\gamma} \mapsto e^{-\gamma}\right)$ antilinear involution.
- $R_{<_{\theta} 0}=\underset{\gamma \in \mathbb{Z}_{<_{\theta} 0}^{2}}{\oplus} \mathbb{Z} e^{\gamma}$.

Theorem (Kazhdan-Lusztig, 1979). For each $w \in W_{n}$, there

 exists a unique $C_{w}^{\ominus} \in \mathcal{H}_{n}$ such that$$
\left\{\begin{array}{l}
\bar{C}_{w}^{\theta}=C_{w}^{\theta} \\
C_{w}^{\theta} \equiv T_{w} \quad \bmod R_{<_{\theta} 0}
\end{array}\right.
$$

Theorem (Kazhdan-Lusztig, 1979). For each $w \in W_{n}$, there exists a unique $C_{w}^{\theta} \in \mathcal{H}_{n}$ such that

$$
\left\{\begin{array}{l}
\bar{C}_{w}^{\theta}=C_{w}^{\theta} \\
C_{w}^{\theta} \equiv T_{w} \quad \bmod R_{<_{\theta} 0}
\end{array}\right.
$$

Theorem (Geck, 2007). If Lusztig's conjectures (P1), (P2),..., (P14), (P15-) hold, then $\left(\pm C_{w}^{\theta}\right)_{w \in W_{n}}$ is a cellular basis of \mathcal{H}_{n}.

Case $n=2$ (write $s=s_{1}$)

$$
\begin{aligned}
C_{1}^{\Theta}= & 1 \\
C_{t}^{\Theta}= & T_{t}+Q^{-1} \\
C_{s}^{\Theta}= & T_{s}+q^{-1} \\
C_{s t}^{\Theta}= & T_{s t}+Q^{-1} T_{s}+q^{-1} T_{t}+1 \\
C_{t s}^{\Theta}= & T_{t s}+Q^{-1} T_{s}+q^{-1} T_{t}+1 \\
C_{s t s}^{\Theta}= & T_{s t s}+q^{-1}\left(T_{s t}+T_{t s}\right)+ \\
& \begin{cases}Q^{-1} q^{-1}\left(1+q^{2}\right) T_{s}+q^{-2} T_{t}+Q^{-1} q^{-2} & \\
Q^{-1} q^{-1} T_{s}+Q^{-1} q^{-1}\left(1-Q^{2}\right) T_{t}+Q^{-2} q^{-1}\left(1-Q^{2}\right) & \text { if } 0<\theta<1\end{cases} \\
C_{t s t}^{\Theta}= & T_{t s t}+Q^{-1}\left(T_{s t}+T_{t s}\right)+ \\
& \begin{cases}Q^{-1} q^{-1} T_{s}+Q^{-1} q^{-1}\left(1-q^{2}\right) T_{t}+Q^{-2} q^{-1}\left(1-q^{2}\right) & \text { if } \theta>1 \\
Q^{-1} q^{-1}\left(1+q^{2}\right) T_{s}+Q^{-1} q^{-1} T_{t}+Q^{-2} q^{-1} & \text { if } 0<\theta<1\end{cases} \\
C_{i}^{\Theta}= & T_{w_{0}}+Q^{-1} T_{s t s}+q^{-1} T_{t s t}+Q^{-1} q^{-1}\left(T_{s t}+T_{t s}\right)
\end{aligned}
$$

Case $n=2$ (write $s=s_{1}$)

$$
\begin{array}{rlr}
C_{1}^{\theta}= & 1 \\
C_{t}^{\theta}= & T_{t}+Q^{-1} \\
C_{s}^{\theta}= & T_{s}+q^{-1} \\
C_{s t}^{\theta}= & T_{s t}+Q^{-1} T_{s}+q^{-1} T_{t}+1 \\
C_{t s}^{\theta}= & T_{t s}+Q^{-1} T_{s}+q^{-1} T_{t}+1 & \\
C_{s t s}^{\theta}= & T_{s t s}+q^{-1}\left(T_{s t}+T_{t s}+\right. & \\
& \begin{cases}Q^{-1} q^{-1}\left(1+q^{2}\right) T_{s}+q^{-2} T_{t}+Q^{-1} q^{-2} & \\
Q^{-1} q^{-1} T_{s}+Q^{-1} q^{-1}\left(1-Q^{2}\right) T_{t}+Q^{-2} q^{-1}\left(1-Q^{2}\right) & \text { if } \theta>1 \\
\text { if } 0<\theta<1\end{cases} \\
C_{t s t}^{\Theta}= & T_{t s t}+Q^{-1}\left(T_{s t}+T_{t s}\right)+ & \\
& \begin{cases}Q^{-1} q^{-1} T_{s}+Q^{-1} q^{-1}\left(1-q^{2}\right) T_{t}+Q^{-2} q^{-1}\left(1-q^{2}\right) & \text { if } \theta>1 \\
Q^{-1} q^{-1}\left(1+q^{2}\right) T_{s}+Q^{-1} q^{-1} T_{t}+Q^{-2} q^{-1} & \text { if } 0<\theta<1\end{cases} \\
C_{w_{0}}^{\Theta}= & T_{w_{0}+Q^{-1} T_{s t s}+q^{-1} T_{t s t}+Q^{-1} q^{-1}\left(T_{s t}+T_{t s}\right)} \\
& +Q^{-2} q^{-1} T_{s}+Q^{-1} q^{-2} T_{t}+Q^{-2} q^{-2} & \\
Q^{-1} q^{-1}\left(1-q^{2}\right)=e^{(-1,-1)}-e^{(-1,1)} \in R_{<\theta} 0 & \text { if } \theta>1
\end{array}
$$

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures

4 Conjectures

- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences
(5) Comments

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
\alpha=(5,4,4,4,4,2,1)
$$

$$
2 \text {-core of } \alpha=\delta_{3}=(3,2,1)
$$

$$
\text { 2-weight of } \alpha=9
$$

- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- If $\alpha \in \mathcal{P}_{r}(n)$, then $|\alpha|=\frac{1}{2} r(r+1)+2 n$
- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- If $\alpha \in \mathcal{P}_{r}(n)$, then $|\alpha|=\frac{1}{2} r(r+1)+2 n$
- There is a map \{partitions\} \longrightarrow \{bipartitions $\}$ (called 2-quotient)
- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- If $\alpha \in \mathcal{P}_{r}(n)$, then $|\alpha|=\frac{1}{2} r(r+1)+2 n$
- There is a map \{partitions\} \longrightarrow \{bipartitions\} (called 2-quotient) inducing a bijection

$$
\pi_{r}: \mathcal{P}_{r}(n) \xrightarrow{\sim} \operatorname{Bip}(n)
$$

- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- If $\alpha \in \mathcal{P}_{r}(n)$, then $|\alpha|=\frac{1}{2} r(r+1)+2 n$
- There is a map \{partitions\} \longrightarrow \{bipartitions $\}$ (called 2-quotient) inducing a bijection

$$
\pi_{r}: \mathcal{P}_{r}(n) \xrightarrow{\sim} \operatorname{Bip}(n)
$$

- Define the order \unlhd_{r} on $\operatorname{Bip}(n)$ by

$$
\lambda \unlhd_{r} \mu \stackrel{\text { def }}{\Longleftrightarrow} \pi_{r}^{-1}(\lambda) \unlhd \pi_{r}^{-1}(\mu)
$$

- $\delta_{r}=(r, r-1, \ldots, 2,1)$
- $\mathcal{P}_{r}(n)=\left\{\right.$ partitions with 2-core δ_{r} and 2-weight $\left.n\right\}$
- If $\alpha \in \mathcal{P}_{r}(n)$, then $|\alpha|=\frac{1}{2} r(r+1)+2 n$
- There is a map \{partitions\} \longrightarrow \{bipartitions $\}$ (called 2-quotient) inducing a bijection

$$
\pi_{r}: \mathcal{P}_{r}(n) \xrightarrow{\sim} \operatorname{Bip}(n)
$$

- Define the order \unlhd_{r} on $\operatorname{Bip}(n)$ by

$$
\lambda \unlhd_{r} \mu \stackrel{\text { def }}{\Longleftrightarrow} \pi_{r}^{-1}(\lambda) \unlhd \pi_{r}^{-1}(\mu)
$$

- If $r \geqslant n-1$, then \unlhd_{r} is the usual dominance order on bipartitions.

- Domino tableaux

- Domino tableaux

- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\}
- Domino tableaux

- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2 -core δ_{r} and n dominoes\}
- $S T_{2}(n)=\{$ pairs (S, T) of standard tableaux such that $|S|+|T|=n\}$ (standard bitableaux).
- Domino tableaux

- $S D T_{r}(n)=\left\{\right.$ standard domino tableaux with 2-core δ_{r} and n dominoes\}
- $S T_{2}(n)=\{$ pairs (S, T) of standard tableaux such that $|S|+|T|=n\}$ (standard bitableaux).
- There exists a bijection $\tilde{\pi}_{r}: S D T_{r}(n) \xrightarrow{\sim} S T_{2}(n)$ lifting π_{r}

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

Example: $w=\left(\begin{array}{ccccccccc}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 \\ 7 & -8 & -9 & 1 & 6 & -4 & 5 & 3 & -2\end{array}\right)$

If $(A, B) \in S T_{2}(n) \times S T_{2}(n)$ is a pair of standard bitableaux of the same shape, and if $r<\theta<r+1$, we set

$$
C_{A B}^{\theta}=C_{w}^{\theta}
$$

where $w \in W_{n}$ is the unique element such that $\tilde{\pi}_{r}\left(D_{r}(w)\right)=A$ and $\tilde{\pi}_{r}\left(D_{r}\left(w^{-1}\right)\right)=B$.

If $(A, B) \in S T_{2}(n) \times S T_{2}(n)$ is a pair of standard bitableaux of the same shape, and if $r<\theta<r+1$, we set

$$
C_{A B}^{\theta}=C_{w}^{\theta}
$$

where $w \in W_{n}$ is the unique element such that $\tilde{\pi}_{r}\left(D_{r}(w)\right)=A$ and $\tilde{\pi}_{r}\left(D_{r}\left(w^{-1}\right)\right)=B$.

Conjecture 1 (Geck-lancu-Lam-B.). If
$r<\theta<r+1, \mathcal{C}_{r}=\left(\left(\operatorname{Bip}(n), \unlhd_{r}\right), S T_{2}, C^{\theta}, *\right)$ is a cell datum for \mathcal{H}_{n} (in the sense of Graham and Lehrer). Here, $T_{w}^{*}=T_{w^{-1}}$.

Evidences:

Evidences:

- True for $n \leqslant 4$...

Evidences:

- True for $n \leqslant 4 \ldots$
- If Lusztig conjectures P1, P2,... hold, then it is true for $n \leqslant 6$.

Evidences:

- True for $n \leqslant 4$...
- If Lusztig conjectures P1, P2,... hold, then it is true for $n \leqslant 6$.
- This conjecture is a combination of Lusztig's conjectures and a conjectural description of left, right and two-sided cells in type B_{n} (this last conjecture is related to the representations of the finite unitary groups and to some conjecture of...

Evidences:

- True for $n \leqslant 4$...
- If Lusztig conjectures P1, P2,... hold, then it is true for $n \leqslant 6$.
- This conjecture is a combination of Lusztig's conjectures and a conjectural description of left, right and two-sided cells in type B_{n} (this last conjecture is related to the representations of the finite unitary groups and to some conjecture of... Lusztig).

Evidences:

- True for $n \leqslant 4$...
- If Lusztig conjectures P1, P2,... hold, then it is true for $n \leqslant 6$.
- This conjecture is a combination of Lusztig's conjectures and a conjectural description of left, right and two-sided cells in type B_{n} (this last conjecture is related to the representations of the finite unitary groups and to some conjecture of... Lusztig).
- It is true for $r \geqslant n-1$ (lancu-B. 2003, B. 2006, Geck-lancu 2006).

Evidences:

- True for $n \leqslant 4 \ldots$
- If Lusztig conjectures P1, P2,... hold, then it is true for $n \leqslant 6$.
- This conjecture is a combination of Lusztig's conjectures and a conjectural description of left, right and two-sided cells in type B_{n} (this last conjecture is related to the representations of the finite unitary groups and to some conjecture of... Lusztig).
- It is true for $r \geqslant n-1$ (lancu-B. 2003, B. 2006, Geck-lancu 2006). It leads to a cell datum "equivalent" to the cell datas of Dipper-James-Mathas and Graham-Lehrer.

Evidences:

- True for $n \leqslant 4 \ldots$
- If Lusztig conjectures P1, P2,... hold, then it is true for $n \leqslant 6$.
- This conjecture is a combination of Lusztig's conjectures and a conjectural description of left, right and two-sided cells in type B_{n} (this last conjecture is related to the representations of the finite unitary groups and to some conjecture of... Lusztig).
- It is true for $r \geqslant n-1$ (lancu-B. 2003, B. 2006, Geck-lancu 2006). It leads to a cell datum "equivalent" to the cell datas of Dipper-James-Mathas and Graham-Lehrer.
- It is true if " $\theta=\frac{1}{2}$ or $\frac{3}{2}$ ", (Lusztig 2003)

Assume that Conjecture 1 holds.

Assume that Conjecture 1 holds. If $\lambda \in \operatorname{Bip}(n)$, let S_{λ}^{θ} be the Specht module of \mathcal{H}_{n} associated to λ via the cell datum \mathcal{C}_{r} $(r<\theta<r+1)$. Then

$$
V_{\lambda} \simeq K S_{\lambda}^{\Theta} .
$$

Assume that Conjecture 1 holds. If $\lambda \in \operatorname{Bip}(n)$, let S_{λ}^{θ} be the Specht module of \mathcal{H}_{n} associated to λ via the cell datum \mathcal{C}_{r} $(r<\theta<r+1)$. Then

$$
V_{\lambda} \simeq K S_{\lambda}^{\ominus} .
$$

Let $D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{rad}\left(\mathbb{C} S_{\lambda}^{\theta}\right)$.

Assume that Conjecture 1 holds. If $\lambda \in \operatorname{Bip}(n)$, let S_{λ}^{θ} be the Specht module of \mathcal{H}_{n} associated to λ via the cell datum \mathcal{C}_{r} $(r<\theta<r+1)$. Then

$$
V_{\lambda} \simeq K S_{\lambda}^{\ominus} .
$$

Let $D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\theta} / \operatorname{rad}\left(\mathbb{C} S_{\lambda}^{\theta}\right)$.
Theorem (Jacon). Assume that conjecture 1 holds and that $r \equiv d \bmod e$. Then $D_{\lambda}^{\Theta} \neq 0$ if and only if $\lambda \in \operatorname{Bip}_{e, r}(n)$.

Assume that Conjecture 1 holds. If $\lambda \in \operatorname{Bip}(n)$, let S_{λ}^{θ} be the Specht module of \mathcal{H}_{n} associated to λ via the cell datum \mathcal{C}_{r} $(r<\theta<r+1)$. Then

$$
V_{\lambda} \simeq K S_{\lambda}^{\theta} .
$$

Let $D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{rad}\left(\mathbb{C} S_{\lambda}^{\theta}\right)$.
Theorem (Jacon). Assume that conjecture 1 holds and that $r \equiv d \bmod e$. Then $D_{\lambda}^{\theta} \neq 0$ if and only if $\lambda \in \operatorname{Bip}_{e, r}(n)$.So the map

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{\Theta}
\end{aligned}
$$

is bijective and coincides with the map in Ariki's Theorem.

Assume that Conjecture 1 holds. If $\lambda \in \operatorname{Bip}(n)$, let S_{λ}^{θ} be the Specht module of \mathcal{H}_{n} associated to λ via the cell datum \mathcal{C}_{r} $(r<\theta<r+1)$. Then

$$
V_{\lambda} \simeq K S_{\lambda}^{\theta} .
$$

Let $D_{\lambda}^{\theta}=\mathbb{C} S_{\lambda}^{\ominus} / \operatorname{rad}\left(\mathbb{C} S_{\lambda}^{\ominus}\right)$.
Theorem (Jacon). Assume that conjecture 1 holds and that $r \equiv d \bmod e$. Then $D_{\lambda}^{\theta} \neq 0$ if and only if $\lambda \in \operatorname{Bip}_{e, r}(n)$.So the map

$$
\begin{aligned}
\operatorname{Bip}_{e, r}(n) & \longrightarrow \operatorname{Irr} \mathbb{C} \mathcal{H}_{n} \\
\lambda & \longmapsto D_{\lambda}^{\Theta}
\end{aligned}
$$

is bijective and coincides with the map in Ariki's Theorem. Moreover, the decomposition map is given by

$$
\mathbf{d}_{n}\left[K S_{\lambda}^{\theta}\right]=\sum_{\mu \in \operatorname{Bip}_{\mathrm{e}, r}(n)} d_{\lambda \mu}^{r}(1)\left[D_{\mu}^{\theta}\right] .
$$

Contents

(1) The set-up

- Weyl group, Hecke algebra
- Simple modules, decomposition map
(2) Ariki's Theorem
- Fock space
- Ariki's Theorem
(3) Kazhdan-Lusztig's theory, Geck's Theorem
- Kazhdan-Lusztig basis
- Cellular structures
(4) Conjectures
- 2-quotient, 2-core, domino tableaux
- Domino insertion algorithm
- Conjectures, evidences
(5) Comments
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\ominus}$.
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\ominus}$. There also should be an analogue of Jantzen sum formula.
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\ominus}$. There also should be an analogue of Jantzen sum formula.
- Conjecture 3: There should exist a Schur algebra $\operatorname{Schur}_{r}(n)$ associated with the cellular structure given by $\mathcal{C}_{r} \ldots$
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\theta}$. There also should be an analogue of Jantzen sum formula.
- Conjecture 3: There should exist a Schur algebra $\operatorname{Schur}_{r}(n)$ associated with the cellular structure given by $\mathcal{C}_{r} \ldots$
- A "Schur algebra" $\operatorname{Schur}_{r}^{\prime}(n)$ have been constructed by using the theory of Cherednik algebras (Guay-Ginzburg-Opdam-Rouquier).
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\ominus}$. There also should be an analogue of Jantzen sum formula.
- Conjecture 3: There should exist a Schur algebra $\operatorname{Schur}_{r}(n)$ associated with the cellular structure given by $\mathcal{C}_{r} \ldots$
- A "Schur algebra" $\operatorname{Schur}_{r}^{\prime}(n)$ have been constructed by using the theory of Cherednik algebras (Guay-Ginzburg-Opdam-Rouquier).
- If Conjecture 3 holds, then $\operatorname{Schur}_{r}(n)$ and $\operatorname{Schur}_{r}^{\prime}(n)$ are Morita equivalent (Rouquier).
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\ominus}$. There also should be an analogue of Jantzen sum formula.
- Conjecture 3: There should exist a Schur algebra $\operatorname{Schur}_{r}(n)$ associated with the cellular structure given by $\mathcal{C}_{r} \ldots$
- A "Schur algebra" Schurr $_{r}^{\prime}(n)$ have been constructed by using the theory of Cherednik algebras (Guay-Ginzburg-Opdam-Rouquier).
- If Conjecture 3 holds, then $\operatorname{Schur}_{r}(n)$ and $\operatorname{Schur}_{r}^{\prime}(n)$ are Morita equivalent (Rouquier).
- If Conjecture 3 holds, then it should be possible to extend Ariki's Theorem to give an interpretation of $d_{\lambda \mu}^{r}(1)$ even if $\mu \notin \operatorname{Bip}_{e, r}(n)$ (see Varagnolo-Vasserot Theorem in type A).
- Conjecture 2: If $r<\theta<r+1$, then $d_{\lambda, \mu}^{r}(v)$ is the v-decomposition number associated with Jantzen filtration on $\mathbb{C} S_{\lambda}^{\ominus}$. There also should be an analogue of Jantzen sum formula.
- Conjecture 3: There should exist a Schur algebra $\operatorname{Schur}_{r}(n)$ associated with the cellular structure given by $\mathcal{C}_{r} \ldots$
- A "Schur algebra" Schur ${ }_{r}^{\prime}(n)$ have been constructed by using the theory of Cherednik algebras (Guay-Ginzburg-Opdam-Rouquier).
- If Conjecture 3 holds, then $\operatorname{Schur}_{r}(n)$ and $\operatorname{Schur}_{r}^{\prime}(n)$ are Morita equivalent (Rouquier).
- If Conjecture 3 holds, then it should be possible to extend Ariki's Theorem to give an interpretation of $d_{\lambda \mu}^{r}(1)$ even if $\mu \notin \operatorname{Bip}_{e, r}(n)$ (see Varagnolo-Vasserot Theorem in type A). Even more, one can expect that Conjecture 2 also extends to this set-up (in the asymptotic case, it has been conjectured by Yvonne).
- Ariki-Koike algebras associated to $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / p \mathbb{Z})^{n}$: even though there is no Kazhdan-Lusztig theory (for the moment...), are there several cellular structures (indexed by p-cores)?
- Ariki-Koike algebras associated to $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / p \mathbb{Z})^{n}$: even though there is no Kazhdan-Lusztig theory (for the moment...), are there several cellular structures (indexed by p-cores)?
- Ariki's Theorem holds...
- Ariki-Koike algebras associated to $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / p \mathbb{Z})^{n}$: even though there is no Kazhdan-Lusztig theory (for the moment...), are there several cellular structures (indexed by p-cores)?
- Ariki's Theorem holds...
- There are already several Schur algebras (coming from the theory of Cherednik algebras)
- Ariki-Koike algebras associated to $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / p \mathbb{Z})^{n}$: even though there is no Kazhdan-Lusztig theory (for the moment...), are there several cellular structures (indexed by p-cores)?
- Ariki's Theorem holds...
- There are already several Schur algebras (coming from the theory of Cherednik algebras)
- Geometric interpretations (Calogero-Moser spaces, desingularization of $\left.\left(V \times V^{*}\right) / W \ldots\right)$? p-cores play a role, see the recent works of Gordon, Gordon-Martino
- Ariki-Koike algebras associated to $\mathfrak{S}_{n} \ltimes(\mathbb{Z} / p \mathbb{Z})^{n}$: even though there is no Kazhdan-Lusztig theory (for the moment...), are there several cellular structures (indexed by p-cores)?
- Ariki's Theorem holds...
- There are already several Schur algebras (coming from the theory of Cherednik algebras)
- Geometric interpretations (Calogero-Moser spaces, desingularization of $\left.\left(V \times V^{*}\right) / W \ldots\right)$? p-cores play a role, see the recent works of Gordon, Gordon-Martino
- Broué-Kim results on "Rouquier families"

