
MACKEY FORMULA IN TYPE A

CÉDRIC BONNAFÉ

Let G be a connected, reductive algebraic group defined over a finite field with q elements
and let F : G → G denote the corresponding Frobenius endomorphism. Let P and Q be two
parabolic subgroups of G and assume that P and Q have F -stable Levi subgroups L and M
respectively. By the Mackey formula (for the datum (G,L,P,M,Q)), we mean the following
equality :

(∗) ∗RG
L⊂P ◦RG

M⊂Q =
∑

g∈LF \SG(L,M)F /MF

RL
L∩gM⊂L∩gQ ◦ ∗R

gM
L∩gM⊂P∩gM ◦ (ad g)M.

where ∗RG
L⊂P and RG

M⊂Q denote respectively Lusztig restriction functor and Luztig induction
functor and SG(L,M) denotes the set of g ∈ G such that L and gM have a common maximal
torus. This formula is of central interest in the knowledge of Lusztig induction functors and
more generally, in the knowledge of the character table of GF . It is known to hold in many
cases :

(a) Whenever P and Q are F -stable (Deligne [LS], Theorem 2.5),
(b) Whenever L or M is a maximal torus of G (Deligne and Lusztig [DL2], Theorem 7),
(c) Whenever q is large enough (cf. [B1], Theorem 5.1.1).

It is conjectured that the Mackey formula holds in general. The aim of this article is to prove
that the Mackey formula holds in groups of type A without restriction on q (we say that G
is of type A if all the irreducible components of its root system are of type A ; this definition
does not involve the rational structure of G) : this is Theorem 5.2.1. The Mackey formula has
many consequences : for instance, the independence of the Lusztig functor on the choice of
the parabolic subgroup and the commutation (up to sign) of Lusztig functors with Alvis-Curtis
duality. Moreover, in the case of groups of type A, we obtain, as another consequence, a positive
answer to the following conjecture (cf. [L4], Section 1) :

Conjecture : If p is almost good for G, then the family of characteristic functions of F -stable
unipotent cuspidal pairs forms an orthogonal basis of the space of absolutely cuspidal functions
with unipotent support on GF .

See Subsection 3.1 and Subsection 3.2 for the definition of absolutely cuspidal functions, cusp-
idal pairs and of their characteristic function. This conjecture is known to hold in any group
if p is almost good and q is large enough (G. Lusztig [L4], Theorem 1.14) or if the center of
G is connected (Shoji [S1] and [S2], Theorem 4.2). A new example of a group for which both
conjectures are solved in this paper is SLn(Fq).

In the first section, we introduce some notation and some preliminary results. The second
section investigates the problem of the comparison of Lusztig functors and Green functions in
groups having the same Dynkin diagram. These results are useful to reduce the proof of the
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2 CÉDRIC BONNAFÉ

Mackey formula to simpler cases. The third section is concerned with the question of the link
between absolutely cuspidal functions with unipotent support and unipotent cuspidal pairs.
We obtain some partial results for the case of unipotent cuspidal pairs supported by the class
of regular unipotent elements : this case plays a central role for groups of type A because all
cuspidal unipotent pairs in groups of type A are supported by the class of regular unipotent
elements. In the fourth section, we give some consequences of the Mackey formula (cf. Theorem
4.1.1) and make these results more precise in the case of groups of type A. This is a crucial
step in the proof by induction on the dimension of G of the Mackey formula in groups of
type A. The fifth section is devoted to this proof : it starts by a series of results which could
be useful to prove the Mackey formula in other groups. In the last section, we investigate
the consequences of the Mackey formula, for example the solution to the preceding conjecture
without any condition on q (cf. Theorem 6.2.1).

Notation

Let p be a prime number and let F denote an algebraic closure of the finite field with p
elements Fp. We fix a power q of p and we denote by Fq the subfield of F with q elements.
All algebraic varieties and all algebraic groups will be considered over F. If H is an algebraic
group, we denote by H◦ its neutral component, by Huni the set of unipotent elements of H and
by Hsem the set of semisimple elements of H. If h ∈ H, we denote by CH(h) the centralizer of
h in H and by C◦

H(h) the neutral component of CH(h) (in other words, C◦
H(h) = CH(h)◦). We

also define AH(h) = CH(h)/C◦
H(h). We denote by Z(H) the center of H. If H is defined over

Fq and if F : H → H is the corresponding Frobenius endomorphism, H1(F,H) will denote the
set of F -conjugacy classes of elements of H (if H is abelian, then H1(F,H) is a finite abelian
group).

We fix another prime number ` different from p and we denote by Q` an algebraic closure
of the `-adic field Q`. If H is a finite group, all representations and all characters will be
considered over Q`. By a H-module, we mean a Q`H-module of finite type and we denote by
KH the Grothendieck group of the category of H-modules. Let Class(H) denote the Q`-vector
space of class functions H → Q` and let

〈, 〉H : Class(H) × Class(H) −→ Q`

(η, η′) 7−→
1

|H|

∑

h∈H

η(h)η′(h)

where Q` → Q`, x 7→ x is an automorphism of the field Q` such that ζ = ζ−1 for any root of
unity ζ : 〈, 〉H is a scalar product on Class(H). The set IrrH of irreducible characters of H is
an orthonormal basis of Class(H) and we have a natural isomorphism between KH and Z IrrH .
We denote by H∧ the group of linear characters of H (if H is abelian, then IrrH = H∧).

If X is an algebraic variety and if i is a natural number, we will denote by H i
c(X) the

cohomology group H i
c(X,Q`). Finally, by a local system on the variety X, we mean a Q`-local

system.

1. Preliminaries

We fix once and for all a connected reductive group G defined over Fq : let F : G → G
denote the Frobenius endomorphism corresponding to this rational structure. We will denote
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by Z the center of G. If g ∈ GF , we denote by γG
g (or γg is no confusion is possible) the

characteristic function of the GF -conjugacy class of g.

1.1. Lusztig functors. Let P be a parabolic subgroup of G and assume that P has a rational
Levi subgroup L. Let U be the unipotent radical of P and, following Lusztig [L1], define

YG
U = {g ∈ G | g−1F (g) ∈ U}.

Then the group GF (respectively LF ) acts on YG
U by left (respectively right) translation. We

denote by H∗
c (YG

U) the (virtual) GF -module-LF

H∗
c (YG

U) =
∑

k∈N

(−1)k Hk
c (YG

U).

Similarly, we define

H∗
c (YG

U)∨ =
∑

k∈N

(−1)k Hk
c (YG

U)∨

where H i
c(Y

G
U)∨ is the dual of H i

c(Y
G
U) (this is a LF -module-GF ).

Using these bimodules, Lusztig [L1] defined two functors :

RG
L⊂P : KLF −→ KGF

Λ 7−→ H∗
c (Y

G
U) ⊗Q`L

F Λ

and
∗RG

L⊂P : KGF −→ KLF

Γ 7−→ H∗
c (YG

U)∨ ⊗Q`G
F Γ

respectively called Lusztig induction functor and Lusztig restriction functor. These
functors extend by linearity to functions (also denoted by RG

L⊂P and ∗RG
L⊂P) between the Q`-

vector spaces Class(LF ) and Class(GF ) : they are adjoint with respect to the scalar products
〈, 〉LF and 〈, 〉GF .

1.2. Green functions. We denote by QG
L⊂P the map

QG
L⊂P : GF

uni × LF
uni −→ Q`

(u, v) 7−→ Tr((u, v), H∗
c (Y

G
U)).

It is called the Green function associated to L, P and G. If u ∈ GF
uni, let QG

L⊂P(u, .) denote
the function

QG
L⊂P(u, .) : LF −→ Q`

v 7−→

{
QG

L⊂P(u, v) if v is unipotent,
0 otherwise.

If v ∈ LF
uni, we define in a similar way a class function QG

L⊂P(., v) on GF .
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1.3. Unipotent support functions. We say that a class function γ : GF → Q` has a
unipotent support if γ(g) = 0 for any non-unipotent element g ∈ GF . We denote by
Classuni(G

F ) the subspace of Class(GF ) consisting of functions with unipotent support. If
s ∈ GF

sem and if γ ∈ Class(GF ), we define

dG
s γ : C◦

G(s)F −→ Q`

u 7−→

{
γ(su) if u is unipotent,
0 otherwise.

This defines a linear map dG
s : Class(GF ) → Classuni(C

◦
G(s)F ). Using this notation, the

“character formulas” (cf. [DM], Proposition 12.2) can be written in the following way : if
s ∈ GF

sem and t ∈ LF
sem, we have

(1.3.1) dG
s ◦RG

L⊂P =
1

|LF |.|C◦
G(s)F |

∑

g∈GF

s∈gL

|C◦
gL(s)F | R

C◦

G(s)

C◦
gL

(s)⊂C◦
gP

(s) ◦ d
gL
s ◦ (ad g)L

(1.3.2) dL
t ◦ ∗RG

L⊂P = ∗R
C◦

G(t)

C◦

L
(t)⊂C◦

P
(t) ◦ d

G
t

where (ad g)L : Class(LF ) → Class(gLF ) is the natural isometry induced by the isomorphism
ad g : LF → gLF , l 7→ gl.

1.4. The Mackey formula. Let Q be a parabolic subgroup of G and assume that Q has a
rational Levi subgroup M. We denote by SG(L,M) the set of elements g ∈ G such that L and
gM have a common maximal torus. We call the Mackey formula the following identity :

(∗) ∗RG
L⊂P ◦RG

M⊂Q =
∑

g∈LF \SG(L,M)F /MF

RL
L∩gM⊂L∩gQ ◦ ∗R

gM
L∩gM⊂P∩gM ◦ (ad g)M.

It is known that the Mackey formula holds in many cases. More precisely, we have

Proposition 1.4.1. The Mackey formula (∗) holds in the following cases :
(i) If P and Q are F -stable (Deligne, cf. [LS], Theorem 2.5),
(ii) If L or M is a maximal torus of G (cf. [DL2], Theorem 7),
(iii) If q > q0(G) where q0(G) is a constant depending only on the root datum associated to

G (cf. [B1], Theorem 5.1.1).

Conjecture A : The Mackey formula holds.

The aim of this article is to prove that the Mackey formula holds if all irreducible components
of the root system associated to G are of type A.

We define

∆G
L⊂P,M⊂Q = ∗RG

L⊂P ◦RG
M⊂Q −

∑

g∈LF \SG(L,M)F /MF

RL
L∩gM⊂L∩gQ ◦ ∗R

gM
L∩gM⊂P∩gM ◦ (ad g)M.

Then ∆G
L⊂P,M⊂Q : Class(MF ) −→ Class(LF ) is a linear map. The Mackey formula (∗) is

equivalent to the vanishing of ∆G
L⊂P,M⊂Q.

Definition 1.4.2. We say that the Mackey formula holds in G if, for any connected
reductive F -stable subgroup G′ of G which has the same rank as G and for any parabolic
subgroups P′ and Q′ of G′ having F -stable Levi subgroups L′ and M′ respectively, we have
∆G′

L′⊂P′,M′⊂Q′ = 0.
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1.5. The Mackey formula for Green functions. Similarly to the preceding Subsection
1.4, we put, for all v ∈ LF

uni and w ∈ MF
uni

ΓG
L⊂P,M⊂Q(v, w) = 〈QG

L⊂P(., v−1), QG
M⊂Q(., w−1)〉GF

−
∑

g∈LF \SG(L,M)F /MF

〈QL
L∩gM⊂L∩gQ(v, .), Q

gM
L∩gM⊂P∩gM(gw, .)〉LF∩gMF

This defines a function ΓG
L⊂P,M⊂Q : LF

uni × MF
uni −→ Q`. We call the Mackey formula for

Green functions the equality ΓG
L⊂P,M⊂Q = 0.

Conjecture B : The Mackey formula for Green functions holds.

The Mackey formula for Green functions is known to be equivalent to the Mackey formula (F.
Digne and J. Michel, cf. [B1], Proposition 2.3.6) or, in other words, conjecture A is equivalent
to conjecture B.

1.6. Lusztig series. Let T0 be an F -stable maximal torus of G. We denote by (G∗,T∗
0, F

∗)
a dual triple of (G,T0, F ) in the sense of Deligne-Lusztig. If σ is a semisimple element of G∗F ∗

,
we denote by (σ)G∗F∗ (or (σ) if no confusion is possible) the G∗F ∗

-conjugacy class of σ. To
this conjugacy class is associated a subset E(GF , (σ)) of IrrGF , called the (rational) Lusztig
series associated to (σ). Then there is a partition (cf. [DM], Theorem 14.51) :

IrrGF =
⋃

(σ)

E(GF , (σ))

where (σ) runs over the set of G∗F ∗

-conjugacy classes of semisimple elements of G∗F ∗

. This
implies that we have

Class(GF ) =
⊕

(σ)

Q`E(GF , (σ))

and this direct sum is orthogonal. If γ ∈ Class(GF ), we denote by γ(σ) the orthogonal projection

of γ on Q`E(GF , (σ)). We have :

γ =
∑

(σ)

γ(σ).

Let L∗ be an F ∗-stable Levi subgroup of a parabolic subgroup of G∗ which is dual to L. We
have the following result (cf. [B1], Corollary 4.4.1) :

Proposition 1.6.1. Let σ be a semisimple element of L∗F ∗

and let λ ∈ Q`E(LF , (σ)L∗F∗).
Then RG

L⊂P(λ) ∈ Q`E(GF , (σ)G∗F∗).

Corollary 1.6.2. Let σ be a semisimple element of G∗F ∗

and let γ ∈ Q`E(GF , (σ)G∗F∗). Then

∗RG
L⊂P(γ) ∈

⊕

(τ)
L∗F∗⊂(σ)

G∗F∗

Q`E(LF , (τ)L∗F∗).
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1.7. Action of ZF . If z ∈ ZF and if γ ∈ Class(GF ), we define

tGz γ : GF −→ Q`

g 7−→ γ(zg).

Then tGz γ is a class function on GF and tGz : Class(GF ) → Class(GF ) is an isometry. Moreover,
we have

(1.7.1) tGz ◦ tGz′ = tGzz′

for all z and z′ in ZF . So this defines an action of ZF on the Q`-vector space Class(GF ).

If φ : ZF → Q`
×

is a linear character, we denote by Class(GF )φ the subspace of Class(GF )
consisting of class functions γ such that

tGz γ = φ(z)γ

for any z ∈ ZF . Then we have

(1.7.2) Class(GF ) =
⊕

φ∈(ZF )∧

Class(GF )φ

and this direct sum is orthogonal. More generally, if W is a subspace of Class(GF ) stable under
the action of ZF and if φ is a linear character of ZF , then we put W φ = W ∩ Class(GF )φ.

The following identities can be deduced immediately from the fact that the action of ZF on
YG

U by left (or right) translation commutes with the actions of GF and LF respectively :

(1.7.3) tGz ◦RG
L⊂P = RG

L⊂P ◦ tLz ,

(1.7.4) tLz ◦ ∗RG
L⊂P = ∗RG

L⊂P ◦ tGz

for all z ∈ ZF .

Lemma 1.7.5. If σ is a semisimple element of G∗F ∗

, then there exists a unique linear character

φ : ZF → Q`
×
, depending only on the G∗F ∗

-conjugacy class of σ, such that

Q`E(GF , (σ))⊂Class(GF )φ.

Notation - The linear character φ of the preceding Lemma 1.7.5 will be denoted by σ̂ or σ̂G

if we need to specify the group.

1.8. Action of H1(F,Z). For each a ∈ H1(F,Z), we choose an element la ∈ L such that
l−1
a F (la) is an element of Z representing a. Because Z is central in G, conjugation by la induces
an automorphism of L commuting with F . In particular, la normalizes LF .

If ma is another element of L such that m−1
a F (ma) is an element of Z representing a, then

there exist z ∈ Z and l ∈ LF such that ma = zlla. This proves that the automorphism of LF

induced by conjugation by la is well-defined up to an inner automorphism of LF . Hence the
map

Irr(LF ) −→ Irr(LF )
λ 7−→ laλ = λ ◦ ad la

depends only on a. We will denote it by â : Irr(LF ) → Irr(LF ), λ 7→ âλ. It is easily checked
that

âb̂ = âb
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for all a and b in H1(F,Z). So this defines an action of H1(F,Z) on Irr(LF ). This action
extends naturally by linearity to an action by isometries on Class(LF ) denoted in the same
way. Similarly, we also have an action of H1(F,Z) on Class(GF ), also denoted by

H1(F,Z) × Class(GF ) −→ Class(GF )
(a, γ) 7−→ âγ.

The following equalities hold :

(1.8.1) â ◦RG
L⊂P = RG

L⊂P ◦ â,

(1.8.2) â ◦ ∗RG
L⊂P = ∗RG

L⊂P ◦ â

for any a ∈ H1(F,Z). Indeed, conjugation by la induces an automorphism of the variety YG
U.

If ζ is a linear character of H1(F,Z), we denote by Class(GF )ζ the subspace of Class(GF )
consisting of class functions γ on GF such that âγ = ζ(a)γ for all a ∈ H1(F,Z). We have

(1.8.3) Class(GF ) =
⊕

ζ∈H1(F,Z)

Class(GF )ζ

and this direct sum is orthogonal. As in the preceding subsection, if W is a subspace of
Class(GF ) stable under the action of H1(F,Z) and if ζ is a linear character of H1(F,Z), we
put Wζ = W ∩ Class(GF )ζ .

Example - The subspace Classuni(G
F ) is stable under the action of H1(F,Z). In particular,

we have
Classuni(G

F ) =
⊕

ζ∈H1(F,Z)

Classuni(G
F )ζ

By the identities 1.8.1 and 1.8.2, we have the following

Lemma 1.8.4. Let ζ ∈ H1(F,Z)∧.
(a) If λ ∈ Class(LF )ζ , then RG

L⊂Pλ ∈ Class(GF )ζ .
(b) If γ ∈ Class(GF )ζ then ∗RG

L⊂Pγ ∈ Class(LF )ζ .

The natural map Z → Z(L) induces a surjective morphism hG
L : Z/Z◦ → Z(L)/Z(L)◦

(cf. [DLM], Lemma 1.4) so it induces a surjective morphism hG
L : H1(F,Z) → H1(F,Z(L)).

Lemma 1.8.5. The group KerhG
L acts trivially on Class(LF ). In particular, if ζ is a linear

character of H1(F,Z) such that KerhG
L * Ker ζ, then Class(LF )ζ = {0}.

Proof - If a ∈ KerhG
L , then we can choose the element la in Z(L). This proves the first

assertion. The second follows immediately. �

Corollary 1.8.6. Let ζ ∈ H1(F,Z)∧ be such that KerhG
L * Ker ζ and let γ ∈ Class(GF )ζ .

Then ∗RG
L⊂Pγ = 0.

Let T be an F -stable maximal torus of G and let θ : TF → Q`
×

be a linear character of TF .
We have KerhG

T = H1(F,Z) so, by 1.8.1 and by Lemma 1.8.5, we have
âRG

T (θ) = RG
T (θ).

Thus the action of H1(F,Z) on IrrGF stabilizes the Lusztig series. Moreover, if σ is a semisim-
ple element of G∗F ∗

then there is a surjective morphism

ψG
σ : H1(F,Z) → (AG∗(σ)F ∗

)∧
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(cf. , e.g, [DLM], 3.12) and the kernel of this morphism acts trivially on E(GF , (σ)) by the same
argument as in [DLM], proof of 3.12, p.171. In particular, we have

(1.8.7) If ζ ∈ H1(F,Z)∧ is such that KerψG
σ * Ker ζ then Q`E(GF , (σ))ζ ={0}.

Notation - The actions of ZF and H1(F,Z) on Class(GF ) commute. If W is a subspace of
Class(GF ) stable under both actions and if φ and ζ are linear characters of ZF and H1(F,Z)
respectively, we put

W φ
ζ = W φ ∩Wζ .

In particular, we have

Class(GF ) =
⊕

φ∈(ZF )∧

ζ∈H1(F,Z)∧

Class(GF )φ
ζ .

2. Comparison of Lusztig functors in groups of the same type

Let G̃ be another connected reductive group defined over Fq, with Frobenius endomorphism

also denoted by F : G̃ → G̃. We assume that there is a morphism of algebraic groups i : G → G̃
defined over Fq and satisfying the following conditions :

(a) Ker i is central in G,

(b) i(G) contains the derived group of G̃.

We denote by iG : Class(G̃F ) → Class(GF ), γ 7→ γ ◦ i.

Let L̃ be an F -stable Levi subgroup of a parabolic subgroup P̃ of G̃ and let

L = i−1(L̃) and P = i−1(P̃).

Then P is a parabolic subgroup of G and L is an F -stable Levi subgroup of P. We denote by
Ũ (respectively U) the unipotent radical of P̃ (respectively P). The goal of this section is to

study the link between the Lusztig functors RG
L⊂P and RG̃

L̃⊂P̃
(or, equivalently, between ∗RG

L⊂P

and ∗RG̃

L̃⊂P̃
) and the link between Green functions QG

L⊂P and QG̃

L̃⊂P̃
(cf. [DM], Proposition 13.22

for another proof of Corollary 2.1.3).

2.1. Lusztig functors. In this subsection, we assume that Ker i is connected (in particular, we
have i(GF ) = i(G)F and i(LF ) = i(L)F by Lang’s theorem). The algebra Q`G̃

F (respectively

Q`L̃
F ) has a natural structure of GF -module-GF (respectively LF -module-LF ). We have the

following lemma :

Proposition 2.1.1. If the kernel of i is connected, then i induces an isomorphism of G̃F -
module-LF

Hk
c (YG̃

Ũ
) ' Q`G̃

F ⊗Q`G
F Hk

c (YG
U)

and an isomorphism of GF -module-L̃F

Hk
c (YG̃

Ũ
) ' Hk

c (YG
U) ⊗Q`L

F Q`L̃
F .
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Proof - We just give a proof for the first isomorphism, the second one being proved in a
similar way. Let G1 be the image of i. Then we denote by i1 : G → G1 the morphism induced
by i and by i2 : G1 → G̃ the natural injection. To prove Proposition 2.1.1, it is sufficient to
prove it when i = i1 and when i = i2 by transitivity of the tensor product. In other words, it
is sufficient to prove the following lemma :

Lemma 2.1.2. (a) If i is surjective and has a connected kernel, then it induces a bijective

morphism of varieties YG
U/(Ker i)F −→ YG̃

Ũ
. Hence we have an isomorphism of GF -module-LF

Hk
c (YG̃

Ũ
) ' Hk

c (YG
U)(Ker i)F

for all k ∈ N.
(b) If G is a closed subgroup of G̃ and if i : G → G̃ is the canonical injection, then

YG̃
U =

∐

g∈G̃F /GF

g.YG
U =

∐

l∈L̃F /LF

YG
U.l

(note that U = Ũ).

Proof of Lemma 2.1.2 - Let first prove (a). So assume that i is surjective and has a

connected kernel. Then the map i induces a morphism of varieties i′ : YG
U → YG̃

Ũ
. We first

prove that i′ is surjective. Let g̃ ∈ YG̃

Ũ
and let g ∈ G be such that i(g) = g̃. Then there

exists z ∈ Ker i such that g−1F (g) ∈ zU. But, since Ker i is connected, there exists an element
s ∈ Ker i such that s−1F (s) = z−1. Then (gs)−1F (gs) = s−1F (s)g−1F (g) ∈ U because Ker i is
central in G. So gs ∈ YG

U and i′(gs) = g̃ which proves that i′ is surjective.
We now prove that fibers of i′ are (Ker i)F -orbits. Let g and h be two elements of YG

U such
that i′(g) = i′(h) or equivalently, i(g) = i(h). Then there exists z ∈ Ker i such that g = hz. So
g−1F (g) = z−1F (z)h−1F (h) ∈ z−1F (z)U ∩ U. So F (z) = z. This proves the first assertion of
(a). The second follows from the first one and from [DM], Proposition 10.10, (i).

Let now prove (b). So assume that G is a closed subgroup of G̃ and that i : G → G̃ is the

canonical injection. It is clear that YG
U is contained in YG̃

U. Moreover, YG̃
U is stable under left

translations by an element of G̃F . So we have
∐

g∈G̃F /GF

g.YG
U⊂YG̃

U .

Conversely, let x̃ ∈ YG̃
U . Then x̃−1F (x̃) ∈ U⊂G. So, by Lang’s theorem, there exists x ∈ G

such that x−1F (x) = x̃−1F (x̃). Let g = x̃x−1. Then g ∈ G̃F , x ∈ YG
U and x̃ = gx. This proves

that
YG̃

U⊂
∐

g∈G̃F /GF

g.YG
U

and the first equality of (b). The second one is proved in a similar way. �

Corollary 2.1.3. If the kernel of i is connected, then

(a) iG ◦RG̃

L̃⊂P̃
= RG

L⊂P ◦ iL.

(b) iL ◦ ∗RG̃

L̃⊂P̃
= ∗RG

L⊂P ◦ iG.

Proof - This follows immediately from Proposition 2.1.1. �

Remarks - (1) In [DM], Proposition 13.22, the preceding Corollary 2.1.3 is proved in an
entirely different way.
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(2) If i is injective, then Corollary 2.1.3 can be written in the following way :

(2.1.4) ResG̃
F

GF ◦RG̃

L̃⊂P̃
= RG

L⊂P ◦ ResL̃
F

LF ,

(2.1.5) ResL̃
F

LF ◦∗RG̃

L̃⊂P̃
= ∗RG

L⊂P ◦ ResG̃
F

GF

where GF is viewed as a subgroup of G̃F . By taking adjoints, we get also the following formulas :

(2.1.6) IndG̃F

GF ◦RG
L⊂P = RG̃

L̃⊂P̃
◦ IndL̃F

LF ,

(2.1.7) IndL̃F

LF ◦∗RG
L⊂P = ∗RG̃

L̃⊂P̃
◦ IndG̃F

GF .

2.2. Green functions. As a particular case of Lemma 2.1.2, we get the following

Proposition 2.2.1. Let u and v be unipotent elements of GF and LF respectively. Then :
(a) If i is surjective and has a connected kernel, then

QG̃

L̃⊂P̃
(i(u), i(v)) =

1

|(Ker i)F |
QG

L⊂P(u, v).

(b) If i is injective, then

QG̃

L̃⊂P̃
(u, v) =

∑

g∈G̃F /GF

QG
L⊂P(gu, v)

=
∑

l∈L̃F /LF

QG
L⊂P(u, lv)

where GF
uni and G̃F

uni are identified via i.

Proof - Let u and v be two unipotent elements of GF and LF respectively. Then, by [DM],
Proposition 10.10, (ii), and by Lemma 2.1.2, (a), we have

Tr(i(u), i(v)), H∗
c (Y

G̃

Ũ
)) =

1

|(Ker i)F |

∑

z∈(Ker i)F

Tr((u, zv), H∗
c (Y

G
U)).

But, if z ∈ (Ker i)F is different from 1, then Tr((u, zv), H∗
c (Y

G
U)) = 0 (cf. [DM], Lemma 12.3)

and (a) follows.
(b) follows immediately from Lemma 2.1.2, (a). �

We return to the general case. We have a morphism of groups H1(F,Ker i) → H1(F,Z).
So, if z ∈ H1(F,Ker i), we also denote by ẑ the action of the image of z in H1(F,Z) on the
conjugacy classes of GF or LF .

Proposition 2.2.2. Assume that i is surjective. Let u and v be two unipotent elements of GF

and LF respectively. Then

QG̃

L̃⊂P̃
(i(u), i(v)) =

1

|(Ker i)F |

∑

z∈H1(F,Ker i)

QG
L⊂P(ẑu, v)

=
1

|(Ker i)F |

∑

z∈H1(F,Ker i)

QG
L⊂P(u, ẑv).
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Proof - Let G0 = G/(Ker i)◦ and let π : G → G0 be the canonical surjection. We denote

by i1 : G0 → G̃ the morphism of algebraic groups induced by i. By Proposition 2.2.1, (a), we
have

QG̃

L̃⊂P̃
(π(u), π(v)) =

1

|(Ker i)◦F |
QG

L⊂P(u, v).

So it is sufficient to prove the Proposition 2.2.2 for the morphism i1. In other words, we can
assume that Ker i is finite. In this case, |(Ker i)F | = |H1(F,Ker i)|. Hence it is sufficient to
prove that

QG̃

L̃⊂P̃
(i(u), i(v)) =

1

|Ker i|

∑

z∈Ker i

QG
L⊂P(lzu, v)

=
1

|Ker i|

∑

z∈Ker i

QG
L⊂P(u, lzv)

where, for each z ∈ Ker i, lz is an element of L such that l−1
z F (lz) = z.

The map i induces a bijective morphism of varieties
( ⋃

z∈Ker i

lzY
G
U

)
/Ker i −→ YG̃

Ũ
.

Hence, we have (for example by [DM], Proposition 10.10, (ii)),

Tr((u, v), H∗
c (Y

G̃

Ũ
)) =

1

|Ker i|

∑

z∈Ker i

Tr((u, zv),
⊕

z′∈Ker i

H∗
c (lz′Y

G
U)).

But, if z and z′ are in Ker i, then ulz′Y
G
Uzv = lz′z−1F (z)Y

G
U . Hence, if F (z) 6= z, then

Tr((u, zv),
⊕

z′∈Ker i

H∗
c (lz′Y

G
U)) = 0.

So, we have

Tr((u, v), H∗
c (Y

G̃

Ũ
)) =

1

|Ker i|

∑

z∈(Ker i)F

z′∈Ker i

Tr((u, zv), H∗
c (lz′Y

G
U))

=
1

|Ker i|

∑

z∈(Ker i)F

z′∈Ker i

Tr((l−1
z′ u, zv), H∗

c (YG
U))

=
1

|Ker i|

∑

z′∈Ker i

Tr((l−1
z′ u, v), H∗

c (Y
G
U))

because Tr((lz′u, zv), H∗
c (Y

G
U)) = 0 for all z ∈ (Ker i)F different from 1 and z′ ∈ Ker i (cf. [DM],

Proposition 12.3). This proves the first equality of the Proposition and the second one follows
by a similar argument. �

Corollary 2.2.3. If i is surjective and Ker i⊂{z−1F (z) | z ∈ Z(L)} then

QG̃

L̃⊂P̃
(i(u), i(v)) =

1

|(Ker i)◦F |
QG

L⊂P(u, v)

for all unipotent elements u and v in GF and LF respectively. In particular, this equality holds
whenever Ker i⊂Z(L)◦.
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3. Absolutely cuspidal functions

In this section, we investigate the link between absolutely cuspidal functions and cuspidal
local systems (cf. definitions below). The first two subsections recall general facts while the
third deals with the particular case of cuspidal local systems supported by the conjugacy class
of regular unipotent elements. We will use these results in the next sections to get further
informations about groups of type A : in these groups, it turns out that all cuspidal local
systems are supported by the conjugacy class of regular unipotent elements.

3.1. Definition. A class function γ on GF is said absolutely cuspidal if ∗RG
L⊂P(γ) = 0 for

any F -stable Levi subgroup L of a proper parabolic subgroup P of G. We denote by Cus(GF )
the subspace of Class(GF ) consisting of absolutely cuspidal functions. Recall that a semisimple
element s of G is said isolated if C◦

G(s) is not contained in any Levi subgroup of a proper
parabolic subgroup of G.

Proposition 3.1.1. Let γ be an absolutely cuspidal function on GF . Then :
(a) Let g ∈ GF be such that γ(g) 6= 0. Then the semisimple part of g is isolated.
(b) If s is a semisimple element of GF , then dG

s γ is an absolutely cuspidal function on
C◦

G(s)F .

Proof - Let first prove (a). Let g be an element of GF having a semisimple part s which is
not isolated in G. Let L be the intersection of all Levi subgroups of parabolic subgroups of G
containing C◦

G(s). Then L is an F -stable Levi subgroup of a proper parabolic subgroup P of
G. Moreover, g ∈ C◦

G(s)⊂L. Let u be the unipotent part of g. We have, by Formula 1.3.2 :

0 = dL
s (∗RG

L⊂Pγ)(u)

= ∗R
C◦

G
(s)

C◦

L
(s)⊂C◦

P
(s)(d

G
s γ)(u)

= dG
s γ(u)

= γ(su) = γ(g),

the third equality following from the fact that C◦
G(s)⊂L⊂P. So (a) follows.

Let now prove (b). Let L be an F -stable Levi subgroup of a proper parabolic subgroup P
of C◦

G(s). We define M = CG(Z(L)◦). Then M is an F -stable Levi subgroup of a proper
parabolic subgroup Q of G and M ∩ C◦

G(s) = C◦
M(s) = L by classical properties of Levi

subgroups. Moreover, we can choose Q such that P⊂Q : hence, we have C◦
Q(s) = P. By

Formula 1.3.2, we have :

∗R
C◦

G(s)

L⊂P (dG
s γ) = dM

s (∗RG
M⊂Qγ)

= 0

which proves that dG
s γ is absolutely cuspidal. �

Let Cusuni(G
F ) denote the subspace of Class(GF ) consisting of absolutely cuspidal class

functions with unipotent support. In other words,

Cusuni(G
F ) = Classuni(G

F ) ∩ Cus(GF ).

If s ∈ GF is semisimple, then Proposition 3.1.1 shows that the map dG
s induces a map dG

s :
Cus(GF ) → Cusuni(C

◦
G(s)F ) which is zero is s is not isolated.
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The subspace Cus(GF ) is stable under the actions of ZF and H1(F,Z) by 1.7.4 and 1.8.2
respectively. However, Cusuni(G

F ) is stable only under the action of H1(F,Z) and not under
the action of ZF if ZF 6= {1}. In particular, we have the following decompositions

Cus(GF ) =
⊕

φ∈(ZF )∧

ζ∈H1(F,Z)∧

Cus(GF )φ
ζ

and. Cusuni(G
F ) =

⊕

ζ∈H1(F,Z)∧

Cusuni(G
F )ζ

These direct sums are orthogonal.
The following lemma follows immediately from Corollary 1.6.2 :

Lemma 3.1.2. Let γ ∈ Cus(GF ) and let σ be a semisimple element of G∗F ∗

. Then γ(σ) is also
absolutely cuspidal.

3.2. Cuspidal local systems. We denote by U(G) the set of (isomorphism classes of) pairs
(C,L) where C is a unipotent class of G and L is a G-equivariant irreducible local system
on C. The pair (C,L) is said F -stable if F (C) = C and if there is an isomorphism F ∗L '
L. We denote by U(G)F the set of F -stable elements of U(G). If (C,L) ∈ U(G)F and if
we choose an isomorphism ϕ : F ∗L ' L, we can define a class function Y(C,L) called the
characteristic function of (C,L) which is well-defined up to a scalar (depending on the
choice of the isomorphism F ∗L ' L). This function is given by the following formula :

Y(C,L)(g) =

{
Tr(ϕg,Lg) if g ∈ CF ,
0 otherwise,

for any g ∈ GF . The following fact is proved in [L3], 24.2.7 :

(3.2.1) The family (Yι)ι∈U(G)F is a basis of Classuni(G
F ).

We denote by U(G)cus the set of cuspidal pairs of U(G) in the sense of Lusztig (cf. [L2],
Definition 2.4). In [L4], Section 1, Lusztig made the following conjecture :

Conjecture C : If p is almost good for G, then (Yι)ι∈U(G)F
cus

is an orthogonal basis of

Cusuni(G
F ).

Theorem 3.2.2. Conjecture C holds in the following cases :
(i) If q > q1(G) where q1(G) is a constant depending only on the root datum associated to

G (Lusztig [L4], Theorem 1.14).
(ii) If the center of G is connected (Shoji [S1] and [S2], Theorem 4.2).

Remark - In Lusztig’s paper [L4], the space Cus(GF ) was denoted by F̄G
G and the span of

(Yι)ι∈U(G)F
cus

was denoted by FG
G.

As a consequence of the Mackey formula for groups of type A, we will obtain that conjecture
C holds for groups of type A without hypothesis on q (cf. Theorem 6.2.1).
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3.3. Cuspidal local system on the regular unipotent class. In this subsection, we assume
that p is good for G. We fix a regular unipotent element u1 ∈ GF and we denote by Creg the
conjugacy class of u1 in G. The group AG(u1) is naturally isomorphic to Z/Z◦ because p is good
for G. Consequently, there is a natural bijection between isomorphism classes of irreducible
local system on Creg and the set of linear characters of Z/Z◦. If ζ is a linear character of Z/Z◦,
then we denote by Lζ a corresponding local system on Creg.

If L is a Levi subgroup of a parabolic subgroup of G, then we recall that the natural map
Z ↪→ Z(L) induces a surjective map hG

L : Z/Z◦ → Z(L)/Z(L)◦. The following result is well-
known :

Proposition 3.3.1. Let ζ be a linear character of Z/Z◦. Then the pair (Creg,Lζ) is cuspidal
if and only if Ker hG

L * Ker ζ for any Levi subgroup L of a proper parabolic subgroup of G.

We denote by (Z/Z◦)∧cus the set of linear characters ζ of Z/Z◦ such that (Creg,Lζ) is cuspidal.

Proposition 3.3.2. Let L and M be two Levi subgroups of parabolic subgroups of G and let
ζ and ζ ′ be two linear characters of Z(L)/Z(L)◦ and Z(M)/Z(M)◦ respectively. Assume that
ζ ◦ hG

L = ζ ′ ◦ hG
M, that ζ ∈ (Z(L)/Z(L)◦)∧cus and that ζ ′ ∈ (Z(M)/Z(M)◦)∧cus. Then there exists

g ∈ G such that gL = M. In particular, Z ∩ Z(L)◦ = Z ∩ Z(M)◦.

Proof - Let T be a maximal torus of G and let B be a Borel subgroup of G containing T. We
can assume that L and M are standard with respect to the pair (T,B). Let ζ = ζ◦hG

L = ζ ′◦hG
M.

Then (Ker hG
L ).(KerhG

M)⊂Ker ζ. But, by [DLM], Lemma 1.5, we have

KerhG
L∩M = (KerhG

L ).(Ker hG
M).

Hence KerhG
L∩M⊂Ker ζ which implies that Ker hL

L∩M⊂Ker ζ . But ζ ∈ (Z(L)/Z(L)◦)∧cus so
L ∩ M = L by Proposition 3.3.1 which implies that L is contained in M. Similarly, M is
contained in L : this proves the first assertion of the proposition. The second one follows
easily. �

If ζ is a linear character of Z/Z◦, then the pair (Creg,Lζ) is F -stable if and only if the linear
character ζ is F -stable that is, if and only if ζ is a linear character of H1(F,Z). We make
Proposition 3.3.1 more precise in the following :

Proposition 3.3.3. Let ζ be an F -stable linear character of Z/Z◦. Then the following are
equivalent :

(a) The pair (Creg,Lζ) is cuspidal ;
(b) For any Levi subgroup L of a proper parabolic subgroup of G, we have Ker hG

L * Ker ζ.
(c) For any rational Levi subgroup L of a proper parabolic subgroup of G, we have Ker hG

L *
Ker ζ.

(d) For any rational Levi subgroup L of a proper rational parabolic subgroup of G, we have
Ker hG

L * Ker ζ.

Proof - (a) is equivalent to (b) by Proposition 3.3.1. It is clear that (b) implies (c) and that
(c) implies (d). It remains to prove that (d) implies (b). Let assume that (d) holds and let
L be a Levi subgroup of a parabolic subgroup P of G such that Ker hG

L⊂Ker ζ . We have to
prove that L = G.

Let B be an F -stable Borel subgroup of G and let T be an F -stable maximal torus of B.
By replacing the pair (L,P) by a conjugate, we can assume that B⊂P and that T⊂L. Let n
be a non-zero natural number such that F n(P) = P (or, equivalently, F n(L) = L) and let

M = L ∩ F (L) ∩ · · · ∩ F n−1(L) and Q = P ∩ F (P) ∩ · · · ∩ F n−1(P).
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Then M is a rational Levi subgroup of the rational parabolic subgroup Q of G and, by [DLM],
Lemma 1.5, we have

Ker hG
M = (Ker hG

L ).(Ker hG
F (L)) . . . (ker h

G
F n−1(L)).

But, if 0 6 i 6 n − 1, then KerhG
F i(L) = F i(KerhG

L )⊂Ker ζ because ζ is F -stable. Hence

Ker hG
M⊂Ker ζ which implies that M = G because we are assuming that (d) holds. So L = G

as desired. �

We denote by H1(F,Z)∧cus the set of linear characters of the group H1(F,Z) such that
(Creg,Lζ) is cuspidal.

The set of GF -conjugacy classes of regular unipotent elements of GF is parametrized by
H1(F,Z). If a ∈ H1(F,Z), we denote by ua a representative of the GF -conjugacy class of regular

unipotent elements associated to a : in fact, γG
ua

= â−1
γG

u1
(recall that γG

g is the characteristic

function of the GF -conjugacy class of g ∈ GF ). If ζ is a linear character of H1(F,Z), we denote
by ΓG

ζ the characteristic function of (Creg,Lζ). If we normalize ΓG
ζ by the condition ΓG

ζ (u1) = 1,
we have

(3.3.4) ΓG
ζ =

∑

a∈H1(F,Z)

ζ(a) γG
ua
.

It is easy to check that

(3.3.5) ΓG
ζ ∈ Classuni(G

F )ζ .

Proposition 3.3.6. Let ζ be a linear character of H1(F,Z). Then the pair (Creg,Lζ) is cusp-
idal if and only if the characteristic function ΓG

ζ is absolutely cuspidal.

Proof - If the pair (Creg,Lζ) is cuspidal then, by Proposition 3.3.3, (c), and by Corollary
1.8.6, the function ΓG

ζ is absolutely cuspidal.

Conversely, assume that ΓG
ζ is absolutely cuspidal and let L be an F -stable Levi subgroup

of a proper F -stable parabolic subgroup P of G. Then ∗RG
L⊂PΓG

ζ = 0 or, in other words,

∑

a∈H1(F,Z)

ζ(a) â−1∗RG
L⊂Pγ

G
u1

= 0.

But, by [DLM], Proposition 5.3, ∗RG
L⊂Pγ

G
u1

= γL
v where v is a regular unipotent element of LF .

Moreover, â−1
γL

v = γL
v if and only if a ∈ KerhG

L . Hence we have
∑

a∈KerhG
L

ζ(a) = 0

that is KerhG
L * Ker ζ . So (Creg,Lζ) is cuspidal by Proposition 3.3.3 (equivalence between (a)

and (d)). �

Example : The case of type A - If G is of type A that is, if all the irreducible components
of the root system of G are of type A, and if (C,L) ∈ U(G)cus, then C = Creg by [L2],
Proposition 2.8.
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4. Some consequences of the Mackey formula

We will prove in the Section 5 the Mackey formula for groups of type A by induction on
the dimension of the group. That means that we will assume that the Mackey formula holds
for smaller groups. This is the reason why we need to obtain a priori some consequences
of the Mackey formula. In this section, we are particularly interested in its connection with
conjecture C. We will obtain that, for groups of type A, the Mackey formula implies conjecture
C (cf. Theorem 4.2.1).

4.1. The Mackey formula and absolutely cuspidal functions. Whenever the Mackey
formula holds in G it is possible to prove a weaker result than conjecture C. More precisely :

Theorem 4.1.1. If the Mackey formula holds in G and if ω : G → G is an automorphism of
G commuting with F then dim Cusuni(G

F )ω is equal to the number of orbits of ω in U(G)F
cus.

Corollary 4.1.2. If the Mackey formula holds in G, then
(a) dim Cusuni(G

F ) = |U(G)F
cus|.

(b) If G is a rational Levi subgroup of a parabolic subgroup of a connected reductive group
H (endowed with a Frobenius endomorphism also denoted by F ) then all cuspidal functions on
GF with unipotent support are invariant under the action of NHF (G).

Proof of Theorem 4.1.1 and Corollary 4.1.2 - We will prove these results by induction
on dimG. They are obvious if dimG is small. Therefore, assume that Theorem 4.1.1 and
Corollary 4.1.2 are true with G replaced by any rational Levi subgroup of a proper parabolic
subgroup of G (indeed, the Mackey formula holds in L by hypothesis). Note that assertion (a)
of Corollary 4.1.2 follows immediately from Theorem 4.1.1 and that assertion (b) follows from
Theorem 4.1.1 and from the following fact (cf. [L2], Theorem 9.2, (a)) :

(4.1.3)
If L is a Levi subgroup of a parabolic subgroup of G, then NG(L) acts
trivially on U(L)cus.

Hence it is sufficient to prove the assertion of Theorem 4.1.1.
It is well-known that the Mackey formula implies that the Lusztig functors are independent

of the choice of a parabolic subgroup. Consequently, if L is an F -stable Levi subgroup of a
parabolic subgroup P of G, we will denote by RG

L and ∗RG
L the Lusztig functors RG

L⊂P and
∗RG

L⊂P.
The Mackey formula in G implies that

(4.1.4) Classuni(G
F ) = Cusuni(G

F ) ⊕
( ⊕

L∈A

RG
L (Cusuni(L

F ))
)

where A is a set of representative of GF -conjugacy classes of F -stable Levi subgroups of proper
parabolic subgroups of G such that U(L)F

cus 6= ∅ (indeed, by the induction hypothesis, if
U(L)F

cus = ∅, then Cusuni(L
F ) = {0}). Moreover, this direct sum is orthogonal.

If L ∈ A, then NGF (L) acts trivially on Cusuni(L
F ) by the induction hypothesis. Hence, by

the Mackey formula, we have, for all λ and λ′ in Cusuni(L
F ),

〈RG
L λ,R

G
L λ

′〉GF =
|NGF (L)|

|LF |
〈λ, λ′〉LF

so the map

(4.1.5) RG
L : Cusuni(L

F ) −→ RG
L (Cusuni(L

F ))
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is an isomorphism.

We fix an F -stable Borel subgroup B of G and an F -stable maximal torus T of B. We
denote by W the Weyl group of G relative to T and by S the set of simple reflections of W
with respect to the choice of B. For each I⊂S, we denote by WI the subgroup of W generated
by I and by LI the Levi subgroup of the parabolic subgroup PI = BWIB containing T (WI is
the Weyl group of LI relative to T). We denote by P(S) the set of subsets of S and by P(S)F

cus

the set of I ∈ P(S)F such that U(LI)
F
cus 6= ∅. Then by [L2], Theorem 9.2, we have

(4.1.6) If I , J ∈ P(S )Fcus and if there exists w ∈ W such that wI = J , then I = J .

(4.1.7) Every L ∈ A is geometrically conjugate to a unique LI with I ∈ P(S )Fcus.

If I ∈ P(S)F
cus, then the set of GF -conjugacy classes of F -stable Levi subgroups of parabolic

subgroups of G geometrically conjugate to LI is in one-to-one correspondence with the set
H1(F,WG(LI)) where WG(LI) = NG(LI)/LI . If w ∈ H1(F,WG(LI)), then we denote by LI,w

a representative of the class associated to w and by ẇ a representative of w in NG(LI). With
these notations, we have, by 4.1.3,

|U(LI,w)F
cus| = |U(LI)

ẇF
cus | = |U(LI)

F
cus|.

We denote by C the set of pairs (I, w) where I ∈ P(S)F
cus, I 6= S and w ∈ H1(F,WG(LI). Then,

by 4.1.6 and 4.1.7, the decomposition 4.1.4 can be rewritten :

(4.1.8) Classuni(G
F ) = Cusuni(G

F ) ⊕
( ⊕

(I,w)∈C

RG
LI,w

(Cusuni(L
F
I,w))

)

The automorphism ω is defined over Fq so ω(B) is an F -stable Borel subgroup of G and T
is an F -stable maximal torus of B. Thus there exists an element g ∈ GF such that

ω(B) = gB and ω(T) = gT.

By replacing ω by ad g−1 ◦ ω if necessary, we can (and we will) assume that ω(B) = B and
ω(T) = T. If X is a set on which ω acts, then we denote by X/ω the set of orbits of ω in X.
If x ∈ X/ω, then x will denote the orbit of x under ω.

If (I, w) ∈ C/ω, we denote by

V(I,w) =
⊕

n∈Z

RG
Lωn(I),ωn(w)

(Cusuni(L
F
ωn(I),ωn(w))).

Then, by 4.1.8, we have

Classuni(G
F )ω = Cusuni(G

F )ω ⊕
( ⊕

(I,w)∈C/ω

(V(I,w))
ω
)

So

(4.1.9) dim Cusuni(G
F )ω = dim Classuni(G

F )ω −
∑

(I,w)∈C/ω

dim(V(I,w))
ω.

Let (I, w) ∈ C and let n = |(I, w)|. Then there exists g ∈ GF such that ωn(LI,w) = gLI,w. Let
us denote by α = (ad g)−1 ◦ ωn. Then ωn and α stabilize the subspace RG

LI,w
(Cusuni(L

F
I,w)) and

RG
LI,w

(Cusuni(L
F
I,w))α = RG

LI,w
(Cusuni(L

F
I,w))ωn

. But

dim(V(I,w))
ω = dimRG

LI,w
(Cusuni(L

F
I,w))ωn

and the map
RG

LI,w
: Cusuni(L

F
I,w) −→ RG

LI,w
(Cusuni(L

F
I,w))
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is an isomorphism and commutes with the action of α. So we have

dim(V(I,w))
ω = dim Cusuni(L

F
I,w)α.

But, by the induction hypothesis, we have

dim Cusuni(L
F
I,w)α = |U(LI,w)F

cus/α| = |U(LI)
F
cus/ω

n|.

On the other hand, by 3.2.1, we have

dim Classuni(G
F )ω = |U(G)F/ω|.

So the equality 4.1.9 gives :

(4.1.10) dim Cusuni(G
F )ω = |U(G)F/ω| −

∑

(I,w)∈C/ω

|U(LI)
F
cus/ω

|(I,w)||.

Let B denote the set of pairs (I, χ) where I ∈ P(S)F
cus, I 6= S and χ ∈ (IrrWG(LI))

F . By
generalized Springer correspondence, we have

|U(G)F/ω| = |U(G)F
cus/ω| +

∑

(I,χ)∈B/ω

|U(LI)
F
cus/ω

|(I,χ)||.

Hence

(4.1.11) |U(G)F
cus/ω| = |U(G)F/ω| −

∑

(I,χ)∈B/ω

|U(LI)
F
cus/ω

|(I,χ)||.

By comparison of 4.1.10 and 4.1.11, it is sufficient to prove that

(M)
∑

(I,χ)∈B/ω
I 6=S

|U(LI)
F
cus/ω

|(I,χ)|| =
∑

(I,w)∈C/ω

|U(LI)
F
cus/ω

|(I,w)||.

Let I ∈ P(S)F
cus and let ω = ω|I|. Then, to prove (M), it is sufficient to prove that

(N)
∑

χ∈(Irr WG(LI ))F /ω

|U(LI)
F
cus/ω

|χ|| =
∑

w∈H1(F,WG(LI ))/ω

|U(LI)
F
cus/ω

|w||.

But (N) follows from the well-known fact that the ω-sets (IrrWG(LI))
F and H1(F,WG(LI))

are isomorphic. �

4.2. The case of type A. In this subsection, we assume that G is of type A. If the Mackey
formula holds in G then we can make Theorem 4.1.1 more precise :

Theorem 4.2.1. If G is of type A and if the Mackey formula holds in G, then (Yι)ι∈U(G)F
cus

is an orthogonal basis of Cusuni(G
F ) or, in other words, (ΓG

ζ )ζ∈H1(F,Z)∧cus
is an orthogonal basis

of Cusuni(G
F ).

Proof - Indeed, by Proposition 3.3.6, the functions (Γζ)ζ∈H1(F,Z)∧cus
are absolutely cuspidal.

Moreover, by Theorem 4.1.1 and by the example following 3.3.6, we have dim Cusuni(G
F ) =

|U(G)F
cus| = |H1(F,Z)∧cus| and the theorem follows. �

If φ is a linear character of ZF and if ζ is a linear character of H1(F,Z), we put :

(4.2.2) ΓG
φ,ζ =

∑

z∈ZF

φ(z−1)tGz ΓG
ζ .
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It is clear that

(4.2.3) ΓG
φ,ζ ∈ Class(GF )φ

ζ .

Corollary 4.2.4. If the group G is of type A and if the Mackey formula holds in G then
(ΓG

φ,ζ)φ∈(ZF )∧

ζ∈H1(F,Z)∧cus

is an orthogonal basis of Cus(GF ).

Proof - By Proposition 3.1.1, (a), an absolutely cuspidal function on GF has its support
in ZF .GF

uni because the isolated semisimple elements of G are central (because G is of type
A). This implies that the family (tGz ΓG

ζ ) z∈ZF

ζ∈H1(F,Z)∧cus

is an orthogonal basis of Cus(GF ). The

Corollary follows from the fact that

(4.2.5) tGz ΓG
ζ =

1

|ZF |

∑

φ∈(ZF )∧

φ(z)ΓG
φ,ζ

for all z ∈ ZF and ζ ∈ H1(F,Z)∧. �

Corollary 4.2.6. If the group G is of type A and if the Mackey formula holds in G, then
(a) We have the following decompositions

Cus(GF ) =
⊕

ζ∈H1(F,Z)∧cus

Class(GF )ζ

and Cus(GF ) =
⊕

φ∈(ZF )∧

ζ∈H1(F,Z)∧cus

Class(GF )φ
ζ .

Moreover dim Class(GF )φ
ζ = 1 for all φ ∈ (ZF )∧ and ζ ∈ H1(F,Z)∧cus and Class(GF )φ

ζ is

generated by ΓG
φ,ζ.

(b) If φ ∈ (ZF )∧ and ζ ∈ H1(F,Z)∧cus then there exists a unique semisimple element σ in
G∗F ∗

(up to G∗F ∗

-conjugacy) such that ΓG
φ,ζ ∈ Q`E(GF , (σ)).

Proof - (a) is clear from Corollary 4.2.4 and from Corollary 1.8.6. Let now prove (b). Let
σ and τ be two semisimple elements of G∗F ∗

such that the projections γ1 and γ2 of ΓG
φ,ζ

on Q`E(GF , (σ)) and Q`E(GF , (τ)) respectively are non-zero. Then γ1 and γ2 belong to

Class(GF )φ
ζ . By (a), this implies that they are proportional. If σ is not G∗F ∗

-conjugate to
τ , then there should be orthogonal, which is impossible. Hence (σ) = (τ) and (b) follows. �

Corollary 4.2.7. Assume that G is of type A and that the Mackey formula holds in G. Let σ
be a semisimple element of G∗F ∗

such that Q`E(GF , (σ)) contains a non-zero absolutely cuspidal
functions. Then, for each Levi subgroup L∗ of a proper parabolic subgroup of G∗ such that σ ∈
L∗, we have |AL∗(σ)| < |AG∗(σ)|. Moreover, if L∗ is F ∗-stable, then |AL∗(σ)F ∗

| < |AG∗(σ)F ∗

|.

Proof - First, it is well-known that the natural morphism CL∗(σ) ↪→ CG∗(σ) induces an
injective morphism AL∗(σ) ↪→ AG∗(σ). We identify AL∗(σ) with the corresponding subgroup of
AG∗(σ). The surjective morphism ψG

σ : H1(F,Z) → (AG∗(σ)F ∗

)∧ defined in Subsection 1.8 is
induced by an injective morphism π : AG∗(σ) ↪→ (Z/Z◦)∧ (cf. [DM], Lemma 13.14). Moreover,
the following diagram

AL∗(σ) //

��

(Z(L)/Z(L)◦)∧

��

AG∗(σ) π
// (Z/Z◦)∧
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is commutative and all maps are injective. Let γ be an absolutely cuspidal function belonging to
Q`E(GF , (σ)G∗F∗). By Corollary 4.2.6, there exists ζ ∈ H1(F,Z)∧cus such that the (orthogonal)
projection of γ on Q`E(GF , (σ)G∗F∗)ζ is non-zero. By 1.8.7, ζ is in the image of π. Let
α ∈ AG∗(σ) be such that π(α) = ζ . If α ∈ AL∗(σ), it follows from the commutativity of the
preceding diagram that KerhG

L⊂Ker ζ which is impossible. Hence α does not belong to AL∗(σ)
so |AL∗(σ)| < |AG∗(σ)|. This proves the first assertion of the corollary. The second can be
proved by a similar argument by replacing the preceding diagram by the analogous diagram
obtained by taking fixed points under Frobenius endomorphisms F and F ∗. �

Definition 4.2.8. If G is of type A, a semisimple element σ ∈ G∗ is said cuspidal if, for all
Levi subgroups L∗ of a proper parabolic subgroup of G∗ such that σ ∈ L∗, we have |AL∗(σ)| <
|AG∗(σ)|.

Lemma 4.2.9. If G is of type A and if σ is a cuspidal semisimple element of G∗, then σ is
regular that is, C◦

G∗(σ) is a maximal torus of G∗.

Proof - Let T∗ be a maximal torus of C◦
G∗(σ) and let B∗ be a maximal torus of C◦

G∗(σ)
containing T∗. Let

A = {g ∈ CG∗(σ) | g(T∗,B∗) = (T∗,B∗)}/T∗.

Then A is canonically isomorphic to AG∗(σ). We put

L∗ = CG∗((T∗A)◦).

Then L∗ is a Levi subgroup of a parabolic subgroup of G∗ and, by [B2], Corollary 4.2.3, we
have C◦

L∗(σ) = T∗. Moreover, AL∗(σ) ' AG∗(σ) by construction. So L∗ = G∗ because σ is
cuspidal. Hence C◦

G∗(σ) = T∗. �

We end this subsection by stating a Lemma which will be crucial for the proof of the Mackey
formula in type A :

Lemma 4.2.10. Assume that G is of type A. Let L be a Levi subgroup of a parabolic subgroup
of G admitting a cuspidal pair and let σ and τ be two cuspidal semisimple elements of L∗

(where L∗ is a Levi subgroup of a parabolic subgroup of G∗ dual to L). If σ and τ are conjugate
in G∗, then they are conjugate in NG∗(L∗).

Proof - Let z be an element of the center of G∗ such that zσ ∈ L∗ ∩ D(G∗) where D(G∗)
is the derived group of G∗. Then zτ ∈ L∗ ∩ D(G∗). Moreover, zσ and zτ are conjugate in
D(G∗) and are cuspidal in L∗ ∩D(G∗). That shows that we can (and we will) assume that G∗

is semisimple. Let π : G̃∗ → G∗ be a simply connected covering of G∗. Let g ∈ G∗ be such
that τ = gσg−1. Let g̃ and σ̃ be two elements of G̃∗ such that π(g̃) = g and π(σ̃) = σ. Let
τ̃ = g̃σ̃g̃−1. Then π(τ̃) = τ and it is sufficient to prove that

(P) σ̃ and τ̃ are conjugate under NG̃∗(L̃∗) where L̃∗ = π−1(L∗).

• First, let us prove (P) whenever G∗ is adjoint. Then G∗ is a product of projective general
linear groups and it is sufficient to prove (P) for each of the factors. Hence, we can assume

that G∗ = PGLn(F) and that G̃∗ = SLn(F). Then, since L admits a cuspidal pair, we can
assume that the group L̃∗ is of the following form

L̃∗ =
(

GLd(F) × · · · × GLd(F)︸ ︷︷ ︸
e times

)
∩ SLn(F)
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where n = de and p does not divide d (cf. [L2], 10.3). We denote by T̃∗ the maximal torus of

L̃∗ consisting of diagonal matrices. Up to conjugacy in L̃∗, we can assume that σ̃ ∈ T̃∗. Write

σ̃ = diag(x1, . . . , xn)

where x1, . . . , xn belong to F×. For 1 6 i 6 e, we denote by Si = {x(i−1)d+1, x(i−1)d+2, . . . , xid}.
By Lemma 4.2.9, we have |Si| = d. Moreover, by [DLM], 3.12, we have AL∗(σ) ' {z ∈ Kerπ | σ̃

and σ̃z are conjugate in L̃∗}. But Ker π ' F× ; let A denote the finite subgroup of F× image
of AL∗(σ) by the preceding isomorphism. Then A acts on Si by multiplication. Let Ω be an
orbit of A in Si : we can assume that Ω = {x(i−1)d+1, . . . , x(i−1)d+k} for some 1 6 k 6 d. If

M̃∗ =
((

GLd(F) × · · · × GLd(F)︸ ︷︷ ︸
(i−1) times

)
×GLk(F)×GLd−k(F)×

(
GLd(F) × · · · × GLd(F)︸ ︷︷ ︸

(e−i) times

))
∩SLn(F)

and M∗ = π(M̃∗), then AM∗(σ) ' AL∗(σ) so M∗ = L∗ because σ is cuspidal. In other words,
k = d which means that A acts transitively on Si. In particular, |A| = d and Si is of the
following form :

Si = {ai, aiζ, . . . , aiζ
d−1}

where ζ is a primitive d-th root of unity in F×.
Let J be the d× d-matrix

J = diag(1, ζ, . . . , ζd−1).

By the preceding argument, σ̃ is, up to conjugacy in L̃∗, of the following form :

σ̃ =





a1J 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 aeJ





where a1, . . . , ae are in F× and a1 . . . ae(det J)e = 1. Similarly, we can assume that

τ̃ =





b1J 0 . . . 0

0
. . .

. . .
...

...
. . .

. . . 0
0 . . . 0 beJ





where b1, . . . , be are in F× and b1 . . . be(det J)e = 1. The semisimple elements σ̃ and τ̃ are

conjugate under G̃∗ so they have common eigenvalues. Hence, up to conjugacy by an element
of NG̃∗(L̃), we can assume that a1 = b1 and an easy induction argument proves that σ̃ and τ̃

are conjugate under NG̃∗(L̃).

• We now prove (P) in the general case. Let G
∗

be the adjoint group of G∗ and let G∗ → G
∗
,

g 7→ g be the canonical projection. Then, to reduce the general case to the case where G∗ is
adjoint, it is sufficient to prove that σ is cuspidal in L

∗
. Let M

∗
be a Levi subgroup of a proper

parabolic subgroup of L
∗

and let M∗ be its inverse image in G∗. Assume that σ ∈ M∗ (or,

equivalently, σ ∈ M
∗
). Then we have a commutative diagram of injective morphisms

AM∗(σ) //

��

AM
∗(σ)

��

AL∗(σ) // AL
∗(σ).
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Moreover, if we identify all the groups involved in this diagram with subgroups of AL
∗(σ), we

have
AM∗(σ) = AL∗(σ) ∩ AM

∗(σ).

Indeed, by [DLM], 3.12, we have AL∗(σ) = {z ∈ Kerπ | σ̃ and σ̃z are conjugate in L̃∗} and
similar descriptions for other groups. That proves the result. �

5. The Mackey formula in type A

This section is devoted to the proof of the main theorem of this article, that is the Mackey
formula for groups of type A (cf. Theorem 5.2.1). By using properties of the functions
∆G

L⊂P,M⊂Q and ΓG
L⊂P,M⊂Q and by an induction argument, we prove that the class function

λ = ∆G
L⊂P,M⊂Q(µ) on LF (where µ is a class function on MF ) is absolutely cuspidal and we

reduce the general case to a particular one. Since the group L is of type A whenever G is
and since the dimension of L is smaller than the dimension of G, all the absolutely cuspidal
functions on LF are described explicitly by induction and by Corollary 4.2.4. Then, using
the decomposition of the function λ according to rational Lusztig series, we prove that the
inequality λ 6= 0 is in contradiction with Lemma 4.2.10.

5.1. Some properties of ∆ and Γ-functions. Before proving the Mackey formula for groups
of type A, we state many properties about ∆ and Γ-functions which can be proved a priori and
without hypothesis on the group G. In particular, it could help to prove the Mackey formula
for the other groups than the ones of type A. We fix two parabolic subgroups P and Q of G
and we assume that P and Q have F -stable Levi subgroups L and M respectively. We denote
by U and V the unipotent radicals of P and Q respectively. Let L∗ (respectively M∗) be an
F ∗-stable Levi subgroup of a parabolic subgroup of G∗ which is dual to L (respectively M).

(5.1.1) ∆G
L⊂P,M⊂Q and ∆G

M⊂Q,L⊂P are adjoint with respect to 〈, 〉LF and 〈, 〉MF .

(5.1.2) If v and w are unipotent elements of LF and MF respectively , then

ΓG
L⊂P,M⊂Q(v, w) = ΓG

M⊂Q,L⊂P(w, v).

(5.1.3) If z ∈ ZF , then tGz ◦ ∆G
L⊂P,M⊂Q = ∆G

L⊂P,M⊂Q ◦ tMz .

(5.1.4) If ζ ∈ H1(F,Z)∧ and if µ ∈ Class(MF )ζ then ∆G
L⊂P,M⊂Q(µ) ∈ Class(LF )ζ.

(5.1.5) If s is a semisimple element of LF , then

dL
s ◦ ∆G

L⊂P,M⊂Q =
∑

g∈GF

s∈gM

|C◦
gM(s)F |

|MF |.|C◦
G(s)F |

∆
C◦

G(s)

C◦

L
(s)⊂C◦

P
(s),C◦

gM
(s)⊂C◦

gQ
(s) ◦ d

gM
s ◦ (ad g)M.

(5.1.6) If z ∈ ZF , then dL
z ◦ ∆G

L⊂P,M⊂Q = ∆G
L⊂P,M⊂Q ◦ dM

z .
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(5.1.7) Let L′ be an F − stable Levi subgroup of a parabolic subgroup P′ of L. Then

∗RL
L′⊂P′ ◦ ∆G

L⊂P,M⊂Q = ∆G
L′⊂P′U,M⊂Q

+
∑

g∈LF \SG(L,M)F /MF

∆L
L′⊂P′,L∩gM⊂L∩gQ ◦ ∗R

gM
L∩gM⊂P∩gM ◦ (ad g)M.

(5.1.8) Let M′ be an F−stable Levi subgroup of a parabolic subgroup Q′ of M. Then

∆G
L⊂P,M⊂Q ◦RM

M′⊂Q′ = ∆G
L⊂P,M′⊂Q′V

+
∑

g∈LF \SG(L,M)F /MF

RL
L∩gM⊂L∩gQ ◦ ∆

gM
L∩gM⊂L∩gQ,gM′⊂gQ′ ◦ (ad g)M′.

(5.1.9) If σ is a semisimple element of M∗F∗

and if µ ∈ Q`E(MF , (σ)M∗F∗ ), then

∆G
L⊂P,M⊂Q(µ) ∈

⊕

(τ)
L∗F∗⊂(σ)

G∗F∗

Q`E(LF , (τ)L∗F∗).

Proofs - • 5.1.1 follows from the fact that the Lusztig restriction functor and the Lusztig
induction functor are adjoint and that the map SG(L,M) → SG(M,L), g 7→ g−1 is bijective.
The bijectivity of this map also implies 5.1.2.

• 5.1.3 follows from 1.7.3 and 1.7.4.

• 5.1.4 follows from Lemma 1.8.4, (a) and (b).

• We now prove 5.1.5. We denote by

A = {g ∈ SG(L,M) | s ∈ L ∩ gM},

B = {(x, l) | x ∈ SG(L,M)F and l ∈ LF and s ∈ l(L ∩ xM)}

and C = {(g, y) | g ∈ GF and s ∈ gM and y ∈ SC◦

G
(s)(C

◦
L(s), C◦

gM(s))F}.

Note that the map ∆G
L⊂P,M⊂Q is also given by the following formula :

∆G
L⊂P,M⊂Q = ∗RG

L⊂P ◦RG
M⊂Q −

∑

SG(L,M)F

|LF ∩ gMF |

|LF |.|MF |
RL

L∩gM⊂L∩gQ ◦ ∗R
gM
L∩gM⊂P∩gM ◦ (ad g)M.

Using the fact that the maps
B −→ A

(x, l) 7−→ lx

and
C −→ A

(g, y) 7−→ yg

are surjective and have all their fibers of cardinality |LF | and |C◦
G(s)F | respectively, 5.1.5 follows

by a straightforward application of identities 1.3.1 and 1.3.2 (cf. also [B1], proof of Lemma 2.3.4
for a similar argument).

• 5.1.6 is an immediate consequence of 5.1.5.

• The proof of 5.1.7 is analogous to [B1], proof of Lemma 3.2.1 and 5.1.8 is just the adjoint
formula of 5.1.7.
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• 5.1.9 follows from Proposition 1.6.1 and Corollary 1.6.2. �

We now use the same notation as in Section 2 that is, we assume given a morphism of
algebraic groups i : G → G̃ defined over Fq and satisfying properties (a) and (b) described

in Section 2. We denote by P̃ (respectively Q̃) the unique parabolic subgroup of G̃ such that
i−1(P̃) = P (respectively i−1(Q̃) = Q) and by L̃ (respectively M̃) the unique Levi subgroup of

P̃ (respectively Q̃) such that i−1(L̃) = L (respectively i−1(M̃) = M).

(5.1.10) If i is injective, then ResL̃
F

LF ◦∆G̃

L̃⊂P̃,M̃⊂Q̃
= ∆G

L⊂P,M⊂Q ◦ ResM̃
F

MF and

(5.1.11)

ΓG̃

L̃⊂P̃,M̃⊂Q̃
(v, w) =

|GF |

|G̃F |

∑

l∈L̃F /LF

ΓG
L⊂P,M⊂Q(lv, w)

=
|GF |

|G̃F |

∑

m∈M̃F /MF

ΓG
L⊂P,M⊂Q(v, mw)

for all (v, w) ∈ LF
uni × MF

uni.

Proof - This follows from 2.1.4, 2.1.5 and 2.2.1, (b). �

(5.1.12) If i is surjective and Ker i⊂Z(L)◦ ∩ Z(M)◦, then

ΓG
L⊂P,M⊂Q(v, w) = ΓG̃

L̃⊂P̃,M̃⊂Q̃
(i(v), i(w))

for all (v, w) ∈ LF
uni × MF

uni.

Proof - This follows from Corollary 2.2.3 and from the fact that |G̃F | = |GF |/|(Ker i)◦F |. �

5.2. The Mackey formula in type A. We are ready to prove the following

Theorem 5.2.1. If G is of type A, then conjectures A and B hold in G. In other words, the
Mackey formula and the Mackey formula for Green functions hold in G.

Proof - Assume that G is of type A. We fix two parabolic subgroups P and Q of G and we
assume that P and Q have F -stable Levi subgroups L and M respectively. Let n = dimG
and m = dimL + dim M. We endow N∗ × N∗ with the lexicographic order. Theorem 5.2.1 is
equivalent to prove by induction on (n,m) the following :

(P) ∆G
L⊂P,M⊂Q = 0 and ΓG

L⊂P,M⊂Q = 0.

If (n,m) is small then it is clear that (P) holds. We fix (n,m) ∈ N∗ and we assume that (P)
holds for any pair in N∗ × N∗ strictly smaller than (n,m). We can (and we will) assume that
L 6= G and M 6= G (otherwise, (P) is obvious). Note that all F -stable connected reductive
subgroup G′ of the same rank of G are of type A. Hence (P) holds for such G′ different from
G by the induction hypothesis. In particular

(5.2.2) The Mackey formula holds in L and M.
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Let µ be a class function on MF and let v and w be unipotent elements of LF and MF

respectively. Then, by [B1], Corollary 2.3.5 and Proposition 2.3.6, and by the induction hy-
pothesis, the equalities ∆G

L⊂P,M⊂Q = 0 and ΓG
L⊂P,M⊂Q = 0 are equivalent. Hence it is sufficient

to prove

(Q) ∆G
L⊂P,M⊂Q(µ) = 0 or ΓG

L⊂P,M⊂Q(v, w) = 0.

Since (Q) holds if P and Q are F -stable, we can assume that P is not F -stable or that Q
is not F -stable. By 5.1.1 or by 5.1.2 we can assume that P is not rational. This implies the
following :

(5.2.3) Z(L)◦ is not split so |Z(L)◦F | > 1.

Let L∗ (respectively M∗) be an F ∗-stable Levi subgroup of a parabolic subgroup of G∗ dual
to L (respectively M). Let σ be a semisimple element of M∗F ∗

and ζ a linear character of
H1(F,Z(M))∧. We can assume that µ ∈ Q`E(MF , (σ)M∗F∗)ζ . So, if we denote by ζ = ζ ◦ hG

M,
we have, by 5.1.4,

(5.2.4) λ = ∆G
L⊂P,M⊂Q(µ) ∈

⊕

(τ)
L∗F∗⊂(σ)

G∗F∗

Q`E(LF , (τ)L∗F∗ )ζ.

If KerhG
L * Ker ζ, then, by Lemma 1.8.5, we have λ = 0. So we can assume that KerhG

L⊂Ker ζ .
But, by 5.1.7 and by the induction hypothesis, λ is absolutely cuspidal, so we can assume that
ζ ∈ H1(F,Z(L))∧cus by 5.2.2 and Corollary 4.2.6. Moreover, by 5.1.8, we can assume that µ is
absolutely cuspidal. In particular, ζ ∈ H1(F,Z(M))∧cus. It follows from Proposition 3.3.2 that
Z ∩ Z(L)◦ = Z ∩ Z(M)◦. Let Z = Z ∩ Z(L)◦ and let i : G → G/Z. We have, by 5.1.12,

ΓG
L⊂P,M⊂Q(v, w) = Γ

i(G)
i(L)⊂i(P),i(M)⊂i(Q)(i(v), i(w)).

Thus, by replacing G by G/Z if necessary, we can assume that

(5.2.5) Z ∩ Z(L)◦ = {1}.

Moreover, we have, by Proposition 1.6.1 and Corollary 1.6.2,

(5.2.6) λ ∈
⊕

(τ)
L∗F∗⊂(σ)

G∗F∗

τ cuspidal in L∗

Q`E(LF , (τ)L∗F∗)ζ.

By 5.1.5 and by the induction hypothesis, the function λ has support in ZF .LF
uni and, if we put

θ = σ̂G, we have, by 5.1.3 and Lemma 1.7.5,

tLz λ = θ(z)λ

for all z ∈ ZF . Therefore, using Corollary 4.2.4, we deduce that there exists c ∈ Q` such that

(5.2.7) λ = c
∑

φ∈(Z(L)F )∧

Res
Z(L)F

ZF
φ=θ

ΓL
φ,ζ.

At this point, we only need to prove that

(R) c = 0.
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Assume that c 6= 0. By 5.2.5, we have Z(L)F = ZF × Z(L)◦F . Let ϕ : Z(L)◦F → Q` be a
non-trivial linear character (there exists at least one by 5.2.3). By Corollary 4.2.6, (b), there
exist semisimple elements τ and τ ′ such that

ΓL
θ⊗1,ζ ∈ Q`E(LF , (τ)L∗F∗ )ζ

and ΓL
θ⊗ϕ,ζ ∈ Q`E(LF , (τ ′)L∗F∗)ζ.

So, by 5.2.6 and 5.2.7, τ and τ ′ are cuspidal in L∗ and conjugate under G∗. Hence there exists
n∗ ∈ NG∗(L∗) such that τ ′ = n∗

τ (cf. Lemma 4.2.7). Let i ∈ N∗ be such that F i(n∗) = n∗ and
let n ∈ N

GF i (L) be an element corresponding to n∗. Then

ϕ ◦NF i/F = 1 ◦NF i/F ◦ (adn−1) = 1

where NF i/F : Z(L)◦F
i

→ Z(L)◦F is the norm map. But the norm map is surjective, so ϕ = 1
which is contrary to the hypothesis. That proves (R) and the theorem. �

6. Many consequences of the Mackey formula

In this section, we assume that G is of type A. The fact that the Mackey formula holds in
G has many consequences. First, it implies that the Lusztig functors are independent of the
choice of a parabolic subgroup and that these functors commute with the Alvis-Curtis duality
operator. Moreover, using the results of Section 4, we obtain that conjecture C holds in G
(cf. Theorem 6.2.1).

6.1. Classical consequences. Let P be a parabolic subgroup of G and assume that P has an
F -stable Levi subgroup L. Then the following propositions are well-known to be consequences
of the Mackey formula.

Proposition 6.1.1. Assume that G is of type A. Let P′ be another parabolic subgroup of G
having L as Levi subgroup. Then

RG
L⊂P′ = RG

L⊂P

and ∗RG
L⊂P′ = ∗RG

L⊂P.

Thanks to Proposition 6.1.1, we can denote RG
L and ∗RG

L the Lusztig functors RG
L⊂P and

∗RG
L⊂P without ambiguity. We denote by DG : Class(GF ) → Class(GF ) the Alvis-Curtis

duality operator and we put εG = (−1)Fq−rank of G.

Proposition 6.1.2. Assume that G is of type A. Then

εGDG ◦RG
L = εLR

G
L ◦DL

and εG
∗RG

L ◦DG = εLDL ◦ ∗RG
L .
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6.2. Absolutely cuspidal functions. By Theorem 5.2.1, all the results stated in Subsection
4.2 hold without hypothesis. We summarize these results :

Theorem 6.2.1. Assume that G is of type A. Then conjecture C holds in G that is, the
family (Yι)ι∈U(G)F

cus
is an orthogonal basis of Cusuni(G

F ). In other words, (ΓG
ζ )ζ∈H1(F,Z)∧cus

is an

orthogonal basis of Cusuni(G
F ).

Corollary 6.2.2. Assume that G is of type A. Then
(a) We have the following decompositions

Cus(GF ) =
⊕

ζ∈H1(F,Z)∧cus

Class(GF )ζ

and Cus(GF ) =
⊕

φ∈(ZF )∧

ζ∈H1(F,Z)∧cus

Class(GF )φ
ζ .

Moreover dim Class(GF )φ
ζ = 1 for all φ ∈ (ZF )∧ and ζ ∈ H1(F,Z)∧cus and Class(GF )φ

ζ is

generated by ΓG
φ,ζ. In particular, (ΓG

φ,ζ)φ∈(ZF )∧

ζ∈H1(F,Z)∧cus

is an orthogonal basis of Cus(GF ).

(b) If φ ∈ (ZF )∧ and ζ ∈ H1(F,Z)∧cus then there exists a unique semisimple element σ in
G∗F ∗

(up to G∗F ∗

-conjugacy) such that ΓG
φ,ζ ∈ Q`E(GF , (σ)).
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cation in J. of Alg.

[DL1] P. Deligne & G. Lusztig, Representations of reductive groups over finite
fields, Ann. of Math. (2) 103 (1976), 103-161.

[DL2] P. Deligne & G. Lusztig, Duality for representations of a reductive group
over a finite field, J. of Alg. 81 (1983), 540-545.

[DLM] F. Digne, G. Lehrer & J. Michel, The characters of the group of rational
points of a reductive group with non-connected centre, J. Reine Angew Math.
425 (1992), 155-192.

[DM] F. Digne & J. Michel, Representations of finite groups of Lie type, in
London Math. Soc. Students Texts, Vol. 21, Cambridge University press,
Cambridge, UK, 1991.

[L1] G. Lusztig, On the finiteness of the number of unipotent classes, Invent.
Math. 34 (1976), 201-213.

[L2] G. Lusztig, Intersection cohomology complexes on reductive groups, Invent.
Math. 75 (1984), 205-272.

[L3] G. Lusztig, Character sheaves V, Adv. in Math. 61 (1986), 103-155.

[L4] G. Lusztig, Green functions and character sheaves, Ann. of Math. 131
(1990), 355-408.
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