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Part 0. Introduction

Rings are the most common objects in algebra. You encountered them in all areas:

Linear algebra: Matn(R), where R is a ring.

Group theory: Let G be a group (finite or not). Study of the group algebra R[G] (or

RG), where R is a commutative ring (representation theory).

Number theory: Z or, more generally, the ring of algebraic integers of a finite algebraic

extension of Q.

Algebraic geometry: K[X1, . . . , Xn] and all its quotients, where K is a field.

Among the theorems proved during this course, here are a few examples:

Skolem-Noether Theorem. Let R be a commutative ring having only one maximal

ideal (i.e. a commutative local ring) and let σ : Matn(R)→ Matn(R) be an automorphism

of R-algebras. Then there exists a ∈ Matn(R)× such that σ(M) = aMa−1 for every

M ∈ Matn(R).

Theorem (Maschke, Wedderburn,...). Let G be a finite group. Then there is an

isomorphism of C-algebras C[G] ' Matn1(C) × · · · ×Matnr(C) for some ni’s. Moreover,

r is the number of conjugacy classes of G.

Hilbert’s Basis Theorem. Let I be an ideal of K[X1, . . . , Xn]. Then I is finitely

generated.

Hilbert’s Nullstellensatz. Let K be an algebraically closed field and let m be a maximal

ideal of K[X1, . . . , Xn]. Then the K-algebra K[X1, . . . , Xn]/m is isomorphic to K.

Theorem. Let K be a finite algebraic extension of Q and let OK denote the ring of

integers of K (over Z). Then OK is integrally closed, all its ideals are finitely generated

and all its non-zero prime ideals are maximal (i.e. OK is a Dedekind domain).

All these theorems have in common that their proof relies on the theory of modules.

This course will be organized as follows:

Part I - some category theory: definition, examples, functors, equivalences...

Part II - module theory: tensor product, Noetherian rings and modules (including

Hilbert’s Basis Theorem), projective and injective modules, simple semisimple rings and

modules, radical, Morita equivalences (application to Skolem-Noether Theorem)...

Part III - integral extensions, Dedekind domains...

Part IV - background of algebraic geometry: Hilbert’s Nullstellensatz, affine varieties,

tangent spaces...
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Approximative schedule (one lecture = 1h45):

• Categories: 1 lecture

• Tensor products: 2 lectures

• Noetherian and Artinian modules and rings: 2 lectures

• Projective, injective modules: 2 lectures

• Jacobson radical: 2 lectures

• Semisimple rings and modules: 3 lectures

• Dedekind domains: 2 lectures

• Affine algebraic sets: 2 lectures

• Noether’s Normalization Theorem and Hilbert’s Nullstellensatz: 2 lectures

• Geometric properties of algebraic sets: 2 lectures
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Part I. Categories

The aim of this part is to give an introduction to the language of categories, which will

be used freely during this course.

1. Definition, examples

Definition 1.1. A category Cat consists of:

• a class of objects ob(Cat) called the objects of Cat;

• for any objects C, C ′ ∈ ob(Cat), a set HomCat(C,C
′) called the mor-

phisms from C to C ′;
• for any three objects C, C ′ and C ′′ ∈ ob(Cat), a map HomCat(C,C

′)×
HomCat(C

′, C ′′) → HomCat(C,C
′′), (f, g) 7→ g ◦ f called a composition

law;

satisfying:

(C1) HomCat(C1, C
′
1) is disjoint from HomCat(C2, C

′
2) unless C1 = C2 and C ′1 = C ′2;

(C2) for all C, C ′, C ′′, C ′′′ ∈ ob(Cat) and all f ∈ HomCat(C,C
′), g ∈ HomCat(C

′, C ′′)
and HomCat(C

′′, C ′′′), we have h ◦ (g ◦ f) = (h ◦ g) ◦ f (associativity);

(C3) for each C ∈ ob(Cat), there exists a morphism 1C ∈ HomCat(C,C) such that, for

all C ′, C ′′ ∈ ob(Cat) and all f ∈ HomCat(C,C
′) and g ∈ HomCat(C

′′, C), we

have f ◦ 1C = f and 1C ◦ g = g.

Note that 1C is uniquely determined by (C3) (it is called the identity morphism of C

and is often denoted by IdC). We will often write f : C → C ′ or C
f−→ C ′ to indicate that

f ∈ HomCat(C,C
′). We also write C ∈ Cat instead of C ∈ ob(Cat).

Examples 1.2 - (1) Sets (respectively sets) the category of sets (respectively finite sets),

with maps as morphisms and composition law as usual.

(2) Groups (respectively groups, Ab, Rings, Ringsc, Fields,...) the category of

groups (respectively finite groups, abelian groups, rings, commutative rings, fields,...) to-

gether with their natural homomorphisms (rings are assumed to be unitary and morphisms

to be unitary morphisms).

(3) For R ∈ Rings, let RMod (respectively Rmod, ModR, modR) denote the cate-

gory of left R-modules (respectively finitely generated left R-modules, right R-modules,

finitely generated right R-modules). We write HomR(M,N) for Hom
RMod(M,N) or

HomModR(M,N). Recall that f ∈ HomR(M,N) if f(m + m′) = f(m) + f(m′) and

f(rm) = rf(m) for all r ∈ R, m, m′ ∈M .

(4) Top the category of topological spaces where morphisms are continuous maps. �
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2. Functors

Definition 2.1. Let C and D be two categories. A covariant functor F : C → D

consists of ”correspondences”:

• F : ob(C)→ ob(D), C 7→ F(C);

• A map F : HomC(C,C ′) → HomD(F(C),F(C ′)), f 7→ F(f) for all C,

C ′ ∈ ob(C);

satisfying

(F1) for all C, C ′ and C ′′ ∈ ob(C) and all f ∈ HomC(C,C ′) and g ∈ HomC(C ′, C ′′),

F(g ◦ f) = F(g) ◦ F(f);

(F2) for all C ∈ ob(C), F(1C) = 1F(C).

A contravariant functor F : C → D is defined in the same way except that F :

HomC(C,C ′) → HomD(F(C ′),F(C)) reverse arrows and that the equality in (F1) is

replaced by F(g ◦ f) = F(f) ◦ F(g).

Examples 2.2 - (1) IdC : C → C, C 7→ C, f 7→ f is a covariant functor called the

identity functor.

(2) Functors can be composed to get a new functor.

(3) Forgetful functors: a functor that forgets part of the structure of the objects. For

instance, Rings→ Sets, R 7→ R, f 7→ f . Or Fields→ Ab, K 7→ K+, f 7→ f ...

(4) If X ∈ C, then HomC(X,−) : C → Sets, C 7→ HomC(X,C), f 7→ (g 7→ f ◦ g) is

a covariant functor. On the other hand, HomC(−, X) : C → Sets, C 7→ HomC(−, X),

f 7→ (g 7→ g ◦ f) is a contravariant functor.

(5) F : Groups→ Sets, G 7→ F(G) = {g ∈ G | g2 = 1}, f 7→ f |F(G). �

Definition 2.3. Let F , G : C → D be covariant functors between two categories C and

D. A natural transformation (or a functorial morphism) ϕ : F → G is a family of

morphisms ϕC : F(C)→ G(C) satisfying

(NT) For any morphism f : C → C ′ in C, the following diagram

F(C)
ϕC //

F(f)

��

G(C)

G(f)

��
F(C ′)

ϕC′ // G(C ′)

is commutative.

One can define similarly a natural transformation between contravariant functors.

Definition 2.4. A natural transformation ϕ : F → G between two (covariant or con-

travariant) functors is called a natural isomorphism if ϕC is an isomorphism for all

C ∈ C. Two functors F and G are said naturally isomorphic if there exists a natural

isomorphism F → G: we then write F ∼ G.
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Examples 2.5 - (1) If R ∈ Ringsc and if M is a left R-module, we define M ∗ =

HomR(M,R). Then F : RMod → RMod, M 7→ M∗ is a functor (see Example 2.2 (4)).

Now, we define ϕM : M → (M∗)∗, m 7→ (λ ∈M∗ 7→ λ(m) ∈ R). Then ϕ : Id
RMod → F◦F

is a natural transformation.

If R is a field, and if we replace RMod by Rmod, then ϕ is a natural isomorphism.

(2) If f : X → X ′ is a morphism in the category C, we define, for every C ∈ C,

f̃C : HomC(C,X) → HomC(C,X ′), g 7→ f ◦ g. Then f̃ defines a natural transformation

HomC(−, X) → HomC(−, X ′). It is a natural isomorphism if and only if f is an isomor-

phism. Similarly, one gets a natural transformation HomC(X ′,−)→ HomC(X,−). �

Definition 2.6. A covariant functor F : C → D is called an isomorphism of cat-

egories if there exists a covariant functor G : D → C such that F ◦ G = IdD and

G ◦F = IdC. It is called an equivalance of categories if there exists a covariant functor

G : D→ C such that F ◦ G ∼ IdD and G ◦ F ∼ IdC.

Examples 2.7 - (1) If R is a ring, we denote by R◦ the opposite ring of R: as a set,

this is R but, if r and s are two elements of R, and if we denote them r◦ and s◦ when

we see them in R◦, then the multiplication is given by r◦s◦ = (sr)◦. If f : R → S is an

homomorphism of rings, let f ◦ : R◦ → S◦, r◦ 7→ f(r)◦. It is also an homomorphism of

rings. Then Rings → Rings, R 7→ R◦, f 7→ f◦ is a covariant functor. Note that if we

compose it with itself, we get the identity functor. So it is an isomorphism of categories.

(2) If K is a field, then Kmod → Kmod, V 7→ (V ∗)∗ is an equivalence of categories

(see Example 2.5 (1)). Note that KMod → KMod, V 7→ (V ∗)∗ is not an equivalence of

categories.

(3) If M is a left R-module, we denote by M ◦ the right R◦-module defined as follows:

as a set, this is M but m◦.r◦ = (rm)◦, with obvious notation. Similarly, if M is a right

R-module, then we can define M ◦ to be a left R◦-module. Then RMod → ModR◦ ,

M 7→M◦, f 7→ f is a covariant isomorphism of categories. �

Definition 2.8. Let F : C→ D and G : D→ C be two covariant functors. We say that

F is left adjoint to G (or G is right adjoint to F) if, for all C ∈ C and D ∈ D, we

have a bijection γCD : HomC(C,G(D))→ HomD(F(C), D) such that, if f : C → C ′ in C,

the following diagram

HomC(C ′,G(D))
γC′D //

HomC(f,G(D))

��

HomD(F(C ′), D)

HomD(F(f),D)

��
HomC(C,G(D))

γCD // HomD(F(C ′), D)

and similarly for all g : D → D′ in D.
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Exercises from Part I

Exercise I.1. Show that Posets (partially ordered sets together where morphisms are

non-decreasing maps) is a category.

Exercise I.2. Let C and D be two categories. We define the product C×D as follows.

First, ob(C×D) consists of ordered pairs (C,D) where C ∈ ob(C) and D ∈ ob(D). Then,

if (C,D), (C ′, D′) ∈ ob(C,D), we define HomC×D((C,D), (C ′, D′)) = HomC(C,C ′) ×
HomD(D,D′). Finally, the composition law is defined by (f, g) ◦ (f ′, g′) = (f ◦ f ′, g ◦ g′).
Show that C×D is a category (it is called the product category of C and D).

Exercise I.3. Let Cat be a category. Let Cat◦ be defined as follows: ob(Cat◦) =

ob(Cat) and, if C, C ′ ∈ ob(Cat◦), we set HomCat◦(C,C
′) = HomCat(C

′, C) (and we

reverse the composition law). Show that Cat◦ is a category (it is called the dual category

to Cat).

Let D : Cat → Cat◦, C 7→ C, f ∈ HomCat(C,C
′) 7→ f ∈ HomCat◦(C

′, C). Show that

D is a contravariant functor. Show that D ◦ D = IdCat.

If D is another category, show that a covariant (respectively contravariant) functor

F : Cat→ D induces a contravariant (respectively covariant) functor F ◦ : Cat◦ → D.

Exercise I.4. Let R be a ring and let X be a set. Let R[X] be the free left module with

basis X: this is the set of formal R-linear combinations
∑

x∈X rxx, where (rx)x∈X is any

family of elements of R such that all but a finite number of the rx’s are zero. An element

x ∈ X is identified with the formal R-linear combination
∑

y∈X δxyx, where δxy = 1 if

x = y and δxy = 0 otherwise.

(a) Prove that R[X] is naturally a left R-module.

(b) Prove that X is an R-basis of R[X] for its structure of left module.

(c) Let ϕ : X → M be a map, where M is a left R-module. Show that there is a

unique R-linear map γXM (ϕ) : R[X]→M which extends ϕ.

(d) If f : X → Y is a map, show that the map f∗ : R[X] → R[Y ],
∑

x∈X rxx 7→∑
x∈X rxf(x) is well-defined and is a morphism of R-modules.

(e) If f : X → Y and g : Y → Z are maps, prove that (g ◦ f)∗ = g∗ ◦ f∗.
(f) Show that, if f is surjective (respectively injective, respectively surjective), then

so is f∗.
(g) In general, compute Ker f∗ and Im f∗.
(h) Prove that F : Sets→ RMod, X 7→ R[X], f 7→ f∗ is a covariant functor.

(i) Let G : RMod→ Sets be the forgetful functor. Show that F is a left adjoint to G
(Hint: use (c)).

Exercise I.5. Let G be a group. Show that the map

R[G]×R[G] −→ R[G]
(
∑

g∈G rgg,
∑

g∈G r
′
gg) 7−→ ∑

g,g′∈G rgr
′
g′gg

′

endows R[G] with a ring structure.
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If f : G→ H is a morphism of groups, show that the map f∗ : R[G]→ R[H] defined in

Exercise I.4 is a morphism of rings. Show that Groups → Rings, G 7→ R[G], f 7→ f∗ is

a covariant functor.

Let inv : G→ G, g 7→ g−1 and assume that R is commutative. Show that inv∗ induces

an isomorphism of rings R[G] ' R[G]◦.

Exercise I.6. Let n > 1. Let

I = {




a1 · · · an
0 · · · 0
...

...
0 · · · 0


 | a1, . . . , an ∈ R}

and J = {



a1 0 · · · 0
...

...
...

an 0 · · · 0


 | a1, . . . , an ∈ R}.

(a) Show that I (respectively J) is a left (respectively right) ideal of Matn(R).

(b) Show that the map Matn(R◦) → Matn(R)◦, M 7→ (tM)◦ is an isomorphism of

rings.

(c) If R is commutative, show that I ' J◦.

Exercise I.7∗. Let G be a group. A G-set is a set G endowed with an action of G. If

X and Y are two G-sets, a map f : X → Y is called G-equivariant if, for all g ∈ G and

x ∈ X, we have f(gx) = gf(x).

(a) Show that G − Sets (where objects are G-sets and morphisms are G-equivariant

maps) is a category.

(b) Let H be a subgroup of G. If X is a G-set, let ResGH X denote the set X endowed

with the H-action obtained by restriction from G. Show that ResGH : G− Sets→
H − Sets is a covariant functor.

(c) Let NG(H) = {g ∈ G | gHg−1 = H} (this is the normalizer of H in G). Show

that NG(H) is a subgroup of G having H as a normal subgroup.

(d) If X is a G-set, let XH = {x ∈ X | ∀ h ∈ H, hx = x}. Show that NG(H) stabilizes

XH .

(e) Show that G− Sets→ NG(H)/H − Sets, X 7→ XH is a covariant functor.

Exercise I.8. If R is a ring, let U(R) = R× denote the group of units of R.

(a) Show that U : Rings→ Groups is a covariant functor.

(b) Show that Matn : Rings→ Rings, R 7→ Matn(R) is a covariant functor.

(c) Show that GLn : Rings→ Groups, R 7→ GLn(R) is a covariant functor.

(d) Show that detR : GLn(R) → U(R), g 7→ det(g) (which is only defined if R is

commutative) defines a natural transformation between GLn : Ringsc → Groups

and U : Ringsc → Groups.

Exercise I.9. Let F : C → D be an equivalence of categories. Show that the map

HomC(C,C ′)→ HomD(F(C),F(C ′)), f 7→ F(f) is bijective for all objects C, C ′ ∈ C.
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Part II. Modules

3. Tensor product

3.A. Definitions. Let M , N and A be three Z-modules (i.e. abelian groups).

Definition 3.1. A map f : M ×N → A is called bilinear if, for all m, m′ ∈ M and n,

n′ ∈ N , we have

f(m+m′, n) = f(m,n) + f(m′, n)

and f(m,n+ n′) = f(m,n) + f(m,n′).

The set of bilinear maps M ×N → A forms an abelian group denoted by Bil(M,N ;A).

Proposition 3.2. If f ∈ Bil(M,N ;A), if (m,n) ∈M ×N and if z ∈ Z, then f(zm, n) =

f(m, zn) = zf(m,n). In particular, f(0, n) = f(m, 0) = 0.

Proposition 3.3. We have:

(a) Bil(M ⊕M ′, N ;A) = Bil(M,N ;A)⊕ Bil(M ′, N ;A).

(b) Bil(M,N ⊕N ′;A) = Bil(M,N ;A)⊕ Bil(M,N ′;A).

(c) Bil(M,N ;A⊕A′) = Bil(M,N ;A)⊕ Bil(M,N ;A′).

Proof - We just prove (a) when |I| = 2 (the other properties are proved similarly). If

f ∈ Bil(M ⊕M ′, N ;A), let fM denote its restriction to M × N (⊆ (M ⊕M ′) × N) and

fM ′ denote its restriction to M ′ ×N . Then fM and fM ′ are bilinear. Now, let

σ : Bil(M ⊕M ′, N ;A) −→ Bil(M,N ;A)⊕ Bil(M ′, N ;A)
f 7−→ fM + fM ′ .

Then ϕ is injective: indeed, if ϕ(f) = 0, then fM = 0 and fM ′ = 0, then f(m +m′, n) =

fM (m,n) + fM ′(m
′, n) = 0 for every m ∈M , m′ ∈M ′ and n ∈ N . So f = 0.

On the other hand, ϕ is surjective: if g ∈ Bil(M,N ;A) and g′ ∈ Bil(M ′, N ;A), then

the map f : (M ⊕ M ′) × N → A, (m + m′, n) 7→ g(m,n) + g′(m′, n) is bilinear and

ϕ(f) = (g.g′). �

Examples 3.4 - (1) If R is a ring, the map R×R→ R, (a, b) 7→ ab is bilinear.

(2) If σ : A → B is a morphism of abelian groups, then Bil(M,N ;A) → Bil(M,N ;B),

f 7→ σ ◦ f is well-defined.

(3) If gcd(m,n) = 1, then Bil(Z/mZ,Z/nZ;A) = 0. Indeed, if f ∈ Bil(Z/mZ,Z/nZ;A),

let (x, y) ∈ Z/mZ × Z/nZ and let a = f(x, y). Then ma = f(mx, y) = f(0, y) = 0.

Similarly, na = f(x, ny) = 0. But, since m and n are coprime, there exists µ and ν in Z
such that µm+ νn = 1. Therefore, a = µma+ νna = 0. �
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Definition 3.5. Now, let R be a ring. If moreover M is a right R-module and N is a

left R-module, a map f : M × N → A is called R-balanced if f(mr, n) = f(m, rn) for

every r ∈ R, m ∈ M and n ∈ N . The set of R-balanced bilinear maps M × N → A will

be denoted by BilR−bal(M,N ;A). It is an abelian group.

Proposition 3.6. We have:

(a) BilR−bal(M ⊕M ′, N ;A) = BilR−bal(M,N ;A)⊕ BilR−bal(M
′, N ;A).

(b) BilR−bal(M,N ⊕N ′;A) = BilR−bal(M,N ;A)⊕ BilR−bal(M,N ′;A).

(c) BilR−bal(M,N ;A⊕A′) = BilR−bal(M,N ;A)⊕ BilR−bal(M,N ;A′).

(d) BilR−bal(R,N ;A) ' Hom(N,A) and BilR−bal(M,R;A) ' Hom(M,A).

Proof - (a), (b) and (c) can be proved similary as statements (a), (b) and (c) of Propo-

sition 3.3. Let us prove here only the first statement of (d) (the second one can be proved

similarly). Let

ϕ : BilR−bal(R,N ;A) −→ Hom(N,A)
f 7−→

(
n 7→ f(1, n)

)

and
ψ : Hom(N,A) −→ BilR−bal(R,N ;A)

g 7−→
(
(r, n) 7→ g(rn)

)
.

It is clear that ϕ and ψ are well-defined homomorphisms of groups. Moreover, it is also

clear that ϕ ◦ ψ = IdHom(N,A) and ψ ◦ ϕ = IdBilR−bal(R,N ;A). �

Examples 3.7 - (1) The map R×R→ R, (a, b) 7→ ab is R-balanced and bilinear. More

generally, the map R×N → N , (r, n) 7→ rn is R-balanced and bilinear.

(2) Let us define a structure of right R-module on EndZ(N) as follows: if s ∈ EndZ(N)

and if r ∈ R, let σr : N → N , n 7→ σ(rn). It is readily seen that it endows EndZ(N) with

a structure of right R-module. Then the map

EndZ(N)×N −→ N
(σ, n) 7−→ σ(n)

is R-balanced and bilinear. �

Definition 3.8. A pair (T, τ) where T is an abelian group an τ : M × N → T is an

R-balanced bilinear map is called a tensor product of M and N over R if it satisfies

the following property:

(T) For every abelian group A and every f ∈ BilR−bal(M,N ;A), there

exists a unique homomorphism f̃ : T → A such that f = f̃ ◦ τ .

M ×N
f //

τ

��

A

T

f̃

<<zzzzzzzzzzzzzzzzzz
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Tensor products exist and are all canonically isomorphic:

Theorem 3.9. Let R be a ring, let M be a right R-module and let N be a left R-module.

(a) There exists a tensor product of M and N over R.

(b) If (T, τ) and (T ′, τ ′) are two tensor products of M and N over R, then there exists

a unique group homomorphism α : T → T ′ such that τ ′ = α ◦ τ . Moreover, such

an α is an isomorphism.

Proof - (a) Let F = Z[M ×N ]: this is the free Z-module with basis M ×N (see Exercise

I.4). Let I be the sub-Z-module of F generated by all elements of the form

(m+m′, n)− (m,n)− (m′, n), (m,n+ n′)− (m,n)− (m,n′), (mr, n)− (m, rn)

for m, m′ ∈ M , n, n′ ∈ N and r ∈ R. Let T = F/I and, if x ∈ F , let x̄ denote its image

in T . Let π : F → T be the canonical projection and let τ : M ×N → T , (m,n) 7→ (m,n)

be the restriction of π.

• Let us show that τ is bilinear. Let m, m′ ∈ M and n ∈ N . Then, by definition,

(m+m′, n)− (m,n)− (m′, n) = 0. In other words, τ(m + m′, n) = τ(m,n) + τ(m′, n).

The other equality is proved similarly.

• We can also prove similarly that τ is R-balanced.

• Let us show now that the pair (T, τ) is a tensor product. Let f : M × N → A be

an R-balanced bilinear map. Then, by Exercise I.4 (c), f extends to a map fA : F → A.

Moreover, by the definition of an R-balanced bilinear map, fA(I) = 0. Therefore, fA
factors through an homomorphism f̄A : T → A such that fA = f̄A ◦ π. If we restrict this

equality to M ×N ⊆ F , we get that f = f̄A ◦ τ .

Moreover, if f ′ : T → A is Z-linear satisfies f = f ′ ◦ τ , by extending this equality

by linearity, we get that fA = f ′ ◦ π. Therefore f ′ = f̄A because π is surjective. This

completes the proof of (a).

(b) By the very definition of a tensor product, there exist two maps ϕ : T → T ′ and

ψ : T ′ → T such that τ = τ ′ ◦ ϕ and τ ′ = τ ◦ ψ. We summarize the situation in the next

diagram:

M ×N

τ

����������������

τ ′

��88888888888888

T
ϕ //

T ′
ψ

oo

Therefore, τ = τ ◦ (ψ ◦ ϕ). Now, by unicity, ψ ◦ ϕ = IdT . Similarly, ϕ ◦ ψ = IdT ′ . �

Since there is only (up to a unique isomorphism) one tensor product, we shall denote by

M⊗RN the tensor product of M and N defined in the proof of the above Theorem. The R-

balanced bilinear map M×N →M⊗N will be omitted and denoted by (m,n) 7→ m⊗Rn.

As it can be seen from the proof of Theorem 3.9, M ⊗R N is generated, as a Z-module,

by the elements m⊗R n, where (m,n) ∈M ×N . It must be noticed that there might be

elements of M ⊗R N that are not of the form m⊗R n.
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To define an homomorphism M ⊗R N → A, one only needs to define an R-balanced

bilinear map M ×N → A.

Remark 3.10 - It might be difficult to prove that a sum
∑l

i=1mi ⊗R ni is equal to or

different from zero!! �

Example 3.11 - If gcd(m,n) = 1, then Z/mZ ⊗Z Z/nZ = 0. Indeed, this follows from

Example 3.4 (3) and from the fact that the tensor product of two modules is generated

by elementary tensor products. �

3.B. First properties. The last two statements of the next proposition are immediate

consequences of the corresponding statements for R-balanced bilinear maps.

Proposition 3.12. We have:

(a) If f : M → M ′ and g : N → N ′ are R-linear maps, then there is a unique map

f ⊗R g : M ⊗R N → M ′ ⊗R N ′, such that (f ⊗R g)(m⊗R n) = f(m)⊗R g(n) for

all (m,n) ∈M ×N . We have (f ⊗R g) ◦ (f ′ ⊗R g′) = (f ◦ f ′)⊗R (g ◦ g′).

(b) With the hypothesis of (a), if f and g are moreover surjective, then so is f ⊗R g.

If f and g are isomorphisms, then f ⊗R g are isomorphisms of Z-modules.

(c) (M ⊕M ′)⊗R N = (M ⊗R N)⊕ (M ′ ⊗R N).

(d) M ⊗R (N ⊕N ′) = (M ⊗R N)⊕ (M ⊗R N ′).

Proof - (a) The map M × N → M ′ ⊗R N ′, (m,n) 7→ f(m) ⊗ g(n) is R-balanced and

bilinear. So the existence of f⊗Rg follows from Theorem 3.9. The last property is obvious.

(b) If f and g are moreover surjective, let L denote the image of f ⊗R g. Then L ⊆
M ′ ⊗R N ′. Moreover, if m′ ∈ M ′ and n′ ∈ N ′, then there exists (m,n) ∈ M × N such

that f(m) = m′ and g(m) = m′. Therefore, m′ ⊗R n′ = (f ⊗R g)(m⊗R n) ∈ L. But since

M ′ ⊗R N ′ is generated by the m′ ⊗R n′, we get that L = M ′ ⊗R N ′, as desired.

(c) and (d) follow easily from Proposition 3.6 (a) and (b). �

Remark 3.13 - Let I be any set, finite or not. Then it is easy to show that
(
⊕
i∈I

Mi

)
⊗R N ' ⊕

i∈I

(
Mi ⊗R N

)

and
(
M ⊗R ⊕

i∈I
Ni

)
' ⊕

i∈I

(
M ⊗R Ni

)
.

This is left as an exercise. Note that the corresponding property for bilinear and R-

balanced maps does not hold in general. �

Remark 3.14 - In general, the statement (b) of the Proposition 3.12 is false if we

replace surjective by injective. Indeed, let m > 2 be a natural number and let f : Z →
Z, n 7→ nm and let IdZ/mZ : Z/mZ → Z/mZ. Then f and IdZ/mZ are injective but

(f ⊗Z IdZ/mZ)(x ⊗Z ȳ) = xm ⊗Z ȳ = x ⊗Z mȳ = 0 and Z ⊗Z Z/mZ ' Z/mZ 6= 0 by

Proposition 3.16 below. �

Remark 3.15 - Proposition 3.12 (a) shows that −⊗R − : ModR × RMod −→ Ab is a

functor (recall that the product of two categories has been defined in Exercice I.2).
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Proposition 3.16. Let I be a right ideal of R. Let IN be the sub-Z-module of N generated

by the rn, where r ∈ I and n ∈ N . Then

R/I ⊗R N ' N/IN.
Similarly, if J is a left ideal of R, then

M ⊗R R/J 'M/MJ.

Proof - Let
ψ : R/I ⊗R N −→ N/IN

r̄ ⊗R m 7−→ rm

and
ϕ : N/IN −→ R/I ⊗R N

m̄ 7−→ 1̄⊗R m.
Let us prove that ψ and ϕ are well-defined.

• Let f : R/I × N → N/IN , (r̄,m) 7→ rm. Then f is well-defined: indeed, if r̄ = s̄,

then there exists x ∈ I such that s = x + r. Therefore, sm = xm + rm. In other words,

sm − rm ∈ IN , so sm = rm. Now it is also clear that f is bilinear. Let us prove that

it is R-balanced: we have f(r̄.s,m) = f(rs,m) = rsm = f(r̄, sm). So the existence of ψ

follows from Theorem 3.9.

• Let m and m′ be two elements of N such that m−m′ ∈ IN . Then there exists r1,. . . ,

rl ∈ R and m1,. . . , ml ∈ N such that m−m′ = ∑l
i=1 rimi. But then

1̄⊗R m = 1̄⊗R m′ +
l∑

i=1

1̄⊗R rimi

= 1̄⊗R m′ +
l∑

i=1

1̄.ri ⊗R mi

= 1̄⊗R m′ +
l∑

i=1

r̄i ⊗R mi

= 1̄⊗R m′ +
l∑

i=1

0̄⊗R mi

= 1̄⊗R m′.
So ϕ is well-defined. It is an homomorphism of abelian groups.

Now, ψ and ϕ are well-defined and it is readily seen that ϕ ◦ ψ = IdR/I⊗RN and

ψ ◦ ϕ = IdN/IN . �

Corollary 3.17. We have R⊗R N ' N and M ⊗R R 'M .

Remark 3.18 - If I is a right ideal of R, it might happen that the map I ⊗RM → IM ,

r ⊗R m 7→ rm is not injective. For instance, take R = Z, M = Z/mZ, I = mZ.

3.C. Bimodules. If S is another ring, an abelian group M is called an (R,S)-bimodule

if it is both a left R-module and a right S-module and if moreover (rm)s = r(ms) for
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every r ∈ R, m ∈ M and s ∈ S. In particular, we shall often write rms instead of (rm)s

or r(ms). If M and M ′ are two (R,S)-bimodules, we denote by HomR(M,M ′)S the set

of maps f : M → M ′ which are both morphisms of left R-modules and right S-modules.

The category of (R,S)-bimodules will be denoted by RModS . Of course, if M is an

(R,S)-bimodule, then M◦ is an (S◦, R◦)-bimodule. We get an isomorphism of categories

RModS → S◦ModR◦ , M 7→ M◦. Note that a left (respectively right) R-module is an

(R,Z)-bimodule (respectively a (Z, R)-bimodule).

If R is commutative, any left (or right R-module) is naturally an (R,R)-bimodule but,

be careful (!!), it is no longer true that, to define an (R,R)-bimodule, we only need to

define a structure of left R-module).

Proposition 3.19. If R, S and T are three rings and if M ∈ RModS and N ∈ SModT ,

then the maps

R× (M ⊗S N) −→ M ⊗S N
(r,m⊗S n) 7−→ rm⊗S n

and
T × (M ⊗S N) −→ M ⊗S N

(t,m⊗S n) 7−→ m⊗S nt

are well-defined and endow M ⊗S N with a structure of (R, T )-bimodule.

Proof - Let r ∈ R. Then the map fr : M ×N → M ⊗S N , (m,n) 7→ rm ⊗S n is an S-

balanced bilinear map. So it induces a map f̃r : M⊗SN →M⊗SN , m⊗SN 7→ rm⊗SN .

Now, let

f : R× (M ⊗S N) −→ M ⊗S N
(r, x) 7−→ f̃r(x).

Then it is readily checked that f endows M ⊗S N with a structure of left R-module.

Similarly, the second map defined in the Proposition 3.19 is well-defined and endows

M ⊗S N with a structure of right T -module. It is also easy to check that, if r ∈ R,

x ∈ M ⊗S N and t ∈ T , then r(xt) = (rx)t (by linearity, this can be checked only if

x = m⊗S n for some (m,n) ∈M ×N). �

Proposition 3.20. Let R, S, T and U be four rings and let L ∈ RModS, M ∈ SModT
and N ∈ TModU . Then the map

L⊗S (M ⊗T N) −→ (L⊗S M)⊗T N
l ⊗S (m⊗T n) 7−→ (l ⊗S m)⊗T n

is well-defined and is an isomorphism of (R,U)-bimodules.

Proof - This is left as an exercice (proceed as in the proof of Proposition 3.19). �

Examples 3.21 - (1) Let σ : R → S be a morphism of rings. Then this endows S with

a structure of (S,R)-bimodule: s.s′ = ss′ and s.r = sσ(r) (r ∈ R, s, s′ ∈ S). So, if N is a

left R-module, then S ⊗R N becomes a left S-module.
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If N is free with R-basis (ei)i∈I , then

S ⊗R N = ⊕
i∈I
S ⊗R Rei

' ⊕
i∈I
S(1S ⊗R ei)

and

S ⊗R Rei ' S ⊗R R ' S
by Corollary 3.13. In fact, we have proved that (1⊗R ei)i∈I is an S-basis of S ⊗R N .

Note that, if R is a field, then any R-module is free so that S ⊗R N is a free S-module

for any N .

(2) Let I be a two-sided ideal of R. Then R/I is naturally endowed with a structure

of (R,R)-bimodule, or (R,R/I)-bimodule, or (R/I,R)-bimodule... Also, if N is a left

R-module, then IN is a left R-submodule of N . Therefore, N/IN can be viewed as a

left R-module or as a left R/I-module. It is now easily checked that the isomorphism

R/I ⊗R N ' N/IN constructed in Proposition 3.16 is an isomorphism of left R-modules

(or R/I-modules).

(3) If R is commutative, then RMod ' ModR and any left R-module is naturally

an (R,R)-bimodule. Therefore, if M , N ∈ RMod, then the tensor product M ⊗R N is

well-defined and is naturally endowed with a structure of left R-module. Moreover, the

map
M ⊗R N −→ N ⊗RM
m⊗R n 7−→ n⊗R m

is well-defined and is an isomorphism of R-modules.

If M and N are moreover R-free with basis (mi)i∈I and (nj)j∈J respectively, then

M ⊗R N is R-free with basis (mi ⊗R nj)(i,j)∈I×J . �

3.D. Bimodules as functors. Let M ∈ RModS . Then

M ⊗S − : SMod −→ RMod

N 7−→ M ⊗S N
f 7−→ IdM ⊗Sf

is a covariant functor. If N ∈ SModT , then the Proposition 3.20 shows that there is

a natural isomorphism of functors (M ⊗S −) ◦ (N ⊗T −) ' (M ⊗S N) ⊗T −. Also, if

f ∈ HomR(M,M ′)S , then f induces a natural transformation M ⊗S − → M ′ ⊗S −. If

f is an isomorphism of (R,S)-bimodules, then this natural transformation is a natural

isomorphism.

Now, if L is a left R-module, if f ∈ HomR(M,L), and if s ∈ S, we define s.f : M → L,

m 7→ f(ms). It is readily seen that this endows HomR(M,L) with a structure of left

S-module. So this defines a covariant functor

HomR(M,−) : RMod −→ SMod

L 7−→ HomR(M,L)

f 7−→
(
g 7→ (f ◦ g)

)
.
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Theorem 3.22 (Adjointness of Hom and ⊗). The functor M ⊗R − is a left adjoint

to the functor HomR(M,−). The adjunction is given, for any X ∈ RMod and any

Y ∈ SMod, by

γY X : HomR(M ⊗S Y,X) −→ HomS(Y,HomR(M,X))
f 7−→

(
y 7→ (m 7→ f(m⊗S y))

)
.

The inverse is given by

δY X : HomS(Y,HomR(M,X)) −→ HomR(M ⊗S Y,X)
f 7−→

(
m⊗S y 7→ f(y)(m)

)
.

Proof - The proof is left as an exercice. �

3.E. Tensor product over commutative rings. From now on, and until the end of this

section, we assume that R is a commutative ring. If M and N are two left R-modules,

then M can be seen as an (R,R)-bimodule as follows: if r ∈ R and m ∈ M , we set

m.r = rm. In particular, M ⊗R N inherits a structure of left R-module (see Proposition

3.19): r.(m⊗R n) = (rm)⊗R n. In particular, r.(m⊗R n) = (m.r)⊗R n = m⊗R (rn).

If A is another R-module, a map f : M × N → A is called R-bilinear if it is bilinear

and if, for all r ∈ R, m ∈M and n ∈ N , we have

f(rm, n) = f(m, rn) = rf(m,n).

In particular, an R-bilinear map is an R-balanced bilinear map (where M is seen as a

right R-module as above).

Theorem 3.23. Assumme that R is commutative. Let A, M and N be three left R-

modules and let f : M×N → A be an R-bilinear map. Then the unique map f̃ : M⊗RN →
A, m⊗R n 7→ f(m,n) is a morphism of R-modules.

Proof - The proof is left as an exercise. �

Recall that we still assume that R is commutative. An R-algebra is an R-module A

endowed with a structure of ring such that the map R → A, r 7→ r.1A is a morphism of

rings whose image is in the centre of A (the centre of a ring S is the subring of S consisting

of the elements which commute to all the others).

Examples 3.24 - (1) The centre of Matn(R) is R.In, where In is the identity matrix.

The ring Matn(R) is an R-algebra.

(2) If G is a group, R[G] is an R-algebra.

(3) If K is a subfield of a field K ′, then K ′ is naturally a K-algebra.

(4) R[X1, . . . , Xn] is an R-algebra.

(5) If I is an ideal of R, then R/I is an R-algebra. �

Theorem 3.25. Assume that R is commutative. Let A and B be two R-algebras. Then

the map
(A⊗R B)× (A⊗R B) −→ A⊗R B

(a⊗R b, a′ ⊗R b′) 7−→ aa′ ⊗R bb′
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is a product which endows A⊗R B with a structure of R-algebra.

If moreover A is commutative, then A ⊗R B is an A-algebra. If A and B are commu-

tative, then so is A⊗R B.

Proof - The proof is left as an exercice. �

Examples 3.26 - (1) If S is a commutative R-algebra, then S ⊗R R[G] ' S[G], S ⊗R
R[X1, . . . , Xn] ' S[X1, . . . , Xn], S ⊗R Matn(R) ' Matn(S)...

(2) Let X and Y be two indeterminates. Let us show that the map

R[X]⊗R R[X] −→ R[X,Y ]
P ⊗Q 7−→ P (X)Q(Y )

is an isomorphism of R-algebras. First, it is clear that it is a morphism of R-algebras.

Let us show now that it is an isomorphism. First, (X i ⊗R Xj)(i,j)∈Z2
>0

is an R-basis of

the R-module R[X] ⊗R R[X]. On the other hand, (X iY j)(i,j)∈Z2
>0

is an R-basis of the

R-module R[X,Y ]. Since X i ⊗R Xj is mapped to X iY j through this morphism, we get

the desired result. �

4. Noetherian and Artinian modules and rings

In this section, we fix a ring R.

4.A. Definitions and characterizations. The notion of Noetherian and Artinian mod-

ules (or ring) involves chains of submodules:

Definition 4.1. A left R-module M is called Noetherian (respectively Artinian) if it

satisfies the ascending chain condition (ACC) (respectively the descending chain

condition (DCC)) namely, if every chain of submodules M1 ⊆ M2 ⊆ M3 ⊆ ... (respec-

tively M1 ⊇M2 ⊇M3 ⊇ ...) becomes stationary (i.e. ∃ n0, ∀ n > n0, Mn = Mn+1).

The ring R is called left Noetherian (respectively left Artinian) if the left R-module

R is Noetherian (respectively Artinian).

Remark - One can define similarly the notion of Noetherian (or Artinian) right modules

and of right Noetherian (or right Artinian) rings. There are examples of rings which

both left Noetherian and left Artinian but which are neither right Noetherian or right

Artinian. �

Examples 4.2 - (1) A field is both Noetherian and Artinian.

(2) Z and, more generally, any principal ring is Noetherian. However, Z is not Artinian:

indeed, Z ⊇ 2Z ⊇ 4Z ⊇ 8Z ⊇ 16Z ⊇ · · · is a non-stationary descending chain of ideals of

Z. Similarly, K[X] is not Artinian (here, K is a field and X is an indeterminate).

(3) Any finite dimensional algebra over a field K is both Noetherian and Artinian. Any

finite ring is both Noetherian and Artinian (for instance, Z/nZ).



19

(4) Let R be the ring of maps Z → C (with pointwise multiplication and addition). If

n ∈ Z, let

In = {f : Z→ C | ∀ k > n, f(k) = 0}.
Then In is an ideal of R and it is easily checked that

· · ·  I−2  I−1  I0  I1  I2  I3  · · ·
In particular, R is not Noetherian and not Artinian.

If we denote by J the ideal of function f : Z→ C such that f(k) = 0 for all k ∈ Z \ {0},
then J is a Noetherian and Artinian module. �

The next Theorem gives some characterizations of Noetherian or Artinian modules.

Theorem 4.3. Let M be a left R-modules. Then:

(a) The following are equivalent:

(1) M is Noetherian.

(2) Every submodule of M is finitely generated.

(3) Every non-empty set of submodules has a maximal element.

(b) The following are equivalent:

(1) M is Artinian.

(2) Every non-empty set of submodules has a minimal element.

Proof - (a) The proof will proceed in several steps:

• (1)⇒ (2): Let N be a submodule of M and assume that N is not finitely generated.

SinceN is not finitely generated, there exists a sequence (ni)i > 1 of elements ofN such that

nk+1 does not belong to the submodule Nk generated by (ni)1 6 i 6 k. Then Nk  Nk+1,

so M is not Noetherian.

• (2)⇒ (3): Let M be non-empty set of submodules of M and assume that M has no

maximal element. Let M1 ∈ M. Then M1 is not maximal, so there exists M2 ∈ M such

that M1  M2. Similarly, we can repeat the process and construct a sequence (Mn)n > 1

of elements of M such that Mn  Mn+1, so that
⋃
n > 1Mn cannot be finitely generated.

• (3)⇒ (1): clear.

(b) The proof will proceed in two steps:

• (1) ⇒ (2): Let M be non-empty set of submodules of M and assume that M has

no minimal element. The same argument as before shows that we can then construct a

sequence (Mn)n > 1 of elements of M such that Mn+1  Mn, so M is not Artinian.

• (2)⇒ (1): clear. �

4.B. First properties. Recall that a short exact sequence of left R-modules is a sequence

0 −→ L
α−→ M

β−→ N −→ 0

of morphisms such that Kerα = 0, Kerβ = Imα and Imβ = N . Of course, one can define

similarly short exact sequences of right modules (or even of bimodules...)
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Proposition 4.4. Let

0 −→ L
α−→ M

β−→ N −→ 0

be a short exact sequence. Then M is Noetherian (respectively Artinian) if and only if L

and N are Noetherian (respectively Artinian).

Proof - We prove the result for Noetherian modules only (the argument is similar for

Artinian modules). Since α is injective, we shall identify L with a submodule of M (and

α is the canonical injection L ↪→ M) and N with the quotient M/L (and β with the

canonical surjection M →M/L).

Assume first that L and N are Noetherian. Let

M1 ⊆M2 ⊆M3 ⊆ ...
be a chain of sub-R-modules of M . Then

β(M1) ⊆ β(M2) ⊆ β(M3) ⊆ ...
is an ascending chain of submodules of N . Since N is Noetherian, there exists n1 such

that β(Mn) = β(Mn+1) if n > n1. On the other hand,

L ∩M1 ⊆ L ∩M2 ⊆ L ∩M3 ⊆ ...
is an ascending chain of submodules of L. Since L is Noetherian, there exists n2 such

that L ∩Mn = L ∩Mn+1 if n > n2. Let n0 = max(n1, n2). Then, if n > n0, we have

L ∩ Mn = L ∩ Mn+1 and β(Mn) = β(Mn+1). We shall prove that this implies that

Mn = Mn+1. Indeed, if m ∈ Mn+1, then there exists m′ ∈ Mn such that β(m) = β(m′).
So m − m′ ∈ Mn+1 ∩ L = Kerβ. So m − m′ ∈ L ∩Mn. Therefore, m − m′ ∈ Mn, so

m ∈Mn, as desired.

Conversely, assume that M is Noetherian. Then L is obviously Noetherian because any

ascending chain of submodules of L is an ascending chain of submodules of M . On the

other hand, if

N1 ⊆ N2 ⊆ N3 ⊆ ...
is an ascending chain of submodules of N , then

β−1(N1) ⊆ β−1(N2) ⊆ β−1(N3) ⊆ ...
is an ascending chain of submodules of M . Since M is Noetherian, there exists n0 such

that β−1(Nn) = β−1(Nn+1) for all n > n0. But, since β(β−1(Nn)) = Nn, we get that

Nn = Nn+1 for all n > n0. So N is Noetherian. �

Corollary 4.5. We have:

(a) Let M1, . . . , Mn be Noetherian (respectively Artinian) left R-modules. Then M1⊕
· · · ⊕Mn is Noetherian (respectively Artinian).

(b) If M is a left R-module and if M1,. . . , Mn are Noetherian (respectively Artinian)

submodules, then M1 + · · ·+Mn is Noetherian (respectively Artinian).

Proof - This follows easily from Proposition 4.4 by induction on n. �

Corollary 4.6. If R is left Noetherian and if I is a two-sided ideal of R, then the ring

R/I is left Noetherian.
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Definition 4.7. A left R-module M is called simple (or irreducible) if M 6= 0 and the

only submodules are M and 0. A composition series of a left R-module M is a finite

sequence

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M

such that Mi+1/Mi is simple. We say that the R-module M has finite length if it has a

composition series.

Remark 4.8 - A simple module is of course Noetherian and Artinian. �

Examples 4.9 - (1) If K is a field and V is a K-vector space, then V is simple if and

only if it has dimension 1. It has finite length if and only if it is finite dimensional.

(2) Z/pZ is a simple Z-module if and only if p is a prime number.

(3) 0 ⊂ 2Z/6Z ⊂ Z/6Z is a composition series of Z/6Z. In fact, Z/nZ has finite length

for any n > 1.

(4) Z is not a simple Z-module. It has not finite length. �

Let us recall the following

Theorem 4.10 (Jordan-Hölder). Let M be a left R-module. If 0 = M0 ⊂ M1 ⊂ · · · ⊂
Mn = M and 0 = M ′0 ⊂ M ′1 ⊂ · · · ⊂ M ′n′ = M are two composition series of M , then

n = n′ and there exists a permutation σ ∈ Sn such that Mi/Mi−1 'M ′σ(i)/M
′
σ(i)−1.

Proof - Let i0 denote the minimal natural number such that M1 ⊆M ′i0 and M1 6⊆M ′i0−1.

Let f : M1 →M ′i0/M
′
i0−1 be the canonical map. Then M1 ∩M ′i0−1 is a submodule of M1

which is different from M1, so it is equal to 0 because M1 is simple. In other words, f is

injective. Similarly, Im f is a non-zero submodule of M ′i0/M
′
i0−1, so f is surjective. Hence

f is an isomorphism. In particular, Mi0 = Mi0−1 ⊕M1.

Now, let M̄ = M/M1 and, if N is a submodule of M , let N̄ denote its image in M/M1.

Then

0 = M̄1 ⊂ M̄2 ⊂ · · · ⊂ M̄n = M

is a composition series of M̄ . Also,

0 = M̄ ′0 ⊂ M̄ ′1 ⊂ · · · ⊂ M̄ ′i0−1 ⊂ M̄ ′i0+1 = M̄ ′i0 ⊂ · · · ⊂ M̄ ′n′
is another composition series of M̄ . By applying the induction hypothesis, we get the

Theorem. �

Example 4.11 - 0 ⊂ 2Z/6Z ⊂ Z/6Z and 0 ⊂ 3Z/6Z ⊂ Z/6Z are composition series of

Z/6Z. �

If M is a left R-module, we write lg(M) =∞ if M does not have finite length and we

write lg(M) = n if M admits a composition series 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mn = M . The

number lg(M) is called the length of M : it will be sometimes denoted by lgR(M) is we

need to emphasize the ambient ring. By the Jordan-Hölder Theorem, the length of an

R-module is well-defined. It is easily seen that, if

0 −→ L −→M −→ N −→ 0



22

is a short exact sequence of left R-modules, then

(4.12) lg(M) = lg(L) + lg(N).

Proposition 4.13. A left R-module has finite length if and only if it is both Noetherian

and Artinian.

Proof - Let M be a left R-module. If M has finite length, then an easy induction

argument on the length of M (using Proposition 4.4 and the fact that a simple module is

Noetherian and Artinian) shows that M is Noetherian and Artinian.

Conversely, assume that M is Noetherian and Artinian. Let M0 = 0. Since M is

Artinian, it admits a minimal non-zero submodule M1. Since it is minimal, M1 is simple.

Now, M/M1 is also Artinian (see Proposition 4.4), so there exists a minimal non-zero

submodule M ′2. Let M2 be the inverse image of M ′2 under the morphism M → M/M1

(in other words, M2 is the unique submodule of M such that M2/M1 = M ′2. By the

minimality of M ′2, we get that M2/M1 is simple. By repeating the argument, we can

construct a chain of submodules

M0 ⊂M1 ⊂M2 ⊂M3 ⊂ · · ·
such that Mi/Mi−1 is simple. Now, M is Noetherian, so this sequence must become

stationary after some Mn, and Mn must be equal to M . �

We close this subsection by a difficult result whose proof may be found for instance

in C.W. Curtis & I. Reiner, ”Representation theory of finite groups and associative

algebras”, Theorem 54.1.

Theorem 4.14 (Hopkin). An Artinian ring is Noetherian.

4.C. More on Noetherian modules and Noetherian rings. The next theorem gives

a characterization of Noetherian modules whenever R is a Noetherian ring.

Proposition 4.15. Assume that R is a left Noetherian ring. Then a left R-module M is

Noetherian if and only if it is finitely generated.

Proof - If M is Noetherian, then it is finitely generated by Theorem 4.3 (a). Conversely,

assume that M is finitely generated. Write M = Rm1 + · · ·+Rmn. Then the map

Rn −→ M
(r1, . . . , rn) 7−→ r1m1 + · · ·+ rnmn

is a surjective morphism of left R-modules. Now, by assumption, R is a Noetherian left

R-module. So Rn is also a Noetherian left R-module by Corollary 4.5 (a). Therefore, M

is Noetherian by Proposition 4.4. �

The next Theorem gives a way to construct a huge family of Noetherian rings.

Hilbert’s Basis Theorem. Let R be a commutative Noetherian ring and let X be an

indeterminate. Then the ring R[X] is Noetherian.
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Proof - Let I be a non-zero ideal of R[X]. If P = rnX
n + · · · + r1X + r0 with rn 6= 0,

we set l(P ) = rn (rn is called the leading coefficient of P ). We set by convention l(0) = 0.

Now, let J = l(I) ⊆ R and, for d > 0, let

Jd = {l(P ) | l ∈ I and degP = d}.

Then J is a left ideal of R. Indeed, if r ∈ R, and s, s′ ∈ J are such that r(s − s′) 6= 0,

then there exists two polynomials P and Q in I such that l(P ) = s and l(Q) = s′. Let p

(respectively q) be the degree of P (respectively Q). By symmetry, we may assume that

p > q. Then r(P −Xp−qQ) ∈ I, and r(s− s′) = l(P −Xp−qQ) ∈ J . This proves that J is

an ideal of R. Similary, Jd is an ideal of R.

Since R is Noetherian, there exists r1,. . . , rn ∈ J such that J = Rr1 + · · · + Rrn.

Let f1,. . . , fn be such that fi ∈ I and l(fi) = ri. Let Ni = deg fi and let N =

max{Ni | 1 6 i 6 n}. Now, for 0 6 d 6 N − 1, let rd,1,. . . , rd,nd be generators of the

ideal Jd. Let fd,1,. . . , fd,nd be elements of I of degree d be such that l(fd,i) = rd,i. Now,

let

I ′ =
n∑

i=1

R[X]fi +
N−1∑

d=1

nd∑

i=1

R[X]fd,i.

Then I ′ is a finitely generated ideal of R[X] contained in I. We shall prove that I ′ = I.

Let f ∈ I, f 6= 0. We shall prove by induction on the degree of f that f ∈ I ′. So let

d = deg f .

If d > N , then l(f) ∈ J so we can write l(f) =
∑n

i=1 airi. Now, f −∑n
i=1 aiX

d−Nifi
is an element of I of degree strictly smaller than d. So it belongs to I ′ by the induction

hypothesis. Therefore, f ∈ I ′.
On the other hand, if d 6 N − 1, then we can write l(f) =

∑nd
i=1 aird,i. Then f −∑nd

i=1 aifd,i is an element of I of degree strictly smaller than d. So it belongs to I ′ by the

induction hypothesis. Therefore, f ∈ I ′. �

Corollary 4.16. If R is a commutative Noetherian ring, then R[X1, . . . , Xn] is a Noe-

therian R-algebra.

Definition 4.17. If R is a commutative ring, then a commutative R-algebra S is called

finitely generated (as an R-algebra) if there exists s1,. . . , sn ∈ S such that the morphism

R[X1, . . . , Xn] → S, Xi 7→ si is surjective. In this case, we also say that S is an R-

algebra of finite type. We say that S is a finite R-algebra if S is finitely generated as an

R-module.

Since the quotient of any Noetherian ring is Noetherian (see Corollary 4.6), we get:

Corollary 4.18. If R is a commutative Noetherian ring, and if S is a finitely generated

commutative R-algebra, then S is Noetherian.
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5. Jacobson radical

As usual, R will denote a fixed ring.

5.A. Preliminaries. We shall start with some results that will be needed throughout

this section.

Lemma 5.1. Let M be a left (or right) R-module and let L be a proper R-submodule

of M . If M/L is finitely generated, then there exists a maximal R-submodule L′ of M

containing L. In particular, this holds if M is finitely generated.

Proof - Let v1,. . . , vn be elements of M such that M/L =
∑n

i=1R(vi+L). We denote by

M the set of proper submodules of M containing L, ordered by inclusion. Then M 6= ∅
(indeed, L ∈ M). We want to show that M admits a maximal element. By Zorn’s

Lemma, it suffices to show that every totally ordered non-empty subset N ⊆ M has an

upper bound in M.

So let N be a totally ordered non-empty subset ofM. Let N+ =
⋃
N∈N N . Then N+ is

a submodule of M (because N is totally ordered) and contains all elements of N . We only

need to prove that N+ 6= M . But, if N+ = M , it means that there exits N1,. . . , Nn ∈ N
such that vi ∈ Ni. Since N is totally ordered, N = max(N1, N2, . . . , Nn) is well-defined.

Then vi ∈ N for all i, so N contains all the vi’s and also contains L, so N = M , which is

impossible. �

Corollary 5.2. If I is a proper left (respectively right) ideal of R, there exists a maximal

left (respectively right) ideal of R containing I.

Proof - Indeed, R is a finitely generated R-module so the Lemma 5.1 can be applied. �

If M ∈ RMod, and if X ⊆M , we set

annR(X) = {r ∈ R | ∀ x ∈ X, rx = 0}.

The set annR(X) is called the annihilator of X in R.

Lemma 5.3. annR(X) is a left ideal of R. If moreover X is a submodule of M , then

annR(X) is a two-sided ideal of R.

Proof - It is clear that annR(X) is a sub-Z-module of R. Now, let r ∈ annR(X), x ∈ X
and a ∈ R. Then arx = a.(rx) = a.0 = 0, so ar ∈ annR(X). This shows that annR(X)

is a left ideal. On the oher hand, if X is a submodule of M , then ax ∈ X so rax = 0. In

particular, ra ∈ annR(X), so annR(X) is a two-sided ideal. �

Lemma 5.4. Let M be a simple left R-module and let m ∈M , m 6= 0. Then:

(a) M ' R/ annR(m).

(b) annR(m) is a maximal left ideal of R.



25

Proof - Let σ : R→M , r 7→ rm. Then σ is a morphism of R-modules. Since m 6= 0, the

image of σ is a non-zero submodule of M . Since M is simple, σ is surjective. Moreover,

by definition, we have Kerσ = annR(m). So M ' R/ annR(m). Now the maximality of

annR(m) follows from the simplicity of M . �

5.B. Definition. We denote by Maxl(R) (respectively Maxr(R)) the set of maximal left

(respectively right) ideals of R. If R is commutative, both sets will simply be denoted by

Max(R). Note that these sets are non-empty by Corollary 5.2.

The Jacobson radical of R, denoted by J(R), is the intersection of all maximal left ideals

of R:

J(R) =
⋂

m∈Maxl(R)

m.

In particular, J(R) is a left ideal of R. We denote by R× the group of units of R.

Examples 5.5 - (0) If K is a field, then J(K) = 0. More generally, if D is a division

ring, then J(D) = 0 because 0 is the only proper (left or right) ideal of D.

(1) J(Z) = 0. Indeed, if P denotes the set of prime numbers, then Max(Z) = {pZ | p ∈
P}. So J(Z) =

⋂

p∈P
pZ = 0.

(2) J(Z/pnZ) = pZ/pnZ if p is a prime number. Indeed, Z/pnZ has only one maximal

ideal.

(3) If K is a field, then J(Matn(K)) = 0 (see Exercise II.19 for a more general state-

ment). �

Theorem 5.6. With the previous notation, we have:

(a) J(R) =
⋂

S∈RMod
S simple

annR(S). In particular, J(R) is a two-sided ideal of R.

(b) For r ∈ R, the following are equivalent:

(1) r ∈ J(R).

(2) For all x ∈ R, 1− xr has a left inverse.

(3) For all x, y ∈ R, 1− xry ∈ R×.

(c) J(R) is the maximal two-sided ideal I of R such that 1 + I ⊆ R×.

(d) J(R) =
⋂

m∈Maxr(R)

m.

Proof - (a) Let J =
⋂

S∈RMod
S simple

annR(S). We want to show that J = J(R).

If S ∈ RMod is simple, then annR(S) =
⋂

s∈S
annR(s) is an intersection of maximal left

ideal of R (see Lemma 5.4 (a)), so it contains J(R). This shows that J(R) ⊆ J .

Conversely, if m ∈ Maxl(R), then R/m is a simple R-module and annR(R/m) ⊆ m. So

J ⊆
⋂

m∈Maxl(R)

annR(R/m) ⊆
⋂

m∈Maxl(R)

m = J(R).
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(b) It is clear that (3) ⇒ (2). Let us show that (1) ⇒ (2). Since J(R) is a two-sided

ideal, we only need to show that, if r ∈ R, then 1− r has a left inverse. So let r ∈ J(R).

If 1− r has no left inverse, then R(1− r) 6= R, so there exists a maximal left ideal m of R

containing 1− r (see Corollary 5.2). So r ∈ 1 + m. In particular, r 6∈ m, so r 6∈ J(R).

Let us now show that (2) ⇒ (1). Assume that r 6∈ J(R). Then there exists a maximal

left ideal m of R such that r 6∈ m. In particular, Rr+ m = R since m is maximal. So there

exists x ∈ R and m ∈ m such that xr +m = 1. Therefore, 1− xr ∈ m, so R(1− xr) ⊆ m,

so 1− xr has no left inverse in R.

We now know that (1) ⇔ (2) and that (3) ⇒ (2), so it remains to prove that (1)

⇒ (3). Since J(R) is a two-sided ideal, we only need to show that 1 − r ∈ R× for any

r ∈ J(R). So let r ∈ J(R). Since (1)⇒ (2), there exists s ∈ R such that s(1−r) = 1. Then

1−s = −sr ∈ J(R). Again, this implies that there exists t ∈ R such that t(1−(1−s)) = 1.

In other words, ts = 1. Therefore, ts(1− r) = t = 1− r. So (1− r)s = 1, so 1− r ∈ R×.

(c) By (b), we have 1 + J(R) ⊆ R×. On the other hand, if I is a two-sided ideal of R

satisfying 1 + I ⊆ R×, then every element r ∈ I satisfies the condition (3) of statement

(b). So I ⊆ J(R).

(d) By symmetry, one can define J ′(R) =
⋂

m∈Maxr(R)

m. As in (b), one can show that

r ∈ J ′(R) if and only if 1− xry ∈ R× for all x, y ∈ R. So J ′(R) = J(R). �

Remark 5.7 - If I is a two-sided ideal of R contained in J(R), then 1 + I is a subgroup

of R×. �

If M is a left R-module, we define the radical of M (and we denote it by rad(M)) as

the intersection of all maximal submodules of M (if M has no maximal submodule, then

rad(M) = M). If we need to emphasize the ambient ring, we write radR(M) for rad(M).

For instance, radR(R) = J(R).

Proposition 5.8. If M is a left R-module, then J(R)M ⊆ rad(M).

Proof - Let L be a maximal submodule of M . Then M/L is simple. Let I = annR(M/L).

Then J(R) ⊆ I by Theorem 5.6 (a) so IM ⊆ L by definition. So J(R)M ⊆ L. �

Theorem 5.9 (Nakayama’s Lemma). Let M be a left R-module and let L be a sub-

module of M such that M/L is finitely generated. Then:

(a) If L+ rad(M) = M , then L = M .

(b) If L+ J(R)M = M , then L = M .

(c) If M is finitely generated and J(R)M = M , then M = 0.

Proof - (a) assume that L+ rad(M) = M . If L is a proper submodule of M , then there

exists a maximal submodule L′ of M containing L (by Lemma 5.1). So rad(M) ⊆ L′ and

L ⊆ L′, so L+rad(M) ⊆ L′, which contradicts the fact that L+rad(M) = M . So L = M .

(b) follows easily from (a) and from Proposition 5.8.

(c) follows by applying (b) to the case where L = 0. �
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5.C. Nilpotency. An element r ∈ R is called nilpotent if there exists n > 1 such that

rn = 0. A left (respectively right) ideal I of R is called a nil left ideal (respectively nil

right ideal) if every element of I is nilpotent. A two-sided ideal I of R is called nilpotent if

In = 0 for some n > 1. Of course, a nilpotent two-sided ideal is a nil left (or right) ideal.

Lemma 5.10. If I is a nil left ideal, then I ⊆ J(R).

Proof - If r ∈ I and if x ∈ R, then xr ∈ I so xr is nilpotent. Let n > 1 be such that

(xr)n = 0. Then

(1 + xr + (xr)2 + · · ·+ (xr)n−1)(1− xr) = 1,

so 1− xr has a left inverse. So r ∈ J(R) by Theorem 5.6 (b). �

Corollary 5.11. If R is commutative and if r ∈ R is nilpotent, then r ∈ J(R).

Proof - Indeed, if x ∈ R, then xr is still nilpotent (because R is commutative). So Rr is

a nil left ideal of R. So Rr ⊆ J(R) by Lemma 5.10. �

Example 5.12 - It might happen that a nilpotent element of R does not belong to the

radical of R. Indeed, let R = Matn(K) where K is a field. Then J(R) = 0 by Example

5.5 (3), but R contains non-zero nilpotent elements (if n > 2). �

Proposition 5.13. If R is Artinian, then J(R) is nilpotent.

Proof - Since R is Artinian, the descending chain of ideals

J(R) ⊇ J(R)2 ⊇ J(R)3 ⊇ . . .
becomes stationary. So there exists n > 1 such that J(R)n = J(R)n+i for all i > 0. Let

I = J(R)n. Then I2 = I.

If I 6= 0, then the set I of non-zero left ideals L of R such that IL = L is non-empty (it

contains I). So it admits a minimal element L0 (because R is Artinian). Let a ∈ L0, a 6= 0.

Then Ia ∈ I and Ia ⊆ L0, so Ia = L0. So there exists b ∈ I such that ba = a. In other

words (1− b)a = 0, so a = 0 because 1− a is invertible. This leads to a contradiction. �

Remark - If we admit Hopkin’s Theorem (see Theorem 4.14), then the proof of the

above result becomes much easier. Indeed, once we know that J(R)n = J(R)n+1, then,

R being Artinian, it is also Noetherian, so J(R)n is a finitely generated R-module and

J(R).J(R)n = J(R)n. So J(R)n = 0 by Nakayama’s Lemma. �

5.D. Idempotents. An element e ∈ R is called idempotent if e2 = e. For instance, 0 and

1 are idempotents.

Proposition 5.14. Let e ∈ R be an idempotent. Then eRe is a unitary ring (for the

multiplication in R and with identity e) and J(eRe) = eJ(R)e.

Proof - If r, s ∈ R, then ere.ese = e(res)e ∈ eRe and ere − ese = e(r − s)e so eRe is

stable under addition and multiplication. Also, e.ere = ere.e = ere since e2 = e, so e is

the identity of eRe.
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Now, if r ∈ eJ(R)e, and if x ∈ eRe, then xr ∈ J(R) so there exists s ∈ R such that

s(1− xr) = 1. So es(1− xr)e = e, so ese(e− xr) = e. In other words, e− xr admits a left

inverse in eRe. So r ∈ J(eRe) by Theorem 5.6 (b).

Conversely if r ∈ J(eRe), since r = ere, it is sufficient to show that r ∈ J(R). Let M be

a simple left R-module. It is sufficient to show that rM = 0. We first need the following

result:

Lemma 5.15. If M is a simple left R-module and if eM 6= 0, then eM is a simple
left eRe-module.

Proof - Let L be a non-zero sub-eRe-module of eM . Since M is simple, we have

RL = M . Since eL = L, we have eReL = eM and, since eReL ⊆ L, we get that

L = eM . �

Now, rM = reM = r.eM = 0 since eM is simple and r ∈ J(eRe). �

Remark 5.16 - If e ∈ R is an idempotent, then R = Re ⊕ R(1 − e). Indeed, if r ∈ R,

then r = re+ r(1− e) so that R = Re+R(1− e). Now, let r ∈ Re ∩R(1− e). Write r =

xe = y(1− e) with x, y ∈ R. Then re = xe2 = xe = r, but re = y(1− e)e = y(e− e2) = 0.

So r = 0. �

6. Projective, injective, flat modules

6.A. Exactness. Let R be a ring and let M be a left R-module. We shall study here

properties of the functors − ⊗R M : ModR → Ab, HomR(M,−) : RMod → Ab and

HomR(−,M) : RMod→ Ab.

Proposition 6.1. Let M be a left R-module.

(a) If X → X ′ → X ′′ → 0 is an exact sequence in ModR, then the sequence of abelian

groups X ⊗RM → X ′ ⊗RM → X ′′ ⊗RM → 0 is exact.

(b) If X → X ′ → X ′′ → 0 is an exact sequence in RMod, then the sequence of abelian

groups 0→ HomR(X ′′,M)→ HomR(X ′,M)→ HomR(X,M) is exact.

(c) If 0→ X → X ′ → X ′′ is an exact sequence in RMod, then the sequence of abelian

groups 0→ HomR(M,X)→ HomR(M,X ′)→ HomR(M,X ′′) if exact.

Proof - (a) Let X
f−→ X ′

f ′−→ X ′′ → 0 be an exact sequence in ModR. Then, by

Proposition 3.12 (b), the sequence X ′ ⊗R M f ′⊗RIdM−→ X ′′ ⊗R M → 0 is exact. Moreover,

(f ′⊗RIdM )◦(f⊗RIdM ) = (f ′◦f)⊗RIdM = 0. So it remains to show that Ker(f ′⊗RIdM ) ⊆
Im(f ⊗R IdM ). In other words, if ψ : (X ′ ⊗R M)/(Im(f ⊗R IdM )) → X ′′ ⊗R M denotes

the morphism induced by f ′⊗RM , we must show that ψ is an isomorphism. For this, we

shall construct its inverse.

Let ϕ : X ′′×M → (X ′⊗RM)/(Im(f⊗RIdM )) be defined as follows. If (x′′,m) ∈ X ′′×M ,

there exists x′ ∈ X ′ such that f ′(x′) = x′′. We then set ϕ(x′′,m) = x′ ⊗R m, where

x′ ⊗R m denotes the class of x′ ⊗R m in (X ′ ⊗R M)/(Im(f ⊗R IdM )). Let us first show

that ϕ is well-defined. In other words, we must show that, if f ′(x′1) = f ′(x′2) with x′1,

x′2 ∈ X ′, then x′1 ⊗R m = x′2 ⊗R m. But, if f ′(x′1) = f ′(x′2), then x′1− x′2 ∈ Ker f ′ = Im f ,
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so there exists x ∈ X such that x′2 = f(x)+x′1. Then (x′1⊗Rm)−(x′2⊗Rm) = f(x)⊗Rm ∈
Im(f ⊗R IdM ), as expected.

It is now routine to check that ϕ is bilinear and R-balanced, and that the induced

morphism of abelian groups X ′′⊗RM → (X ′⊗RM)/(Im(f⊗R IdM )), x′′⊗Rm 7→ ϕ(x′′,m)

is an inverse of the map ψ.

(b) and (c) are left as exercises. �

The left R-module M is called flat (respectively injective) if, for all exact sequences

0 −→ X −→ X ′

in ModR (respectively RMod), the sequence of abelian groups

0 −→ X ⊗RM −→ X ′ ⊗RM

(respectively

HomR(X ′,M) −→ HomR(X,M) −→ 0 )

is exact. It is called projective if, for all exact sequences

X −→ X ′ −→ 0

in RMod, the sequence

HomR(M,X) −→ HomR(M,X ′) −→ 0)

is exact. Of course, one can also define the notions of flatness, injectivity and projectivity

for right R-modules.

Lemma 6.2. Let (Mi)i∈I be a family of left R-modules. Then ⊕i∈IMi is flat (respectively

injective, respectively projective) if and only if Mi is flat (respectively injective, respectively

projective) for all i ∈ I.

Proof - Clear... �

Example 6.3 - A free left R-module is projective and flat. Indeed, the flatness follows

from Lemma 6.2 and from the fact that X⊗RR ' X (see Corollary 3.17). The projectivity

follows from Lemma 6.2 and from the fact that the map HomR(R,X)→ X, f 7→ f(1) is an

isomorphism of left R-modules (recall that, since R is an (R,R)-bimodule, HomR(R,M)

is naturally endowed with a structure of left R-module by §3.D). �

Theorem 6.4. Let M be a left R-module. Then:

(a) The following are equivalent:

(1) M is flat.

(2) For all exact sequence L→ L′ → L′′ in ModR, the sequence of abelian groups

L⊗RM → L′ ⊗RM → L′′ ⊗RM is exact.

(b) The following are equivalent:

(1) M is injective.
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(2) For all morphisms of left R-modules ı : L → L′ and f : L → M such that ı

is injective, there exists a morphism of left R-modules f̃ : L′ → M such that

f̃ ◦ ı = f .

0 // L
ı //

f
��

L′

f̃~~}}}}}}}}

M

(3) For all exact sequences L → L′ → L′′ in RMod, the sequence of abelian

groups HomR(L′′,M)→ HomR(L′,M)→ HomR(L,M) is exact.

(4) For all left ideal I of R and all morphisms of R-modules f : I → M , there

exists a morphism of left R-modules f̃ : R→M extending f (Baer’s crite-

rion).

I //

f
��

R

f̃~~}}}}}}}}

M

(c) The following are equivalent:

(1) M is projective.

(2) For all morphisms of left R-modules π : L→ L′ and f : M → L′ such that π

is surjective, there exists a morphism or left R-modules f̃ : M → L such that

π ◦ f̃ = f .

M

f
��

f̃

~~~~~~~~~~

L
π // L′ // 0

(3) For all exact sequences L → L′ → L′′ in RMod, the sequence of abelian

groups HomR(M,L)→ HomR(M,L′)→ HomR(M,L′′) is exact.

(4) M is a isomorphic to a direct summand of a free left R-module.

Proof - (a) is easy. Let us now prove (b). It is easy to see that (1) ⇔ (2) ⇔ (3). It is

clear that (2) ⇒ (4): indeed, apply (2) to the case where L = I, L′ = R and ı : I → R

is the canonical injection. Let us prove that (4) ⇒ (2). So assume that (4) holds and let

ı : L ↪→ L′ be an injective morphism of R-modules and let f : L → M be a morphism

of R-modules. We may assume that L ⊆ L′ and that ı is the canonical injection. Let E
be the set of pairs (L̃, f̃) such that L̃ is a submodule of L′ containing L and f̃ : L̃ → M

extends f . We define an order 6 on E as follows: we write (L̃1, f̃1) 6(L̃2, f̃2) if L̃1 ⊆ L̃2

and f̃1 is the restriction of f̃2 to L̃1. If S is a totally ordered subset of E , we then set

L̃+ =
⋃

(L̃,f̃)∈S L̃ and we define f̃+ : L̃+ → M by f̃+(l) = f̃(l) whenever l ∈ L̃ for some

(L̃, f̃) ∈ S (it is easy to check that f̃+ is well-defined). Then (L̃+, f̃+) ∈ E and is an upper

bound for S. So, by Zorn’s Lemma, E admits a maximal element (L̃, f̃). We only need to

prove that L̃ = L′. Let x ∈ L′. Let I = {r ∈ R | rx ∈ L̃}. Then I is a left R-ideal of R.

Let g : I → M , r 7→ f̃(rx). Then g is a well-defined R-linear map. So, since (4) holds,
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there exists g̃ : R→M extending g. We now set

f̃ ′ : L̃+Rx −→ M

l + rx 7−→ f̃(l) + g̃(r).

It is readily seen that f̃ ′ is well-defined and is R-linear. Moreover, it extends f̃ , so (L̃ +

Rx, f̃ ′) ∈ E . Since (L̃, f̃) is maximal, we get that L̃+Rx = L̃, that is x ∈ L̃. So L̃ = L′.

Let us now prove (c). It is easy to show that (1) ⇔ (2) ⇔ (3). The fact that (4) ⇒
(1) follows from Example 6.3 and Proposition 6.2. Let us now show that (2) ⇒ (4). Let

(mi)i∈I be a family of generators of M . Let π : R[I] → M ,
∑

i∈I rii 7→
∑

i∈I rimi. It is

a surjective R-linear map. By (2) applied to π and f = IdM , there exists f̃ : M → R[I]

such that f ◦ f̃ = IdM . It is then easy to check that R[I] ' f̃(M) ⊕ Ker f (see Exercise

II.1), and f̃(M) 'M because f̃ is injective. �

Corollary 6.5. A projective module is flat.

Proof - This follows from Theorem 6.4 (c) and from Lemma 6.2. �

Corollary 6.6. Assume that M is finitely generated. Then M is projective if and only if

it is isomorphic to a direct summand of a free R-module of finite rank.

Proof - This follows from the proof of Theorem 6.4. �

Examples 6.7 - (1) If e ∈ R is an idempotent, then Re is a projective left R-module.

Indeed, R = Re ⊕ R(1 − e) (see Remark 5.16), so Re is a direct summand of the free

R-module R. It is in particular flat.

(2) If R is a principal ideal domain, then any finitely generated projective R-module

is free. This follows from Theorem 6.4 and from the fact that a submodule of a finitely

generated free module is always free in this case.

(3) Assume again in this example that R is a principal ideal domain. The R-module

M is called divisible if, for all r ∈ R, r 6= 0, we have rM = M (for instance, Q, Q/Z and

R/Z are divisible Z-modules). We shall prove here the following result:

If R is a principal ideal domain, then a left R-module is injective if and

only if it is divisible.

First, assume that M is not divisible. Then there exists r ∈ R, r 6= 0 and m ∈ M such

that m 6∈ rM . Let ı : Rr → R be the canonical injection and let f : Rr → M , ar 7→ am.

Then f cannot be extended to a map f̃ : R→M because, if such a map exists, then f̃(1)

must satisfied rf̃(1) = f̃(r) = f(r) = m, which is impossible. So M is not injective.

Conversely, assume that M is divisible. We shall use Baer’s criterion to show that M is

injective. Let I be an ideal of R and let f : I →M be an R-linear map. We may assume

that I 6= 0, for otherwise, it is easy to find an extension of f . Since R is a principal ideal

domain, there exists r ∈ R such that I = Rr. Let m = f(r). Since M is divisible, there

exists m′ ∈M such that rm′ = m. We then defined f̃ : R→M , a 7→ am′. Then f̃(r) = m

so f̃ is an extension of f . So M is injective.

(4) We shall give in Exercise 6.7 an example of a projective module over a commutative

integral domain which is not free. �



32

Proposition 6.8. Let M be a left R-module. Then:

(a) There exists an injective module I and an injective morphism M → I.

(b) There exists a projective module P and a surjective morphism P → M . If M is

finitely generated, then P can be chosen finitely generated.

Proof - (b) has already been proved in Theorem 6.4 (c).

Let us now prove (a). This will be done in several steps. We first show the following

Lemma 6.9. If D is a divisible abelian group, then HomZ(R,D) is an injective
R-module.

Proof - Recall that, since R is naturally a (Z, R)-bimodule, the abelian group

HomZ(R,D) is naturally endowed with a structure of left R-module (see §3.D).

Let 0 −→ X −→ X ′ be an exact sequence of left R-modules. We must show that

the sequence HomR(X ′,HomZ(R,D)) −→ HomR(X,HomZ(R,D)) −→ 0 is exact.

But, by the adjointness of Hom and ⊗ (see Theorem 3.22), this amounts to show

that the sequence HomZ(X ′, D) −→ HomZ(X,D) −→ 0 is exact. But this follows

from the fact that D is an injective Z-module by Example 6.7 (3). �

So assume first that the result has been proved whenever R = Z. Then there exists

an injective morphism of abelian groups M ↪→ D, where D is divisible. Then the map

HomZ(R,M) −→ HomZ(R,D) is injective (see Proposition 6.1 (c)) and HomZ(R,D) is

an injective R-module by Lemma 6.9. On the other hand, the map M → HomZ(R,M),

m 7→ (r 7→ rm) is an injective R-linear map. So we get an injective R-linear map by

composition M ↪→ HomZ(R,M) ↪→ HomZ(R,D).

Therefore, it remains to show that the result holds whenever R = Z, which we assume

now. Let M∧ = HomZ(M,Q/Z). Then the natural map M → (M∧)∧, m 7→ (f 7→ f(m))

is a morphism of abelian groups, and it is easily checked that it is injective. It remains

to show that (M∧)∧ can be embedded in a divisible abelian group. Let F −→ M∧ be a

surjective map, where F is free (such a map exists by the statement (b) of this proposition).

Then, by Proposition 6.1 (b), the map (M∧)∧ → F∧ is injective. So it remains to show

that F∧ is divisible. But, since F is free, F∧ is isomorphic to a direct sum of copies of

HomZ(Z,Q/Z) ' Q/Z, which are all divisible. �

Corollary 6.10. Let M be a left R-module. Then:

(a) M is injective if and only if all injective morphisms ı : M ↪→ M ′ split (i.e. there

exists π : M ′ →M such that π ◦ ı = IdM ).

(b) M is projective if and only if all surjective morphisms π : M ′ →M split (i.e. there

exists ı : M →M ′ such that π ◦ ı = IdM ).

Proof - The proofs of (a) and (b) are entirely similar. Let us prove only (b). If M

is projective, then it is clear that any surjective morphism M ′ → M splits (by applying

Theorem 6.4 (2) to the case where L = M ′, L′ = M and f = IdM ). Conversely, assume

that all surjective morphisms M ′ → M split. By Proposition 6.8 (b), there exists a

surjective morphism M ′ → M where M ′ is projective (even free if we want). Since this
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morphism splits, this gives an embedding of M as a direct summand of a projective module

(see Exercise II.1), so M is projective by Lemma 6.2. �

6.B. Local rings.

Definition 6.11. The ring R is called local if it has only one maximal left ideal.

Examples 6.12 - (1) A field (or a division ring) is a local ring.

(2) Z/pnZ is a local ring if p is a prime.

(3) Z is not a local ring. �

Proposition 6.13. The following are equivalent:

(1) R is local.

(2) R has only one maximal right ideal.

(3) R/J(R) is a division ring.

(4) R× = R \ J(R).

(5) R \R× is a two-sided ideal of R.

Proof - Let R̄ = R/J(R) and, if r ∈ R, we denote by r̄ its image in R̄.

(1)⇒ (3): if R is local, then J(R) is a maximal left ideal of R. So 0 is the only maximal

left ideal of R̄. In particular, any non-zero element of R̄ has a left inverse. Now, let r̄ ∈ R̄.

Then there exists s̄ ∈ R̄ such that s̄r̄ = 1̄. Now s̄ 6= 0, so s̄ has a left inverse (say t̄). Then

r̄s̄ = (t̄s̄)(r̄s̄) = t̄(s̄r̄)s̄ = 1̄, so s̄ is also a right inverse. This shows that R̄ is a division

ring.

(3) ⇒ (2) is clear and (3) ⇒ (1) are clear. By symmetry, we also have that (2) ⇒ (3).

So (1) ⇔ (2) ⇔ (3).

It is also clear that (4) ⇒ (5). The fact that (5) ⇒ (4) follows from Theorem 5.6 (c).

Moreover, if (4) holds, then any non-zero element in R̄ is invertible, so R̄ is a division ring.

In oter words, (4) ⇒ (3). Now, if (3) holds and if r 6∈ J(R), then there exists s ∈ R such

that s̄r̄ = r̄s̄ = 1̄. So sr ∈ 1 + J(R), so sr has a left inverse. In particular, r has a left

inverse. Similarly, r has a right inverse. So r ∈ R×, so (4) holds and we are done. �

Theorem 6.14. If R is a local ring then every finitely generated projective R-module is

free.

Proof - Let M be a projective left R-module. Let R̄ = R/J(R) and M̄ = M/J(R)M '
R̄ ⊗R M . Then M̄ is an R̄-module. But R̄ is a division ring, so M̄ is free (and finitely

generated): let m1, . . . , mn be elements of M such that (m̄1, . . . , m̄n) is an R̄-basis of M̄ .

Let L = Rm1 + · · · + Rmn. Then L is a submodule of M and L + J(R)M = M . So, by

Nakayama’s Lemma (Theorem 5.9) and since M is finitely generated, L = M . In other

words, the R-linear map

π : Rn −→ M
(r1, . . . , rn) 7−→ ∑n

i=1 rimi

is surjective. Since M is projective, there exists a splitting ı : M → Rn of this morphism,

i.e. π ◦ ı = IdM . So ı is injective.
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Let us show that it is surjective. But the maps π̄ : R̄n → M̄ and ı̄ : M̄ → R̄n induced by

π and ı satisfies π̄ ◦ ı̄ = IdM̄ . Also, by construction, π̄ is an isomorphism. So ı̄ is surjective.

In particular, Rn = (Im ı) + J(R)n so, again by Nakayama’s Lemma, Im ı = Rn, that is ı

is surjective. �

7. Morita equivalences and Skolem-Noether Theorem

7.A. Morita equivalences. Let R and S be two rings.

Definition 7.1. A Morita equivalence between R and S is the following datum:

• an (R,S)-bimodules A and an (S,R)-bimodule B;

• an isomorphism of (R,R)-bimodule ϕ : A⊗S B ' R;

• an isomorphism of (S, S)-bimodules ψ : B ⊗R A ' S.

If (A,B,ϕ, ψ) is a Morita equivalence between R and S, we say that the rings R and S

are Morita equivalent.

Assume in this section that we are given a Morita equivalence (A,B,ϕ, ψ) between R

and S. Let
F : SMod −→ RMod

N 7−→ A⊗S N

and
G : RMod −→ SMod

M 7−→ B ⊗S M
be the functors induced by these bimodules. Then, since A ⊗S B ' R and B ⊗R A ' S,

we have natural isomorphisms of functors ϕ̃ : F ◦ G ∼→ (A ⊗S B) ⊗R − ∼→ Id
RMod and

ψ̃ : G ◦ F ∼→ Id
SMod induced by ϕ and ψ respectively (see §3.D). In other words, F and

G are equivalences of categories.

Remark 7.2 - If (A,B,ϕ, ψ) is a Morita equivalence betweenR and S, then, by symmetry,

the functors−⊗RA and−⊗SB are equivalences of categories between ModR and ModS . �

Proposition 7.3. If M and M ′ are two left R-modules, then the map

G : HomR(M,M ′) −→ HomS(G(M),G(M ′))

is an isomorphism of abelian groups. If M = M ′, this is an isomorphism of rings.

A similar statement holds for the functor F .

Proof - The fact that G is a morphism of abelian groups is clear (as it is also clear that

it is a morphism of rings whenever M = M ′). The fact that it is bijective follows from

Exercise I.9. �

As a consequence of the previous proposition, we shall see now that a Morita equivalence

preserves many properties of modules, namely the ones that are defined only in terms of

the category of modules (and without reference to the ring). We need another definition.
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Definition 7.4. A left R-module M is called decomposable if M ' M ′ ⊕M ′′ for some

non-zero modules M ′ and M ′′. The left R-module M is called indecomposable if M 6= 0

and M is not decomposable.

Corollary 7.5. Let f : M →M ′ be a morphism of left R-modules. Then:

(a) M 6= 0 if and only if G(M) 6= 0.

(b) M is an indecomposable R-module if and only if G(M) is an indecomposable S-

module.

(c) M is a projective R-module if and only if G(M) is a projective S-module.

(d) M → M ′ → M ′′ is an exact sequence of R-modules if and only if G(M) →
G(M ′)→ G(M ′′) is an exact sequence of S-modules.

(e) M is a simple R-module if and only if G(M) is simple S-module.

(f) M is a flat R-module if and only if G(M) is a flat S-module.

(g) M is an injective R-module if and only if G(M) is an injective S-module.

Proof - (a) follows from the fact that F(G(M)) ' M . (b) follows from (a). Let us

now prove(c). By symmetry, we only need to prove the ”only if” part. So assume that

M is projective. Let π : F → G(M) be a surjective morphism where F is a free S-

module. Then, by Proposition 6.1 (a), the map F(π) : F(F ) → F(G(M)) is surjective.

Since F(G(M)) ' M is projective, there exists a map  : F(G(M)) → F(F ) such that

F(π) ◦  = IdF(G(M)). By Proposition 7.3, there exists ı : F → G(M) such that F(ı) = .

Then F(π ◦ ı) = IdF(G(M)), so π ◦ ı = IdG(M) again by Proposition 7.3. So the map π

splits, hence G(M) is isomorphic to a direct summand of the free module F (see Exercise

II.1), so G(M) is projective.

(d) Now, by (c), B = G(S) is projective as a left R-module. By symmetry, B is

projective as a right S-module. Similarly, A is projective as a left S-module and as a right

R-module. So B is flat as a right S-module. This shows (d).

(e) Again, by symmetry, we only need to prove the ”only if” part. So assume that M is

simple. Let L be a non-zero submodule of G(M). Then the exact sequence 0→ L→ G(M)

induces an exact sequence 0 → F(L) → F(G(M)) by (d). But, by (a), F(L) 6= 0.

Since F(G(M)) ' M is simple, we get that F(L) = F(G(M)), in other words, the map

F(L) → F(G(M)) is an isomorphism. So, again by (d), the map L → G(M) is an

isomorphism, so L = G(M). This shows that G(M) is simple.

(f) and (g) are left as exercises. �

7.B. Example: matrix rings. Let n > 1 and let Coln(R) (respectively Rown(R)) be

the set of column vectors (respectively row vectors) of length n with coefficients in R (as

a set, it is canonically in bijection with Rn). We view Coln(R) (respectively Rown(R)) as

a (Matn(R), R)-bimodule (respectively (R,Matn(R))-bimodule) in the natural way. Now,

let
ϕ : Rown(R)⊗Matn(R) Coln(R) −→ R

V ⊗Matn(R) U 7−→ V U

and
ψ : Coln(R)⊗R Rown(R) −→ Matn(R)

U ⊗R V 7−→ UV.
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Theorem 7.6. The datum (Rown(R),Coln(R), ϕ, ψ) is a Morita equivalence between the

rings R and Matn(R).

Proof - We only need to show that ϕ and ψ are isomorphisms of bimodules. First, it

is easily checked that ϕ is a morphism of (R,R)-bimodule and that ψ is a morphism of

(Matn(R),Matn(R))-bimodules.

We denote by Eij the n × n matrix whose (i, j)-entry is 1 and whose all other entries

are zero. We denote by Ci (respectively Rj) the column (respectively row) matrix whose

i-th term (respectively j-th term) is 1 and whose all other entries are 0. Then

(1) Eij = CiRj

and

(2) RjCi =

{
1 if i = j,

0 otherwise.

• Let us first prove that ψ is an isomorphism. First, by (1), ψ is surjective. Now,

let x ∈ Kerψ. Since (Ci)1 6 i 6 n and (Rj)1 6 j 6 n are R-basis of Coln(R) and Rown(R)

respectively, there exists rij ∈ R such that x =
∑

i,j

Cirij ⊗R Rj . So ψ(x) =
∑

i,j

rijEij = 0,

so all the rij ’s are zero. In particular, x = 0. So ψ is an isomorphism.

• Let us now prove that ϕ is an isomorphism. First ϕ is surjective by (2). Now, let

x ∈ Kerϕ. Again, we can write x =
∑

i,j

rij(Rj ⊗Matn(R) Ci) But Rj = R1E1j , E1jCi = 0

if i 6= j and E1iCi = C1. So Rj ⊗Matn(R) Ci is equal to 0 or R1 ⊗Matn(R) C1. So x =

rR1 ⊗Matn(R) C1 for some r ∈ R. Since ϕ(R1 ⊗Matn(R) C1) = 1 by (2). Hence r = 0

because ϕ(x) = 0. So x = 0 and ϕ is injective. �

7.C. Skolem-Noether Theorem via Morita equivalences. We are now ready to

prove the following result:

Theorem 7.7 (Skolem-Noether). Let R be a commutative ring such that all finitely

generated projective R-modules are free. Let σ : Matn(R)→ Matn(R) be an automorphism

of R-algebras. Then there exists an element g ∈ Matn(R)× such that σ(x) = gxg−1 for all

x ∈ Matn(R).

Example 7.8 - If R is a field, or if R is a principal ideal domain, or if R is a commutative

local ring then all finitely generated projective R-modules are free (for local rings, see

Theorem 6.14). So Skolem-Noether’s Theorem can be applied to these rings. It is also

true that, if R = K[X1, . . . , Xn] where K is a field, then any projective R-module is free

(this difficult result was first conjectured by Serre and proved by Quillen). �

Proof - We shall use here the notation of the previous subsection 7.B and the Theorem

7.6. So we assume here that S = Matn(R), that A = Rown(R) and B = Coln(R). We

shall prove several intermediate results. Let us fix a left R-module M .

(1) M is finitely generated if and only if G(M) is finitely generated.

Proof - This is left as an exercise. �
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(2) Assume that M is finitely generated. Then M is indecomposable and projective
if and only if M ' R.

Proof - If M ' R, and if M ' M ′ ⊕ M ′′, then M ′ and M ′′ are projective
hence are free: M ′ ' R[I] and M ′ ' R[J ] where I and J are disjoint sets. Then
R ' R[I ∪J ]. Let m be a maximal ideal of R. Then, by tensorizing with R/m, we
get that R/m ' R/m[I ∪ J ] and, since R is commutative, this is an isomorphism
of R/m-modules, and R/m is a field. So |I ∪ J | = 1, so I = ∅ or J = ∅, that is
M ′ = 0 or M ′′ = 0. This shows that M is indecomposable.

Conversely, if M is indecomposable and projective, then M is free and so, since

it is indecomposable, we must have M ' R. �

(3) Coln(R) is the unique finitely generated projective indecomposable module.

Proof - This follows from (2) and from Corollary 7.5 (b) and (c). �

If V is a left Matn(R)-module, we denote by V (σ) the left Matn(R)-module whose

underlying abelian group is still V , but on which x ∈ Matn(R) acts by multiplication by

σ(x). Then:

(4) Matn(R)(σ) ' Matn(R).

Proof - Indeed, σ : Matn(R) → Matn(R)(σ) is an isomorphism of Matn(R)-

modules. �

(5) If V is a projective (respectively indecomposable, respectively finitely generated)
Matn(R)-module, then so is V (σ).

Proof - Indeed, (V ⊕W )(σ) = V (σ)⊕M (σ) so, if V is a direct summand of a free

Matn(R)-module, it follows from (4) that V (σ) is also a direct summand of a free

module. The statements about indecomposable and finitely generated modules

are clear. �

By (3) and (5), we have that Coln(R)(σ) is isomorphic to Coln(R) as a Matn(R)-module.

Let f : Coln(R)→ Coln(R)(σ) be such an isomorphism. By identifying Coln(R) with Rn,

and since R is commutative, f is given by a matrix g ∈ Matn(R)×: we have f : Coln(R)→
Coln(R)(σ), C 7→ gC.

Now, if x ∈ Matn(R), we have f(xC) = σ(x)f(C), so that gxC = σ(x)gC, that is

xC = g−1σ(x)gC. Since this holds for all C ∈ Coln(R), we have that x = g−1σ(x)g as

desired. �

8. Semisimple rings and modules

As usual, R will denote a fixed ring.

8.A. Semisimple modules.

Definition 8.1. A left R-module M is called semisimple if it is isomorphic to a direct

sum of simple modules.
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Since the definition of a semisimple module involves only the category of modules RMod

and not the ring R itself, we are not surprised that a Morita equivalence preserves semisim-

plicity of modules:

Lemma 8.2. Let R and S be two Morita equivalent rings and let G : RMod→ SMod be

the equivalence of categories induced by a Morita equivalence between R and S. Let M be

a left R-module. Then M is semisimple if and only if G(M) is semisimple.

Proof - This follows from Corollary 7.5 (e) and from the fact that the functor G is

compatible with direct sums. �

Theorem 8.3. The following are equivalent:

(1) M is semisimple.

(2) M is a sum (not necessarily direct) of simple modules.

(3) Every submodule of M is a direct summand of M .

Proof - It is clear that (1) ⇒ (2). Let us now show the following

Lemma 8.4. Assume that (2) holds and let L be a submodule of M . Then there
exist simple submodules (Sa)a∈A of M such that M = L⊕ ( ⊕

a∈A
Sa).

Proof - Let (Si)i∈I denote the set of all simple submodules of M . By hypothesis,
M =

∑
i∈I Si. We denote by M the set of subsets A of I such that the sum∑

a∈A Sa is direct and the sum L + (
∑
a∈A Sa) is direct. We have ∈ M, so that

M is not empty. Also, it is readily seen that M satisfies the hypothesis of Zorn’s
Lemma. HenceM admits a maximal element: let A be a maximal element ofM.
Let L′ = L⊕ ( ⊕

a∈A
Sa). We want to show that L′ = M , so that the lemma will be

proved.

Assume that M/L′ 6= 0. Let π : M →M/L′ be the canonical projection. Since

M =
∑
i∈I Si, there exists i ∈ I such that π(Si) 6= 0. In particular, Si is not

contained in L′, so L′ ⊆ Si is a proper submodule of Si. Since Si is simple, we

have that L′ ∩ Si = 0. This shows that A ∪ {i} ∈ M. Since A is maximal, we get

that i ∈ A, so Si ⊆ L′, which is impossible. So M/L′ = 0. �

Now, by the Lemma 8.4, we get that (2) ⇒ (1) (indeed, take L = 0 in Lemma 8.4) and

that (2) ⇒ (3). Let us now show that (3) ⇒ (2). So assume that (3) holds. Let (Si)i∈I
denote the set of all simple submodules of M . Let L =

∑
i∈I Si. We want to show that

L = M . So assume that L 6= M . By (3), there exists a submodule L′ of M such that

M = L ⊕ L′. Then L′ 6= 0. Let v ∈ L be such that v 6= 0. Let f : R → M , r 7→ rv.

Since v 6= 0, the kernel of f is a proper left ideal of R so, by Corollary 5.2, there exists a

maximal left ideal I of R such that Ker f ⊆ I. Then Iv is a submodule of M so, by (3),

there exists a submodule N of M such that M = Iv⊕N . Let S = N ∩Rv. Then it is easy

to see that Rv = Iv ⊕ S. Then S ' Rv/Iv. But Rv/Iv ' R/I because I contains Ker f

and R/I is simple because I is maximal. So S is simple. But S ⊆ Rv ⊆ L′ and L′∩L = 0.

So S ∩L = 0: this contradicts the fact that L contains all the simple submodules of M . �

Remarks 8.5 - (1) If 0 → L → M → N → 0 is an exact sequence and if M is

semisimple, then it follows easily from Theorem 8.3 that L and N are semisimple. Indeed,
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let π : M → N be surjective. Since M is the sum of its simple submodules, we have that

N is the sum of all π(S), where S runs over the set of simple submodules of M . But π(S)

is 0 or simple, so N is a sum of simple submodules. On the other hand, if L is a submodule

of M , there exists a submodule L′ of L such that M = L⊕ L′: in particular, there exists

a surjective map τ : M → L, so the previous argument can be applied to show that L is

semisimple.

(2) If M is semisimple, then rad(M) = J(R)M = 0. Indeed, if M = ⊕a∈ASa, where

Sa is a simple left R-module, then Ma0 = ⊕a6=a0Sa is a maximal submodule of M (and

M/Ma0 ' Sa0) for all a0 ∈ A, and
⋂
a∈AMa = 0.

(3) The isomorphy classes of simple left R-modules form a set. Indeed, let ≡ denote the

equivalence relation on Maxl(R) defined by m ≡ m′ if the R-modules R/m and R/m′ are

isomorphic. Then, if (mi)i∈I is a set of representative of equivalence classes of maximal

left ideals of R, then (R/mi)i∈I is a set of representatives of isomorphy classes of simple

left R-modules (see Lemma 5.4).

(4) Let I be a two-sided ideal of R and assume that IM = 0. Then M can be viewed as

an R̄-module, where R̄ = R/I. Then M is R-semisimple if and only if it is R̄-semisimple. �

Before studying the semisimple modules, we shall review some properties of simple

modules:

Theorem 8.6 (Schur’s Lemma). Let S and T be two simple left R-modules. Then:

(a) If f ∈ HomR(S, T ) and if f 6= 0, then f is an isomorphism.

(b) If S 6' T , then HomR(S, T ) = 0.

(c) EndR(S) is a division ring.

Proof - (a) Assume that f ∈ HomR(S, T ) and that f 6= 0. Then Ker f (respectively

Im f) is a non-zero submodule of R (respectively T ), so Ker f = S (respectively Im f = T )

because S (respectively T ) is simple. So f is injective and surjective: it is an isomorphism.

(b) and (c) now follow easily from (a). �

We now fix once and for all a family (Si)i∈I of representatives of isomorphy classes of

simple left R-modules (see Remark 8.5 (3)). We set

Di = EndR(Si)

for all i ∈ I. By Schur’s Lemma, Di is a division ring.

Theorem 8.7. Let M be a semisimple left R-module. Let (Si)i∈I denotes a set of rep-

resentatives of isomorphy classes of simple left R-modules. For each i ∈ I, let Mi denote

the submodule of M equal to the sum of all its simple submodules which are isomorphic to

Si. Then:

(a) M = ⊕
i∈I
Mi.

(b) If S is a simple submodule of Mi, then S ' Si.
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(c) Let πi : M → Mi and ıi : Mi → M be the canonical projection and injection

respectively. Then the map

EndR(M) −→ ∏
i∈I EndR(Mi)

f 7−→ (πifıi)i∈I

is a ring isomorphism.

(d) Write Mi = ⊕
a∈Ai

Si,a, where Si,a are simple submodules of Mi (which are isomor-

phic to Si by (b)). If moreover Ai is finite and has cardinality ni, then

EndR(Mi) ' Matni(Di).

Proof - Let us first prove (b). Let S be a simple submodule of Mi. By Remark 8.5

(1), Mi is semisimple so, by Theorem 8.3, there exists a submodule N of Mi such that

Mi = S⊕N . Let π : Mi → S be the projection on the first component. Now, Mi is a sum

of submodules isomorphic to Si. So there exists a submodule S ′ of Mi which is isomorphic

to Si and such that π(S ′) 6= 0. By Schur’s Lemma (a), we get that S ′ ' S, so that S ' Si.
(a) It is clear that M =

∑
i∈IMi. Let us now show that this sum is direct. By Theorem

8.3, there exists a submodule L of M such that M = L⊕Mi. Let j ∈ I, j 6= i. It is enough

to show that Mj ⊆ L. Let π : M →Mi, l +mi 7→ mi for all l ∈ L and mi ∈Mi. Assume

that π(Mj) 6= 0. Then there exists a simple submodule S of Mj such that π(S) 6= 0. But

then π(S) is a simple submodule of Mi. So S ' π(S) by Schur’s Lemma (a). But S ⊆Mj

and π(S) ⊆ Mi so, by (a), S ' Sj and S ' Si. This contradicts the fact that Si and Sj
are not isomorphic.

(c) It is enough to show that, if f ∈ EndR(M), then f(Mi) ⊆ Mi. Let Mi denote the

set of simple submodules of Mi. Then f(Mi) =
∑

S∈Mi
f(S). But, if S ∈ Mi, then f(S)

is equal to 0 or isomorphic to Si, so f(S) ⊆Mi.

(d) We have an isomorphism Snii ' Mi, so we only need to show that EndR(Snii ) '
Matni(Di). But

EndR(Snii ) = ⊕
1 6 a,b 6 ni

HomR(Si, Si) = ⊕
1 6 a,b 6 ni

Di

and it is easy to see that the composition rule corresponds to the multiplication of matri-

ces. �

8.B. Semisimple rings.

Definition 8.8. The ring R is called left semisimple if R is a semisimple left R-module.

One can define similarly the notion of right semisimple ring.

We shall see later that left semisimple rings are right semisimple and conversely.

Theorem 8.9. Assume that R 6= 0. Then the following are equivalent:

(1) The ring R is left semisimple.

(2) Every left R-module is semisimple.

(3) R = L1 ⊕ · · · ⊕ Ln where Li are some minimal left ideals.

(4) R is left Artinian and J(R) = 0.
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Proof - (1) ⇒ (2): assume that R is left semisimple. Then R =
∑

a∈A La, where La is

a simple left submodule of R (i.e. a minimal left ideal). If M is a left R-module, then

M =
∑

a∈A
∑

m∈M Lam. But Lam is a submodule of M which is a quotient of La, so it

is simple or zero. This shows that M is semisimple.

(2) ⇒ (3): Assume that all left R-modules are semisimple. Then we can write R =

⊕i∈ILi where Li are minimal left ideals of R. We must show that I is finite. Let us write

1 =
∑

i∈I li with li ∈ Li. Let J = {i ∈ I | li 6= 0}. Then J is finite and we must show that

J = I. But R = R.1 ⊆∑i∈J Rli ⊆
∑

i∈J Li. So I = J , as desired.

(3)⇒ (4): assume that (3) holds. It follows that R is left Artinian (as a left R-module)

by Corollary 4.5 and that J(R) = J(R)R = 0 by Remark 8.5 (2).

So it remains to show that (4) ⇒ (1). Assume that (4) holds. Let M be the set of

left ideals of R which are finite intersections of maximal left ideals. Since R is Artinian,

there exists a minimal element I in M. Now, let m be a maximal left ideal of R. Then

I ∩ m ∈ M and I ∩ m ⊆ I. Since I is a minimal element of M, we have that I ∩ m = I:

in other words, I ⊂ m. So I is contained in all maximal left ideals of R, so I = 0 because

J(R) = 0.

Now, write 0 = I = m1 ∩ · · · ∩mn, where mi ∈ Maxl(R). Then the canonical map

R −→ R/m1 ⊕ · · · ⊕R/mn

is injective. Since R/mi is simple, we get that R/m1 ⊕ · · · ⊕ R/mn is semisimple, so R is

a semisimple left R-module by Remark 8.5 (1). �

Corollary 8.10. Let R and S be two Morita equivalent rings. Then R is left semisimple

if and only if S is left semisimple.

Proof - Indeed, by Theorem 8.9, the ring R is left semisimple if and only if all the left

R-modules are semisimple. So the result follows from Lemma 8.2. �

Corollary 8.11. If R/J(R) is left Artinian and M is a left R-module, then M is semisim-

ple if and only if J(R)M = 0.

Proof - By Remark 8.5 (1), if M is semisimple, then J(R)M = 0. Conversely, assume

that R/J(R) is left Artinian and that J(R)M = 0. Then M can be viewed as a left

R̄-module, where R̄ = R/J(R). Since J(R̄) = 0 (see Exercise II.18), we get that M is a

semisimple R̄-module by Theorem 8.9. So M is a semisimple R-module by Remark 8.5

(4). �

Corollary 8.12. If R/J(R) is left Artinian, then R/J(R) is left semisimple. In particular,

if R is left Artinian, then R/J(R) is left semisimple.

Proof - This follows from Theorem 8.9 and from Exercise II.18. �

Example 8.13 - Let D be a division ring. Then the ring D is (left and right) semisimple.

Therefore, by Theorem 7.6 and by Corollary 8.10, the ring Matn(D) is (left and right)

semisimple. �

We are now ready to prove the following
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Theorem 8.14 (Wedderburn). The following are equivalent:

(1) R is a left semisimple ring.

(2) R is a right semisimple ring.

(3) There exists natural numbers n1,. . . , nk and division rings D1,. . . , Dk such that

R '∏k
i=1 Matni(Di).

Proof - (1) ⇒ (3): If r ∈ R, let ρr : R → R, s 7→ sr. Then ρr ∈ EndR(R) (where R is

viewed as a left R-module). Moreover, the map R◦ → EndR(R), r 7→ ρr is a morphism of

rings. It is clearly injective and surjective. So R◦ ' EndR(R). If R is moreover assumed

to be left semisimple, then it follows from Theorem 8.7 (c) and (d) and from Theorem

8.9 that R◦ ' ∏k
i=1 Matni(Di) for some natural numbers ni’s and some division rings

Di’s. This shows (3) because Matni(Di)
◦ ' Matni(D

◦
i ) (by using the transpose map: see

Exercise I.6).

(3) ⇒ (1): assume that R ' ∏k
i=1 Matni(Di). By Example 8.13 and by Theorem 8.9,

the rings Matni(Di) are Artinian and their radical is 0. Then it follows that R is Artinian

(see Exercise II.13) and J(R) = 0 (see Exercise II.17). So R is left semisimple by Theorem

8.9.

Now, the fact that (2) ⇔ (3) is proved similarly. �

From now on, we will speak only about semisimple rings (and not about left or right

semisimple rings).

8.C. Simple rings. We shall now come to the notion of simple rings. As for semisimple

rings, we define the notion of left simple and right simple rings and we shall see later that

these notions coincide.

Definition 8.15. A ring R is called left simple if R 6= 0, R is left Artinian and 0 and R

are the only two-sided ideals of R. One defines similarly the notion of right simple rings.

Here is an example of a simple ring:

Theorem 8.16. Let D be a division ring and let V be a right D-module with dimD V = n

and A = EndD(V ). Note that A ' Matn(D). Then:

(a) A is a (left or right) simple ring.

(b) J(A) = 0.

(c) V is a simple left A-module.

(d) Up to isomorphism, V is the only simple left A-module.

(e) EndA(V ) ' D◦.
(f) If U ⊆ V is a sub-D-vector space, let LU = {f ∈ A | U ⊆ Ker f} and RU =

{f ∈ A | Im f ⊆ U}. Then LU (respectively RU ) is a left ideal (respectively a

right ideal) of A. Moreover, all left ideals (respectively right ideals) of A are of

this form.
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Proof - Homework. �

It turns out that the rings studied in the previous theorems are the only simple rings:

Theorem 8.17. The following are equivalent:

(1) R is left simple;

(2) R is right simple;

(3) There exists a division ring D and a natural number n such that R ' Matn(D);

(4) R is semisimple and has only one simple module.

Proof - We shall prove that (1)⇔ (3)⇔ (4). The fact that (2)⇔ (3) is proved similarly.

• By Corollary 8.13 and by Theorem 8.16, we know that (3) ⇒ (1) and that (3) ⇒ (4).

• If R is left simple, then it is left Artinian and J(R) = 0, so it is semisimple by

Theorem 8.9. So, by Wedderburn’s Theorem, R ' Matn(D) for some division ring D and

some natural number n (if there are at least to terms in a Wedderburn decomposition of

R, then there are non-trivial two-sided ideals). So (1) ⇒ (3).

• It remains to show that (4)⇒ (3). This follows from Wedderburn’s Theorem: is there

are at least to terms in a Wedderburn decomposition of R, there are at least to isomorphy

classes of simple modules. �

Theorem 8.17 (equivalence between (1) and (4)) gives a characterization of simple rings

in terms of their category of modules (see also Theorem 8.9). Therefore:

Corollary 8.18. Let R and S be two Morita equivalent rings. Then R is simple if and

only if S is simple.

The next result describes the simple modules of a semisimple ring, once we have a Wed-

derburn’s decomposition. As a consequence, we obtain that a Wedderburn decomposition

is essentially unique.

Proposition 8.19. Let n1,. . . , nk be natural numbers and let D1,. . . , Dk be division

rings. Let R =
∏k
i=1 Matni(Di). Then:

(a) R has exactly k isomorphy classes of simple left R-modules: they are the Si = Dni
i ,

where (A1, . . . , Ak) ∈ R acts on



d1
...
dni


 by multiplication by Ai.

(b) Di ' EndR(Si)
◦.

(c) If R = L1 ⊕ · · · ⊕ Ln where Lj are minimal left ideals, then n =
∑k

i=1 ni and, for

all i, there are exactly ni of the Lj’s which are isomorphic to Si.

(d) If R ' ∏l
i=1 Matmi(Ei), then k = l and there exists a permutation σ ∈ Sk such

that mi = nσ(i) and Ei ' Dσ(i).

Proof - The proof is left as an exercise. �
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8.D. Example: finite dimensional algebras. Let K be a field and let A be a finite

dimensional K-algebra. Then A is left and right Artinian. Moreover, by Corollary 8.12,

the K-algebra A/J(A) is semisimple.

A left A-module M is also a K-vector space and the map ρM : A → EndK(M), a 7→
(m 7→ am) is a morphism of unitary K-algebras. Conversely, if V is a K-vector space and

ρ : A → EndK(V ) is a morphism of unitary K-algebras, then V can be endowed with a

structure of left A-module as follows: for all a ∈ A and v ∈ V , we set a.v = ρ(a)(v). In

other words:

The datum of a left A-module is equivalent to the datum of a K-vector

space V and a morphism of K-algebras A→ EndK(V ).

Now, if M is an A-module (and if ρM : A → EndK(M) denotes the corresponding

morphism of K-algebras), then EndA(M) is the set of endomorphism of the K-vector space

M which commute with all elements of ρ(A). In particular, EndA(M) is a K-algebra.

Now, since isomorphy classes of simple A-modules are in bijection with isomorphy

classes of simple A/J(A)-modules, it follows from Wedderburn Theorem that there are

only finitely many such isomorphy classes. Let S1,. . . , Sk denote a family of representa-

tives of simple A-modules. Let si = dimK Si, Di = EndA(Si), di = dimK Di and write

A/J(A) '
r
⊕
i=1

Snii . Then:

Proposition 8.20. With the above notation, we have:

(a) Di is a division ring which is also a finite dimensional K-algebra.

(b) A/J(A) ' ∏k
i=1 Matni(Di).

(c) dimK A/J(A) =
k∑

i=1

sini =
k∑

i=1

din
2
i .

(d) If K is algebraically closed, then Di = K (so di = 1), si = ni and A/J(A) '∏k
i=1 Matni(K). Moreover, if S is a simple A-module, then ρS : A→ EndK(S) is

surjective (Burnside).

Proof - Clear (for (d), use Exercise II.27). �

8.E. Example: group algebras. Let G be a finite group and let K be a field. Let p

denote the characteristic of K. Then:

Theorem 8.21 (Maschke). The group algebra K[G] is semisimple if and only if p does

not divide |G|.

Proof - First, assume that p divides the order of G. Let e =
∑

g∈G g. Then ge = e for

every g ∈ G. Therefore, we have K[G]e = Ke. So Ke is a left ideal of K[G]. Moreover,

e2 =
∑

g∈G ge = |G|e = 0 because p divides |G|. So e is a nilpotent element of K[G].

Therefore, Ke is a nil left ideal of K[G]. In particular, J(K[G]) 6= 0 by Lemma 5.10, so

K[G] is not semisimple by Theorem 8.9.

Conversely, assume that p does not divide |G|. Let V be a K[G]-module and let W be

a sub-K[G]-module of V . Then V is in particular a K-vector space and W is a K-vector
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subspace. Let W ′ be a K-vector subspace of V such that V = W ⊕W ′. Let π0 : V →W

be the projection on the first factor. Now, for v ∈ V , we set

π(v) =
1

|G|
∑

g∈G
gπ0(g−1v).

Recall that π is well-defined because |G| is invertible in K. Then π : V →W is a K-linear

map. Moreover, if h ∈ G and v ∈ V , we have

π(hv) =
1

|G|
∑

g∈G
gπ0(g−1hv) = h

( 1

|G|
∑

g∈G
(h−1g)π0((h−1g)−1v)

)
= hπ(v).

Therefore, π is a morphism of K[G]-modules.

Now, let i : W ↪→ V denote the canonical injection. Then, for all w ∈W , we have

π(i(w)) = π(w) =
1

|G|
∑

g∈G
gπ0(g−1w).

But, if g ∈ G, then g−1w ∈W (because W is a K[G]-submodule) and so π0(g−1w) = g−1w.

So we get

π(i(w)) = w.

In other words, π ◦ i = IdW , so V = W ⊕Kerπ. Since π is a morphism of K[G]-modules,

Kerπ is a sub-K[G]-module of V . This shows that V is semisimple. �

Corollary 8.22 (Maschke, Wedderburn). If p does not divide the order of G and

if K is algebraically closed, then K[G] ' ∏k
i=1 Matni(K) for some natural numbers ni.

Moreover, k is the number of conjugacy classes of G.

Proof - The first statement follows from Maschke’s Theorem, and from Proposition 8.20

(d). Let us prove the second statement. Let Z(R) denote the centre of the ring R, that is

Z(R) = {r ∈ R | ∀ x ∈ R, xr = rx}.
Then it is clear that Z(Matn(K)) = KIn, where In is the identity matrix. So

(∗) dimK Z
( k∏

i=1

Matni(K)
)

= k.

On the other hand, let C(G) denote the set of conjugacy classes of G. If C ∈ C(G), let

Ĉ =
∑

g∈C
g.

It is readily seen that (Ĉ)C∈C(G) is a K-basis of Z(K[G]). So

(∗∗) dimK Z(K[G]) = |C(G)|.
Now the last statement follows from the comparison of (∗) and (∗∗). �
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Exercises from Part II

Exercise II.1. Let ı : M → M ′ and π : M ′ → M be two morphisms of R-modules such

that π ◦ ı = IdM . Show that ı is injective, π is surjective and M ′ = (Kerπ)⊕ (Im ı).

Exercise II.2. Let m, n ∈ N. Compute Z/mZ⊗Z Z/nZ, Q⊗Z Z/mZ and Q⊗Z Q.

Exercise II.3. Let M be a left R-module and let e ∈ R be an idempotent (that is,

e2 = e). Show that the map eR ⊗R M → eM , r ⊗R m 7→ rm is an isomorphism of

Z-modules (compare with Remark 3.18).

Exercise II.4. Assume that R is commutative. Let X and Y be two sets. Show that

R[X × Y ] ' R[X]⊗R R[Y ] as R-modules.

Exercise II.5. Show that the map C⊗RC→ C×C, z⊗Rz′ 7→ (zz′, zz̄′) is an isomorphism

of C-algebras.

Exercice II.6 (Quaternions). Let H denote the R-vector space consisting of matrices(
a b
c d

)
∈ Mat2(C) such that d = ā and b = −c̄ (here, z̄ denotes the complex conjugate

of z ∈ C).

(a) Show that H is an R-algebra.

(b) Show that H is a division ring (i.e. any non-zero element is a unit).

(c) Show that the map C ⊗R H → Mat2(C), λ ⊗R M 7→ λM is an isomorphism of

C-algebras.

Exercise II.7. Assume that R is commutative. Let A, A′, B and B′ be four R-algebras.

(a) Let I and J be two left ideals of A and B respectively. Show that the image of

the map I ⊗R J → A ⊗R B, a ⊗R b 7→ a ⊗R b (!) is a left ideal of A ⊗R B. Show

that similar statements hold for right and two-sided ideals.

(b) If f : A → A′ and g : B → B′ are morphisms of R-algebras, show that f ⊗R g :

A⊗R B → A′ ⊗R B′ is a morphism of R-algebras.

Exercise II.8. Let i denote a complex number such that i2 = −1. Let

Z[i] = {a+ ib | a, b ∈ Z}

and Q[i] = {a+ ib | a, b ∈ Q}.
If p is a prime number, we denote by Fp the field Z/pZ.

(a) Show that Z[i] is a subring of C and that Q[i] is a subfield of C.

(b) Show that Q⊗Z Z[i] ' Q[i] (as Q-algebras).

(c) Show that F2 ⊗Z Z[i] ' F2[X]/(X2) (as F2-algebras).

(d) Show that F3 ⊗Z Z[i] is a field with 9 elements.

(e) Show that F5 ⊗Z Z[i] ' F5 × F5 (as F5-algebras).
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(f) Let R be the set of (α, β) ∈ Z[i] × Z[i] such that α − β ∈ 2Z[i]. Show that R

is a sub-Z[i]-algebra of Z[i] × Z[i] and that the map Z[i] ⊗Z Z[i] → Z[i] × Z[i],

α⊗Z β 7→ (αβ, αβ̄) is an injective morphism of Z[i]-algebras whose image is R (in

other words, Z[i]⊗Z Z[i] ' R).

Exercise II.9. Assume that R is commutative. Let G and H be two groups. Show that

R[G×H] ' R[G]⊗R R[H] as R-algebras.

Exercise II.10. Assume that R is commutative. Let M and N be two left R-modules.

Assume that (mi)i∈I (respectively (nj)j∈J) is a family of generators of M (respectively

N). Show that (mi ⊗R nj)(i,j)∈I×J is a family of generators of the R-module M ⊗R N .

Exercise II.11. Assume that R is commutative and Noetherian. Show that the tensor

product of two Noetherian left R-modules is still Noetherian (Hint: use Exercise II.10).

Exercise II.12. Let M be an R-module and let L be a submodule. Assume that M/L

and L are finitely generated. Show that M is finitely generated.

Exercise II.13. Let R1 and R2 be two rings and let M1 and M2 be left modules for

R1 and R2 respectively. Show that M1 ×M2 is naturally endowed with a structure of

(R1 ×R2)-module.

Show that M1×M2 is Noetherian (respectively Artinian) if and only if Mi is Noetherian

(respectively Artinian) for all i ∈ {1, 2}.
Show that the ring R1 ×R2 is left Noetherian (respectively Artinian) if and only if the

rings R1 and R2 are left Noetherian (respectively Artinian).

Show that R1 ×R2 is semisimple if and only if R1 and R2 are semisimple.

Exercise II.14. Let R be a Noetherian commutative ring and let S be a multiplicative

subset of R. Show that S−1R is Noetherian.

Exercice II.15 (Fitting’s Lemma). Let M be a Noetherian and Artinian left R-module

and let σ : M →M be an endomorphism of M .

(a) Show that there exists n0 ∈ N such that Imσn0 = Imσn0+1 and Kerσn0 =

Kerσn0+1.

(b) Show that Imσn = Imσn+1 and Kerσn = Kerσn+1 for all n > n0.

(c) Show that M = (Imσn0)⊕ (Kerσn0).

Exercise II.16. LetK be a field and let σ : K[X,Y ]→ K[X,Y ], P (X,Y ) 7→ P (−X,−Y ).

We denote by S the ring K[X,Y ] and we set

R = {P ∈ S | σ(P ) = P}.
(a) Show that σ is an automorphism of the K-algebra S and that σ ◦ σ = IdS .

(b) Show that R is a sub-K-algebra of S. Find a K-basis of R.

(c) Show that the K-algebra R is generated, as a K-algebra, by X2, XY and Y 2.

(d) Let U , V and W be three other indeterminates. Let π : K[U, V,W ] → S,

P (U, V,W ) 7→ P (X2, XY, Y 2). Show that the image of π is R.

(e) Show that the kernel of π is generated (as an ideal of K[U, V,W ]) by V 2 − UW .
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(f) Show that R is isomorphic to K[U, V,W ]/(V 2 − UW ).

(g∗) Show that S = RX +RY but that S is not a free R-module.

Exercise II.17. Let R1 and R2 be two rings and let m be a maximal left ideal of

R1 ×R2. Show that m = R1 ×m2 for some m2 ∈ Maxl(R2) or that m = m1 ×R2 for some

m2 ∈ Maxl(R2).

Deduce that J(R1 ×R2) = J(R1)× J(R2).

Exercise II.18. Let I be a two-sided ideal of R contained in J(R). Show that J(R/I) =

J(R)/I.

Exercise II.19. Let R be a ring and let n be a natural number. We propose to prove in

several steps that J(Matn(R)) = Matn(J(R)) (by Matn(J(R)), we mean the set of n× n
matrices with coefficients in J(R): it is not a unitary ring).

Let Eij ∈ Matn(R) denote the matrix whose entries are all zero except the (i, j)-entry

which is equal to 1. We denote by 1n the identity matrix. Let I = Matn(J(R)) and

J = J(Matn(R)). For j ∈ {1, 2, . . . , n}, we set Ij = ⊕ni=1J(R)Eij . We shall first prove

that I ⊆ J .

(a) Show that I is a two-sided ideal of Matn(R).

(b) Show that Ij is a left ideal of Matn(R) and that I = ⊕nj=1 Ij .

(c) Assume here, ond only in this question, that R is commutative, so that det :

Matn(R) → R is well-defined. Show that det(1n − a) ∈ 1 + J(R) for any a ∈ I.

Deduce that I ⊆ J in this case.

(d) Let a ∈ Ij . Write a =
∑n

i=1 αiEij , with αi ∈ J(R). Since 1−αj is invertible, we can

define βi = αi(1−αj)−1. Let b = −∑n
i=1 βiEij . Show that (1n− b)(1n− a) = 1n.

(e) Deduce from (b) and (d) that Ij ⊆ J and I ⊆ J .

We shall now prove that J ⊆ I. Let a ∈ J and write a =
∑

1 6 i,j 6 n
αijEij . We want to

prove that αij ∈ J(R) for all (i, j). So fix i and j in {1, 2, . . . , n}.
(f) Let b = EiiaEji. Show that b = αijEii.

(g) Show that 1n − rb is invertible for any r ∈ R.

(h) Deduce that 1− rαij is invertible for any r ∈ R. Conclude.

Exercise II.20. Let G be a finite group and let θ : G → C× be a morphism of groups.

Let

eθ =
1

|G|
∑

g∈G
θ(g)−1g ∈ C[G].

Show that eθ is an idempotent of C[G] and that eθC[G]eθ ' C.

Exercise II.21. Let R be a commutative integral domain. Let I and J be two non-zero

ideals of R such that the ideal IJ is principal. We shall prove that I (and J) are projective

modules. For this, let r ∈ R be such that IJ = Rr and write r =
∑n

i=1 xiyi with xi ∈ I
and yi ∈ J . Let

ϕ : I −→ (Rr)n

x 7−→ (xy1, . . . , xyn)
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and
ψ : (Rr)n −→ I

(r1, . . . , rn) 7−→ ∑n
i=1(rixi)/r.

(a) Show that ϕ and ψ are well-defined morphisms of R-modules.

(b) Show that the image of ϕ is contained in (Rr)n.

(c) Show that ψ ◦ ϕ = IdI .

(d) Show that ϕ is injective and that (Rr)n = ϕ(I)⊕Kerψ.

(e) Deduce that I is a projective R-module.

Exercise II.22. Let R = {a+ bi
√

5 | a, b ∈ Z}.
(a) Show that R is a subring of C.

Let p (respectively p′) be the ideal of R generated by 3 and 1 + i
√

5 (respectively 3 and

1− i
√

5).

(b) Show that pp′ = 3R.

(c) Show that p and p′ are not principal ideal.

(d) Show that p and p′ are projective R-modules (Hint: use Exercise II.21) but are

not free (use (b)).

Exercise II.23. Prove that the following are equivalent:

(a) Every left R-module is projective.

(b) Every left R-module is injective.

Exercise II.24. Let M and N be two flat left R-modules and assume that R is commu-

tative. Show that the left R-module M ⊗R N is flat.

Exercise II.25. Let G be a finite p-group and let R = Fp[G] be the group algebra of

G over Fp. The aim of this exercise is to prove that R is a local ring. We first recall the

following result from group theory: if X is a G-set (i.e. a set endowed with an action of

G) and if we denote by XG = {x ∈ x | ∀ g ∈ G, g.x = x}, then

(∗) |X| ≡ |XG| mod p.

We now need some more notation. Let

σ : R −→ Fp∑
g∈G agg 7−→ ∑

g∈G ag

and

m = Kerσ.

(a) Show that σ is a morphism of Fp-algebras.

(b) Show that m is a two-sided ideal and is a maximal left ideal of R.

Let S be a simple R-module. We also view S as a G-set (because G ⊆ R× acts on S).

Let x ∈ S, x 6= 0.

(c) Show that S is an Fp-vector space.

(d) Show that the map π : R → S, r 7→ rx is a surjective morphism of R-modules

(and of Fp-vector spaces). Deduce that S is finite dimensional.
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(e) Show that SG is an R-submodule of S.

(f) Show that SG 6= 0 (use (∗)). Deduce that S = SG.

(g) Show that m = Kerπ.

(h) Show that J(R) = m and that R is a local ring.

Exercise II.26. Let R be a commutative ring such that all finitely generated projective

modules are free. Let σ : Matn(R)→ Matn(R) be an anti-automorphism of the R-algebra

Matn(R) (i.e. σ is an isomorphism of R-modules satisfying σ(xy) = σ(y)σ(x) for all x,

y ∈ Matn(R)). Show that there exists g ∈ Matn(R)× such that σ(x) = g txg−1 for all

x ∈ Matn(R) (here, tx denotes the transposed of x).

Exercise II.27. Let K be an algebraically closed field and let D be a finite dimensional

K-algebra. Assume that D is a division ring. Show D ' K as a K-algebra.

Exercice II.28∗ (Burnside). Let K be a field, let V be a finite dimensional vector space

and let A be a sub-K-algebra of EndK(V ). We assume that, viewed as an A-module, V

is simple. Show that A = EndK(V ).

Exercice II.29∗ (Kolchin?). Let K be a field and let G be a subgroup of GLn(K) such

that all elements of G are unipotent (i.e. have (X − 1)n as characteristic polynomial).

Show that there exists g ∈ GLn(K) such that gGg−1 is contained in the group Un(K) of

unipotent upper triangular matrices.
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Part III. Dedekind domains

All along this part, we fix a commutative ring R. Unless otherwise specified, rings will

be commutative. The proofs of the theorems/propositions/lemmas/corollaries are not

written: they have been given in class (except for the Theorems 10.11 and 10.12 which

have been stated without proof).

9. Integral elements, integral extensions

Notation - If L is a field which is a finite extension of the field K and if α ∈ L, we denote

by χL/K(α) ∈ K[X] the characteristic polynomial of the K-linear map L → L, x 7→ αx.

The minimal polynomial of α over K is denoted by minK(α). The trace (respectively the

determinant) of this map will be denoted by TrL/K(α) (respectively NL/K(α)) and will be

called the trace of α (respectively the norm of α) relative to the extension L/K. If L/K

is Galois with group G = Gal(L/K), then

(9.1) χL/K(α) =
∏

σ∈G
(X − σx).

Consequently,

(9.2) TrL/K(α) =
∑

σ∈G
σ(α)

and

(9.3) NL/K(α) =
∏

σ∈G
σ(α).

9.A. Definitions. Let S be a commutative R-algebra: in other words, we are given a

morphism of rings R→ S with S commutative (for instance, R can be a subring of S and

the morphism R→ S is the canonical injection).

Definition 9.4. An element s ∈ S is said integral over R if there exists a monic

polynomial P (X) ∈ R[X] such that P (s) = 0.

The ring S is called an integral extension of R (or S is said to be integral over R)

if every s ∈ S is integral over R.

The integral closure of R in S is the set of elements s ∈ S which are integral over R.

Examples 9.5 - (0) If σ : S → S ′ is a morphism of rings (and view S ′ as an R-algebra

through the composition R −→ S
σ−→ S′) and if s ∈ S is integral over R, then σ(s) is

integral over R.

(1) If R and S are fields, then an element s ∈ S is integral over R if and only if it is

algebraic over R.

(2) An element x ∈ Q is integral over Z if and only if it belongs to Z. Also, 3
√

2, e2iπ/n

and i =
√
−1 are integral over Z.
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(3) If S is a ring on which a finite group G acts and if R = SG = {r ∈ S | ∀ σ ∈
G, σ(r) = r}, then S is integral over R.

(4) If I is an ideal of S and if I ′ denotes the inverse image of I in R (for instance

I ′ = I ∩R if R ⊂ S), then S/I is an R/I ′-algebra. Moreover, if S is integral over R, then

S/I is integral over R/I ′. �

Remark 9.6 - Let R′ be the subring R.1S of S. Then an element s ∈ S is integral over

R if and only if it is integral over R′. In particular, the integral closure of R in S is the

integral closure of R′ in S. �

Definition 9.7. If R ⊂ S, we say that R is integrally closed in S if it is equal to its

integral closure. If R is an integral domain, the integral closure of R in its field of fractions

is called the normalization of R. An integral domain is called integrally closed (or

normal) if it is integrally closed in its field of fractions.

Examples 9.8 - (1) By Example 9.5 (2), Z is integrally closed.

(2) More generally, a unique factorization domain is integrally closed.

(3) If K is a field, then K[X2, X3] (which is a subring of K[X]) is an integral domain

which is not integrally closed. �

9.B. First properties. If s ∈ S, we denote by R[s] the subring of S equal to

R[s] = {P (s) | P (X) ∈ R[X]}.
It is a sub-R-algebra of S. The following proposition characterizes integral elements:

Proposition 9.9. Let s ∈ S. Then the following are equivalent:

(1) s is integral over R.

(2) The subring R[s] of S is a finitely generated R-module.

(3) There exists a commutative ring T containing R[s] which is a finitely generated

R-module.

Corollary 9.10. If s and t are elements of S which are integral over R, then s+ t, s− t
and st are integral over R. In particular, the integral closure of R in S is a subring of S.

Corollary 9.11. Let T be a commutative S-algebra (so in particular it is an R-algebra).

If S is integral over R and T is integral over S, then T is integral over R.

Corollary 9.12. Assume that S is integral over R. Then S is a finitely generated R-

algebra if and only if it is a finitely generated R-module.

Corollary 9.13. If S is a finitely generated R-module, then S is integral over R.

Example 9.14 - Let G be a finite group and let C(G) denotes the set of conjugacy classes

in G. If C ∈ C(G), let

Ĉ =
∑

g∈C
g ∈ R[G].
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Then, as in the proof of Corollary 8.22, (Ĉ)C∈C(G) is an R-basis of the centre of R[G]

(which we denote by Z(R[G]). Consequently, Z(R[G]) is a commutative R-algebra which

is a finitely generated R-module. So Z(R[G]) is integral over R. �

9.C. Integral/algebraic. In this subsection, we fix an integral domain R with field of

fractions K. We also fix a finite extension L of K of degree n and we denote by S the

integral closure of R in L. We set R = S ∩K. Then R is the normalization of R.

Proposition 9.15. Let x ∈ L. The following are equivalent:

(a) x is integral over R.

(b) x is integral over R.

(c) χL/K(x) ∈ R[X].

(d) minK(x) ∈ R[X].

Corollary 9.16. Let x ∈ S. Then TrL/K(x) ∈ R and NL/K(x) ∈ R.

Theorem 9.17. Assume that R is integrally closed and that L/K is a separable extension.

Then:

(a) If R is Noetherian, then S is an R-module of finite type. In particular, S is

Noetherian.

(b) If R is principal, then S is a free R-module of rank n = [L : K]. Moreover, any

R-basis of S is a K-basis of L.

Corollary 9.18. Let x ∈ S. Then x ∈ S× if and only if NL/K(x) ∈ R×.

9.D. Integral extensions and prime ideals. If σ : R→ S is a morphism of rings and

if q is a prime ideal of S, then σ−1(q) is a prime ideal of R. We denote by Spec(R) the

set of prime ideals of R and by σ−1 : Spec(S)→ Spec(R), q 7→ σ−1(q).

Proposition 9.19. Assume that R ⊂ S and that S is integral over R.

(a) If r ∈ R, then r ∈ R× if and only if r ∈ S×.

(b) Assume that S is an integral domain. Then S is a field if and only if R is a field.

The next corollary gives further results about the map σ−1 : Spec(S)→ Spec(R) in the

case of integral extensions:

Corollary 9.20. Assume that S is integral over R (and denote by σ : R→ S, r 7→ r1S).

(a) Let q be a prime ideal of S. Then q is a maximal ideal of S if and only if σ−1(q)

is maximal in R.

(b) Let p be a prime ideal of R. Then there exists a prime ideal q of S such that

p = σ−1(q). In other words, the map σ−1 : Spec(S)→ Spec(R) is surjective.

Theorem 9.21 (Going-up Theorem). Assume that S is integral over R. Let p1 ⊆
p2 ⊆ · · · ⊆ pn be a chain of prime ideals in R, let m < n and suppose there is a chain

q1 ⊆ q2 ⊆ · · · ⊆ qm of prime ideals of S such that σ−1(qi) = pi for 1 6 i 6 m. Then there

exists a chain qm+1 ⊆ · · · ⊆ qn of prime ideals of S such that qm ⊆ qm+1 and σ−1(qi) = pi
for m+ 1 6 i 6 n.
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Theorem 9.22 (Going-down Theorem). Assume that R ⊂ S and that R is integrally

closed in S. Let p1 ⊇ p2 ⊇ · · · ⊇ pn be a chain of prime ideals in R, let m < n and

suppose there is a chain q1 ⊇ q2 ⊇ · · · ⊇ qm of prime ideals of S such that qi ∩ R = pi
for 1 6 i 6 m. Then there exists a chain qm+1 ⊇ · · · ⊇ qn of prime ideals of S such that

qm ⊇ qm+1 and qi ∩R = pi for m+ 1 6 i 6 n.

9.E. Agebraic integers. Let K be a field of characteristic 0. An element x ∈ K is called

an algebraic integer if it is integral over Z. We denote by OK the ring of algebraic integers

of K.

Theorem 9.23. Let K be a finite extension of Q of degree n. Then OK is a free Z-module

of rank n. Moreover, any Z-basis of OK is a Q-basis of K.

Examples 9.24 - (1) OQ(
√

2) = Z[
√

2] and OQ(
√

5) = Z
[1 +

√
5

2

]
.

(2) If n > 1 and if ζn ∈ C× is a primitive n-th root of unity, then OQ(ζn) = Z[ζn]. �

Let K be a finite extension of Q of degree n. First, note that the symmetric bilinear

form K ×K → Q, (α, β) 7→ TrK/Q(αβ) is non-degenerate. Let (α1, . . . , αn) be a Z-basis

of OK . We then set

∆(K) = det(TrK/Q(αiαj))1 6 i,j 6 n.
The number ∆(K) is called the discriminant of K (it does not depend on the choice of

the Z-basis of OK).

10. Dedekind domains

10.A. Definition.

Definition 10.1. The ring R is called a Dedekind domain if it satisfies the following

three conditions:

(D1) R is Noetherian;

(D2) R is an integral and integrally closed domain;

(D3) Every non-zero prime ideal is maximal.

Examples 10.2 - (1) A field and, more generally, a principal ideal domain are Dedekind

domains.

(2) If K is a field, then K[X,Y ] is Noetherian, integral, integrally closed and even a

unique factorization domain but is not a Dedekind domain. �

Theorem 10.3 (Dedekind). Let R be a Dedekind domain and let K denote its field of

fractions. Let L be a finite separable extension of K and let S be the integral closure of R

in L. Then S is a Dedekind domain and is a finitely generated R-module.

Corollary 10.4. If K is a finite extension of Q, then OK is a Dedekind domain.

10.B. Fractional ideals. From now on, R will denote an integral domain and K will

denote its field of fractions.
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Definition 10.5. A fractional ideal of R is an R-submodule I of K such that dI ⊂ R

for some d ∈ R \ {0}.

Example 10.6 - If I and J are fractional ideals of R, then I+J and IJ are also fractional

ideals of R. �

Definition 10.7. A fractional ideal I of R is called invertible if there exists a fractional

ideal J of R such that IJ = R.

Remark 10.8 - If I and J are two fractional ideals of R such that IJ = R, then

J = {x ∈ K | xI ⊂ R}. �

Example 10.9 - Let R = Z[i
√

5] and let p = (3, 1 + i
√

5) and p′ = (3, 1 − i
√

5). Then

p.(p′/3) = R by Exercise II.22 (a). So p and p′ are invertible. �

Proposition 10.10. If I is an invertible fractional ideal of R, then R is a finitely generated

projective R-module.

Theorem 10.11. The following are equivalent:

(1) R is a Dedekind domain.

(2) For each p ∈ Spec(R), Rp is principal.

(3) Every non-zero fractional ideal of R is invertible.

(4) Every non-zero fractional ideal is a projective R-module.

(5) Every non-zero proper ideal I of R is a (finite) product of prime ideals.

Moreover, if these conditions are satisfied and if p1,. . . , pr, q1,. . . , qs are prime ideals

such that p1 . . . pr = q1 . . . qs, then r = s and there exists a permutation σ ∈ Sr such that

qσ(i) = pi for all i.

Let R be a Dedekind domain and let K be its field of fractions. Let L be a finite

algebraic extension of K of degree n. Let S be the integral closure of R in L. Let p be a

prime number. Write

pS = qe11 . . . qerr
where qi are distinct prime ideals of S. Then:

Theorem 10.12. With the above notation, we have:

(a) qi ∩R = p.

(b) If q is a prime ideal of S containing p, then q ∈ {q1, . . . , qr}.
(c) Let fi be the natural number such that OK/qi is a finite extension of R/p of degree

fi. Then
∑r

i=1 eifi = n.
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Exercises from Part III

Exercise III.1. Let D ∈ Z be square-free (i.e., if n ∈ Z is such that n2 divides D, then

n = ±1). Compute the rings of algebraic integers of Q(
√
D).

Exercice III.2 (Gauss). Let R be a unique factorization domain and let K be its field

of fractions. If P (X) = anX
n + · · ·+ a1X + a0 ∈ R[X], we define

C(P ) = lcm(a0, a1, . . . , an).

(a) Show that C(PQ) = C(P )C(Q) (first, reduce to the case where C(P ) = C(Q) = 1).

(b) Assume that an = 1. Show that P is irreducible in R[X] if and only if P is

irreducible in K[X].

Exercice III.3 (Eisenstein’s criterion). Let R be a principal ideal domain and let K

be its field of fractions. Let p ∈ R be irreducible. Let P (X) = Xn + an−1X
n−1 + · · · +

a1X + a0 ∈ R[X]. Assume that p|ai for all i and that p2 does not divide a0. Show that P

is irreducible in K[X] (Hint: use Exercise III.2 and reduce modulo p).

Exercise III.4. Let n > 1 and let ζn be a primitive n-th root of unity in C, that is, a

generator of the cyclic group µn(C) = {z ∈ C | zn = 1} (for instance, ζn = e2iπ/n). Let

Φn(X) denote the n-th cyclotomic polynomial

Φn(X) =
∏

1 6 j 6 n
gcd(n,j)=1

(X − ζjn).

Let ϕ(n) denote the degree of Φn(X) (i.e. the Euler ϕ-function).

(a) Compute Φn for 1 6 n 6 6.

(b) Show that Xn − 1 =
∏

d|n
Φd(X).

(c) Deduce by induction that Φn(X) belongs to Z[X] and is monic.

(d) Let p be a prime number. Compute Φp and show that Φp is irreducible (Hint:

compute Φp(X + 1) and use Eisenstein’s criterion of Exercise III.3).

The aim of the next questions is to show that Φn is irreducible for all n. Write Φn(X) =

P (X)Q(X) where P (X), Q(X) ∈ Z[X] are monic and P is irreducible in Q[X]. Let ζ be

a root of P and let p be any prime number not dividing n. We denote by P (X) ∈ Fp[X]

the reduction modulo p of P (X) ∈ Z[X]. Since ζp is a root of Φn, we must have P (ζp) = 0

or Q(ζp) = 0.

(e) Assume that Q(ζp) = 0. Show that P (X) divides Q(Xp).

(f) Show that Q(Xp) = Q(X)p.

(g) Assume that Q(ζp) = 0 and let f ∈ Fp[X] be any irreducible factor of P .

(g1) Deduce from (e) and (f) that f also divides Q.

(g2) Deduce that f2 divides Xn − 1 and that f divides nXn−1 (Hint: take the

derivative) so that f divides also Xn−1. Show that it is impossible.
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(h) Deduce from (g) that P (ζp) = 0 for all prime number p which does not divide n.

Deduce that P = Φn, and that Φn is irreducible.

The fact that Φn is irreducible shows that the field Q(ζn) is isomorphic to Q[X]/(Φn)

and that [Q(ζn) : Q] = ϕ(n). Let On denote the ring of integers of Q(ζn). Then it is clear

that Z[ζn] ⊆ On. It can be proved that On = Z[ζn]. The aim of the next questions is to

prove this result whenever n is a prime number (note that the case n = 2 is trivial). So

let p be an odd prime number.

(i) Show that det(TrK/Q(ζipζ
j
p)) = ±pp−2.

(j) Deduce that, if α ∈ Op, then there exists r ∈ Z> 0 such that prα ∈ Z[ζp].

(k) Show that, if 1 6 i 6 p− 1, then (1− ζ ip)/(1− ζp) ∈ O×p .

(l) Show that
∏p−1
i=1 (1− ζip) = Φp(1) = p (Hint: use (d)).

(m) Let p = (1−ζp)Z[ζp] and q = (1−ζp)Op. Deduce from (k) and (l) that pp−1 = pZ[ζp]

and qp−1 = pOp.
(n) Show that p is a prime ideal of Z[ζp] and that Z[ζp]/p ' Fp.
(n) Deduce from (m) that q is a prime ideal of Op and that Op/q ' Fp (use Theorem

10.12 (c)).

(o) Deduce from (m) and (n) that p = q ∩ Z[ζp].

(p) Deduce that pi = qi ∩ Z[ζp] for all i > 1.

(q) Deduce from (j) that Op = Z[ζp].

Exercise III.5. Let n > 1 and let ζn be primitive n-th root of unity. Let Kn = Q(ζn). If

k ∈ Z/nZ, we still denote by ζkn the number ζ k̇n where k̇ is a representative of k in Z.

(a) Show that Kn is a Galois extension of Q.

(b) Let Γn = Gal(Kn/Q). Let σ ∈ Γn. Show that there exists a unique k(σ) ∈ Z/nZ
such that σ(ζn) = ζ

k(σ)
n . Show that k(σ) ∈ (Z/nZ)×.

(c) Show that the map Γn → (Z/nZ)×, σ 7→ k(σ) is an isomorphism of groups (Hint:

use the irreducibility of the n-th cyclotomic polynomial: see Exercise III.4 (h)).

(d) Let ξ1,. . . , ξr denote roots of unity in C and assume that (ξ1 + · · · + ξr)/r is an

algebraic integer. Show that ξ1 + · · · + ξr = 0 or that ξ1 = ξ2 = · · · = ξr (Hint:

compute the norm using 9.3).
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Part IV. Algebraic geometry

All along this part, we fix a field K of characteristic p > 0. If R is a ring and if E is a

subset of R, we denote by 〈E〉 (or 〈E〉R if necessary) the ideal of R generated by E.

Remark - Most of the geometric theorems of algebraic geometry are based on algebraic

theorems about rings. We have gathered in the Appendix the results we need. The section

15 and this Appendix have not been treated in class. �

11. The maps Z and I

11.A. Definitions and first properties. We denote by An(K) the affine space Kn.

Let E be a subset of K[X1, . . . , Xn]. We set

Z(E) = {(x1, . . . , xn) ∈ An(K) | ∀f ∈ E, f(x1, . . . , xn) = 0}.
Let X be subset of An(K). We set

I(X) = {f ∈ K[X1, . . . , Xn] | ∀x ∈ X, f(x) = 0}.

Proposition 11.1. With the above notation, we have:

(a) If E ⊆ F ⊆ K[X1, . . . , Xn], then Z(F ) ⊆ Z(E).

(b) Z(E) = Z(〈E〉)
(c) If (Eλ)λ∈Λ is a family of subsets of K[X1, . . . , Xn], then

⋂

λ∈Λ

Z(Eλ) = Z(
⋃

λ∈Λ

Eλ).

(d) If E and F are two subsets of K[X1, . . . , Xn], then Z(E) ∪ Z(F ) = Z(E ∗ F ),

where E ∗ F = {ab | a ∈ E and b ∈ F}.
(e) Z(∅) = An(K) and Z(1) = ∅.

Proof - Easy. �

Corollary 11.2. Let (Iλ)λ∈Λ be a family of ideals of K[X1, . . . , Xn]. Then:

(a)
⋂

λ∈Λ

Z(Iλ) = Z(
∑

λ∈Λ

Iλ).

(b) If Λ is finite, then
⋃

λ∈Λ

Z(Iλ) = Z(
∏

λ∈Λ

Iλ).

Proof - Easy. �

Proposition 11.3. With the above notation, we have:

(a) If X ⊆ Y ⊆ An(K), then I(Y ) ⊆ I(X).

(b) If (Xλ)λ∈Λ is a family of subsets of An(K), then
∑

λ∈Λ

I(Xλ) ⊆ I
(⋂

λ∈Λ

Xλ

)
.

(c) If (Xλ)λ∈Λ is a family of subsets of An(K), then I
(⋃

λ∈Λ

Xλ

)
=
⋂

λ∈Λ

I(Xλ). If more-

over Λ is finite, then
∏

λ∈Λ

I(Xλ) ⊆ I
(⋃

λ∈Λ

Xλ

)
.

(d) I(∅) = K[X1, . . . , Xn] and, if K is infinite, then I(An(K)) = 0.
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Proof - Easy. �

Proposition 11.4. We have:

(a) If E ⊆ K[X1, . . . , Xn], then 〈E〉 ⊆ I(Z(E)) and Z(E) = Z(I(Z(E))).

(b) If X ⊆ An(K), we have X ⊆ Z(I(X)) and I(X) = I(Z(I(X))).

Proof - Easy. �

11.B. Algebraic sets.

Definition 11.5. A subset V of An(K) is called an affine algebraic set (or just an

algebraic set) if there exists a subset E of K[X1, . . . , Xn] such that V = Z(E) (or,

equivalently, if there exists an ideal I of K[X1, . . . , Xn] such that V = Z(I)).

If V is an algebraic set, then

(11.6) V = Z(I(V )).

Proof - By Proposition 11.4 (b), we have V ⊆ Z(I(V )). On the other hand, there exists

an ideal I of K[X1, . . . , Xn] such that V = Z(I). Therefore, by Proposition 11.4 (a), we

have I ⊆ I(V ). So Z(I(V )) ⊆ Z(I) = V by Proposition 11.3 (a). �

An immediate consequence of 11.6 is the following:

(11.7) If V and W are two algebraic sets such that V  W , then I(W )  I(V ).

Examples 11.8 - (0) ∅ and An(K) are algebraic sets (see Proposition 11.1 (e)).

(1) If (a1, . . . , an) ∈ An(K), then {(a1, . . . , an)} is an algebraic set. Indeed,

{(a1, . . . , an)} = Z(X1 − a1, . . . , Xn − an).

It then follows from Proposition 11.1 (c) that any finite subset of An(K) is an algebraic

set.

(2) If V ⊆ A1(K), then V is an algebraic set if and only if V = A1(K) or V is finite.

(3) The curve {(x, y) ∈ A2(K) | y2 = x3} is an algebraic set.

(4) Let V be the set of matrices M ∈ Matn(K) which are not invertible. Then V is an

algebraic set: indeed, X = Z(det) and det is a polynomial in n2 variables. �

Definition 11.9. The Zariski topology on An(K) is the topology for which the closed

subsets are the algebraic sets.

The statements (c) and (d) of Proposition 11.1 show that this indeed defines a topology

on An(K). If X is a subset of An(K), we denote by X its closure for the Zariski topology.

Then

(11.10) X = Z(I(X)).

Proof - Let V = Z(I(X)). By Proposition 11.4 (b), we have X ⊆ V , and V is closed by

definition. So X ⊆ V . On the other hand, since X is an algebraic set, there exists an ideal
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I of K[X1, . . . , Xn] such that X = Z(I). Since X ⊆ X, we have I ⊆ I(X) by Proposition

11.3 (a), so V = Z(I(X)) ⊆ Z(I) = X by Proposition 11.1 (a). �

Example 11.11 - If K = C, then Z = A1(C) (Z is dense in C!). �

If V ⊆ An(K) is an algebraic set, we define the Zariski topology to be the topology

induced by the Zariski topology on An(K): by Proposition 11.1 (c), the closed subsets of

V for the Zariski topology are the algebraic sets V ′ which are contained in V .

A topological space X is called irreducible if, for all closed subsets Z and Z ′ of X such

that X = Z ∪ Z ′, we have Z = X or Z ′ = X . For instance, an algebraic set is irreducible

(for the Zariski topology) is it is not the union of two proper algebraic subsets.

Proposition 11.12. Let V ⊆ An(K) be an algebraic set. Then V is irreducible if and

only if I(V ) is a prime ideal.

Proof - Assume that V is not irreducible. Write V = V1 ∪ V2, where V1 and V2 are

proper algebraic subsets of V and let I1 = I(V1), I2 = I(V2) and I = I(V ). Recall from

11.6 that V = Z(I), Vi = Z(Ii). Moreover, I1I2 ⊆ I by Proposition 11.3 (c). By 11.7, we

have I  I1 and I  I2. So there exists f ∈ I1 and g ∈ I2 such that f 6∈ I and g 6∈ I. But

fg ∈ I, so I is not prime.

Conversely, assume that I is not prime. Let f1, f2 ∈ K[X1, . . . , Xn] be such that f1 6∈ I,

f2 6∈ I and f1f2 ∈ I. Let I1 = I +Rf1 and I2 = I +Rf2 and let Vi = Z(Ii). Then Vi ⊆ V
by Proposition 11.1 (a) and, since I1I2 ⊆ I, we get that V ⊆ V1 ∪ V2 by Proposition 11.1

(c). So V = V1 ∪ V2. It remains to show that Vi 6= V . But, since fi 6∈ I(V ), there exists

x ∈ V such that fi(x) 6= 0. So x 6∈ Vi. �

Corollary 11.13. If K is infinite, then An(K) is irreducible.

11.C. Regular maps. We fix an algebraic set V ⊆ An(K).

Definition 11.14. A map f : V → K is called regular (or polynomial) if there exists

f̃ ∈ K[X1, . . . , Xn] such that f(x) = f̃(x) for all x ∈ V .

We denote by K[V ] the set of regular maps V → K: it is called the coordinate ring

of V .

It is readily seen that K[V ] is a K-algebra. Moreover, the map K[X1, . . . , Xn]→ K[V ],

f̃ 7→ (x ∈ V 7→ f̃(x) ∈ K) is a surjective morphism of algebras, whose kernel is I(V ). So

(11.15) K[V ] ' K[X1, . . . , Xn]/I(V ).

We shall identify K[V ] and K[X1, . . . , Xn]/I(V ) in the rest of this part. Note that the

Proposition 11.12 can be reinterpreted as follows:

Proposition 11.16. V is irreducible if and only K[V ] is an integral domain.

The Proposition 11.16 is the first illustration of what is the essential subject of Algebraic

Geometry:

Relate ”geometric” properties of V and algebraic properties of K[V ].



61

Note that K[V ] is, by 11.15, a finitely generated K-algebra, so it is Noetherian by Hilbert’s

Basis Theorem.

Remark 11.17 - Even though its definition is simple, the computation of the ideal I(V )

can be very difficult. For instance, if K = Q, if p is a prime number and if V = Z(Xp+Y p+

Zp), then it took more than 400 years (!) to compute I(V ): this is Fermat’s last Theorem,

proved by Wiles and Taylor in the 1990’s (it says that I(V ) = 〈Xp + Y p + Zp, XY Z〉).
If K is algebraically closed, then Hilbert’s Nullstellensatz (see next section) gives a very

efficient way to compute I(V ). �

We shall now define maps ZV and IV in the same way as the maps Z and I. If E is a

subset of K[V ], we set

ZV (E) = {x ∈ V | ∀ f ∈ E, f(x) = 0}.
If X is a subset of V , we set

IV (X) = {f ∈ K[V ] | ∀ x ∈ X, f(x) = 0}.
It is clear that

(11.18) ZV (E) = Z(Ẽ),

where Ẽ is the inverse image of E in K[X1, . . . , Xn] (under the isomorphism 11.15). In

particular,

(11.19) ZV (E) is an algebraic subset of V .

Also

(11.20) IV (X) = I(X)/I(V ).

Proposition 11.21. Let f ∈ K[V ] (and view it as a map V → A1(K)). Then f is

continuous.

Proof - This amounts to show that f−1(W ) is an algebraic subset of V for all algebraic

subsets W of A1(K). If W = A1(K), this is easy. So we may assume that W 6= A1(K).

Then W is finite by Example 11.8 (2). Write W = {α1, . . . , αr}, with αi ∈ K. Then

f−1(W ) = ZV (
r∏

i=1

(f − αi)).

So f−1(W ) is an algebraic subset of V by 11.19. �

Definition 11.22. Let A be a K-algebra. A maximal ideal m of A is called K-rational

if the natural map K → A/m is an isomorphism. We denote by MaxK(A) the set of

K-rational maximal ideals of A.

Let V ⊆ An(K) be an algebraic set. If x ∈ V , we denote by mx (or mV
x is necessary)

the ideal IV (x). Then the map K[V ] → K, f 7→ f(x) is surjective and its kernel is mx.

In particular, mx is a K-rational maximal ideal of K[V ]. In fact:

Proposition 11.23. If V is an algebraic set, then the map V → MaxK(K[V ]), x 7→ mx

is bijective.
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Proof - The map K[X1, . . . , Xn] → K, f 7→ f(x) is surjective and has kernel I(x), so

I(x) ∈ MaxK(K[X1, . . . , Xn]). Then, if x = (x1, . . . , xn), then

(11.24) I(x) = 〈X1 − x1, . . . , Xn − xn〉.

In particular, Z(I(x)) = {x}. So

(11.25) x ∈ Z(E) if and only if E ⊆ I(x).

Let us now show the following result:

(11.26) The map An(K)→ MaxK(K[X1, . . . , Xn]), x 7→ I(x) is bijective.

First, the equality 11.24 shows that this map is injective. Let us now show that it is

surjective. Now, let m ∈ MaxK(K[X1, . . . , Xn]). Then the natural map σ : K →
K[X1, . . . , Xn]/m is an isomorphism. Let xi = σ−1(X1). Then Xi − xi ∈ m by con-

struction. So, if x = (x1, . . . , xn), then I(x) ⊆ m. Since I(x) is maximal, we get that

m = I(x), as desired.

Now, let πV : K[X1, . . . , Xn]→ K[V ] be the canonical morphism of algebras. Then the

map MaxK(K[V ]) → MaxK(K[X1, . . . , Xn]), m 7→ π−1
V (m) is a bijection and it is clear

that, if x ∈ V , then mV
x = πV (I(x)) = I(x)/I(V ). So the result follows. �

11.D. Morphisms. Let V ⊆ An(K) and W ⊆ Am(K) be two algebraic sets.

Definition 11.27. A map ϕ : V → W is called a morphism of algebraic sets (or

a polynomial map, or a regular map) if, for all regular maps f : V → K, the map

f ◦ ϕ : W → K is regular.

If ϕ : V → W is a morphism of algebraic sets, we denote by ϕ∗ : K[V ] → K[W ],

f 7→ f ◦ ϕ the map induced by ϕ (it is an homomorphism of K-algebras).

The morphism ϕ : V →W is called an isomorphism if ϕ−1 : W → V is a morphism of

algebraic sets.

In particular, if ϕ is an isomorphism of algebraic sets, then ϕ∗ is an isomorphism of

K-algebras. We shall see later (see Corollary 11.33) that in fact ϕ is an isomorphism if

and only if ϕ∗ is an isomorphism of K-algebras.

We denote by MorK(V,W ) the set of morphisms of algebraic sets V → W . If A and

B are two K-algebras, we denote by HomK−alg(A,B) the set of homomorphisms of K-

algebras A→ B.

Proposition 11.28. Let V , W and X be three algebraic sets and let ϕ : V → W and

ψ : W → X be two morphisms of algebraic sets. Then ψ ◦ ϕ : V → X is a morphism of

algebraic sets, and (ψ ◦ ϕ)∗ = ϕ∗ ◦ ψ∗.

Proof - Clear. �

The Proposition 11.28 shows that there is a well-defined category Aff(K) whose objects

are algebraic sets and morphisms are morphisms of algebraic sets. If we denote by Kalg
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the category of finitely generated K-algebras, the Proposition 11.28 shows also that

Aff(K) −→ Kalg

V 7−→ K[V ]

ϕ 7−→ ϕ∗

is a contravariant functor.

Proposition 11.29. Let ϕ : V →W be a map. Then the following are equivalent:

(1) ϕ is a morphism of algebraic sets.

(2) There exists regular maps ϕ1,. . . , ϕm ∈ K[V ] such that, for all x ∈ V , ϕ(x) =

(ϕ1(x), . . . , ϕm(x)).

(3) There exists polynomials ϕ1,. . . , ϕm ∈ K[X1, . . . , Xn] such that, for all x ∈ V ,

ϕ(x) = (ϕ1(x), . . . , ϕm(x)).

Proof - It is clear that (2) and (3) are equivalent. Assume that (1) holds. Then the map

Xi : W → K, (x1, . . . , xn) 7→ xi is regular, so ϕi := Xi ◦ ϕ is also a regular map on V .

Then it is immediately checked that ϕ(x) = (ϕ1(x), . . . , ϕm(x)) for all x ∈ V , so (2) holds.

Conversely, assume that (3) holds. Let f ∈ K[W ] and let f̃ ∈ K[X1, . . . , Xm] be such

that f(x) = f̃(x) for all x ∈ W . Now, let g̃ = f̃(ϕ1(X1, . . . , Xn), . . . , ϕm(X1, . . . , Xn)).

Then g̃ ∈ K[X1, . . . , Xn] and let g : V → K, x 7→ g̃(x). Then g is a regular map by

definition and it is readily seen that g = f ◦ ϕ. This shows (1). �

Corollary 11.30. If ϕ : V → W is a morphism of algebraic sets and if V ′ and W ′ are

algebraic subsets of V and W respectively such that ϕ(V ′) ⊆W ′, then the map V ′ →W ′,
x 7→ ϕ(x) (the restriction of ϕ) is a morphism of algebraic sets.

Proposition 11.31. The map MorK(V,W )→ HomK−alg(K[W ],K[V ]), ϕ 7→ ϕ∗ is bijec-

tive.

Proof - Let us denote by θ the map MorK(V,W )→ HomK−alg(K[W ],K[V ]), ϕ 7→ ϕ∗.

Let us first show that θ is injective. Let ϕ and ψ be two morphisms of algbebraic sets

such that ϕ∗ = ψ∗. Write ϕ(x) = (ϕ1(x), . . . , ϕm(x)) and ψ(x) = (ψ1(x), . . . , ψm(x)) for

all x ∈ V , where the ϕi’s and the ψi’s are regular maps V → K. Let Xi : W → K,

(x1, . . . , xm) 7→ xi. Then Xi is regular, so Xi ◦ ϕ = Xi ◦ ψ, so ϕi = ψi for all i. So ϕ = ψ.

Let us now show that θ is surjective. Let γ : K[W ] → K[V ] be a morphism of K-

algebras. Let ϕi = γ(Xi) ∈ K[V ] and let ϕ : V → Am(K), x 7→ (ϕ1(x), . . . , ϕm(x)). We

only need to show that ϕ(V ) ⊆W (see Corollary 11.30). Let f̃ ∈ I(W ) and let x ∈ V . We

only need to show that f̃(ϕ(x)) = 0. Let γ̃ : K[X1, . . . , Xm] → K[V ] be the composition

K[X1, . . . , Xm] −→ K[W ]
γ−→ K[V ]. Then, by definition, ϕi = γ̃(Xi). So f̃ ◦ ϕ = γ̃(f̃).

But γ̃(f̃) = 0 by construction. So ϕ(x) ∈ Z(I(V )) = V . �

Remark 11.32 - The Proposition 11.31 says that the functor Aff(K)→ Kalg, V 7→ K[V ]

is fully faithful. �

Corollary 11.33. A morphism of algebraic sets ϕ : V → W is an isomorphism if and

only if ϕ∗ is an isomorphism of K-algebras.



64

We shall now show that the map MorK(V,W ) → HomK−alg(K[W ],K[V ]) is ”com-

patible” with the bijections V
∼−→ MaxK(K[V ]) and W

∼−→ MaxK(K[W ]) described in

Proposition 11.23.

Proposition 11.34. Let ϕ : V → W be a morphism of algebraic sets and let x ∈ V .

Then

ϕ∗−1(mV
x ) = mW

ϕ(x).

Proof - Easy. �

11.E. Image, inverse image. A morphism of algebraic sets ϕ : V → W is called

dominant if ϕ(V ) = W .

Proposition 11.35. Let ϕ : V → W be a morphism of algebraic sets and let I be

an ideal of K[V ]. Then IW (ϕ(V )) = Kerϕ∗. In particular, ϕ(V ) = ZW (Kerϕ∗) and

IW (ϕ(V )) = Kerϕ∗.

Proof - Easy. �

Corollary 11.36. A morphism of algebraic sets ϕ : V → W is dominant if and only if

ϕ∗ is injective.

Proof - Clear. �

Proposition 11.37. Let ϕ : V →W be a morphism of algebraic sets and let E ⊆ K[W ].

Then ϕ−1(ZW (E)) = ZV (ϕ∗(E)).

Proof - Let x ∈ V . Then ϕ(x) ∈ ZW (E) if and only if f(ϕ(x)) = 0 for all f ∈ E. In

other words, ϕ(x) ∈ ZW (E) if and only if ϕ∗(f)(x) = 0 for all f ∈ E that is, if and only

if x ∈ ZV (ϕ∗(E)). �

Corollary 11.38. A morphism of algebraic sets is continuous.

11.F. Finite morphisms.

Definition 11.39. A morphism ϕ : V → W of algebraic sets is called finite if K[V ] is

a finitely generated K[W ]-module (here, K[V ] is viewed as a K[W ]-algebras through the

morphism ϕ∗ : K[W ]→ K[V ]).

Remark 11.40 - If ϕ is a finite morphism, then K[V ] is integral over K[W ]. In fact, the

converse is also true. Indeed, if K[V ] is integral over K[W ] then, since K[V ] is a finitely

generated K-algebra, it is a fortiori a finitely generated K[W ]-algebra, so the result follows

from Proposition 9.9. �

Here is a geometric consequence of such notion:

Proposition 11.41. Let ϕ : V →W be a finite morphism of algebraic sets and let w ∈W .

Then ϕ−1(w) is finite.
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Proof - Recall from Proposition 11.37 that ϕ−1(w) = ZV (ϕ∗(mW
w )). So, by Proposition

11.23 (and its proof), an element v ∈ V lies in ϕ−1(w) if and only if mV
v contains ϕ∗(mW

w ).

So it is sufficient to show that the set of maximal ideals of K[V ] containing ϕ∗(mW
w ) is

finite. Let I be the ideal of K[V ] generated by ϕ∗(mW
w ). Then ϕ∗ induces a morphism

σ : K[W ]/mW
w → K[V ]/I. Two case may occur:

• If I = K[V ], then K[V ]/I = 0 so ϕ−1(w) = ∅.

• If I 6= K[V ], then σ is injective because K[V ]/mW
w ' K. Moreover, K[V ]/I is integral

over K (because K[V ] is integral over K[W ]). Moreover, K[V ]/I is finitely generated over

K. So A = K[V ]/I is a finite dimensional commutative K-algebra. Therefore, A/J(A)

is a finite dimensional commutative semisimple K-algebra and we only need to show that

such an algebra has a finite number of maximal ideals. But, by Wedderburn’s Theorem,

A is a finite product of fields: this shows the result. �

12. Noether’s Normalization Theorem, Hilbert’s Nullstellensatz

Since geometric properties of algebraic sets are intimately related to algebraic properties

of finitely generated algebras, it will be useful to study these algebras a priori. The first

important result about these algebras is the following:

Noether’s Normalization Theorem. Let A be a commutative K-algebra which is

generated by n elements. Then there exists m ∈ {0, 1, 2, . . . , n} and elements x1,. . . , xm
of A which are algebraically independent and such that A is integral over K[x1, . . . , xm].

Remark - A family of elements (xi)1 6 i 6 n of a K-algebra A are called algebraically

independent (over K) if the map K[X1, . . . , Xn]→ A, f 7→ f(x1, . . . , xn) is injective. �

Proof - We argue by induction on n. The result is obvious if n = 0. So we assume that

n > 1 and that it is true for all algebras generated by n′ elements, with n′ < n.

Let y1,. . . , yn be generators of A. First, if they are algebraically independent, we

take m = n and (x1, . . . , xm) = (y1, . . . , yn). So we may, and we will, assume that

(y1, . . . , yn) are not algebraically independent. Then there exists P ∈ K[Y1, . . . , Yn] such

that P (y1, . . . , yn) = 0, where the Yi’s are algebraically independent indeterminates. Let

us write

P =
∑

(d1,...,dn)∈D
ad1,...,dnY

d1
1 . . . Y dn

n

where D is a finite subset of (Z≥0)n and ad 6= 0 for all d ∈ D. We define the degree of P

to be

degP = max
(d1,...,dn)∈D

d1 + · · ·+ dn.

Let d = degP and let αi = (1 + d)i. Then d > 1 because P is not constant. Now, let

Q(Y1, . . . , Yn) = P (Y1 + Y α1
n , . . . , Yn−1 + Y αn−1

n , Yn)

and zi = yi − yαin .
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Then z1,. . . , zn−1, yn generate A and Q(z1, . . . , zn−1, yn) = 0. If (d1, . . . , dn) ∈ D, we

define

e(d1, . . . , dn) = α1d1 + α2d2 + · · ·+ αn−1dn−1 + dn

= dn + d1(1 + d) + d2(1 + d)2 + · · ·+ dn−1(1 + d)n−1.

Then the map D → N, d 7→ e(d) is injective (because di 6 d for all (d1, . . . , dn) ∈ D). Let

d0 ∈ D be such that e(d0) is maximal. Then

Q(Y1, . . . , Yn) = ad0Y
e(d0)
n +

∑

i<e(d0)

hi(Y1, . . . , Yn−1)Y i
n

for some hi ∈ K[Y1, . . . , Yn−1]. Let A′ be the subalgebra of A generated by z1,. . . , zn−1.

Since K is a field, we can define

Q0 = T e(d0) + a−1
d0

∑

i<e(d0)

hi(z1, . . . , zn−1)T i.

Then Q0 ∈ A′[X] is monic and Q0(yn) = 0. So A = A′[yn] is integral over A′, so it is a

finitely generated A′-module.

Now, by the induction hypothesis (and since A′ is generated by n− 1 elements), there

exists m 6 n − 1 and a family (x1, . . . , xm) of algebraically independent elements of A′

such that A′ is a finitely generated K[x1, . . . , xm]-module. So A is a finitely generated

K[x1, . . . , xm]-module. �

Remark 12.1 - If V ⊆ An(K) is an algebraic set, then K[V ] is a K-algebra generated by

n elements (see 11.15). So, by Noether’s normalization Theorem, there exists x1,. . . , xm
in K[V ] which are algebraically independent and such that K[V ] is a finitely generated

K[x1, . . . , xm]-module. Let ϕ∗ : K[X1, . . . , Xm] → K[V ] be the morphism of K-algebras

Xi 7→ xi. Then, by Proposition 11.31, ϕ∗ corresponds to a morphism of algebraic sets

ϕ : V → Am(K). By construction, this morphism is finite (so, by Proposition 11.41,

ϕ−1(x) is finite for all x ∈ Am(K)) and is dominant (by Proposition 11.36). �

Corollary 12.2. Let A be a finitely generated commutative K-algebra. We assume that

A is a field. Then A is a finite algebraic extension of K.

Proof - This follows from Noether’s Normalization Theorem and from Proposition 9.19

(b). �

Corollary 12.3. Let A and B be two finitely generated K-algebras, let ϕ∗ : A → B be a

morphism of K-algebras and let m ∈ Max(B). Then ϕ∗−1(m) ∈ Max(A).

Corollary 12.4. Let A be a finitely generated commutative K-algebra and assume that

K is algebraically closed. Then Max(A) = MaxK(A).

Proof - Let m ∈ Max(A). Then A/m is a finitely generated commutative K-algebra

which is a field, so it is a finite extension of K. Since K is algebraically closed, it must be

equal to the image of K. �

Corollary 12.5 (Hilbert’s Nullstellensatz - weak form). Assume that K is alge-

braically closed and let I be a proper ideal of K[X1, . . . , Xn]. Then Z(I) 6= ∅.
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Proof - Indeed, by Corollary 5.2, there exists a maximal ideal m of K[X1, . . . , Xn] con-

taining I. By Corollary 12.4, m is K-rational. So m = (X1 − a1, . . . , Xn − an) for some

a = (a1, . . . , an) ∈ An(K). The fact that I ⊆ m implies that a ∈ Z(I). �

Hilbert’s Nullstellensatz. Let E ⊆ K[X1, . . . , Xn] and assume that K is algebraically

closed. Then I(Z(E)) =
√
〈E〉.

Remark - For the definition of the radical
√
I of an ideal I, see the Appendix. �

Proof - It is clear that
√
〈E〉 ⊆ I(Z(E)). Let us now prove the reverse inclusion. Let

f ∈ I(Z(E)). We may assume that f 6= 0. Let I be the ideal of K[X1, . . . , Xn, T ]

generated by E and 1− Tf . Then

Z(I) = {(x1, . . . , xn, t) ∈ An+1(K) | ∀g ∈ E, g(x1, . . . , xn) = 0 and f(x1, . . . , xn)t = 1}
= {(x1, . . . , xn, t) | (x1, . . . , xn) ∈ Z(E) and f(x1, . . . , xn)t = 1}
= ∅

because f(x1, . . . , xn) = 0 for all (x1, . . . , xn) ∈ Z(E). So, by Corollary 12.5, I =

K[X1, . . . , Xn, T ]. So there exists P1,. . . , Pr ∈ E and Q1,. . . , Qr, Q in K[X1, . . . , Xn, T ]

such that

1 = (1− Tf)Q+
n∑

i=1

PiQi.

Now, by working in the field of fractions K(X1, . . . , Xn), we can specialize the previous

equality through T 7→ 1/f . We get

1 =
n∑

i=1

Pi(X1, . . . , Xn)Qi(X1, . . . , Xn, 1/f).

Now, let N ∈ N be large enough so that Ri = fNQi(X1, . . . , Xn, 1/f) ∈ K[X1, . . . , Xn]

for all i. Then

fN =
n∑

i=1

PiRi ∈ 〈E〉,

as desired. �

13. Algebraic sets over algebraically closed fields

From now on, and until the end of this part, we assume that K is alge-

braically closed. We define an affine variety (over K) to be an irreducible algebraic

subset of some An(K).

Example 13.1 - Let f ∈ K[X1, . . . , Xn] be non-constant. Let us factorize f = f r11 . . . f rkk
where ri > 1 and the fi’s are irreducible and distincts. Then Z(f) = Z(f1 . . . fk) =

Z(f1) ∪ · · · ∪ Z(fk) and I(Z(f)) = 〈f1 . . . fk〉 by Hilbert’s Nullstellensatz. We say that

Z(f) is an hypersurface if k = 1: this is equivalent to say that Z(f) is irreducible. �

13.A. Properties of the correspondence V 7→ K[V ]. Recall that the definitions

of the radical of an ideal and of the nilradical of a commutative ring are given in the

Appendix.
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Definition 13.2. A commutative K-algebras A is called reduced if its nilradical is 0 (in

other words, if 0 is the only nilpotent element). We denote by Kalgred the category of

finitely generated commutative reduced K-algebras.

If V ⊆ An(K), then K[V ] ∈ Kalgred. Moreover, as explained in §11.D, the correspon-

dence

Aff(K) −→ Kalgred

V 7−→ K[V ]

ϕ 7−→ ϕ∗

is a contravariant functor which is fully faithful. We shall now show that it is essentially

surjective (i.e. that, for A ∈ Kalgred, there exists an algebraic set V such that K[V ] ' A)

and will study further the properties of this functor.

Theorem 13.3. Recall that K is algebraically closed. Let V ∈ Aff(K). Then:

(a) The functor K[−] : Aff(K)→ Kalgred is essentially surjective.

(b) The map W 7→ IV (W ) induces a bijection between algebraic subsets of V and

radical ideals of K[V ].

(c) The map W 7→ IV (W ) induces a bijection between irreducible algebraic subsets

of V and prime ideals of K[V ].

(d) The map x 7→ mV
x induces a bijection between V and maximal ideals of K[V ].

(e) V is irreducible if and only if K[V ] is integral.

(f) If W ∈ Aff(K), then the map MorK(V,W )→ HomK−alg(K[W ],K[V ]), ϕ 7→ ϕ∗ is

bijective.

Proof - (a) Let A ∈ Kalgred. Let x1,. . . , xn ∈ A be such that A = K[x1, . . . , xn]. Let

π : K[X1, . . . , Xn] → A denote the unique morphism of K-algebras such that π(Xi) = xi
for all i. Let I = Kerπ. Then A ' K[X1, . . . , Xn]/I so I is a radical ideal. In particular

I(Z(I)) = I by Hilbert’s Nullstellensatz, so K[X1, . . . , Xn]/I ' K[Z(I)]. Therefore,

A ' K[Z(I)].

(b) and (c) follow easily from Hilbert’s Nullstellensatz (note that a prime ideal is always

radical).

(d) follows from Proposition 11.23 and the weak form of Hilbert’s Nullstellensatz (Corol-

lary 12.5).

(e) is Proposition 11.16.

(f) is Proposition 11.32. �

We shall study geometric properties of algebraic sets: by geometric properties, we mean

properties which are ”functorial” with respect to morphism of algebraic sets and in par-

ticular which are invariant under isomorphism of algebraic sets.

13.B. Irreducible components. Since an isomorphism of algebraic sets is an homeo-

morphism, the topology of an algebraic set is ”part” of its geometry. For instance, being

irreducible is a property which is stable by homeomorphism (and which is functorial by
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Exercise IV.1. For general topological spaces (not necessarily irreducible), we introduce

the following notion:

Definition 13.4. If X is a topological space and if Z ⊆ X , we say that Z is an irreducible

component of X if Z is an irreducible closed subset of X which is maximal for these

properties. We denote by Irr(X ) the set of irreducible components of X .

Proposition 13.5. Let V ∈ Aff(K). The map W 7→ IV (W ) induces a bijection between

irreducible components of V and minimal prime ideals of K[V ]. Moreover, Irr(V ) is a

finite set and

V =
⋃

Z∈Irr(V )

Z.

Also, if E is a proper subset of Irr(V ), then

V 6=
⋃

Z∈E
Z.

Proof - This follows from Theorem 13.3 and from Proposition 16.6 (see the Appendix). �

Example 13.6 - Keep the notation of Example 13.1. Then

Irr(Z(f)) = {Z(f1), . . . ,Z(fr)}
and Z(fi) 6= Z(fj) if i 6= j. �

13.C. Dimension. There is an intuitive notion of dimension for an algebraic set: for

instance, we would like that an hypersurface in An(K) has dimension n−1. The following

definition, which holds for any topological space, meets this requirement:

Definition 13.7. If X is a topological space, we define the dimension of X (and we denote

by dimX ) to be the maximal number n such that there exists a chain Z0  Z1  · · ·  Zn
of non-empty irreducible closed subsets of X .

Theorem 13.8. Let V ∈ Aff(K). Then:

(a) dimV = KrulldimK[V ].

(b) If x1,. . . , xm are algebraically independent elements of K[V ] such that K[V ] is

integral over K[x1, . . . , xm] (such a family exists by Noether’s Normalization The-

orem), then dimV = m.

Proof - This follows from Theorems 13.3 (c) and 17.5 and from Proposition 17.3 (see the

Appendix). �

Corollary 13.9. dim An(K) = n.

Note also that, if V ∈ Aff(K), then

(13.10) dimV = sup
Z∈Irr(X )

dimZ.
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Example 13.11 - Keep the notation of Example 13.1. Then it follows from the proof of

Noether’s Normalization Theorem that dimZ(f) = n− 1. �

13.D. Tangent space. If v ∈ An(K) and if f ∈ K[X1, . . . , Xn], we denote by dvf :

Kn → K the differential of f at v: it is a linear form. We have

(13.12) dvf(x1, . . . , xn) =
n∑

i=1

∂f

∂Xi
(v)xi.

Now, let V be an algebraic subset of An(K) and let v ∈ V .

Definition 13.13. A vector x ∈ Kn is called a tangent vector to V at v if, for all

f ∈ I(V ), dvf(x) = 0. The tangent space of V at v is the set of tangent vectors to V

at v. It will be denoted by Tv(V ).

We have, by definition,

(13.14) Tv(V ) =
⋂

f∈I(V )

Ker dvf.

In particular,

(13.15) Tv(V ) is a vector space.

Also, if W is an algebraic subset of V containing v, then

(13.16) Tv(W ) ⊆ Tv(V ).

(Indeed, I(V ) ⊆ I(V ).) Note also that

(13.17) Tv(A
n(K)) = Kn.

The next proposition gives an efficient way for computing the tangent space of V at v:

Proposition 13.18. Let v ∈ V and let E be a set of generators of the ideal I(V ). Then

Tv(V ) =
⋂

f∈E
Ker dvf.

Remark - Since I(V ) is finitely generated, if one can find a finite set of generators of

I(V ), then the computation of the tangent space of V at v is reduced to solving a finite

system of linear equations. �

Proof - Let x ∈
⋂

f∈E
Ker dvf and let g ∈ I(V ). By definition, we only need to show that

dvg(x) = 0. Since g ∈ I(V ), there exists f1,. . . , fr ∈ E and g1,. . . , gr ∈ K[X1, . . . , Xn]

such that g = g1f1 + · · ·+ grfr. Since fi(v) = 0 for all i, we have dvg = g1(v)dvf1 + · · ·+
gr(v)dvfr, whence the result. �

Example 13.19 - Let V = Z(Y 2 −X3) and let v = (a, b) ∈ V . We shall compute the

tangent space of V at v. First, note that I(V ) = 〈Y 2 −X3〉. Therefore, (x, y) ∈ Tv(V ) if

and only if 3a2x − 2by = 0. So, if v = (0, 0), then dimTv(V ) = 2 and, if v 6= (0, 0), then

a and b are not 0 so 3a2 and 2b cannot be both zero (even in positive characteristic) so

dimTv(V ) = 1 in this case. �
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If f1,. . . , fr ∈ K[X1, . . . , Xn] and if v ∈ An(K), we define the Jacobian matrix of

(f1, . . . , fr) at v to be the matrix

Jv(f1, . . . , fr) =
( ∂fi
∂Xj

(v)
)

1 6 i 6 r
1 6 j 6 n

.

Then, if v ∈ V and I(V ) = 〈f1, . . . , fr〉, then

(13.20) Tv(V ) = Ker Jv(f1, . . . , fr) = {(x1, . . . , xn) ∈ Kn | Jv(f1, . . . , fr)



x1
...
xn


 = 0}.

We shall now define the differential of a morphism of algebraic sets. Before, we must

define the differential of a regular map. So let f ∈ K[V ] and let v ∈ V . If f̃ and f̃ ′ are two

elements of K[X1, . . . , Xn] which represent f , and if x ∈ Tv(V ), then dv f̃(x) = dv f̃
′(x) by

definition of Tv(V ). So we can define the differential of f at v to be the map

dvf : Tv(V ) −→ K

x 7−→ dv f̃(x).

It is a linear form that is, an element of the dual of Tv(V ).

Proposition 13.21. Let W ⊆ Am(K) be an algberaic set and let ϕ : V → W , v 7→
(ϕ1(v), . . . , ϕm(v)) be a morphism of algebraic sets with ϕi ∈ K[V ]. Let v ∈ V . Then:

(a) If x ∈ Tv(V ), then (dvϕ1(x), . . . , dvϕm(x)) ∈ Tϕ(v)(W ).

(b) Let dvϕ : Tv(V )→ Tϕ(v)(W ), x 7→ (dvϕ1(x), . . . , dvϕm(x)). Then dvϕ is K-linear.

It is called the differential of ϕ at v.

(c) If ψ : W → X is a morphism of algebraic sets, then dv(ψ ◦ ϕ) = dϕ(v)ψ ◦ dvϕ.

Proof - Only (a) needs a proof, the other statements being straightforward. Let f ∈
I(W ). Let ϕ̃1,. . . , ϕ̃n be elements of K[X1, . . . , Xn] representing ϕ1,. . . , ϕn respectively.

Now, let g = f(ϕ̃1(X1, . . . , Xn), . . . , ϕ̃m(X1, . . . , Xm)) ∈ K[X1, . . . , Xn]. Then, for all

v ∈ V , we have g(v) = f(ϕ(v)) = 0, so g ∈ I(V ). In particular, dvg(x) = 0. But

dvg(x) = (dϕ(v)f)(dvϕ1(x), . . . , dvϕm(x)) = 0,

as desired. �

Corollary 13.22. Let ϕ : V → W be an isomorphism of algebraic sets. Then dvϕ is an

isomorphism of vector spaces for all v ∈ V .

The next problem, still unsolved, is particularly difficult:

Jacobian Conjecture. Assume that K is an algebraically closed field of

characteristic 0. Let ϕ : An(K)→ An(K) be a morphism of algebraic sets

such that dvϕ is an isomorphism of vector spaces. Then ϕ is an isomor-

phism of algebraic sets.



72

Example 13.23 - Let V be the hyperbola Z(XY −1) and let ϕ : V → V , (x, y) 7→ (x2, y2).

Assume here that K has characteristic different from 2. Then Tv(V ) has dimension 1 and

dvϕ is an isomorphism of vector spaces for all v ∈ V . However, ϕ is not an isomorphism

of affine varieties. �

13.E. Smoothness. We shall define the notion of smooth affine algebraic variety. For

this, we need to obtain a description of the tangent space of V at v in algebraic terms.

So we fix an algebraic set V and a point v ∈ V . If x ∈ Tv(V ), then the map ∂xv :

K[V ]→ K, f 7→ (dvf)(x) is well-defined and satisfies

(13.24) ∂xv (fg) = f(v)∂xv (g) + g(v)∂xv (f).

In particular, m2
v is contained in the kernel of ∂xv . We shall denote by ∂̃xv : mv/m

2
v → K

the map induced by ∂xv . So we have constructed a map

∂̃v : Tv(V ) −→ (mv/m
2
v)
∗

x 7−→ ∂̃xv .

It is readily seen to be K-linear. In fact:

Proposition 13.25. The map ∂̃v : Tv(V ) −→ (mv/m
2
v)
∗ is an isomorphism of K-vector

spaces.

Proof - Let x ∈ Tv(V ) be such that ∂̃xv = 0. Then, since dvf(x) = 0 for all constant

functions, we have that dvf(x) = 0 for all f ∈ K[V ]. Now, if f̃ ∈ K[X1, . . . , Xn], then

dv f̃(x) = dvf(x) = 0 (where f denotes the image of f̃ in K[V ] = K[X1, . . . , Xn]/I(V )).

In other words,
n∑

i=1

xi
∂P

∂Xi
(v) = 0

for all P ∈ K[X1, . . . , Xn]. If we apply this equality for P = Xi, we get that xi = 0 for all

i, so x = 0. Hence ∂̃v is injective.

Now, let us show that ∂̃v is surjective. Let τ : (mv/m
2
v) → K be K-linear. Write

v = (a1, . . . , an) and denote by Xi : V → K the image of Xi. Then Xi − ai ∈ mv and we

denote by xi the image, via τ , of the projection of Xi−ai on mV /m
2
v. Let x = (x1, . . . , xn).

We shall prove that x ∈ Tv(V ) and that ∂̃xv = τ . First, let τ+ : K[X1, . . . , Xn] → K,

P 7→ τ(P − P (v)), where P − P (v) denotes the image of P − P (v) in mv/m
2
v. Then it is

readily seen that τ+(PQ) = P (v)τ+(Q) + Q(v)τ+(P ). To prove our claim, we only need

to show that dvP (x) = τ(P ) for all P . By the previous equality, we only need to prove it

for P = Xi, but this is just the definition of τ . �

We define the Zariski tangent space of V at v to be the dual of mv/m
2
v. Note that, by

the previous proposition, the Zariski tangent space is canonically isomorphic to Tv(V ), so

that in particular it has finite dimension. We shall explain now why the isomorphism ∂̃v
is ”functorial”. We first need some notation: if ϕ : V → W is a morphism of algebraic

sets and if v ∈ V , then ϕ∗−1(mV
v ) = mW

ϕ(v) (see Proposition 11.34). In other words,

ϕ∗(mW
ϕ(v)) ⊆ mV

v . This also implies that ϕ∗((mW
ϕ(v))

2) ⊆ (mV
v )2. Therefore, ϕ∗ induces a
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K-linear map ϕ∗v : mW
ϕ(v)/(m

W
ϕ(v))

2 −→ mV
v /(m

V
v )2. We denote by tϕ∗v its transpose. Then

the diagram

(13.26)

Tv(V )
∂̃Vv //

dvϕ

��

(
mV
v /(m

V
v )2
)∗

tϕ∗v

��
Tϕ(v)(V )

∂̃Wϕ(v) //
(
mW
ϕ(v)/(m

W
ϕ(v))

2
)∗

is commutative. The proof is left as an exercise.

Theorem 13.27. If V is an affine algebraic variety and if v ∈ V , we have dimTv(V ) =

dim mv/m
2
v > KrulldimK[V ] = dimV .

Proof - See any good book dealing with ”Commutative Algebra” (Matsumura, or Atiyah-

McDonald...). We shall prove it only in the case where V is an hypersurface (see Ex-

ample 13.1). So we assume that V = Z(f), where f is an irreducible polynomial in

K[X1, . . . , Xn]. Then dimV = n − 1 by Example 13.11 and, since I(V ) = 〈f〉, we have

dimTv(V ) = Ker dvf by Proposition 13.18. This shows the result. �

Definition 13.28. If V is an affine algebraic variety and if v ∈ V , we say that V is

smooth at v (or that v is a regular or smooth point of V ) if dimTv(V ) = dimV . The

variety V is said to be smooth (or non-singular, or regular) if it is smooth at each of

its points.

We denote by Sing(V ) the set of singular points of V .

Theorem 13.29. If V is an affine algebraic variety, then Sing(V ) is a closed subset of V

and V \ Sing(V ) is not empty.

Proof - Let f1,. . . , fr be a set of generators of the ideal I(V ). Then Tv(V ) is the kernel

of the Jacobian Jv(f1, . . . , fr). By Theorem 13.27, we know that the rank of this matrix

is always greater than or equal to n− dimV . And v ∈ Sing(V ) if and only if this rank is

< n−dimV . But this last condition is then equivalent to the vanishing of all determinant

of submatrices of Jv(f1, . . . , fr) of size (n− dimV )× (n− dimV ). So Sing(V ) is a closed

subset of V .

We shall prove the second statement only whenever V is an hypersurface (for the general

case, see R. Hartshorne, Algebraic geometry, Graduate Texts in Mathematics 52, Part

I, Theorem 5.3). So assume that V = Z(f), where f is an irreducible polynomial of

K[X1, . . . , Xn] and assume that V = Sing(V ). By the proof of Theorem 13.27, this means

that we have dvf = 0 for all v ∈ V . In other words,
∂f

∂Xi
(v) = 0 for all i and all v ∈ V .

Since I(Z(f)) = 〈f〉, this implies that
∂f

∂Xi
= 0 for all i. If K has characteristic 0, this

is impossible. Assume that K has positive characteristic p. Then this means that f is
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a polynomial in Xp
1 ,. . . , Xp

n. So f is the p-th power of some polynomial, so f is not

irreducible: we also get a contradiction. �

14. Examples

We shall need in the sequel the following theorem:

Theorem 14.1. Let ϕ : V → W be a morphism of algebraic sets and assume that V is

irreducible. Let r = dimV − dimϕ(V ). Then ϕ(V ) and ϕ(V ) are irreducible and there

exists an open subset U of ϕ(V ) such that:

(a) U ⊆ ϕ(V ) ⊆ ϕ(V );

(b) U 6= ∅;

(c) For all x ∈ U , dimϕ−1(x) = r.

Example 14.2 - Let P ∈ K[X1, . . . , Xn−1] and let

V = {(x1, . . . , xn) ∈ An(K) | xn = P (x1, . . . , xn−1)}
Then V is an hypersurface in An(K) (indeed, Xn − P (X1, . . . , Xn−1) is irreducible) and

the map π : V → An−1(K), (x1, . . . , xn) 7→ (x1, . . . , xn−1) is an isomorphism (its inverse

is given by (x1, . . . , xn−1) 7→ (x1, . . . , xn−1, P (x1, . . . , xn−1)). �

Example 14.3 - Let P ∈ K[X] and let C = {(x, y) ∈ A2(K) | y2 = P (x)}. We assume

that P is not the square of a polynomial in K[X]. We also assume that the characteristic

of K is different from 2. Then Y 2 − P (X) is irreducible, so I(C) = 〈Y 2 − P (X)〉 by

Hilbert’s Nullstellensatz and C is an affine curve (i.e. an affine variety of dimension 1). A

point (x, y) ∈ C is singular if and only if 2y = P ′(x) = 0. In other words,

Sing(C) = {(x, 0) | P (x) = P ′(x) = 0}.
So

C is smooth if and only if P and P ′ are relatively prime. �

Example 14.4 - If a ∈ K× and b ∈ K, we denote by σa,b : A1(K)→ A1(K), x 7→ ax+b.

Let A = {σa,b | a ∈ K×, b ∈ K}. Then A is a subgroup of Aut(A1(K)), the group of

automorphisms of A1(K) as an affine variety. Moreover,

A ' K× nK.
In fact, it is easy to check that

A = Aut(A1(K))

by investigating the automorphisms of the K-algebra K[X]. Finally, note that σa,b is an

involution if and only if a = −1. �

Example 14.5 - Assume that K has characteristic different from 2 and 3. Let C =

{(x, y) ∈ A2(K) | y2 = x3 − x + 1}. Then, by Example 14.3, C is a smooth curve. We

shall prove here that C is not isomorphic to A1(K).
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First, let σ : C → C, (x, y) 7→ (x,−y). Then σ is an involutive automorphism of C. In

particular, σ∗ is an involutive automorphism of the K-algebra A = K[C] = K[X,Y ]/(Y 2−
X3 +X − 1).

So assume that that C ' A1(K). Then K[T ] ' A: we denote by t the image of T

in A through this isomorphism. Then, by example 14.4, there exists b ∈ K such that

σ∗(t) = b− t. If we write t = P (X̄) + Ȳ Q(X̄) where P and Q are (uniquely determined)

polynomials in one variable and X̄ and Ȳ denote respectively the images of X and Y in

A, then σ∗(t) = P (X̄)− Ȳ Q(X̄) so P (X̄) = b − P (X̄). This show that P (X̄) = b/2. So,

by translating the variable T , we may assume that t = Ȳ Q(X̄). But K[t] = A, which is

impossible. �

Example 14.6 - Assume that K has characteristic different from 2 and 3. Let C =

{(x, y) ∈ A2(K) | y2 = x3 + x2}. Then C is not smooth: (0, 0) is the unique singular

point of C. Let ϕ : A1(K) → C, t 7→ (t2 − 1, t(t2 − 1)). Then ϕ is a surjective morphism

of varieties. Let A = K[C]. Then ϕ∗ : A ↪→ K[T ], and K[T ] is contained in the field of

fractions of A (indeed, ϕ∗(Ȳ /X̄) = T ). In fact, K[T ] is the normalization of A. �

Example 14.7 - Let A and B be the matrices in GL2(C) equal to

A =

(
i 0
0 −i

)
and B =

(
0 1
−1 0

)
.

Let C = AB. Then

AB = −BA = C, BC = −CB = A and CA = −AC = B.

Also

A2 = B2 = C2 = −I,
where I is the identity matrix. This shows that

G = 〈A,B〉 = {I,−I, A,−A,B,−B,C,−C}.
It is called the quaternion group of order 8. Then G acts on A2(C) by matrix multiplica-

tion. It is readily seen that the polynomials

u = X4 + Y 4, v = X2Y 2 and w = XY (X4 − Y 4)

are elements of C[X,Y ]G. Moreover, w2 = v(u2 − 4v2). In particular, the morphism of

algebras C[U, V,W ]→ C[X,Y ]G, U 7→ u, V 7→ v, W 7→ w induces a well-defined morphism

of C-algebras

π∗ : C[U, V,W ]/〈W 2 − V (U2 − 4V 2)〉 → C[X,Y ]G.

It turns out that π∗ is an isomorphism of algebras.

In other words, A2(C)/G is isomorphic to the variety {(a, b, c) ∈ A3(C) | c2 = b(a2 −
4b2)}. Its only singular point is (0, 0, 0). �

Example 14.8 - Let V = Z(Z2 −XY 2). The polynomial Z2 −XY 2 being irreducible,

V is an hypersurface and I(V ) = 〈Z2 −XY 2〉. In particular, Sing(V ) = Z(Y,Z).

Let a ∈ K. Then V ∩ Z(X − a) is the union of two lines if a 6= 0. Also V ∩ Z(Y − a)

is a parabola if a 6= 0. And V ∩ Z(Z − a) is isomorphic to Z(XY 2 − a2) ⊆ A2(K): it is

smooth except if a 6= 0. �
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Example 14.9 - Let p be the characteristic of K and assume that p > 0. Let q be a

power of p and let Fq = {x ∈ K | xq = x}: it is the unique subfield of cardinal q. Then

the additive finite group Fq acts on A1(K) by translation (an element ξ ∈ Fq acts through

t 7→ t+ ξ). Then the map π : A1(K)→ A1(K), t 7→ tq − t is a quotient of A1(K) by the

action of Fq (see the Homework).

Proposition 14.10. Let C be a smooth affine variety of dimension 1 (a smooth affine

curve) and let G be a finite group acting on C. Assume that C/G ' A1(K) and that,

for all g ∈ G, g 6= 1, we have g(v) 6= v for all v ∈ C. Then G is generated by its Sylow

p-subgroups.

More astonishing is the following result, which can be seen as an inverse Galois problem

for the affine line in positive characteristic:

Theorem 14.11 (Raynaud). Let G be a finite group generated by its Sylow p-subgroups.

Then there exists a smooth affine curve C endowed with an action of G and such that:

(1) C/G ' A1(K);

(2) For all g ∈ G, g 6= 1 and for all v ∈ C, we have g(v) 6= v.

Sub-example - The finite group SL2(Fq) is generated by its Sylow p-subgroups (check

it!). So there must exists a smooth affine curve C endowed with an action of SL2(Fq)
satisfying the requirements in Raynaud’s Theorem. An example is given in Exercise IV.7

(Deligne-Lusztig curve). �

Example 14.12 - Identify Matn(K) with An2
(K). LetNn be the set of nilpotent matrices

in Matn(K). In fact,

(14.13) Nn = {M ∈ Matn(K) | Mn = 0}.
In particular, Nn is an algebraic set.

Let SLn(K) = {M ∈ Matn(K) | detM = 1} and Nn(K) be the set of triangular

nilpotent matrices in Matn(K). Then Nn(K) ' An(n−1)/2(K) is irreducible. Also, the

polynomial det−1 is irreducible, so SLn(K) is an hypersurface in Matn(K) (in particular,

it is irreducible). Now, the map

ϕ : SLn(K)×Nn(K) −→ Nn
(g,M) 7−→ gMg−1

is a morphism of algebraic sets (indeed, the map SLn(K)→ SLn(K), g 7→ g−1 is polyno-

mial). The map is surjective by Jordan decomposition. So, by Exercise IV.1,

(14.14) Nn is irreducible.

If M ∈ Matn(K), we denote by σ1(M),. . . , σn(M) the coefficients of Xn−1,. . . , X, 1

respectively in the characteristic polynomial of M (σ1 = ±Tr and σn = ±det). Then the

map
σ : Matn(K) −→ An(K)

M 7−→ (σ1(M), . . . , σn(M))

is a morphism of algebraic sets. It is surjective. Moreover,

(14.15) Nn = σ−1(0).
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Let Jn =




0 1 0 . . . 0
...

. . .
. . .

. . .
...

...
. . .

. . . 0
...

. . . 1
0 . . . . . . . . . 0




. We denote by P(n) the set of partitions of n, i.e.

the set of finite sequences λ = (λ1, . . . , λr) of natural numbers such that λ1 + · · ·+λr = n

and λ1 > λ2 > . . . > λr > 1. We denote by Jλ the matrix which is diagonal by blocks,

the blocks being equal to Jλ1 ,. . . , Jλr . Finally, we denote by Cλ the orbit of Jλ under

the action (by conjugacy) of SLn(K): Cλ = {gJλg−1 | g ∈ SLn(K)}. Then, by Jordan

decomposition,

(14.16) Nn =
⋃

λ∈P(n)

Cλ,

and this is the partition of Nn into SLn(K)-orbits. If λ ∈ P(n), the closure of Cλ is stable

under the action of SLn(K), We then define a relation E on P(n) as follows:

λ E µ⇐⇒ Cλ ⊆ Cµ (⇐⇒ Cλ ⊆ Cµ).

We also define a morphism of varieties

ϕλ : SLn(K) −→ Nn
g 7−→ gJλg

−1

Then the image of ϕλ is Cλ, so

(14.17) Cλ and Cλ are irreducible subsets of Nn.

Moreover,

(14.18) Cλ is an open subset of Cλ.

Indeed, by Theorem 14.1, there exists a non-empty open subset U of Cλ containing the

image of ϕλ (which is Cλ). Then Cλ =
⋃
g∈SLn(K) gUg

−1 is still open in Cλ.

Theorem 14.19. Let λ, µ ∈ P(n). Then:

(a) Cλ is an open irreducible subset of the irreducible closed set Cλ.

(b) dim Cλ = n2 − 1− dimCSLn(K)(Jλ).

(c) If λ C µ, then dim Cλ < dim Cµ.

(d) E is a partial order on P(n).

(e) Cn = {M ∈ Nn | Mn−1 6= 0}.
(f) Cn is open and dense in Nn.

(g) dimNn = n2 − n.

(h) If M ∈ Cn, then M is a smooth point of Nn.

(i) Let λ = (λ1, . . . , λr) and µ = (µ1, . . . , µs) be two partitions of n. Then λ E µ if

and only if λ1 + · · ·+ λi 6 µ1 + · · ·+ µi for all > 1 (here, by convention, λr+1 =

λr+2 = · · · = µs+1 = µs+2 = · · · = 0).
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15. Localization

If X is a set, we denote by Maps(X ,K) the set of maps X → K: this is a K-algebra.

15.A. Regular functions on open subsets. Let V be an algebraic set, let U be an

open subset of V and let x ∈ U . A map f : U → K is called regular at x if there exists

an open subset U ′ of U containing x and two regular functions P , Q ∈ K[V ] such that

Q does not vanish on U ′ and f(y) = P (y)/Q(y) for all y ∈ U ′. A map f : U → K is

called regular if it is regular at all elements of U . We denote by OV (U) the set of regular

functions on U . It is clearly a commutative K-subalgebra of Maps(U,K).

Remark - If U = V , we have defined two notions of regular functions on V : this one and

the one defined in §11.C. We shall prove in Corollary 15.2 that these notions coincide, i.e.

that OV (V ) = K[V ] (note that it is clear from the definitions that K[V ] ⊆ OV (V )). �

If f ∈ K[V ], we denote by Vf = {x ∈ V | f(x) 6= 0}. By definition, Vf is an open subset

of V (it is the complement of ZV (f) in V ): it is called a principal open subset of V . Since

any closed subset is a finite intersection of some ZV (f), any open subset is a finite union

of principal open subsets.

Since K[V ] is reduced, f is not nilpotent. If f 6= 0, we shall denote by K[V ]f the

localization of K[V ] at the multiplicative set {fn | n > 0} (this last set does not contain

0). In other words, K[V ]f = K[V ][1/f ] ' K[V ][T ]/〈1− Tf〉.

Proposition 15.1. Let f ∈ K[V ], f 6= 0. Then OV (Vf ) ' K[V ]f .

Proof - See Hartshorne. �

Corollary 15.2. OV (V ) = K[V ].

Proof - Apply the Proposition 15.1 to f = 1. �

15.B. Sheaves of functions. If X ⊆ X ′ are two sets and if f : X ′ → K is a map, we

denote by f |X (or ResX f , or ResX
′

X f) the restriction of f to X.

If X is a topological space, a sheaf of functions on X (with values in K) is a collection

F = (F(U))U open in X such that, for all open subsets U of X , F(U) ⊆ Maps(U ,K) and

satisfying the following axioms:

(S1) If U ⊆ U ′ are two open subsets of X and if f ∈ F(U ′), then f |U ∈
F(U ,K).

(S2) If (Ui)i∈I is a family of open subsets of X and if f ∈ Maps(U ,K)

(where U is the union of the Ui’s) is such that f |Ui ∈ F(Ui) for all i,

then f ∈ F(U).

If F is a sheaf of functions on X , we say that F is a sheaf of K-vector spaces (respec-

tively a sheaf of K-algebras) if, for all open subsets U of X , F(U) is a K-vector subspace

(respectively a K-subalgebra) of Maps(U ,K).

Example 15.3 - (0) (Maps(U,K))U open in X is a sheaf of functions on X .
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(1) Assume that K is endowed with a topology (for instance the usual topology if K = R
or C, or the Zarisky topology, or the p-adic topology if K is an algebraic extension of Qp),
then the collection (Cont(U ,K))U open in X is a sheaf (where Cont(U ,K) denotes the set

of continuous functions on U).

(2) If V is an algebraic set, then OV is a sheaf of K-algebras on V . �

A ringed space is a pair (X ,O), where X is a topological space and O is a sheaf of

algebras on X . If (X ′,Y ′) is another ringed space, a morphism from (X ,O) to (X ′,O′) is

a continuous map ϕ : X → X ′ such that, for any open subset U of X ′ and any f ∈ O′(U),

the map f ◦ ϕ : ϕ−1(U)→ K belongs to O(ϕ−1(U)).

Example 15.4 - If V is an algebraic set, then (V,OV ) is a ringed space. The sheaf OV
is called the structural sheaf on V . Moreover, if ϕ : V → W is a morphism of algebraic

sets, then ϕ is a morphism of ringed spaces. Conversely, if ϕ : (V,OV ) → (W,OW )

is a morphism of ringed spaces (where V and W are two algebraic sets), then, for all

f ∈ K[W ] = OW (W ), we have that f ◦ ϕ ∈ OV (V ) = K[V ], so ϕ is a morphism of

algebraic sets. �

Example 15.5 - Let (X ,O) be a ringed space and let U be an open subset of X . We

denote by O|U the sheaf on U obtained by restriction of O (i.e., if V ⊆ U is open, we set

O|U (V) = O(V)). Then (U ,O|U ) is a ringed space.

15.C. Variety. A scheme of finite type (over K) is a ringed space (X ,O) satisfying the

following axiom:

(Sch) There exists open subsets U1,. . . , Un of X such that X =
⋃n
i=1 Ui

and such that, for all i, there exists an algebraic set Vi such that

(Ui,O|Ui) ' (Vi,OVi).
Let (X ,O) and (X ′,O′) be two schemes of finite type over K. We shall define a topology

on X × X ′ which is in general different from the product topology. Let (Ui)1 6 i 6 n and

(U ′j)1 6 j 6 m be a covering of X and X ′ respectively satisfying the axiom (Sch). Then we

endow X × X ′ with the topology generated by the open subsets of the Ui × U ′j .
Then a scheme of finite type (X ,O) is called separated if the image of the map ∆ : X →

X ×X , x 7→ (x, x) is closed in X × X .

An algebraic variety (over K) is a scheme of finite type which is irre-

ducible and separated. A morphism of algebraic varieties is a morphism

of ringed spaces. A variety is called affine if it is isomorphic to some

(V,OV ) where V is an irreducible algebraic set.

15.D. Example: open subsets of varieties. Let (V,O) be a variety and let U be an

open subset of V . Then (U,O|U ) is a variety. Indeed, we only need to prove it whenever

V is affine. Then U =
⋃r
i=1 Vfi for some fi ∈ O(V ) = K[V ], so we are reduced to prove

that (Vf ,O|Vf ) is an affine variety for all f ∈ K[V ], f 6= 0. Assume that V ⊆ An(K) and

let

W = {(x1, . . . , xn, t) ∈ An+1(K) | (x1, . . . , xn) ∈ V and f(x1, . . . , xn)t− 1 = 0}.
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Let π : W → V , (x1, . . . , xn, t) 7→ (x1, . . . , xn). Then W is an affine algebraic set and the

map π is a morphism of algebraic sets. Moreover, the image of π is equal to Vf . it is now

readily seen that π : W → Vf is an isomorphism of ringed spaces.

Example 15.6 - Let GLn(K) = {M ∈ Matn(K) | det(M) 6= 0} viewed as an open set

of the affine space Matn(K). Then GLn(K) = Matn(K)det and it is readily seen that the

maps
GLn(K)×GLn(K) −→ GLn(K)

(M,N) 7−→ MN

GLn(K) −→ GLn(K)
M 7−→ M−1

are morphisms of varieties (the last one is an isomorphism). �

15.E. Example: projective varieties. We denote by K[X0, X1, . . . , Xn]h the set of

homogeneous polynomials in K[X0, X1, . . . , Xn]. If E ⊆ K[X0, X1, . . . , Xn]h, we set

Zh(E) = {[x0, x1, . . . , xn] ∈ Pn(K) | ∀ f ∈ E, f(x0, x1, . . . , xn) = 0}.
Then the map Zh shares almost the same properties as the map Z: in particular, if we

define a projective algebraic set as an element of the image of Zh, then projective algebraic

sets are the closed subsets of some topology on Pn(K), the Zariski topology on Pn(K).

If V ⊆ Pn(K) is a projective algebraic set and if U is an open subset of V , then a map

f : U → K is called regular if, for all x ∈ U , there exists an open subset U ′ of U and

two homogeneous polynomials P and Q of the same degree such that Q(v) 6= 0 for all

u ∈ U ′ and f(u) = P (u)/Q(u) for all u ∈ U ′. This defines a sheaf OV on V .

We denote by An
(i)(K) the subset of Pn(K) consisting of the [x0, x1, . . . , xn] such that

xi 6= 0. Then the map An(K)→ An
(i)(K), (x1, . . . , xn) 7→ (x1, . . . , xi−1, 1, xi, . . . , xn) is an

homeomorphism.

If V = Zh(E) ⊆ Pn(K), let V(i) = V ∩An
(i)(K). Then V =

⋃n
i=0 V(i) and (V(i),OV |V(i)

)

is an affine variety (it is isomorphic to Z(E(i)), where

E(i) = {f(X1, . . . , Xi−1, 1, Xi, . . . , Xn) | f ∈ E} ).

In fact,

(15.7) (V,OV ) is a separated scheme of finite type.

A variety is called projective if it is isomorphic to some (V,OV ) where V is an irreducible

projective algebraic set.
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Exercises from Part III

In all these exercises, we assume that K is algebraically closed.

Exercise IV.1. Let f : X → Y be a continuous map between topological spaces. Show

that f(X ) is an irreducible subset of Y.

Exercise IV.2. Let X be a topological space and let Y be an irreducible subset of X .

Show that Y is irreducible.

Exercise IV.3. Find the irreducible components of the following algebraic sets:

(a) Z(X2 + Y 2 − 5, XY − 2).

(b) Z(X2 − Y 2).

(c) Z(X2 − Y Z,XZ −X).

Exercise IV.4. Let ϕ : A1(K)→ A3(K), t 7→ (t3, t4, t5). Let V denote the image of ϕ.

(a) Show that ϕ is a morphism of varieties.

(b) Show that I(V ) = (X3 − Y Z, Y 2 − XZ,Z2 − X2Y ) and that V = Z(I(V )) (in

other words, V = V ).

(c) Show that dimV = 1.

(d) Show that I(V ) cannot be generated by two elements.

(e) Show that V is irreducible.

Exercise IV.5. Determine the set Sing(V ) in the following cases:

(a) V = Z(Y 2 −X3 −X2).

(b) V = Z(Z2 −X2 − Y 2).

(c) V = Z(XY 2 − Z2).

Exercise IV.6. Assume that K has characteristic p > 0. Show that the map ϕ :

A1(K) → A1(K), t 7→ tp − t is not an isomorphism. Nevertheless, show that dtϕ is an

isomorphism for all t ∈ A1(K). Compare with the Jacobian Conjecture.

Exercice IV.7∗ (Deligne-Lusztig). Assume that the characteristic p of K is positive.

Let q be a power of p. We denote by Fq the subfield of K with q elements (i.e. Fq = {x ∈
K | xq = x}). Let

G = SL2(Fq) = {g ∈ GL2(Fq) | det g = 1}.

Let V = Z(XY q − Y Xq − 1) ⊆ A2(K). If g =

(
a b
c d

)
∈ G, we let it act on A2(K)

through the map A2(K)→ A2(K), (x, y) 7→ (ax+ by, cx+ dy) (= g.(x, y)).

(a) Compute dimV .

(b) Show that V is smooth.

(c) Show that G acts on A2(K) as a group of automorphisms of varieties.

(d) Show that G stabilizes V .

(e∗∗∗) Show that V/G ' A1(K).
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Exercise IV.8. Identify Matn(K) with An
2
(K) and let det : Matn(K) → K and Tr :

Matn(K)→ K be respectively the determinant and the trace. We also identify Matn(K)

with the tangent space TM Matn(K) for all M ∈ Matn(K). If V is an algebraic subset of

Matn(K) and if v ∈ V , then we shall identify Tv(V ) with the corresponding subspace of

Matn(K). If a ∈ K, we denote by Va the algebraic set Z(det−a).

(a) Show that det−a is an irreducible polynomial in n2 variables.

(b) Deduce that Va is irreducible. Compute dimVa.

(c) Let M ∈ Matn(K). Show that dM det : Matn(K)→ K, X 7→ Tr(C(M)X), where

C(M) is the matrix of the cofactors of M .

(d) Let a ∈ K. Show that a Idn ∈ Van (where Idn denotes the identity matrix) and

compute Ta IdnVan .

(e) Show that Va is smooth if and only if a 6= 0.

Exercise IV.9∗. Let f ∈ K[X,Y ] be irreducible and let V = Z(f). Show that V is

smooth if and only if K[V ] = K[X,Y ]/〈f〉 is integrally closed.
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Appendix. Algebraic background for algebraic geometry

We fix a commutative ring.

16. Radical ideals

Definition 16.1. If I is an ideal of a commutative ring R, we define the radical of I to

be the set √
I = {x ∈ R | ∃ n ∈ N, xn ∈ I}.

The radical of the zero ideal (that is, the set of nilpotent elements of R, see §5.C) is

called the nilradical of R. An ideal I of R is called radical if it is equal to its radical.

Recall that, if R is Artinian, then the nilradical of R is equal to its Jacobson radical.

Proposition 16.2. Let I be an ideal of the commutative ring R. Then:

(a) I ⊆
√
I.

(b)
√√

I =
√
I.

(c)
√
I is an ideal.

(d)
√
I/I is the nilradical of R/I.

Proof - (a), (b) and (d) are easy. Let us prove (c). Let x ∈ R and y ∈
√
I. It is then

clear that xy ∈
√
I. The only difficult part is to show that, if moreover x ∈

√
I, then

x− y ∈
√
I. Let m and n be two natural numbers such that xm ∈ I and yn ∈

√
I. Then,

since R is commutative, we have

(x− y)m+n =
m+n∑

i=0

(
m+ n
i

)
xiym+n−i.

Let i ∈ {0, 1, 2, . . . ,m+n}. If i 6 m, then m+n−i > n and so ym+n−i ∈ I, so xiym+n−i ∈
I. If i > m, then xi ∈ I and again xiym+n−i ∈ I. So (x− y)m+n ∈ I. �

Examples 16.3 - (1) Prime ideals are radical.

(2) If R = Z, then
√
〈180〉 = 〈30〉. �

Proposition 16.4. Let I be an ideal of the commutative ring R. Then
√
I =

⋂

p∈Spec(R)
I⊆p

p.

Proof - By Proposition 16.2 (d), we may, and we will, assume that I = 0. Let

J =
⋂

p∈Spec(R)

p.

It is clear
√

0 ⊆ J . It remains to show that J ⊂
√

0. In other words, we must show that,

if r ∈ R is not nilpotent, then r 6∈ J . So let r ∈ R which is not nilpotent. Let M be the

set of ideals of R which does not contain any positive power of r. Then 0 ∈M because r
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is not nilpotent, so M is not empty. It is readily seen from Zorn’s Lemma that M has a

maximal element. Let p be a maximal element of M.

We only need to show that p is a prime ideal. So let a and b be two elements of R such

that a 6∈ p and b 6∈ p. By the maximality of p, there exist k, l > 1 such that rk ∈ p + Ra

and rl ∈ p +Rb. Therefore, rk+l ∈ p +Rab. Therefore, ab 6∈ p. �

Proposition 16.5. Let I be an ideal of the commutative Noetherian ring R. Then there

exists k > 1 such that (
√
I)k ⊆ I.

Proof - By Proposition 16.2 (d), we may assume that I = 0. Since Ris Noetherian, there

exists r1,. . . , rn ∈ R such that
√

0 = 〈r1, . . . , rn〉. For each i, there exists ki > 1 such that

rkii ∈ I. Let k = k1 + · · ·+ kn. Then, if we proceed as in the proof of Proposition 16.2 (c),

it is easily checked that (
√
I)k ⊆ I. �

We conclude this section with a result concerning minimal prime ideals in Noetherian

rings.

Proposition 16.6. Let R be a commutative Noetherian ring and let I be an ideal of R and

let P denote the set of prime minimal prime ideals containing I. Then P is non-empty,

finite and
√
I =

⋂

p∈P
p. Moreover, if P ′ is a proper subset of P, then

√
I  

⋂

p∈P ′
p.

Proof - Let M be the set of proper radical ideals of R which cannot be written as a

finite intersection of prime ideals. We want to show that M is empty. If M 6= ∅, then

there exists a maximal element J in M because R is Noetherian. By construction, J is

not prime, so there exists two elements a and b in R such that a 6∈ J , b 6∈ J and ab ∈ J .

Let J ′ =
√
J +Ra, J ′′ =

√
J +Rb. Then J ⊆ J ′ ∩ J ′′ and J  J ′ and J  J ′′. Let us

show that J = J ′ ∩ J ′′. Let x ∈ J ′ ∩ J ′′. Then there exists m and n ∈ N, j ′ ∈ J , j′′ ∈ J
and r and s ∈ R such that xm = j′ + ra and xn = j′′ + sb. Therefore xm+n ∈ J , so x ∈ J
because J is radical. In particular, J ′ and J ′′ are proper ideal of R. So they do not belong

toM by the maximality of J . But then J = J ′∩J ′′ can be written as a finite intersection

of prime ideals. So we have proved the following result:

(∗) Every radical ideal of R is a finite intersection of prime ideals of R.

Let us now come back to the proof of the proposition. By working with R/I instead

of R, we may assume that I = 0. Also, by Proposition 16.4, we may assume that the

nilradical of R is 0. Let P0 be a set of minimal cardinality such that
√
I =

⋂

p∈P0

p. To

prove the proposition, we only need to show that P = P0. In other words, we only need

to show that, if p ∈ Spec(R), then there exists p0 ∈ P0 such that p0 ⊆ p. We shall need

the following easy result:

Lemma 16.7. Let p be a prime ideal of R and let I1,. . . , In be ideals of R such
that I1 . . . In ⊆ p. Then there exists k ∈ {1, 2, . . . , n} such that Ik ⊆ p.

Proof - By an easy induction argument, we are reduce to prove this lemma

whenever n = 2. So we assume that I1I2 ⊆ p. We also may assume that I1 6⊆ p.
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Let a ∈ I1 be such that a 6∈ p. Then, for all b ∈ I2, we have ab ∈ I1I2 ⊆ p so b ∈ p

because p is prime. So I2 ⊆ p. �

Let us now come back to the proof of the Proposition 16.6. If p ∈ Spec(R), then
∏

p0∈P0

p0 ⊆
⋂

p0∈P0

p0 = 0 ⊆ p.

So, by Lemma 16.7, there exists p0 ∈ P0 such that p0 ⊆ p. The proof of the Proposition

is complete. �

17. Krull dimension

Definition 17.1. Let p be a prime ideal of R. We define the height of p, and we denote

by height(p), the maximal n > 0 such that there exists a chain of prime ideals p0  p1  
· · ·  pn = p. We define the Krull dimension of R, and we denote by Krulldim(R), the

number

Krulldim(R) = max
p∈Spec(R)

height(p).

Note that it might happen that height(p) = ∞ or that Krulldim(R) = ∞ even if

height(p) is finite for all p ∈ Spec(R). Note also that, by Corollary 5.2, we have

(17.2) Krulldim(R) = max
m∈Spec(R)

height(m).

The first result about Krull dimension is that it is preserved by integral extensions:

Proposition 17.3. Let R and S be two rings such that R ⊆ S and S is integral over R.

Then Krulldim(R) = Krulldim(S).

Proof - Let m = Krulldim(R) and n = Krulldim(S). By definition, there exists a chain

of prime ideals p0  p1  · · ·  pm of R. So, by the Going-up Theorem 9.21, there exists

a chain q0 ⊆ q1 ⊆ · · · ⊆ qm of prime ideals of S such that qi ∩R = pi. So m 6 n.

Conversely, let us show that n 6 m. There exists a chain q0  q1  · · ·  qn of prime

ideals of S. Let pi = qi ∩R. Then p0 ⊆ p1 ⊆ · · · ⊆ pn is a chain of prime ideals of R. We

only need to show that pi 6= pi+1. By working in the integral ring extension R/pi ↪→ S/qi,

we are reduced to show the following:

Lemma 17.4. Let R and S be two integral rings such that R ⊆ S and let

q be a non-zero prime ideal of S. Then q ∩R 6= 0.

Proof - Let x ∈ q, x 6= 0. Let P (X) ∈ R[X] be a monic polynomial of

minimal degree such that P (x) = 0. Write P (X) = Xr + ar−1X
r−1 + · · ·+

a1X + a0. Then a0 6= 0 by the minimality of the degree of P and because

S is integral. On the other hand,

a0 = −x(a1 + · · ·+ ar−1x
r−2 + xr−1) ∈ q ∩ S = p.

The proof of the lemma is complete. �
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Theorem 17.5. Let K be a field. Then KrulldimK[X1, . . . , Xn] = n.

Proof - Let f(n) = KrulldimK[X1, . . . , Xn]. First,

0  〈X1〉  〈X1, X2〉  · · ·  〈X1, . . . , Xn〉
is a chain of prime ideals of K[X1, . . . , Xn]. So f(n) > n.

We shall show by induction on n that f(n) 6 n. Let 0 = p0  p1  · · ·  pf(n) be a

chain of prime ideals of K[X1, . . . , Xn]. We shall first need the following result:

Lemma 17.6 (Krull’s Hauptidealsatz). Let R be a unique factorization

domain and let p be a prime ideal of height 1. Then p is principal.

Proof - Let f ∈ p, f 6= 0. Since R is a U.F.D., we can write f = f1 . . . fr,

where the fi are irreducible elements of R. Since p is prime, there exists i

such that fi ∈ p. Therefore, Rfi ⊆ p. But Rfi is a prime ideal because R

is a U.F.D. So Rfi = p because p has height 1. �

By construction, p1 is a prime ideal of height 1, so, by Krull’s Hauptidealsatz, p1 =

〈f〉 for some f ∈ K[X1, . . . , Xn] (since K[X1, . . . , Xn] is a U.F.D.). Now, by Noether’s

Normalization Theorem (and its proof), there exists m < n and algebraically independent

elements u1,. . . , um of A = K[X1, . . . , Xn]/p1 such that A is integral over K[u1, . . . , um].

In particular, Krulldim(A) = Krulldim(K[u1, . . . , um]) by Proposition 17.3. So, by the

induction hypothesis, we have Krulldim(A) 6 m < n. But 0 = p1/p1  p2/p1  · · ·  
pf(n)/p1 is chain of prime ideals of A, so f(n)−1 6 Krulldim(A). Therefore, f(n)−1 < n,

so f(n) 6 n, as desired. �

The previous Theorem has for consequence that, in the statement of Noether’s Normal-

ization Theorem, the number m of algebraically independent elements (xi)1 6 i 6 m of A

such A is integral over K[x1, . . . , xm] is uniquely determined by A:

Corollary 17.7. Let K be a field and let A be a finitely generated K-algebra. Let

(xi)1 6 i 6 m and (yi)1 6 i 6 n be two finite families of algebraically independent elements of

A such that A is integral over K[x1, . . . , xm] and also integral over K[y1, . . . , yn]. Then

m = n.

Proof - Indeed, by Proposition 17.3, we have Krulldim(A) = Krulldim(K[x1, . . . , xm]) =

Krulldim(K[y1, . . . , yn]). So m = n by Theorem 17.5. �
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Homeworks

Homework for Wednesday, October 11

Exercise 1. Let M be a left R-module and let e ∈ R be an idempotent (that is, e2 = e).

Show that the map eR ⊗R M → eM , r ⊗R m 7→ rm is an isomorphism of Z-modules

(compare with Remark 3.18).

Exercise 2. Let i denote the complex number such that i2 = −1. Let

Z[i] = {a+ ib | a, b ∈ Z}

and Q[i] = {a+ ib | a, b ∈ Q}.
If p is a prime number, we denote by Fp the field Z/pZ.

(a) Show that Z[i] is a subring of C and that Q[i] is a subfield of C.

(b) Show that Q⊗Z Z[i] ' Q[i] (as Q-algebras).

(c) Show that F2 ⊗Z Z[i] ' F2[X]/(X2) (as F2-algebras).

(d) Show that F3 ⊗Z Z[i] is a field with 9 elements.

(e) Show that F5 ⊗Z Z[i] ' F5 × F5 (as F5-algebras).

(f) Let R be the set of (α, β) ∈ Z[i] × Z[i] such that α − β ∈ 2Z[i]. Show that R

is a sub-Z[i]-algebra of Z[i] × Z[i] and that the map Z[i] ⊗Z Z[i] → Z[i] × Z[i],

α⊗Z β 7→ (αβ, αβ̄) is an injective morphism of Z[i]-algebras whose image is R (in

other words, Z[i]⊗Z Z[i] ' R).

Problem. First part. Let R be a commutative ring and let M be an R-module. For

n ∈ Z>0, we define

Tn(M) = M ⊗R · · · ⊗RM︸ ︷︷ ︸
n times

,

with the convention that T 0(M) = R. Let

T (M) = ⊕
n∈Z>0

Tn(M).

We have then a natural map

Tn(M)× T n′(M) −→ T n+n′(M)
(x, y) 7−→ x⊗R y

(see Proposition 3.20). This extends to a map

⊗R : T (M)× T (M) −→ T (M)
(x, y) 7−→ x⊗R y.

(a) Show that the R-module T (M) together with the product ⊗R is an R-algebra. It

is called the tensor algebra of M over R.

Second part. Let f : M → M ′ be a morphism of R-modules. For each n ∈ Z>0, we

define

Tn(f) = f ⊗R · · · ⊗R f︸ ︷︷ ︸
n times

: Tn(M) −→ T n(M ′).
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Let T (f) = ⊕
n∈Z>0

Tn(f) be the morphism of R-modules T (M)→ T (M ′).

(b) Show that T (f) is a morphism of R-algebras.

(c) Show that T : RMod → RAlg, M 7→ T (M), f 7→ T (f) is a functor. Here,

RAlg denotes the category of R-algebras (where morphisms are morphisms of R-

algebras).

(d) Let A be an R-algebra and let f : M → A be a morphism of R-modules. Show

that there exists a unique morphism of R-algebras fT : T (M)→ A such that the

restriction of fT to T 1(M) = M coincides with f .

(e) (optional) Let F : RAlg → RMod, A 7→ A, f 7→ f be the forgetful functor.

Show that the functor T is left adjoint to F (use (d)).

Third part (examples). We denote by R{X1, . . . , Xn} the ring of non-commutative

polynomials in the variables X1,. . . , Xn. If necessary, we denote by TR(M) the R-algebra

T (M).

(f) Assume here that M is free with basis (e1, . . . , en). Show that there is a unique

morphism of R-algebras R{X1, . . . , Xn} → T (M) that sends Xi to ei. Show that

it is an isomorphism.

(g) Show that TZ/mZ(Z/mZ) ' (Z/mZ)[X] and TZ(Z/mZ) ' Z[X]/(mX), where X

is an indeterminate.

(h) Show that TZ(Q) ' {P ∈ Q[X] | P (0) ∈ Z}.

Fourth part (optional). Let I(M) be the two-sided ideal of T (M) generated by the

elements of the form m⊗R m′ −m′ ⊗R m, for m, m′ ∈M . Let S(M) = T (M)/I(M).

(i) Show that S(M) is a commutative R-algebra. It is called the symmetric algebra

of M .

(j) If f : M → M ′ is a morphism of R-modules, show that T (f)(I(M)) ⊆ I(M ′).
Deduce from this that T (f) induces a morphism of algebras S(f) : S(M)→ S(M ′).

(k) Show that S : RMod→ RAlgc, M 7→ S(M), f 7→ S(f) is a functor. Here, RAlgc
denotes the category of commutative R-algebras.

(l) If n ∈ Z>0, let In(M) = I(M) ∩ T n(M) and Sn(M) = T n(M)/In(M). Show that

I(M) = ⊕
n∈Z>0

In(M) and that S(M) = ⊕
n∈Z>0

Sn(M).

(m) Show that I1(M) = 0 and S1(M) = M .

(n) Let A be a commutative R-algebra and let f : M → A be a morphism of R-

modules. Show that there exists a unique morphism of R-algebras fS : T (M)→ A

such that the restriction of fS to S1(M) = M coincides with f .

(o) Let Fc : RAlgc → RMod, A 7→ A, f 7→ f be the forgetful functor. Show that the

functor S is left adjoint to Fc.
(p) Show that S(M ⊕RM ′) ' S(M)⊗R S(M ′).
(q) Assume here that M is free with basis (e1, . . . , en). Show that there is a unique

morphism of R-algebras R[X1, . . . , Xn]→ S(M) that sends Xi to ei. Show that it

is an isomorphism.
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Homework for Wednesday, October 18

Exercise 1 (Fitting’s Lemma). Let M be a Noetherian and Artinian left R-module

and let σ : M →M be an endomorphism of M .

(a) Show that there exists n0 ∈ N such that Imσn0 = Imσn0+1 and Kerσn0 =

Kerσn0+1.

(b) Show that Imσn = Imσn+1 and Kerσn = Kerσn+1 for all n > n0.

(c) Show that M = (Imσn0)⊕ (Kerσn0).

Exercise 2. Let R be a ring and let n be a natural number. We propose to prove in

several steps that J(Matn(R)) = Matn(J(R)) (by Matn(J(R)), we mean the set of n× n
matrices with coefficients in J(R): it is not a unitary ring).

Let Eij ∈ Matn(R) denote the matrix whose entries are all zero except the (i, j)-entry

which is equal to 1. We denote by 1n the identity matrix. Let I = Matn(J(R)) and

J = J(Matn(R)). For j ∈ {1, 2, . . . , n}, we set Ij = ⊕ni=1J(R)Eij . We shall first prove

that I ⊆ J .

(a) Show that I is a two-sided ideal of Matn(R).

(b) Show that Ij is a left ideal of Matn(R) and that I = ⊕nj=1 Ij .

(c) Assume here, ond only in this question, that R is commutative, so that det :

Matn(R) → R is well-defined. Show that det(1n − a) ∈ 1 + J(R) for any a ∈ I.

Deduce that I ⊆ J in this case.

(d) Let a ∈ Ij . Write a =
∑n

i=1 αiEij , with αi ∈ J(R). Since 1−αj is invertible, we can

define βi = αi(1−αj)−1. Let b = −∑n
i=1 βiEij . Show that (1n− b)(1n− a) = 1n.

(e) Deduce from (b) and (d) that Ij ⊆ J and I ⊆ J .

We shall now prove that J ⊆ I. Let a ∈ J and write a =
∑

1 6 i,j 6 n
αijEij . We want to

prove that αij ∈ J(R) for all (i, j). So fix i and j in {1, 2, . . . , n}.
(f) Let b = EiiaEji. Show that b = αijEii.

(g) Show that 1n − rb is invertible for any r ∈ R.

(h) Deduce that 1− rαij is invertible for any r ∈ R. Conclude.
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Homework for Wednesday, October 25

Exercise 1. Let G be a finite p-group and let R = Fp[G] be the group algebra of G over

Fp. The aim of this exercise is to prove that R is a local ring. We first recall the following

result from group theory: if X is a G-set (i.e. a set endowed with an action of G) and if

we denote by XG = {x ∈ x | ∀ g ∈ G, g.x = x}, then

(∗) |X| ≡ |XG| mod p.

We now need some more notation. Let

σ : R −→ Fp∑
g∈G agg 7−→ ∑

g∈G ag

and

m = Kerσ.

(a) Show that σ is a morphism of Fp-algebras.

(b) Show that m is a two-sided ideal and is a maximal left ideal of R.

Let S be a simple R-module. We also view S as a G-set (because G ⊆ R× acts on S).

Let x ∈ S, x 6= 0.

(c) Show that S is a Fp-vector space.

(d) Show that the map π : R → S, r 7→ rx is a surjective morphism of R-modules

(and of Fp-vector spaces). Deduce that S is finite dimensional.

(e) Show that SG is an R-submodule of S.

(f) Show that SG 6= 0 (use (∗)). Deduce that S = SG.

(g) Show that m = Kerπ.

(h) Show that J(R) = m and that R is a local ring.

Exercise 2. Let R be a commutative integral domain. Let I and J be two non-zero ideals

of R such that the ideal IJ is principal. We shall prove that I (and J) are projective

modules. For this, let r ∈ R be such that IJ = Rr and write r =
∑n

i=1 xiyi with xi ∈ I
and yi ∈ J . Let

ϕ : I −→ (Rr)n

x 7−→ (xy1, . . . , xyn)

and
ψ : (Rr)n −→ I

(r1, . . . , rn) 7−→ ∑n
i=1(rixi)/r.

(a) Show that ϕ and ψ are well-defined morphisms of R-modules.

(b) Show that the image of ϕ is contained in (Rr)n.

(c) Show that ψ ◦ ϕ = IdI .

(d) Show that ϕ is injective and that (Rr)n = ϕ(I)⊕Kerψ.

(e) Deduce that I is a projective R-module.
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Homework for Wednesday, November 1st

Exercise. Prove Theorem 8.16. Hint: identify V with Coln(D) as a right D-module and

A with Matn(D) acting on V on the left; for (a) and (b), use the Homework for October

18 (Exercise 2); for (c), (d) and (e), you can use (if you want...) the Morita equivalence

between A and D (tensorizing with Coln(D) = V and Rown(D)); (f) is standard.
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Homework for Wednesday, November 8

Exercise 1. Let K be a field and let n be a natural number. We denote by A the K-

subalgebra of Matn(K) consisting of upper triangular matrices. Let J denote the set of

nilpotent upper triangular matrices in Matn(K).

(a) Show that J = J(A).

(b) Show that A/J(A) ' K × · · · ×K (n times) as K-algebras.

(c) Determine the number and the dimension of the simple A-modules.

(d) Let V be an A-module of finite type. Show that V is a finite dimensional K-vector

space, that V has finite length and that lg(V ) = dimK V .

Exercise 2. Let R be a semisimple ring. Show that every R-module is injective and

projective.

Exercise 3. Let K be a field and let P (X) ∈ K[X] be a polynomial. Show that the

K-algebra K[X]/(P (X)) is semisimple if and only if P and P ′ are relatively prime.

Exercise 4. Let G be a finite group. Show that G is abelian if and only if all simple

C[G]-modules have dimension 1.

Exercise 5. Let C be a cyclic group of order 6. Find the number and the dimension of

the simple Q[C]-modules.
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Homework for Wednesday, November 15

Problem. Let n > 1 and let ζn be a primitive n-th root of unity in C, that is, a generator

of the cyclic group µn(C) = {z ∈ C | zn = 1} (for instance, ζn = e2iπ/n). Let Φn(X)

denote the n-th cyclotomic polynomial

Φn(X) =
∏

1 6 j 6 n
gcd(n,j)=1

(X − ζjn).

Let ϕ(n) denote the degree of Φn(X) (i.e. the Euler ϕ-function).

(a) Compute Φn for 1 6 n 6 6.

(b) Show that Xn − 1 =
∏

d|n
Φd(X).

(c) Deduce by induction that Φn(X) belongs to Z[X] and is monic.

(d) Let p be a prime number. Compute Φp and show that Φp is irreducible (Hint:

compute Φp(X + 1) and use Eisenstein’s criterion of Exercise III.3).

The aim of the next questions is to show that Φn is irreducible for all n. Write Φn(X) =

P (X)Q(X) where P (X), Q(X) ∈ Z[X] are monic and P is irreducible in Q[X]. Let ζ be

a root of P and let p be any prime number not dividing n. We denote by f(X) ∈ Fp[X]

the reduction modulo p of f(X) ∈ Z[X]. Since ζp is a root of Φn, we must have P (ζp) = 0

or Q(ζp) = 0.

(e) Assume that Q(ζp) = 0. Show that P (X) divides Q(Xp).

(f) Show that Q(Xp) = Q(X)p.

(g) Assume that Q(ζp) = 0 and let f ∈ Fp[X] be any irreducible factor of P .

(g1) Deduce from (e) and (f) that f also divides Q.

(g2) Deduce that f2 divides Xn − 1 and that f divides nXn−1 (Hint: take the

derivative) so that f divides also Xn−1. Show that it is impossible.

(h) Deduce from (g) that P (ζp) = 0 for all prime number p which does not divide n.

Deduce that f = Φn, and that Φn is irreducible.

The fact that Φn is irreducible shows that the field Q(ζn) is isomorphic to Q[X]/(Φn)

and that [Q(ζn) : Q] = ϕ(n). Let On denote the ring of integers of Q(ζn). Then it is clear

that Z[ζn] ⊆ On. It can be proved that On = Z[ζn]. The aim of the next questions is to

prove this result whenever n is a prime number (note that the case n = 2 is trivial). So

let p be an odd prime number.

(i) Show that det(TrK/Q(ζipζ
j
p))0 6 i,j 6 p−2 = ±pp−2.

(j) Deduce that, if α ∈ Op, then there exists r ∈ Z> 0 such that prα ∈ Z[ζp].

(k) Show that, if 1 6 i 6 p− 1, then (1− ζ ip)/(1− ζp) ∈ O×p .

(l) Show that
∏p−1
i=1 (1− ζip) = Φp(1) = p (Hint: use (d)).

(m) Let p = (1−ζp)Z[ζp] and q = (1−ζp)Op. Deduce from (k) and (l) that pp−1 = pZ[ζp]

and qp−1 = pOp.
(n) Show that p is a prime ideal of Z[ζp] and that Z[ζp]/p ' Fp.
(o) Deduce from (m) that q is a prime ideal of Op and that Op/q ' Fp (use Theorem

10.12 (c)).

(p) Deduce from (m) and (n) that p = q ∩ Z[ζp].
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(q) Deduce that pi = qi ∩ Z[ζp] for all i > 1.

(r) Deduce from (j) that Op = Z[ζp].
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Homework for Monday, November 27

Problem: quotient of affine varieties by finite groups. Let K be a field, let A be

a finitely generated commutative K-algebra and let G be a finite group acting on A by

automorphisms of K-algebras. The aim of this problem is to study the algebra AG, where

AG = {a ∈ A | ∀ σ ∈ G, σ(a) = a},
and to see some geometric consequences.

(a) Show that AG is a commutative K-algebra.

Part I. The aim of this part is to show that AG is a finitely generated K-algebra and that

A is a finitely generated AG-module. If a ∈ A, we set

Pa(X) =
∏

σ∈G
(X − σ(a)) ∈ A[X].

We fix some elements a1,. . . , an ∈ A such that A = K[a1, . . . , an]. Let E be the set

of coefficients of the polynomials Pai(X), 1 6 i 6 n. Then E is finite and let B be the

subalgebra of A generated by E : it is a finitely generated commutative K-algebra.

(a) Show that Pa ∈ AG[X].

(b) Deduce that B ⊆ AG and that A is integral over B. In particular, A is integral

over AG (see also Example 9.5 (3)).

(c) Show that A is a finitely generated B-module (show that monomials ar11 . . . arnn for

0 6 ri 6 |G| − 1 form a set of generators of the B-module A).

(d) Deduce that AG is a finitely generated B-module (Hint: recall that, since B is

finitely generated, then B is Noetherian by Hilbert’s Basis Theorem).

(e) Deduce that AG is a finitely generated K-algebra and that A is a finitely generated

AG-module.

Part II. The aim of this part is to study the map π : Spec(A)→ Spec(AG), p 7→ p ∩AG.

(f) Show that π is surjective and that π(p) is maximal if and only if p is maximal.

(g) Show that, if σ ∈ G and p ∈ Spec(A), then σ(p) ∈ Spec(A) and π(σ(p)) = π(p).

Show also that p is maximal if and only if σ(m) is maximal.

(h) Let m1 and m2 ∈ Max(A) such that π(m1) = π(m2). Show that there exists

σ ∈ G such that m2 = σ(m1) (Hint: Assume that m2 6= σ(m1) for all σ ∈ G, and

consider an element a ∈ A such that a ≡ 0 mod m2 and a ≡ 1 mod σ(m1) for all

σ ∈ G. Such an element exists by the Chinese Remainder Theorem: then consider

x =
∏
σ∈G σ(a)).

(i∗) (Optional) Let p1 and p2 ∈ Spec(A) such that π(p1) = π(p2). Show that there

exists σ ∈ G such that p2 = σ(p1) (Hint: let p = π(p1) = π(p2), let D = AG \ p

and consider the extension S−1AG ⊆ S−1A. Then apply (h)).

Part III. We shall now apply the previous results to a geometric situation. From now

on, and until the end of this problem, we assume that K is algebraically closed.

Let V be an affine variety (over K) and let G be a finite group of automorphisms of V .

If f ∈ K[V ], let σ(f) = f ◦ σ−1 (in other words, we denote by σ the automorphism
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σ∗−1 = (σ−1)∗ of A). Then G can also be viewed as a finite group of automorphisms of

K[V ].

A pair (W,π), where W is an affine variety and π : V →W is a morphism of varieties,

is called a geometric quotient of V by G if the following two conditions are satisfied:

(Q1) π is surjective and, if w ∈W , π−1(w) is a G-orbit.

(Q2) If ϕ : V → V ′ is a morphism of algebraic varieties which is constant on

the G-orbits, there exists a unique morphism of varieties ϕ̃ : W → V ′

such that ϕ = ϕ̃ ◦ π.

(j) Let (W,π) and (W ′, π′) be two geometric quotients of V by G. Show that there

exists a unique isomorphism of varieties ϕ : W →W ′ such that π′ = ϕ ◦ π.

We shall now show that there exists a geometric quotient of V by G. By (e), there exists

f1,. . . , fn ∈ K[V ]G such that K[V ]G = K[f1, . . . , fn]. Let γ be the unique morphism of

K-algebras K[X1, . . . , Xn]→ K[V ]G, Xi 7→ fi, let I denote its kernel and let W = Z(I).

(k) Show that K[X1, . . . , Xn]/I is an integral domain which is isomorphic to K[V ]G.

(l) Deduce that I = I(W ) (Hint: use Hilbert’s Nullstellensatz).

(m) Show that γ induces an injective morphism of algebras γ̃ : K[W ] → K[V ]. Let

π : V →W be the morphism of varieties such that π∗ = γ̃.

(n) Show that (W,π) is a quotient of V by G (hint: use (h) and Proposition 11.34).

(o) Recall that π∗ is injective (see (m)). Show also that π is a finite morphism. Deduce

that dimV = dimW .


