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Part 0. Introduction

Rings are the most common objects in algebra. You encountered them in all areas:
LINEAR ALGEBRA: Mat,(R), where R is a ring.

GROUP THEORY: Let G be a group (finite or not). Study of the group algebra R[G] (or
RG), where R is a commutative ring (representation theory).

NUMBER THEORY: Z or, more generally, the ring of algebraic integers of a finite algebraic
extension of Q.

ALGEBRAIC GEOMETRY: K[X7,...,X,] and all its quotients, where K is a field.
Among the theorems proved during this course, here are a few examples:

Skolem-Noether Theorem. Let R be a commutative ring having only one mazimal
ideal (i.e. a commutative local ring) and let o : Mat, (R) — Mat,,(R) be an automorphism
of R-algebras. Then there exists a € Mat,(R)* such that o(M) = aMa™' for every
M € Mat,(R).

Theorem (Maschke, Wedderburn,...). Let G be a finite group. Then there is an
isomorphism of C-algebras C[G] ~ Mat,, (C) x --- x Mat,,.(C) for some n;’s. Moreover,
r 4s the number of conjugacy classes of G.

Hilbert’s Basis Theorem. Let I be an ideal of K[X1,...,X,]. Then I is finitely
generated.

Hilbert’s Nullstellensatz. Let K be an algebraically closed field and let m be a mazximal
ideal of K[X1,...,X,]. Then the K-algebra K[X1,...,Xy]/m is isomorphic to K.

Theorem. Let K be a finite algebraic extension of Q and let Ok denote the ring of
integers of K (over 7). Then Ok is integrally closed, all its ideals are finitely generated
and all its non-zero prime ideals are mazimal (i.e. O is a Dedekind domain).

All these theorems have in common that their proof relies on the theory of modules.
This course will be organized as follows:
Part I - some category theory: definition, examples, functors, equivalences...

Part IT - module theory: tensor product, Noetherian rings and modules (including
Hilbert’s Basis Theorem), projective and injective modules, simple semisimple rings and
modules, radical, Morita equivalences (application to Skolem-Noether Theorem)...

Part III - integral extensions, Dedekind domains...

Part IV - background of algebraic geometry: Hilbert’s Nullstellensatz, affine varieties,
tangent spaces...



Approximative schedule (one lecture = 1h45):

e Categories: 1 lecture

e Tensor products: 2 lectures

e Noetherian and Artinian modules and rings: 2 lectures

e Projective, injective modules: 2 lectures

e Jacobson radical: 2 lectures

e Semisimple rings and modules: 3 lectures

e Dedekind domains: 2 lectures

e Affine algebraic sets: 2 lectures

e Noether’s Normalization Theorem and Hilbert’s Nullstellensatz: 2 lectures
e Geometric properties of algebraic sets: 2 lectures



Part I. Categories

The aim of this part is to give an introduction to the language of categories, which will
be used freely during this course.

1. DEFINITION, EXAMPLES

Definition 1.1. A category Cat consists of:

e a class of objects ob(Cat) called the objects of Cat;

e for any objects C', C' € ob(Cat), a set Homgat(C,C’) called the mor-
phisms from C to C';

e for any three objects C, C' and C" € ob(Cat), a map Homgat(C, C”) x
Homcat(C',C") — Homcat(C,C"), (f,g9) — go f called a composition
law;

satisfying:

(C1) Homcat(C1, CY) is disjoint from Homegat(Ca, Ch) unless C1 = Cy and C7 = C;

(C2) forallC, C’", C", C" € ob(Cat) and all f € Homcat(C,C"), g € Homgat(C', C”)
and Homgas (C”,C™"), we have ho (go f) = (hog)o f (associativity);

(C3) for each C € ob(Cat), there exists a morphism 1¢ € Homeat(C, C) such that, for
all ¢!, C" € ob(Cat) and all f € Homcat(C,C’) and g € Homeat(C”,C), we
have folg = f and lcog=g.

Note that 1¢ is uniquely determined by (C3) (it is called the identity morphism of C
and is often denoted by Id¢). We will often write f : C — C’ or C L, ¢ to indicate that
f € Homcat (C, C"). We also write C' € Cat instead of C' € ob(Cat).

EXAMPLES 1.2 - (1) Sets (respectively sets) the category of sets (respectively finite sets),
with maps as morphisms and composition law as usual.

(2) Groups (respectively groups, Ab, Rings, Rings,, Fields,...) the category of
groups (respectively finite groups, abelian groups, rings, commutative rings, fields,...) to-
gether with their natural homomorphisms (rings are assumed to be unitary and morphisms
to be unitary morphisms).

(3) For R € Rings, let RMod (respectively pmod, Modgr, modp) denote the cate-
gory of left R-modules (respectively finitely generated left R-modules, right R-modules,
finitely generated right R-modules). We write Homg(M, N) for Hom ,moa(M, N) or
Homnod, (M, N). Recall that f € Hompg(M,N) if f(m +m') = f(m) + f(m') and
f(rm) =rf(m) for all r € R, m, m' € M.

(4) Top the category of topological spaces where morphisms are continuous maps. O



2. FUNCTORS

Definition 2.1. Let C and D be two categories. A covariant functor F : C — D
consists of ”correspondences”:
e F:0b(C) — ob(D), C+— F(C);
e A map F : Homg(C,C") — Homp (F(C), F(C")), f+— F(f) for all C,
C’ € ob(C);
satisfying
(F1) for all C, C" and C" € ob(C) and all f € Homc(C,C") and g € Homc(C',C"),
Flgo f)=F(g)o F(f);
(FQ) for all C € Ob(C), f(lc) = 1_7:(0).

A contravariant functor F : C — D is defined in the same way except that F :
Hom¢(C,C") — Homp(F(C"),F(C)) reverse arrows and that the equality in (F1) is
replaced by F(go f) = F(f) o F(g).

ExXAMPLES 2.2 - (1) Id¢ : C — C, C +— C, f +— f is a covariant functor called the
identity functor.

(2) Functors can be composed to get a new functor.

(3) Forgetful functors: a functor that forgets part of the structure of the objects. For
instance, Rings — Sets, R+ R, f — f. Or Fields — Ab, K — KT, f+s f...

(4) If X € C, then Homc (X, —) : C — Sets, C' — Homc(X,C), f— (g fog)is
a covariant functor. On the other hand, Homg(—, X) : C — Sets, C — Homc¢(—, X),
fr— (g gof) is a contravariant functor.

(5) F : Groups — Sets, G — F(G) ={g € G | g* =1}, f — [lr)- O

Definition 2.3. Let 7, G : C — D be covariant functors between two categories C and
D. A natural transformation (or a functorial morphism) ¢ : F — G is a family of
morphisms o : F(C) — G(C) satisfying

(NT) For any morphism f : C — C" in C, the following diagram

Flo)— ()
F(f) a(f)
Fe) —2< g

18 commutative.

One can define similarly o natural transformation between contravariant functors.

Definition 2.4. A natural transformation ¢ : F — G between two (covariant or con-
travariant) functors is called a matural isomorphism if pc is an isomorphism for all
C € C. Two functors F and G are said naturally isomorphic if there erists a natural
isomorphism F — G: we then write F ~ G.
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ExaMPLEs 2.5 - (1) If R € Rings, and if M is a left R-module, we define M* =
Homp(M, R). Then F : pMod — gpMod, M — M* is a functor (see Example 2.2 (4)).
Now, we define ppr : M — (M*)*, m — (A € M* — A(m) € R). Then ¢ : Id ;pmoa — FoF
is a natural transformation.

If R is a field, and if we replace pMod by rpmod, then ¢ is a natural isomorphism.

(2) If f: X — X' is a morphism in the category C, we define, for every C' € C,
fo : Homg(C, X) — Homg(C, X'), g — fog. Then f defines a natural transformation
Homg(—, X) — Homg(—, X'). It is a natural isomorphism if and only if f is an isomor-
phism. Similarly, one gets a natural transformation Homg (X', —) — Homg (X, —). O

Definition 2.6. A covariant functor F : C — D is called an isomorphism of cat-
egories if there exists a covariant functor G : D — C such that F o G = Idp and
GoF =Idg. It is called an equivalance of categories if there exists a covariant functor
G:D — C such that FoG ~Idp and G o F ~ Idc.

EXAMPLES 2.7 - (1) If R is a ring, we denote by R° the opposite ring of R: as a set,
this is R but, if » and s are two elements of R, and if we denote them r° and s° when
we see them in R°, then the multiplication is given by r°s°® = (sr)°. If f: R — S is an
homomorphism of rings, let f° : R® — S° r° +— f(r)°. It is also an homomorphism of
rings. Then Rings — Rings, R — R°, f — f° is a covariant functor. Note that if we
compose it with itself, we get the identity functor. So it is an isomorphism of categories.

(2) If K is a field, then kmod — gmod, V — (V*)* is an equivalence of categories
(see Example 2.5 (1)). Note that xMod — gMod, V +— (V*)* is not an equivalence of
categories.

(3) If M is a left R-module, we denote by M° the right R°-module defined as follows:
as a set, this is M but m°.r°® = (rm)°, with obvious notation. Similarly, if M is a right
R-module, then we can define M° to be a left R°~-module. Then zpMod — Modgo,
M — M°, f+— f is a covariant isomorphism of categories. O

Definition 2.8. Let F: C — D and G : D — C be two covariant functors. We say that
F is left adjoint to G (or G is right adjoint to F) if, for all C € C and D € D, we
have a bijection yop : Home(C, G(D)) — Homp (F(C), D) such that, if f : C — C" in C,
the following diagram

Yc'Dp

Homc(cl,g(D)) HOHID(.F(C/),D)

Home(f,G(D)) Homp (F(f),D)

Home(C, G(D)) 1?2, Homp(F(C'), D)

and similarly for all g : D — D' in D.



EXERCISES FROM PART 1

Exercise I.1. Show that Posets (partially ordered sets together where morphisms are
non-decreasing maps) is a category.

Exercise 1.2. Let C and D be two categories. We define the product C x D as follows.
First, ob(C x D) consists of ordered pairs (C, D) where C' € ob(C) and D € ob(D). Then,
if (C,D), (C',D") € ob(C,D), we define Homcxp((C, D), (C’,D")) = Homc(C,C") x
Homp (D, D'). Finally, the composition law is defined by (f,g) o (f',¢') = (fo f',g09).
Show that C x D is a category (it is called the product category of C and D).

Exercise 1.3. Let Cat be a category. Let Cat® be defined as follows: ob(Cat®) =
ob(Cat) and, if C', C' € ob(Cat®), we set Homgaie (C,C’") = Homeat(C', C) (and we
reverse the composition law). Show that Cat® is a category (it is called the dual category
to Cat).

Let D : Cat — Cat®, C — C, f € Homcat(C,C") — f € Homguie (C, C). Show that
D is a contravariant functor. Show that D oD = Idcat.

If D is another category, show that a covariant (respectively contravariant) functor
F : Cat — D induces a contravariant (respectively covariant) functor F° : Cat® — D.

Exercise 1.4. Let R be a ring and let X be a set. Let R[X] be the free left module with
basis X: this is the set of formal R-linear combinations ) . rzx, where (r;),cx is any
family of elements of R such that all but a finite number of the r,’s are zero. An element
r € X is identified with the formal R-linear combination Zye x Ozy®, Where o, = 1 if
x =y and 0,y = 0 otherwise.
(a) Prove that R[X] is naturally a left R-module.
(b) Prove that X is an R-basis of R[X] for its structure of left module.
(c) Let ¢ : X — M be a map, where M is a left R-module. Show that there is a
unique R-linear map yxar(p) : R[X]| — M which extends .
(d) If f: X — Y is a map, show that the map f, : R[X] — R[Y], > cx 72z —
Y wex Tzf(x) is well-defined and is a morphism of R-modules.
(e) If f: X Y and g : Y — Z are maps, prove that (go f). = g« 0 f«.
(f) Show that, if f is surjective (respectively injective, respectively surjective), then
S0 is fi.
(g) In general, compute Ker f, and Im f,.
(h) Prove that F : Sets — pMod, X — R[X], f — f. is a covariant functor.
(i) Let G : RMod — Sets be the forgetful functor. Show that F is a left adjoint to G
(Hint: use (c)).

Exercise 1.5. Let G be a group. Show that the map
R[G] x R|G] — R[G]
(dec T99, ZQGG r;g) — Zg,g/gc 7"97”;/99,

endows R[G] with a ring structure.
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If f: G — H is a morphism of groups, show that the map f. : R[G] — R[H| defined in
Exercise 1.4 is a morphism of rings. Show that Groups — Rings, G — R[G], f — f. is
a covariant functor.

Letinv: G — G, g— g~
an isomorphism of rings R[G] ~ R[G]°.

I and assume that R is commutative. Show that inv, induces

Exercise 1.6. Let n > 1. Let

al Qg
0 --- 0
I:{ . . |a1,...,an€R}
0 --- 0
al 0 0
and J=A{| : | |ai,...,an € R}
a, 0 --- 0

(a) Show that I (respectively J) is a left (respectively right) ideal of Mat,,(R).

(b) Show that the map Mat, (R°) — Mat, (R)°, M — (*M)° is an isomorphism of
rings.

(c) If R is commutative, show that I ~ J°.

Exercise I.7*. Let G be a group. A G-set is a set G endowed with an action of G. If
X and Y are two G-sets, a map f : X — Y is called G-equivariant if, for all g € G and
x € X, we have f(gz) = gf(x).
(a) Show that G — Sets (where objects are G-sets and morphisms are G-equivariant
maps) is a category.
(b) Let H be a subgroup of G. If X is a G-set, let Res% X denote the set X endowed
with the H-action obtained by restriction from G. Show that Res% : G — Sets —
H — Sets is a covariant functor.
(c) Let Ng(H) = {g € G | gHg~! = H} (this is the normalizer of H in G). Show
that Ng(H) is a subgroup of G having H as a normal subgroup.
(d) If X is a G-set, let X¥ = {x € X |V h € H, hx = z}. Show that Ng(H) stabilizes
XH.
(e) Show that G — Sets — Ng(H)/H — Sets, X — X! is a covariant functor.

Exercise I.8. If R is a ring, let U(R) = R* denote the group of units of R.

(a) Show that U : Rings — Groups is a covariant functor.

(b) Show that Mat,, : Rings — Rings, R +— Mat,(R) is a covariant functor.

(c) Show that GL,, : Rings — Groups, R — GL,(R) is a covariant functor.

(d) Show that detgp : GL,(R) — U(R), g — det(g) (which is only defined if R is
commutative) defines a natural transformation between GL,, : Rings, — Groups
and U : Rings, — Groups.

Exercise 1.9. Let F : C — D be an equivalence of categories. Show that the map
Hom¢(C,C") — Homp (F(C), F(C")), f — F(f) is bijective for all objects C, C’ € C.
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Part II. Modules

3. TENSOR PRODUCT

3.A. Definitions. Let M, N and A be three Z-modules (i.e. abelian groups).

Definition 3.1. A map f: M x N — A is called bilinear if, for all m, m’ € M and n,
n’ € N, we have
flm+m/,n) = f(m,n) + f(m',n)

and fm,n+n') = f(m,n) + f(m,n).

The set of bilinear maps M x N — A forms an abelian group denoted by Bil(M, N; A).

Proposition 3.2. If f € Bil(M, N; A), if (m,n) € M x N and if z € Z, then f(zm,n) =
f(m,zn) = zf(m,n). In particular, f(0,n) = f(m,0) =0.

Proposition 3.3. We have:
(a) Bil(M & M',N; A) = Bil(M, N; A) @ Bil(M', N; A).
(b) Bil(M,N @& N'; A) = Bil(M, N; A) & Bil(M, N'; A).
(¢) Bil(M,N;Ae® A") = Bil(M, N; A) & Bil(M, N; A').

PROOF - We just prove (a) when |I| = 2 (the other properties are proved similarly). If
f e Bil(M@ M',N;A), let fyy denote its restriction to M x N (C (M & M') x N) and
far denote its restriction to M’ x N. Then fj; and fy; are bilinear. Now, let
o: Bil(Ma M, N:A) — Bil(M,N;A) @ Bil(M’,N; A)
f — Sar =+ far

Then ¢ is injective: indeed, if p(f) = 0, then fy; = 0 and fyyr = 0, then f(m +m',n) =
far(myn) + far(m/,n) =0 for every m € M, m’ € M' and n € N. So f =0.

On the other hand, ¢ is surjective: if g € Bil(M, N; A) and ¢’ € Bil(M’, N; A), then
the map f : (M & M') x N — A, (m+ m/,n) — g(m,n) + ¢’(m’,n) is bilinear and
p(f)=(9.9) =

EXAMPLES 3.4 - (1) If R is a ring, the map R x R — R, (a,b) — ab is bilinear.

(2) If 0 : A — B is a morphism of abelian groups, then Bil(M, N; A) — Bil(M, N; B),
f+— oo fis well-defined.

(3) If ged(m, n) = 1, then Bil(Z/mZ,Z/nZ; A) = 0. Indeed, if f € Bil(Z/mZ,Z/nZ; A),
let (x,y) € Z/mZ x Z/nZ and let a = f(z,y). Then ma = f(mz,y) = f(0,y) = 0.
Similarly, na = f(x,ny) = 0. But, since m and n are coprime, there exists p and v in Z
such that ym + vn = 1. Therefore, a = pma + vna = 0. O
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Definition 3.5. Now, let R be a ring. If moreover M is a right R-module and N is a
left R-module, a map f : M x N — A is called R-balanced if f(mr,n) = f(m,rn) for
everyr € R, m € M and n € N. The set of R-balanced bilinear maps M x N — A will
be denoted by Bilg_pa(M,N; A). It is an abelian group.

Proposition 3.6. We have:
(a) Bilg—pat(M @ M', N; A) = Bilg_pa(M, N; A) @ Bilg_pa(M’, N; A).
(b) Bilg_pai(M, N & N'; A) = Bilg_pa(M, N; A) © Bilg_pa (M, N'; A).
(C) Bilbeal(Ma N; AP A/) = Bﬂbeal(Ma N; A) D Bﬂbeal(M; N; A/)
(d) Bilg_pai(R,N; A) ~ Hom(N, A) and Bilg_pa (M, R; A) ~ Hom(M, A).

PROOF - (a), (b) and (c) can be proved similary as statements (a), (b) and (c) of Propo-
sition 3.3. Let us prove here only the first statement of (d) (the second one can be proved
similarly). Let

¢: Bilg_pa(R,N;A) —  Hom(N,A)

f — (n— f(1,n))
and ¢: Hom(N,A) — Bilg_pa(R,N;A)
9 — ((r,n) = g(rn)).

It is clear that ¢ and v are well-defined homomorphisms of groups. Moreover, it is also
clear that ¢ o ¢ = Idgom(v,4) and Y o =Idpy, | (rN;4)- B

EXAMPLES 3.7 - (1) The map R x R — R, (a,b) — ab is R-balanced and bilinear. More
generally, the map R x N — N, (r,n) — rn is R-balanced and bilinear.

(2) Let us define a structure of right R-module on Endz (V) as follows: if s € Endz (V)
and if r € R, let or: N — N, n+— o(rn). It is readily seen that it endows Endz (V) with
a structure of right R-module. Then the map

Endz(N)x N — N
(o,n) — a(n)

is R-balanced and bilinear. O

Definition 3.8. A pair (T, 1) where T is an abelian group an 7 : M x N — T is an
R-balanced bilinear map is called a tensor product of M and N over R if it satisfies
the following property:

(T) For every abelian group A and every f € Bilg_pa(M,N;A), there
exists a unique homomorphism f: T — A such that f = forT.

A
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Tensor products exist and are all canonically isomorphic:

Theorem 3.9. Let R be a ring, let M be a right R-module and let N be a left R-module.

(a) There exists a tensor product of M and N over R.

(b) If (T, 7) and (T',7") are two tensor products of M and N over R, then there exists
a unique group homomorphism o : T — T’ such that 7/ = oo 7. Moreover, such
an o is an isomorphism.

PROOF - (a) Let F' = Z[M x N]: this is the free Z-module with basis M x N (see Exercise
1.4). Let I be the sub-Z-module of F' generated by all elements of the form
(m+m/,n) — (m,n) — (m',n), (m,n+n")—(m,n)—(m,n'), (mr,n)— (m,rn)

form,m' € M, n,n’ € Nandr € R. Let T = F/I and, if x € F, let T denote its image
in T. Let 7 : F — T be the canonical projection and let 7: M x N — T, (m,n) — (m,n)
be the restriction of .

e Let us show that 7 is bilinear. Let m, m’ € M and n € N. Then, by definition,
(m—+m/,n)— (m,n) — (m/,n) = 0. In other words, 7(m + m’,n) = 7(m,n) + 7(m/,n).
The other equality is proved similarly.

e We can also prove similarly that 7 is R-balanced.

e Let us show now that the pair (7, 7) is a tensor product. Let f : M x N — A be
an R-balanced bilinear map. Then, by Exercise 1.4 (¢), f extends to a map f4 : F — A.
Moreover, by the definition of an R-balanced bilinear map, f4(I) = 0. Therefore, fa
factors through an homomorphism fu : T — A such that f4 = f4 o m. If we restrict this
equality to M x N C F, we get that f = faorT.

Moreover, if f' : T — A is Z-linear satisfies f = f’ o 7, by extending this equality
by linearity, we get that fa = f' omw. Therefore f/ = fa because 7 is surjective. This
completes the proof of (a).

(b) By the very definition of a tensor product, there exist two maps ¢ : T — T and
¥ : T — T such that 7 = 7/ 0 p and 7/ = 7 0 9. We summarize the situation in the next
diagram:

M x N

%)
T T
¥

Therefore, 7 = 7 0 (1) 0 ). Now, by unicity, ¢ o ¢ = Idp. Similarly, p o) = Idy/. =

Since there is only (up to a unique isomorphism) one tensor product, we shall denote by
M®pN the tensor product of M and N defined in the proof of the above Theorem. The R-
balanced bilinear map M x N — M ® N will be omitted and denoted by (m,n) — m®gn.
As it can be seen from the proof of Theorem 3.9, M ®pr N is generated, as a Z-module,
by the elements m ®@p n, where (m,n) € M x N. It must be noticed that there might be
elements of M ®r N that are not of the form m Qg n.
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To define an homomorphism M ®r N — A, one only needs to define an R-balanced
bilinear map M x N — A.

REMARK 3.10 - It might be difficult to prove that a sum Zézl m; Qg n; is equal to or
different from zero!! O

EXAMPLE 3.11 - If ged(m,n) = 1, then Z/mZ ®z Z/nZ = 0. Indeed, this follows from
Example 3.4 (3) and from the fact that the tensor product of two modules is generated
by elementary tensor products. O

3.B. First properties. The last two statements of the next proposition are immediate
consequences of the corresponding statements for R-balanced bilinear maps.

Proposition 3.12. We have:

(@) If f: M — M' and g : N — N’ are R-linear maps, then there is a unique map
fOrg: M@rN — M ®@rN', such that (f ®r g)(m ®g n) = f(m) ®r g(n) for
all (myn) € M x N. We have (f @rg)o (f'®rg)=(fof)®r(god).

(b) With the hypothesis of (a), if f and g are moreover surjective, then so is f @p g.
If f and g are isomorphisms, then f ®r g are isomorphisms of Z-modules.

(¢c) MeM)®rN=(M®®rN)®d (M ®N).

(d) Mr(N®N)=(M®rN)® (M orN').

PROOF - (a) The map M x N — M' ®r N', (m,n) — f(m) ® g(n) is R-balanced and
bilinear. So the existence of f ®pg follows from Theorem 3.9. The last property is obvious.

(b) If f and g are moreover surjective, let L denote the image of f ®r g. Then L C
M’ ®@r N'. Moreover, if m" € M’ and n' € N’, then there exists (m,n) € M x N such
that f(m) =m' and g(m) = m’. Therefore, m’ @pn' = (f ®r g)(m @r n) € L. But since
M’ ®r N' is generated by the m’ @ n/, we get that L = M’ ®g N’, as desired.

(c) and (d) follow easily from Proposition 3.6 (a) and (b). m

REMARK 3.13 - Let I be any set, finite or not. Then it is easy to show that
(& M;) ®g N ~ & (M; ®g N)
iel i€l

and (M ®r & N;) ~ & (Mg N).
icl el

This is left as an exercise. Note that the corresponding property for bilinear and R-
balanced maps does not hold in general. O

REMARK 3.14 - In general, the statement (b) of the Proposition 3.12 is false if we
replace surjective by injective. Indeed, let m > 2 be a natural number and let f : Z —
Z, n — nm and let Idy ),z : Z/mZ — Z/mZ. Then f and Idg,; are injective but
(f ®z 1dz/mz)(x @z 9) = 2m @7y = z @z my = 0 and Z ®z Z/mZ ~ Z/mZ # 0 by
Proposition 3.16 below. O

REMARK 3.15 - Proposition 3.12 (a) shows that — ® p — : Modr x gRMod — Ab is a
functor (recall that the product of two categories has been defined in Exercice 1.2).
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Proposition 3.16. Let I be a right ideal of R. Let IN be the sub-Z-module of N generated
by the rn, where r € I and n € N. Then
R/I ®r N ~ N/IN.
Similarly, if J is a left ideal of R, then
M ®rR/J ~ M/M.J.

PROOF - Let
v: R/I®rN — NJ/IN
rR®RrMm — m
and @ N/}N — R/I®rN

m — 1 ®prpm.
Let us prove that ¥ and ¢ are well-defined.

e Let f: R/I x N— N/IN, (f,m) — 7m. Then f is well-defined: indeed, if 7 = 5,
then there exists « € I such that s = x + r. Therefore, sm = xm + rm. In other words,
sm—1rm € IN, so smm = 7m. Now it is also clear that f is bilinear. Let us prove that
it is R-balanced: we have f(7.s,m) = f(7s,m) = 7sm = f(7, sm). So the existence of ¢
follows from Theorem 3.9.

e Let m and m’ be two elements of NV such that m —m’ € IN. Then there exists rq,. ..,
r; € R and my,..., m; € N such that m —m/ = Eﬁzl r;ym;. But then

l
I®Rm = i®Rm'+Zi®Rrimi
=1
l
= i@Rm/—{—Zi.Ti@Rmi
=1
l
= i®Rm/+Z":i®Rmi
=1

I
= 1®Rm/+ZO®Rmi
i=1

=1 KRR m'.

So ¢ is well-defined. It is an homomorphism of abelian groups.
Now, ¢ and ¢ are well-defined and it is readily seen that ¢ o9 = Idg/;g,n and

o= IdN/IN |
Corollary 3.17. We have RQr N ~ N and M Qr R~ M.

REMARK 3.18 - If I is a right ideal of R, it might happen that the map [ ® g M — I M,
r ®r m — rm is not injective. For instance, take R = Z, M = Z/mZ, I = mZ.

3.C. Bimodules. If S is another ring, an abelian group M is called an (R, S)-bimodule
if it is both a left R-module and a right S-module and if moreover (rm)s = r(ms) for
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every r € R, m € M and s € S. In particular, we shall often write rms instead of (rm)s
or r(ms). If M and M’ are two (R, S)-bimodules, we denote by Homp (M, M')s the set
of maps f : M — M’ which are both morphisms of left R-modules and right S-modules.
The category of (R, S)-bimodules will be denoted by pModg. Of course, if M is an
(R, S)-bimodule, then M° is an (S°, R°)-bimodule. We get an isomorphism of categories
rModg — seModpge, M — M°. Note that a left (respectively right) R-module is an
(R, Z)-bimodule (respectively a (Z, R)-bimodule).

If R is commutative, any left (or right R-module) is naturally an (R, R)-bimodule but,
be careful (!), it is no longer true that, to define an (R, R)-bimodule, we only need to
define a structure of left R-module).

Proposition 3.19. If R, S and T are three rings and if M € RModg and N € sModr,
then the maps
R x (M@SN) — M®gN
(rrm®sn) +—— rmEgn

TX(M(X)SN) —_— M®SN

and (t,m®sn) +— m®gnt

are well-defined and endow M ®g N with a structure of (R, T)-bimodule.

PROOF - Let r € R. Then the map f, : M x N - M ®g N, (m,n) — rm ®g n is an S-
balanced bilinear map. So it induces a map fr T MRsN - M®RsgN, msN — rm®gN.
Now, let
f: Rx(M®sN) — M®gN
(r,x) —  fr(z).

Then it is readily checked that f endows M ®g N with a structure of left R-module.
Similarly, the second map defined in the Proposition 3.19 is well-defined and endows
M ®g¢ N with a structure of right T-module. It is also easy to check that, if r € R,
x € M ®g N and t € T, then r(xzt) = (rz)t (by linearity, this can be checked only if
x =m ®gn for some (m,n) € M x N). m

Proposition 3.20. Let R, S, T and U be four rings and let L € pModg, M € sModr
and N € tTMody . Then the map

L®S(M®TN) — (L@SM)®TN
s (m®rn) — (I®sm)Rrn

is well-defined and is an isomorphism of (R, U)-bimodules.
PROOF - This is left as an exercice (proceed as in the proof of Proposition 3.19). m
EXAMPLES 3.21 - (1) Let 0 : R — S be a morphism of rings. Then this endows S with

a structure of (S, R)-bimodule: s.s' = ss’ and s.r = so(r) (r € R, s, s’ € S). So, if N is a
left R-module, then S ® g N becomes a left S-module.



16

If N is free with R-basis (e;);er, then
S@rN = &S®grRe
i€l

~ ©S5(ls®rei)
il

and
S®rRe; ~S®RR~S
by Corollary 3.13. In fact, we have proved that (1 ®g €;);er is an S-basis of S ®@g N.
Note that, if R is a field, then any R-module is free so that S ® g N is a free S-module
for any N.

(2) Let I be a two-sided ideal of R. Then R/I is naturally endowed with a structure
of (R, R)-bimodule, or (R, R/I)-bimodule, or (R/I, R)-bimodule... Also, if N is a left
R-module, then IN is a left R-submodule of N. Therefore, N/IN can be viewed as a
left R-module or as a left R/I-module. It is now easily checked that the isomorphism
R/I ®r N ~ N/IN constructed in Proposition 3.16 is an isomorphism of left R-modules
(or R/I-modules).

(3) If R is commutative, then pkMod ~ Modpg and any left R-module is naturally
an (R, R)-bimodule. Therefore, if M, N € rpMod, then the tensor product M ®p N is
well-defined and is naturally endowed with a structure of left R-module. Moreover, the
map

M KRR N — N XRRr M
mPrn +—— NQOQrm
is well-defined and is an isomorphism of R-modules.

If M and N are moreover R-free with basis (m;);c; and (nj)jes respectively, then
M ®g N is R-free with basis (m; ®g n;) (i jjerxs. O

3.D. Bimodules as functors. Let M € pModgs. Then
M®g—: sMod — grMod

N — M®gN

f — Idy®sf
is a covariant functor. If N € gModp, then the Proposition 3.20 shows that there is
a natural isomorphism of functors (M ®g —) o (N @7 —) ~ (M ®s N) @ —. Also, if
f € Hompg(M, M')g, then f induces a natural transformation M ®g — — M’ ®g —. If
f is an isomorphism of (R, S)-bimodules, then this natural transformation is a natural
isomorphism.

Now, if L is a left R-module, if f € Hompg(M, L), and if s € S, we define s.f : M — L,

m +— f(ms). It is readily seen that this endows Hompg(M, L) with a structure of left
S-module. So this defines a covariant functor

Hompg(M,—): pMod — sMod
L — Hompg(M,L)
for— (9= (fog)
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Theorem 3.22 (Adjointness of Hom and ®). The functor M ®p — is a left adjoint
to the functor Hompg(M,—). The adjunction is given, for any X € gMod and any
Y € sMod, by
Yyx @ Homp(M ®sY,X) — Homg(Y,Hompg(M, X))
f — (y = (me f(m®sy))).
The inverse is given by
dyx : Homg(Y,Hompgr(M,X)) — Homp(M ®sY,X)
f — (mesy— fy)(m)).

PROOF - The proof is left as an exercice. R

3.E. Tensor product over commutative rings. From now on, and until the end of this
section, we assume that R is a commutative Ting. If M and N are two left R-modules,
then M can be seen as an (R, R)-bimodule as follows: if r € R and m € M, we set
m.r = rm. In particular, M ®pg N inherits a structure of left R-module (see Proposition
3.19): r.(m ®r n) = (rm) g n. In particular, r.(m @r n) = (m.r) g n =m g (rn).

If A is another R-module, a map f : M x N — A is called R-bilinear if it is bilinear
and if, for all r € R, m € M and n € N, we have

frm,n) = f(m,rn) =rf(m,n).
In particular, an R-bilinear map is an R-balanced bilinear map (where M is seen as a
right R-module as above).

Theorem 3.23. Assumme that R is commutative. Let A, M and N be three left R-
modules and let f : M x N — A be an R-bilinear map. Then the unique map f: MQrN —
A, m®grn— f(m,n) is a morphism of R-modules.

PROOF - The proof is left as an exercise. B

Recall that we still assume that R is commutative. An R-algebra is an R-module A
endowed with a structure of ring such that the map R — A, r — 7.14 is a morphism of
rings whose image is in the centre of A (the centre of a ring S is the subring of S consisting
of the elements which commute to all the others).

EXAMPLES 3.24 - (1) The centre of Mat, (R) is R.I,, where I, is the identity matrix.
The ring Mat,,(R) is an R-algebra.

(2) If G is a group, R[G] is an R-algebra.

(3) If K is a subfield of a field K’, then K’ is naturally a K-algebra.

(4) R[X1,...,Xy] is an R-algebra.

(5) If I is an ideal of R, then R/I is an R-algebra. O

Theorem 3.25. Assume that R is commutative. Let A and B be two R-algebras. Then

the map
(A®rB)x (A®rB) — A®gpDB
(a®@prb,d @pb) — aad’ Qg bb’
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is a product which endows A ®@pr B with a structure of R-algebra.
If moreover A is commutative, then A ®g B is an A-algebra. If A and B are commu-
tative, then so is A @g B.

PROOF - The proof is left as an exercice. R

EXAMPLES 3.26 - (1) If S is a commutative R-algebra, then S @ g R[G] ~ S[G], S ®r
R[X1,..., X, ~ S[X1,...,Xy], S ®r Mat, (R) ~ Mat,(S)...

(2) Let X and Y be two indeterminates. Let us show that the map

R X]®r R[X] —  R[X,Y]
P®Q — P(X)Q(Y)
is an isomorphism of R-algebras. First, it is clear that it is a morphism of R-algebras.
Let us show now that it is an isomorphism. First, (X' @ X7 )(m)ez; , 15 an R-basis of
the R-module R[X] ®r R[X]. On the other hand, (XZYJ)(M-)GZ;O is an R-basis of the
R-module R[X,Y]. Since X' ®p X7 is mapped to X"Y7 through this morphism, we get
the desired result. O

4. NOETHERIAN AND ARTINIAN MODULES AND RINGS

In this section, we fix a ring R.

4.A. Definitions and characterizations. The notion of Noetherian and Artinian mod-
ules (or ring) involves chains of submodules:

Definition 4.1. A left R-module M is called Noetherian (respectively Artinian) if it
satisfies the ascending chain condition (ACC) (respectively the descending chain
condition (DCC)) namely, if every chain of submodules My C My C M3 C ... (respec-
tively My O My O M3 D ...) becomes stationary (i.e. 3 ng, ¥V n =ng, M, = M,i1).

The ring R is called left Noetherian (respectively left Artinian) if the left R-module
R is Noetherian (respectively Artinian).

REMARK - One can define similarly the notion of Noetherian (or Artinian) right modules
and of right Noetherian (or right Artinian) rings. There are examples of rings which
both left Noetherian and left Artinian but which are neither right Noetherian or right
Artinian. O

EXAMPLES 4.2 - (1) A field is both Noetherian and Artinian.

(2) Z and, more generally, any principal ring is Noetherian. However, Z is not Artinian:
indeed, Z D 27 D 47 2O 87 O 16Z 2O --- is a non-stationary descending chain of ideals of
Z. Similarly, K[X] is not Artinian (here, K is a field and X is an indeterminate).

(3) Any finite dimensional algebra over a field K is both Noetherian and Artinian. Any
finite ring is both Noetherian and Artinian (for instance, Z/nZ).
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(4) Let R be the ring of maps Z — C (with pointwise multiplication and addition). If
n € 7Z, let
I.={f:Z—C|Yk=>=n, f(k)=0}.
Then I, is an ideal of R and it is easily checked that

Gl oGl 1 Gl G G oG I3 G-

In particular, R is not Noetherian and not Artinian.
If we denote by J the ideal of function f : Z — C such that f(k) = 0 for all & € Z\ {0},
then J is a Noetherian and Artinian module. O

The next Theorem gives some characterizations of Noetherian or Artinian modules.

Theorem 4.3. Let M be a left R-modules. Then:

(a) The following are equivalent:

(1) M is Noetherian.

(2) Every submodule of M is finitely generated.

(3) Every non-empty set of submodules has a mazimal element.
(b) The following are equivalent:

(1) M is Artinian.

(2) Every non-empty set of submodules has a minimal element.

PROOF - (a) The proof will proceed in several steps:

e (1) = (2): Let N be a submodule of M and assume that N is not finitely generated.
Since N is not finitely generated, there exists a sequence (n;); > 1 of elements of N such that
nk+1 does not belong to the submodule Nj generated by (n;)1 <i <% Then Np & Ny,
so M is not Noetherian.

e (2) = (3): Let M be non-empty set of submodules of M and assume that M has no
maximal element. Let M; € M. Then M; is not maximal, so there exists My € M such
that My & Ms. Similarly, we can repeat the process and construct a sequence (My)n >1
of elements of M such that M,, & M, 1, so that |, > 1 M, cannot be finitely generated.

e (3) = (1): clear.

(b) The proof will proceed in two steps:

e (1) = (2): Let M be non-empty set of submodules of M and assume that M has
no minimal element. The same argument as before shows that we can then construct a
sequence (My,)y > 1 of elements of M such that M, & M,, so M is not Artinian.

e (2) = (1): clear. m
4.B. First properties. Recall that a short exact sequence of left R-modules is a sequence
0—L-%M2 N0

of morphisms such that Kerao = 0, Ker = Im« and Im 8 = N. Of course, one can define
similarly short exact sequences of right modules (or even of bimodules...)
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Proposition 4.4. Let
0— LM N—0

be a short exact sequence. Then M is Noetherian (respectively Artinian) if and only if L
and N are Noetherian (respectively Artinian).

PROOF - We prove the result for Noetherian modules only (the argument is similar for
Artinian modules). Since « is injective, we shall identify L with a submodule of M (and
a is the canonical injection L <— M) and N with the quotient M/L (and § with the
canonical surjection M — M/L).

Assume first that L and N are Noetherian. Let

My C My C M3 C ...
be a chain of sub-R-modules of M. Then
B(My) C B(Ma) C B(Ms) C ...

is an ascending chain of submodules of N. Since N is Noetherian, there exists n; such
that B(M,) = B(Mp+1) if n > nq. On the other hand,
LNnMi{CLNMyCLNMsgC..

is an ascending chain of submodules of L. Since L is Noetherian, there exists ns such
that L N M, = LN M,y if n > ng. Let ng = max(ni,ng). Then, if n > ng, we have
LN M, = LN M4 and (M,) = B(M,+1). We shall prove that this implies that
M, = My, 1. Indeed, if m € M, 1, then there exists m’ € M, such that g(m) = B(m/).
Som—m' € MpyyNL =Ker3. Som—m’ € LN M,. Therefore, m — m’ € M,, so
m € M,, as desired.

Conversely, assume that M is Noetherian. Then L is obviously Noetherian because any
ascending chain of submodules of L is an ascending chain of submodules of M. On the
other hand, if

Ny © Ny C N3 C ..

is an ascending chain of submodules of N, then

B7H(N1) € B (IN2) € BH(N3) C
is an ascending chain of submodules of M. Since M is Noetherian, there exists ng such
that 3~Y(N,) = B~ Y(Nyy1) for all n > ng. But, since B(371(N,)) = Ny, we get that
N, = Nyp41 for all n > ng. So N is Noetherian. B

Corollary 4.5. We have:

(a) Let My, ..., My, be Noetherian (respectively Artinian) left R-modules. Then My &
-+« @ M, is Noetherian (respectively Artinian).

(b) If M is a left R-module and if My,..., M, are Noetherian (respectively Artinian)
submodules, then My + - - -+ M, is Noetherian (respectively Artinian).

PROOF - This follows easily from Proposition 4.4 by induction on n. B

Corollary 4.6. If R is left Noetherian and if I is a two-sided ideal of R, then the ring
R/I is left Noetherian.
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Definition 4.7. A left R-module M ‘s called simple (or irreducible) if M # 0 and the
only submodules are M and 0. A composition series of a left R-module M is a finite
sequence

O=MyCM C---CM,=M
such that M;y1/M; is simple. We say that the R-module M has finite length if it has a
composition Series.

REMARK 4.8 - A simple module is of course Noetherian and Artinian. O

ExAMPLES 4.9 - (1) If K is a field and V is a K-vector space, then V is simple if and
only if it has dimension 1. It has finite length if and only if it is finite dimensional.

(2) Z/pZ is a simple Z-module if and only if p is a prime number.

(3) 0 C 2Z/6Z C Z/6Z is a composition series of Z/6Z. In fact, Z/nZ has finite length
for any n > 1.

(4) Z is not a simple Z-module. It has not finite length. O
Let us recall the following

Theorem 4.10 (Jordan-Hélder). Let M be a left R-module. If 0 = My C My C -+ C
M, =M and 0 = M) C M{ C --- C M), = M are two composition series of M, then
n =n' and there exists a permutation o € &, such that M;/M;_1 ~ M;(Z.)/M(;(i)_l.
PROOF - Let ¢y denote the minimal natural number such that M; C MZ-’O and My € Mi’o_l.
Let f: My — Mi/o/Mi/ofl be the canonical map. Then M; N Mi’r1 is a submodule of M;
which is different from M, so it is equal to 0 because M is simple. In other words, f is
injective. Similarly, Im f is a non-zero submodule of M; /M; , so f is surjective. Hence
f is an isomorphism. In particular, M;, = M;,—1 & M.

Now, let M = M/M; and, if N is a submodule of M, let N denote its image in M /Mj.
Then

O:MlCMQC"'CMn:M

is a composition series of M. Also,

0

is another composition series of M. By applying the induction hypothesis, we get the
Theorem. B

EXAMPLE 4.11 - 0 C 2Z/6Z C Z/6Z and 0 C 3Z/6Z C Z/6Z are composition series of
Z/6Z. 0O

If M is a left R-module, we write 1g(M) = oo if M does not have finite length and we
write lg(M) = n if M admits a composition series 0 = My C M; C --- C M, = M. The
number lg(M) is called the length of M: it will be sometimes denoted by lgz(M) is we
need to emphasize the ambient ring. By the Jordan-Holder Theorem, the length of an
R-module is well-defined. It is easily seen that, if

0O0—L—M-—N—0
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is a short exact sequence of left R-modules, then

(4.12) lg(M) =1g(L) +1g(N).

Proposition 4.13. A left R-module has finite length if and only if it is both Noetherian
and Artinian.

PROOF - Let M be a left R-module. If M has finite length, then an easy induction
argument on the length of M (using Proposition 4.4 and the fact that a simple module is
Noetherian and Artinian) shows that M is Noetherian and Artinian.

Conversely, assume that M is Noetherian and Artinian. Let My = 0. Since M is
Artinian, it admits a minimal non-zero submodule M;. Since it is minimal, M; is simple.
Now, M/M; is also Artinian (see Proposition 4.4), so there exists a minimal non-zero
submodule M. Let M be the inverse image of M) under the morphism M — M/M;
(in other words, My is the unique submodule of M such that My/M; = Mé By the
minimality of M}, we get that My/M; is simple. By repeating the argument, we can
construct a chain of submodules

MycMyCMyCMsC---

such that M;/M;_; is simple. Now, M is Noetherian, so this sequence must become
stationary after some M,,, and M,, must be equal to M. &

We close this subsection by a difficult result whose proof may be found for instance
in C.W. Curtis & I. REINER, ”Representation theory of finite groups and associative
algebras”, Theorem 54.1.

Theorem 4.14 (Hopkin). An Artinian ring is Noetherian.

4.C. More on Noetherian modules and Noetherian rings. The next theorem gives
a characterization of Noetherian modules whenever R is a Noetherian ring.

Proposition 4.15. Assume that R is a left Noetherian ring. Then a left R-module M is
Noetherian if and only if it is finitely generated.

PROOF - If M is Noetherian, then it is finitely generated by Theorem 4.3 (a). Conversely,
assume that M is finitely generated. Write M = Rm1 + --- + Rm,,. Then the map
R — M
(ri,...,rn) +— rimi+---+rymy,
is a surjective morphism of left R-modules. Now, by assumption, R is a Noetherian left

R-module. So R" is also a Noetherian left R-module by Corollary 4.5 (a). Therefore, M
is Noetherian by Proposition 4.4. m

The next Theorem gives a way to construct a huge family of Noetherian rings.

Hilbert’s Basis Theorem. Let R be a commutative Noetherian ring and let X be an
indeterminate. Then the ring R[X] is Noetherian.
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PROOF - Let I be a non-zero ideal of R[X]. If P = r, X" 4+ --- + X + ro with r, # 0,
we set [(P) = 1y, (ry is called the leading coefficient of P). We set by convention {(0) = 0.
Now, let J =1(I) C R and, for d > 0, let

Ji=A{l(P) |l €I and deg P = d}.

Then J is a left ideal of R. Indeed, if r € R, and s, s’ € J are such that r(s — s’) # 0,
then there exists two polynomials P and @ in I such that [(P) = s and I(Q) = s’. Let p
(respectively ¢) be the degree of P (respectively @)). By symmetry, we may assume that
p = q. Then r(P — XP~9Q) € I, and r(s — s') = (P — XP~1Q) € J. This proves that J is
an ideal of R. Similary, J; is an ideal of R.

Since R is Noetherian, there exists r1,..., r, € J such that J = Rri + --- + Rry.
Let fi,..., fn be such that f; € I and I(f;) = r;. Let N; = degf; and let N =
max{N; | 1 <i<n}. Now, for 0<d< N —1, let rq1,..., 74, be generators of the

ideal Jg4. Let fy1,..., fan, be elements of I of degree d be such that {(fs;) = rq;. Now,
let

n N—1 ng
I'=>"RIX|fi+ Y Y RIX]f4:
=1 d=1 =1

Then I’ is a finitely generated ideal of R[X] contained in I. We shall prove that I’ = I.
Let f € I, f # 0. We shall prove by induction on the degree of f that f € I’. So let
d=degf.

If d > N, then I(f) € J so we can write [(f) = Y., a;r;. Now, f— Y0  a; X Nif;
is an element of I of degree strictly smaller than d. So it belongs to I’ by the induction
hypothesis. Therefore, f € I'.

On the other hand, if d < N — 1, then we can write I(f) = >4 ajrg;. Then f —

w1 aifq; is an element of I of degree strictly smaller than d. So it belongs to I’ by the
induction hypothesis. Therefore, f € I’. m

Corollary 4.16. If R is a commutative Noetherian ring, then R[X1,...,X,] is a Noe-
therian R-algebra.

Definition 4.17. If R is a commutative ring, then a commutative R-algebra S is called
finitely generated (as an R-algebra) if there exists si,..., s, € S such that the morphism
R[Xi,.... X, — S, X; — s; is surjective. In this case, we also say that S is an R-
algebra of finite type. We say that S is a finite R-algebra if S is finitely generated as an
R-module.

Since the quotient of any Noetherian ring is Noetherian (see Corollary 4.6), we get:

Corollary 4.18. If R is a commutative Noetherian ring, and if S is a finitely generated
commutative R-algebra, then S is Noetherian.
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5. JACOBSON RADICAL
As usual, R will denote a fixed ring.

5.A. Preliminaries. We shall start with some results that will be needed throughout
this section.

Lemma 5.1. Let M be a left (or right) R-module and let L be a proper R-submodule
of M. If M/L is finitely generated, then there erists a maximal R-submodule L' of M
containing L. In particular, this holds if M is finitely generated.

PROOF - Let v1,. .., v, be elements of M such that M/L = >"" | R(v;+L). We denote by
M the set of proper submodules of M containing L, ordered by inclusion. Then M # &
(indeed, L € M). We want to show that M admits a maximal element. By Zorn’s
Lemma, it suffices to show that every totally ordered non-empty subset N' C M has an
upper bound in M.

So let NV be a totally ordered non-empty subset of M. Let N* = | Jyca . Then Nt is
a submodule of M (because N is totally ordered) and contains all elements of N'. We only
need to prove that N* # M. But, if NT = M, it means that there exits Ny,..., N, € N
such that v; € N;. Since N is totally ordered, N = max(Ny, N, ..., N,) is well-defined.
Then v; € N for all 4, so N contains all the v;’s and also contains L, so N = M, which is
impossible. B

Corollary 5.2. If I is a proper left (respectively right) ideal of R, there exists a maximal
left (respectively right) ideal of R containing I.

PROOF - Indeed, R is a finitely generated R-module so the Lemma 5.1 can be applied. ®

If M € RMod, and if X C M, we set
anng(X)={reR|VzeX, ra =0}

The set anng(X) is called the annihilator of X in R.

Lemma 5.3. anng(X) is a left ideal of R. If moreover X is a submodule of M, then
anng(X) is a two-sided ideal of R.

PROOF - It is clear that anng(X) is a sub-Z-module of R. Now, let r € anngp(X), x € X
and a € R. Then arx = a.(rz) = a.0 = 0, so ar € anng(X). This shows that anng(X)
is a left ideal. On the oher hand, if X is a submodule of M, then ax € X so raz = 0. In
particular, ra € anng(X), so anng(X) is a two-sided ideal. m

Lemma 5.4. Let M be a simple left R-module and let m € M, m # 0. Then:

(a) M ~ R/anng(m).
(b) anng(m) is a mazimal left ideal of R.
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PROOF - Let 0 : R — M, r — rm. Then o is a morphism of R-modules. Since m # 0, the
image of ¢ is a non-zero submodule of M. Since M is simple, o is surjective. Moreover,
by definition, we have Kero = anng(m). So M ~ R/anng(m). Now the maximality of
anng(m) follows from the simplicity of M. m

5.B. Definition. We denote by Max;(R) (respectively Max,(R)) the set of maximal left
(respectively right) ideals of R. If R is commutative, both sets will simply be denoted by
Max(R). Note that these sets are non-empty by Corollary 5.2.

The Jacobson radical of R, denoted by J(R), is the intersection of all maximal left ideals
of R:

JR) = (] m
meMax; (R)

In particular, J(R) is a left ideal of R. We denote by R* the group of units of R.

EXAMPLES 5.5 - (0) If K is a field, then J(K) = 0. More generally, if D is a division
ring, then J(D) = 0 because 0 is the only proper (left or right) ideal of D.

(1) J(Z) = 0. Indeed, if P denotes the set of prime numbers, then Max(Z) = {pZ | p €
P}. So J(Z) = (\pZ = 0.
peEP
(2) J(Z/p"7Z) = pZ/p"Z if p is a prime number. Indeed, Z/p"Z has only one maximal
ideal.

(3) If K is a field, then J(Mat, (K)) = 0 (see Exercise I1.19 for a more general state-
ment). O

Theorem 5.6. With the previous notation, we have:

(a) J(R) = m anng(S). In particular, J(R) is a two-sided ideal of R.

Se rRMod
S simple

(b) Forr € R, the following are equivalent:

(1) r e J(R).

(2) For allx € R, 1 — xr has a left inverse.

(3) Forallz,y€ R, 1 —xry € R*.
(¢) J(R) is the maximal two-sided ideal I of R such that 1+ 1 C R*.
@ JR)= (] m

meMax, (R)

PROOF - (a) Let J = ﬂ anng(S). We want to show that J = J(R).

Se rRMod
S simple

If S € RMod is simple, then anng(S) = ﬂ annpg(s) is an intersection of maximal left

s€S
ideal of R (see Lemma 5.4 (a)), so it contains J(R). This shows that J(R) C J.

Conversely, if m € Max;(R), then R/m is a simple R-module and anng(R/m) C m. So

JC (] amr®B/m)C () wm=J(R).
mGMaxl (R) mGMaxl (R)
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(b) It is clear that (3) = (2). Let us show that (1) = (2). Since J(R) is a two-sided
ideal, we only need to show that, if » € R, then 1 — r has a left inverse. So let r € J(R).
If 1 —r has no left inverse, then R(1 —r) # R, so there exists a maximal left ideal m of R
containing 1 — r (see Corollary 5.2). So r € 1 +m. In particular, r ¢ m, so r € J(R).

Let us now show that (2) = (1). Assume that r ¢ J(R). Then there exists a maximal
left ideal m of R such that r € m. In particular, Rr +m = R since m is maximal. So there
exists z € R and m € m such that r + m = 1. Therefore, 1 — zr € m, so R(1 —zr) C m,
so 1 — xr has no left inverse in R.

We now know that (1) < (2) and that (3) = (2), so it remains to prove that (1)
= (3). Since J(R) is a two-sided ideal, we only need to show that 1 —r € R* for any
r € J(R). Solet r € J(R). Since (1) = (2), there exists s € R such that s(1—r) = 1. Then
1—s = —sr € J(R). Again, this implies that there exists ¢ € R such that t(1—(1—s)) = 1.
In other words, ts = 1. Therefore, ts(1—r)=t=1—7r. So (1—r)s=1,s01—r € R*.

(c) By (b), we have 1 + J(R) € R*. On the other hand, if I is a two-sided ideal of R
satisfying 1 + I C R*, then every element r € I satisfies the condition (3) of statement
(b). So I C J(R).

(d) By symmetry, one can define J'(R) = ﬂ m. As in (b), one can show that

meMax, (R)
r € J'(R) if and only if 1 —zry € R* for all z, y € R. So J'(R) = J(R). m

REMARK 5.7 - If I is a two-sided ideal of R contained in J(R), then 1+ I is a subgroup
of R*. O

If M is a left R-module, we define the radical of M (and we denote it by rad(M)) as
the intersection of all maximal submodules of M (if M has no maximal submodule, then
rad(M) = M). If we need to emphasize the ambient ring, we write radg(M) for rad(M).
For instance, radgr(R) = J(R).

Proposition 5.8. If M is a left R-module, then J(R)M C rad(M).

PROOF - Let L be a maximal submodule of M. Then M /L is simple. Let I = anng(M/L).
Then J(R) C I by Theorem 5.6 (a) so IM C L by definition. So J(R)M C L. m

Theorem 5.9 (Nakayama’s Lemma). Let M be a left R-module and let L be a sub-
module of M such that M/L is finitely generated. Then:

(a) If L+rad(M) = M, then L =M.

(b) If L+ J(R)M = M, then L = M.

(¢) If M is finitely generated and J(R)M = M, then M = 0.

PROOF - (a) assume that L +rad(M) = M. If L is a proper submodule of M, then there
exists a maximal submodule L’ of M containing L (by Lemma 5.1). So rad(M) C L’ and
L C L soL+rad(M) C L', which contradicts the fact that L+rad(M) = M. So L = M.

(b) follows easily from (a) and from Proposition 5.8.

(c) follows by applying (b) to the case where L =0. m
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5.C. Nilpotency. An element r € R is called nilpotent if there exists n > 1 such that
™ = 0. A left (respectively right) ideal I of R is called a nil left ideal (respectively nil
right ideal) if every element of I is nilpotent. A two-sided ideal I of R is called nilpotent if
I = 0 for some n > 1. Of course, a nilpotent two-sided ideal is a nil left (or right) ideal.

Lemma 5.10. If I is a nil left ideal, then I C J(R).

ProoOF - If r € I and if x € R, then zr € I so xr is nilpotent. Let n > 1 be such that
(xzr)™ = 0. Then

(A 4zr + (zr)? + -+ (2r)" H(A —zr) =1,
so 1 — xr has a left inverse. So r € J(R) by Theorem 5.6 (b). ®

Corollary 5.11. If R is commutative and if r € R is nilpotent, then r € J(R).

PROOF - Indeed, if € R, then zr is still nilpotent (because R is commutative). So Rr is
a nil left ideal of R. So Rr C J(R) by Lemma 5.10. m

EXAMPLE 5.12 - It might happen that a nilpotent element of R does not belong to the
radical of R. Indeed, let R = Mat,,(K) where K is a field. Then J(R) = 0 by Example
5.5 (3), but R contains non-zero nilpotent elements (if n > 2). O

Proposition 5.13. If R is Artinian, then J(R) is nilpotent.

PROOF - Since R is Artinian, the descending chain of ideals
J(R) 2 J(R)* 2 J(R)’D...

becomes stationary. So there exists n > 1 such that J(R)" = J(R)"" for all i > 0. Let
I =J(R)". Then I? =I.

If I # 0, then the set Z of non-zero left ideals L of R such that IL = L is non-empty (it
contains I). So it admits a minimal element Ly (because R is Artinian). Let a € Lo, a # 0.
Then Ia € 7 and Ia C Ly, so Ia = Ly. So there exists b € I such that ba = a. In other
words (1 —b)a =0, so a = 0 because 1 — a is invertible. This leads to a contradiction. m

REMARK - If we admit Hopkin’s Theorem (see Theorem 4.14), then the proof of the
above result becomes much easier. Indeed, once we know that J(R)" = J(R)"*!, then,
R being Artinian, it is also Noetherian, so J(R)" is a finitely generated R-module and
J(R).J(R)" = J(R)™. So J(R)" = 0 by Nakayama’s Lemma. O

5.D. Idempotents. An element e € R is called idempotent if e? = e. For instance, 0 and
1 are idempotents.

Proposition 5.14. Let e € R be an idempotent. Then eRe is a unitary ring (for the
multiplication in R and with identity e) and J(eRe) = eJ(R)e.

PROOF - If r, s € R, then ere.ese = e(res)e € eRe and ere — ese = e(r — s)e so eRe is

2

stable under addition and multiplication. Also, e.ere = ere.e = ere since e“ = e, so e is

the identity of eRe.
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Now, if r € eJ(R)e, and if « € eRe, then zr € J(R) so there exists s € R such that
s(1—ar)=1. So es(l —zr)e =e, so ese(e —xr) = e. In other words, e — xr admits a left
inverse in eRe. So r € J(eRe) by Theorem 5.6 (b).

Conversely if r € J(eRe), since r = ere, it is sufficient to show that r € J(R). Let M be
a simple left R-module. It is sufficient to show that M = 0. We first need the following
result:

Lemma 5.15. If M is a simple left R-module and if eM # 0, then eM is a simple
left e Re-module.

PROOF - Let L be a non-zero sub-e Re-module of eM. Since M is simple, we have
RL = M. Since eL = L, we have eReL = eM and, since eReL C L, we get that
L=eM.O

Now, rM = reM = r.eM = 0 since eM is simple and r € J(eRe). B

REMARK 5.16 - If e € R is an idempotent, then R = Re ® R(1 — e). Indeed, if r € R,
then r = re + (1 —e) so that R = Re+ R(1 —e). Now, let r € ReN R(1 —e). Write r =
re = y(1—e) with , y € R. Then re = xe? = ze = r, but re = y(1 —e)e = y(e — e?) = 0.

Sor=0.0

6. PROJECTIVE, INJECTIVE, FLAT MODULES

6.A. Exactness. Let R be a ring and let M be a left R-module. We shall study here
properties of the functors — ® g M : Modr — Ab, Homgr(M,—) : gRMod — Ab and
Homp(—, M) : gRMod — Ab.

Proposition 6.1. Let M be a left R-module.

(a) If X — X' — X" — 0 is an exact sequence in Modg, then the sequence of abelian
groups X Qg M — X' @p M — X" @gr M — 0 is ezact.

(b) If X — X' — X" — 0 is an exact sequence in gMod, then the sequence of abelian
groups 0 — Homp (X", M) — Homp(X', M) — Homp (X, M) is exact.

(¢) If0 - X — X' — X" is an exact sequence in gMod, then the sequence of abelian
groups 0 — Homp(M, X) — Hompg(M, X') — Hompg(M, X") if exact.

PROOF - (a) Let X Toxr Ioxr o be an exact sequence in Modg. Then, by
Proposition 3.12 (b), the sequence X’ @ M F'erlda s ®r M — 0 is exact. Moreover,
(f'@rldp)o(f@glda) = (f'of)®@rIdy = 0. So it remains to show that Ker(f'®gIdys) C
Im(f ®pg Idps). In other words, if ¢ : (X' @r M)/(Im(f @r Idp)) — X" @r M denotes
the morphism induced by f’ ®g M, we must show that v is an isomorphism. For this, we
shall construct its inverse.

Let o : X"xM — (X'@rM)/(Im(f®glds)) be defined as follows. If (x”,m) € X" x M,
there exists 2’ € X’ such that f/(2’) = 2”. We then set p(z”,m) = 2/ ®g m, where
x’ ®g m denotes the class of ' @gm in (X' @ M)/(Im(f ®r Idar)). Let us first show
that ¢ is well-defined. In other words, we must show that, if f/'(z}) = f/(zf) with =i,
zh € X', then 2y @ m = a, @ g m. But, if f'(z}) = f/(«}), then 2} — 2}, € Ker f' =Im f,
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so there exists € X such that 2}, = f(x)+2). Then (2} ®prm)—(zh®@rm) = f(x)@rm €
Im(f ®g Idar), as expected.

It is now routine to check that ¢ is bilinear and R-balanced, and that the induced
morphism of abelian groups X" @r M — (X'@rM)/(Im(f@rIdy)), 2" @gm — @(x”,m)
is an inverse of the map .

(b) and (c) are left as exercises. m

The left R-module M is called flat (respectively injective) if, for all exact sequences

0— X — X'

in Modp (respectively pgMod), the sequence of abelian groups
0 —X®pM— X' @pM
(respectively
Hompg (X', M) — Hompg(X,M) — 0 )

is exact. It is called projective if, for all exact sequences

X —X —0
in pRMod, the sequence

Hompg(M, X) — Hompg(M, X') — 0)

is exact. Of course, one can also define the notions of flatness, injectivity and projectivity
for right R-modules.

Lemma 6.2. Let (M;);cr be a family of left R-modules. Then @;c;M; is flat (respectively
injective, respectively projective) if and only if M; is flat (respectively injective, respectively
projective) for all i € I.

PROOF - Clear... m

EXAMPLE 6.3 - A free left R-module is projective and flat. Indeed, the flatness follows
from Lemma 6.2 and from the fact that X®pr R ~ X (see Corollary 3.17). The projectivity
follows from Lemma 6.2 and from the fact that the map Homp(R, X) — X, f — f(1)isan
isomorphism of left R-modules (recall that, since R is an (R, R)-bimodule, Hompg (R, M)
is naturally endowed with a structure of left R-module by §3.D). O

Theorem 6.4. Let M be a left R-module. Then:

(a) The following are equivalent:
(1) M is flat.
(2) For all exact sequence L — L' — L" in Modg, the sequence of abelian groups
LM — L' 9 M — L" @z M is exact.
(b) The following are equivalent:
(1) M is injective.
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(2) For all morphisms of left R-modules v: L — L' and f : L — M such that 1
is injective, there exists a morphism of left R-modules f : L' — M such that

For=f.
0—>L——>1
fl/f
M

(3) For all exact sequences L — L' — L" in pMod, the sequence of abelian
groups Hompg(L", M) — Hompg(L', M) — Hompg(L, M) is exact.

(4) For all left ideal I of R and all morphisms of R-modules f : I — M, there
exists a morphism of left R-modules f : R — M extending f (Baer’s crite-

rion).
J—
f 4

M

R

(¢) The following are equivalent:
(1) M is projective.
(2) For all morphisms of left R-modules w: L — L' and f : M — L' such that
is surjective, there exists a morphism or left R-modules f: M — L such that

Tof=f.
e

L—L——>0

(3) For all exact sequences L — L' — L" in pMod, the sequence of abelian
groups Hompg(M, L) — Hompg(M, L) — Hompg(M, L") is exact.
(4) M is a isomorphic to a direct summand of a free left R-module.

PROOF - (a) is easy. Let us now prove (b). It is easy to see that (1) < (2) & (3). It is
clear that (2) = (4): indeed, apply (2) to the case where L = I, L'’ = Rand +: I — R
is the canonical injection. Let us prove that (4) = (2). So assume that (4) holds and let
1 : L — L' be an injective morphism of R-modules and let f : L — M be a morphism
of R-modules. We may assume that L C L’ and that 2 is the canonical injection. Let &
be the set of pairs (I?, f) such that L is a submodule of L' containing L and f L — M
extends f. We define an order < on £ as follows: we write (f/l, fl) < (l~}2, fg) if Ly C Ly
and fl is the restriction of fg to Li. If S is a totally ordered subset of £, we then set
Lt = U(Z,f)esf’ and we define f* : Lt — M by f+(I) = f(I) whenever [ € L for some
(L, f) € S (it is easy to check that fT is well-defined). Then (LT, f*) € £ and is an upper
bound for §. So, by Zorn’s Lemma, £ admits a maximal element (I:, f ). We only need to
prove that L = L. Let z € I'. Let [ = {r € R | 7z € L}. Then I is a left R-ideal of R.
Let g: I — M, r — f(rz). Then g is a well-defined R-linear map. So, since (4) holds,
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there exists g : R — M extending g. We now set
f'v L+Rz — M
l+re +— f(l)+g(r).

It is readily seen that f’ is well-defined and is R-linear. Moreover, it extends f , SO (L +
Rz, f') € £. Since (L, f) is maximal, we get that L + Rz = L, that is # € L. So L = L.

Let us now prove (c). It is easy to show that (1) & (2) < (3). The fact that (4) =
(1) follows from Example 6.3 and Proposition 6.2. Let us now show that (2) = (4). Let
(mi)ier be a family of generators of M. Let m: R[I] — M, Y, ;rii — > . rim;. Itis
a surjective R-linear map. By (2) applied to 7 and f = Idy;, there exists f : M — R[I]
such that fo f = Idys. It is then easy to check that R[I] ~ f(M) & Ker f (see Exercise

I1.1), and f(M) ~ M because f is injective. m
Corollary 6.5. A projective module is flat.
PROOF - This follows from Theorem 6.4 (c) and from Lemma 6.2. ®

Corollary 6.6. Assume that M is finitely generated. Then M is projective if and only if
it is isomorphic to a direct summand of a free R-module of finite rank.

PROOF - This follows from the proof of Theorem 6.4. B

EXAMPLES 6.7 - (1) If e € R is an idempotent, then Re is a projective left R-module.
Indeed, R = Re @ R(1 — e) (see Remark 5.16), so Re is a direct summand of the free
R-module R. It is in particular flat.

(2) If R is a principal ideal domain, then any finitely generated projective R-module
is free. This follows from Theorem 6.4 and from the fact that a submodule of a finitely
generated free module is always free in this case.

(3) Assume again in this example that R is a principal ideal domain. The R-module
M is called divisible if, for all r € R, r # 0, we have rM = M (for instance, Q, Q/Z and
R/Z are divisible Z-modules). We shall prove here the following result:

If R is a principal ideal domain, then a left R-module is injective if and

only if it is divisible.
First, assume that M is not divisible. Then there exists r € R, r # 0 and m € M such
that m € rM. Let » : Rr — R be the canonical injection and let f : Rr — M, ar — am.
Then f cannot be extended to a map f : R — M because, if such a map exists, then f(1)
must satisfied rf(1) = f(r) = f(r) = m, which is impossible. So M is not injective.

Conversely, assume that M is divisible. We shall use Baer’s criterion to show that M is

injective. Let I be an ideal of R and let f : I — M be an R-linear map. We may assume
that I # 0, for otherwise, it is easy to find an extension of f. Since R is a principal ideal
domain, there exists r € R such that I = Rr. Let m = f(r). Since M is divisible, there
exists m/ € M such that rm’ = m. We then defined f : R — M, a — am’. Then f(r) =m
so f is an extension of f. So M is injective.

(4) We shall give in Exercise 6.7 an example of a projective module over a commutative
integral domain which is not free. O
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Proposition 6.8. Let M be a left R-module. Then:

(a) There exists an injective module I and an injective morphism M — I.
(b) There ezists a projective module P and a surjective morphism P — M. If M is
finitely generated, then P can be chosen finitely generated.

PROOF - (b) has already been proved in Theorem 6.4 (c).
Let us now prove (a). This will be done in several steps. We first show the following

Lemma 6.9. If D is a divisible abelian group, then Homgz(R, D) is an injective
R-module.

PROOF - Recall that, since R is naturally a (Z, R)-bimodule, the abelian group
Homg (R, D) is naturally endowed with a structure of left R-module (see §3.D).
Let 0 — X — X'’ be an exact sequence of left R-modules. We must show that
the sequence Hompg (X', Homy (R, D)) — Hompg(X, Homz(R, D)) — 0 is exact.
But, by the adjointness of Hom and ® (see Theorem 3.22), this amounts to show
that the sequence Homyz (X', D) — Homg (X, D) — 0 is exact. But this follows
from the fact that D is an injective Z-module by Example 6.7 (3). m

So assume first that the result has been proved whenever R = Z. Then there exists
an injective morphism of abelian groups M <— D, where D is divisible. Then the map
Homy (R, M) — Homy(R, D) is injective (see Proposition 6.1 (c¢)) and Homgz(R, D) is
an injective R-module by Lemma 6.9. On the other hand, the map M — Homgy(R, M),
m +— (r — rm) is an injective R-linear map. So we get an injective R-linear map by
composition M — Homgz (R, M) — Homz(R, D).

Therefore, it remains to show that the result holds whenever R = Z, which we assume
now. Let M”" = Homy(M,Q/Z). Then the natural map M — (M™)", m — (f — f(m))
is a morphism of abelian groups, and it is easily checked that it is injective. It remains
to show that (M”™)" can be embedded in a divisible abelian group. Let FF — M”" be a
surjective map, where F' is free (such a map exists by the statement (b) of this proposition).
Then, by Proposition 6.1 (b), the map (M”")" — F” is injective. So it remains to show
that F" is divisible. But, since F is free, F is isomorphic to a direct sum of copies of
Homy(Z,Q/Z) ~ Q/Z, which are all divisible. ®

Corollary 6.10. Let M be a left R-module. Then:
(a) M is injective if and only if all injective morphisms v : M — M’ split (i.e. there
exists m: M' — M such that wo1=1Idys).
(b) M is projective if and only if all surjective morphisms m : M’ — M split (i.e. there
exists 1 : M — M’ such that o1 =1dyy).

PROOF - The proofs of (a) and (b) are entirely similar. Let us prove only (b). If M
is projective, then it is clear that any surjective morphism M’ — M splits (by applying
Theorem 6.4 (2) to the case where L = M', L' = M and f = Idys). Conversely, assume
that all surjective morphisms M’ — M split. By Proposition 6.8 (b), there exists a
surjective morphism M’ — M where M’ is projective (even free if we want). Since this
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morphism splits, this gives an embedding of M as a direct summand of a projective module
(see Exercise I1.1), so M is projective by Lemma 6.2. ®

6.B. Local rings.
Definition 6.11. The ring R is called local if it has only one maximal left ideal.

EXAMPLES 6.12 - (1) A field (or a division ring) is a local ring.
(2) Z/p™Z is a local ring if p is a prime.
(3) Z is not a local ring. O

Proposition 6.13. The following are equivalent:

(1) R is local.

(2) R has only one mazximal right ideal.
(3) R/J(R) is a division ring.

(4) R* =R\ J(R).

(5) R\ R* is a two-sided ideal of R.

PROOF - Let R = R/J(R) and, if € R, we denote by 7 its image in R.

(1) = (3): if Ris local, then J(R) is a maximal left ideal of R. So 0 is the only maximal
left ideal of R. In particular, any non-zero element of R has a left inverse. Now, let ¥ € R.
Then there exists 5 € R such that 57 = 1. Now 5 # 0, so 5 has a left inverse (say £). Then
75 = (t5)(75) = t(57)5 = 1, so 5 is also a right inverse. This shows that R is a division
ring.

(3) = (2) is clear and (3) = (1) are clear. By symmetry, we also have that (2) = (3).
So (1) & (2) & (3).

It is also clear that (4) = (5). The fact that (5) = (4) follows from Theorem 5.6 (c).
Moreover, if (4) holds, then any non-zero element in R is invertible, so R is a division ring.
In oter words, (4) = (3). Now, if (3) holds and if r & J(R), then there exists s € R such

that 57 = 7s = 1. So sr € 1 + J(R), so sr has a left inverse. In particular, r has a left
inverse. Similarly, r has a right inverse. So r € R*, so (4) holds and we are done. B

Theorem 6.14. If R is a local ring then every finitely generated projective R-module is
free.

PROOF - Let M be a projective left R-module. Let R = R/J(R) and M = M/J(R)M =~
R®p M. Then M is an R-module. But R is a division ring, so M is free (and finitely
generated): let my, ..., m, be elements of M such that (11, ...,m,) is an R-basis of M.
Let L = Rmj + --- 4+ Rmy,. Then L is a submodule of M and L + J(R)M = M. So, by
Nakayama’s Lemma (Theorem 5.9) and since M is finitely generated, L = M. In other
words, the R-linear map
e R" — M
(7“1, e ,Tn) — Z?:l rim;

is surjective. Since M is projective, there exists a splitting + : M — R™ of this morphism,
i.e. wo1=1Idys. So ¢ is injective.
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Let us show that it is surjective. But the maps 7 : R® — M and 7 : M — R™ induced by
7 and ¢ satisfies 707 = Id ;. Also, by construction, 7 is an isomorphism. So 7 is surjective.
In particular, R" = (Imz) + J(R)™ so, again by Nakayama’s Lemma, Im¢ = R", that is 2
is surjective. ®

7. MORITA EQUIVALENCES AND SKOLEM-NOETHER THEOREM
7.A. Morita equivalences. Let R and S be two rings.

Definition 7.1. A Morita equivalence between R and S is the following datum:

e an (R, S)-bimodules A and an (S, R)-bimodule B;
e an isomorphism of (R, R)-bimodule ¢ : A®Rs B ~ R;
e an isomorphism of (S, S)-bimodules ) : B@r A ~ S.

If (A, B, ¢,v) is a Morita equivalence between R and S, we say that the rings R and S
are Morita equivalent.

Assume in this section that we are given a Morita equivalence (A, B, ¢, 1) between R

and S. Let
F: sMod — grMod
N — A®gN

G: gpMod — sMod

M — B®sM
be the functors induced by these bimodules. Then, since A ® g B ~ R and B®Qr A ~ S,
we have natural isomorphisms of functors ¢ : F oG = (A ®s B) ®z — — Id xMod and
Vv:GoFS1d s<Mod induced by ¢ and v respectively (see §3.D). In other words, F and
G are equivalences of categories.

and

REMARK 7.2 - If (A, B, ¢,1) is a Morita equivalence between R and S, then, by symmetry,
the functors —®r A and —®g B are equivalences of categories between Mod g and Modg. O

Proposition 7.3. If M and M’ are two left R-modules, then the map
G : Homgr(M, M") — Homg(G(M),G(M"))
18 an isomorphism of abelian groups. If M = M’, this is an isomorphism of rings.

A similar statement holds for the functor F.

PROOF - The fact that G is a morphism of abelian groups is clear (as it is also clear that
it is a morphism of rings whenever M = M'). The fact that it is bijective follows from
Exercise 1.9. m

As a consequence of the previous proposition, we shall see now that a Morita equivalence
preserves many properties of modules, namely the ones that are defined only in terms of
the category of modules (and without reference to the ring). We need another definition.
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Definition 7.4. A left R-module M is called decomposable if M ~ M' @& M" for some
non-zero modules M' and M". The left R-module M is called indecomposable if M # 0

and M is not decomposable.

Corollary 7.5. Let f: M — M’ be a morphism of left R-modules. Then:

(a) M #0 if and only if G(M) # 0.

(b) M is an indecomposable R-module if and only if G(M) is an indecomposable S-
module.

(¢c) M is a projective R-module if and only if G(M) is a projective S-module.

(d) M — M’ — M" is an exact sequence of R-modules if and only if G(M) —
G(M') — G(M") is an exact sequence of S-modules.

(e) M is a simple R-module if and only if G(M) is simple S-module.

(f) M is a flat R-module if and only if G(M) is a flat S-module.

(g) M is an injective R-module if and only if G(M) is an injective S-module.

PROOF - (a) follows from the fact that F(G(M)) ~ M. (b) follows from (a). Let us
now prove(c). By symmetry, we only need to prove the "only if” part. So assume that
M is projective. Let m : I — G(M) be a surjective morphism where F' is a free S-
module. Then, by Proposition 6.1 (a), the map F(w) : F(F) — F(G(M)) is surjective.
Since F(G(M)) ~ M is projective, there exists a map j : F(G(M)) — F(F) such that
F(m) oy =Idgg(ar))- By Proposition 7.3, there exists 2 : F' — G(M) such that F(z) = 5.
Then F(m 01) = Idzg(nr)), s0 m o1 = Idgy) again by Proposition 7.3. So the map 7
splits, hence G(M) is isomorphic to a direct summand of the free module F' (see Exercise
I1.1), so G(M) is projective.

(d) Now, by (c), B = G(S) is projective as a left R-module. By symmetry, B is
projective as a right S-module. Similarly, A is projective as a left S-module and as a right
R-module. So B is flat as a right S-module. This shows (d).

(e) Again, by symmetry, we only need to prove the "only if” part. So assume that M is
simple. Let L be a non-zero submodule of G(M). Then the exact sequence 0 — L — G(M)
induces an exact sequence 0 — F(L) — F(G(M)) by (d). But, by (a), F(L) # 0.
Since F(G(M)) ~ M is simple, we get that F(L) = F(G(M)), in other words, the map
F(L) — F(G(M)) is an isomorphism. So, again by (d), the map L — G(M) is an
isomorphism, so L = G(M). This shows that G(M) is simple.

(f) and (g) are left as exercises. W

7.B. Example: matrix rings. Let n > 1 and let Col,(R) (respectively Row, (R)) be
the set of column vectors (respectively row vectors) of length n with coefficients in R (as
a set, it is canonically in bijection with R™). We view Col,,(R) (respectively Row,(R)) as
a (Mat,(R), R)-bimodule (respectively (R, Mat,,(R))-bimodule) in the natural way. Now,

let
¢ : Rown(R) @nat,(r) Coln(R) — R
\% ®Matn(R) U — VU

¥ : Col,(R) ®r Row,(R) — Mat,(R)

and UgrV — UV
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Theorem 7.6. The datum (Row,(R),Col,(R), ¢, ) is a Morita equivalence between the
rings R and Mat,(R).

PROOF - We only need to show that ¢ and ¢ are isomorphisms of bimodules. First, it
is easily checked that ¢ is a morphism of (R, R)-bimodule and that v is a morphism of
(Mat,, (R), Mat,,(R))-bimodules.

We denote by Ej;; the n x n matrix whose (7, j)-entry is 1 and whose all other entries
are zero. We denote by C; (respectively R;) the column (respectively row) matrix whose
i-th term (respectively j-th term) is 1 and whose all other entries are 0. Then

(1) Eij = CiR;
and

Uit
(2) R;C; = e

0 otherwise.

e Let us first prove that ¢ is an isomorphism. First, by (1), ¢ is surjective. Now,
let z € Kert. Since (Cj)1 <i<n and (Rj)1 < j <n are R-basis of Col,,(R) and Row,(R)
respectively, there exists r;; € R such that x = Z Cirij @r R;. So ¢ (x) = Z ri;Ei; = 0,

i, ]
so all the 7;;’s are zero. In particular, z = 0. So v is an isomorphism.

e Let us now prove that ¢ is an isomorphism. First ¢ is surjective by (2). Now, let
z € Ker ®. Again, we can write r = Z’I‘ij(Rj ®Matn(R) Cl) But Rj = R1E1j, Ele’i =0

1,J
if 1 # j and E1;,C; = C1. So Rj @uat,(r) Ci is equal to 0 or Ry @ppat,(r) C1- So @ =
TR1 @\at,(r) C1 for some 7 € R. Since ¢(R1 @ypar,(r) C1) = 1 by (2). Hence r = 0
because p(z) = 0. So x = 0 and ¢ is injective. B

7.C. Skolem-Noether Theorem via Morita equivalences. We are now ready to
prove the following result:

Theorem 7.7 (Skolem-Noether). Let R be a commutative ring such that all finitely
generated projective R-modules are free. Let o : Mat,(R) — Mat,(R) be an automorphism

of R-algebras. Then there exists an element g € Mat,(R)* such that o(x) = grg~! for all
x € Mat,(R).

ExAMPLE 7.8 - If R is a field, or if R is a principal ideal domain, or if R is a commutative
local ring then all finitely generated projective R-modules are free (for local rings, see
Theorem 6.14). So Skolem-Noether’s Theorem can be applied to these rings. It is also
true that, if R = K[X,...,X,] where K is a field, then any projective R-module is free
(this difficult result was first conjectured by Serre and proved by Quillen). O

PROOF - We shall use here the notation of the previous subsection 7.B and the Theorem
7.6. So we assume here that S = Mat, (R), that A = Row,(R) and B = Col,(R). We
shall prove several intermediate results. Let us fix a left R-module M.

(1) M s finitely generated if and only if G(M) is finitely generated.

PROOF - This is left as an exercise. m
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(2) Assume that M is finitely generated. Then M is indecomposable and projective
if and only if M ~ R.

PrOOF - If M ~ R, and if M ~ M’ & M"”, then M’ and M" are projective
hence are free: M’ ~ R[I| and M’ ~ R[J] where I and J are disjoint sets. Then
R ~ R[IUJ]. Let m be a maximal ideal of R. Then, by tensorizing with R/m, we
get that R/m ~ R/m[] U J] and, since R is commutative, this is an isomorphism
of R/m-modules, and R/m is a field. So [IUJ| =1,s0 = @ or J = &, that is
M’ =0 or M"” = 0. This shows that M is indecomposable.

Conversely, if M is indecomposable and projective, then M is free and so, since

it is indecomposable, we must have M ~ R. m

(3) Col,,(R) is the unique finitely generated projective indecomposable module.

PROOF - This follows from (2) and from Corollary 7.5 (b) and (c). m

If V is a left Mat,(R)-module, we denote by V(?) the left Mat, (R)-module whose
underlying abelian group is still V', but on which z € Mat,,(R) acts by multiplication by
o(x). Then:

(4) Mat,(R)(?) ~ Mat,,(R).

PROOF - Indeed, o : Mat, (R) — Mat, (R)() is an isomorphism of Mat,, (R)-
modules. ®

(5) If V is a projective (respectively indecomposable, respectively finitely generated)
Mat,, (R)-module, then so is V().

PROOF - Indeed, (V@ W)@ = V(@) @ M) so, if V is a direct summand of a free
Mat,, (R)-module, it follows from (4) that V(%) is also a direct summand of a free
module. The statements about indecomposable and finitely generated modules

are clear. m

By (3) and (5), we have that Col, (R)() is isomorphic to Col,(R) as a Mat,,(R)-module.
Let f : Col,(R) — Col,(R)(® be such an isomorphism. By identifying Col,(R) with R",
and since R is commutative, f is given by a matrix g € Mat,,(R)*: we have f : Col,(R) —
Col,(R)\), C +— ¢C.

Now, if € Mat,(R), we have f(zC) = o(z)f(C), so that gzC = o(x)gC, that is
xC = g to(x)gC. Since this holds for all C' € Col,(R), we have that z = g~ lo(z)g as
desired. m

8. SEMISIMPLE RINGS AND MODULES
As usual, R will denote a fixed ring.

8.A. Semisimple modules.

Definition 8.1. A left R-module M is called semisimple if it is isomorphic to a direct
sum of simple modules.
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Since the definition of a semisimple module involves only the category of modules pMod
and not the ring R itself, we are not surprised that a Morita equivalence preserves semisim-
plicity of modules:

Lemma 8.2. Let R and S be two Morita equivalent rings and let G : RMod — sMod be
the equivalence of categories induced by a Morita equivalence between R and S. Let M be
a left R-module. Then M is semisimple if and only if G(M) is semisimple.

PROOF - This follows from Corollary 7.5 (e) and from the fact that the functor G is
compatible with direct sums. B

Theorem 8.3. The following are equivalent:
(1) M is semisimple.
(2) M is a sum (not necessarily direct) of simple modules.
(3) Every submodule of M is a direct summand of M.

PROOF - It is clear that (1) = (2). Let us now show the following

Lemma 8.4. Assume that (2) holds and let L be a submodule of M. Then there
exist simple submodules (Sq)aca of M such that M = L & ( G}AS,I).
ac

PROOF - Let (5;);ecs denote the set of all simple submodules of M. By hypothesis,
M =3 ,c;Si. We denote by M the set of subsets A of I such that the sum
> aca Sa is direct and the sum L + (3, 4 Sq) is direct. We have € M, so that
M is not empty. Also, it is readily seen that M satisfies the hypothesis of Zorn’s
Lemma. Hence M admits a maximal element: let A be a maximal element of M.
Let L' =L ® (GEBASG). We want to show that L’ = M, so that the lemma will be
proved. ©

Assume that M/L' # 0. Let 7 : M — M /L’ be the canonical projection. Since
M =} . Si, there exists i € I such that 7(S;) # 0. In particular, S; is not
contained in L', so L' C S; is a proper submodule of S;. Since S; is simple, we
have that L' N S; = 0. This shows that AU {i} € M. Since A is maximal, we get
that ¢ € A, so S; C L/, which is impossible. So M/L' =0. m

Now, by the Lemma 8.4, we get that (2) = (1) (indeed, take L = 0 in Lemma 8.4) and
that (2) = (3). Let us now show that (3) = (2). So assume that (3) holds. Let (S;)ier
denote the set of all simple submodules of M. Let L = ),.;S;. We want to show that
L = M. So assume that L # M. By (3), there exists a submodule L’ of M such that
M =L®L'. Then L' # 0. Let v € L be such that v # 0. Let f: R — M, r — ro.
Since v # 0, the kernel of f is a proper left ideal of R so, by Corollary 5.2, there exists a
maximal left ideal I of R such that Ker f C I. Then [v is a submodule of M so, by (3),
there exists a submodule N of M such that M = v N. Let S = NN Rv. Then it is easy
to see that Rv = Iv & S. Then S ~ Rv/Iv. But Rv/Iv ~ R/I because I contains Ker f
and R/I is simple because I is maximal. So S is simple. But S C Rv C L' and L'NL = 0.
So SN L = 0: this contradicts the fact that L contains all the simple submodules of M. ®

REMARKS 8.5 - (1) f 0 - L — M — N — 0 is an exact sequence and if M is
semisimple, then it follows easily from Theorem 8.3 that L and N are semisimple. Indeed,
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let w: M — N be surjective. Since M is the sum of its simple submodules, we have that
N is the sum of all 7(5), where S runs over the set of simple submodules of M. But 7(S5)
is 0 or simple, so N is a sum of simple submodules. On the other hand, if L is a submodule
of M, there exists a submodule L’ of L such that M = L @& L’: in particular, there exists
a surjective map 7 : M — L, so the previous argument can be applied to show that L is
semisimple.

(2) If M is semisimple, then rad(M) = J(R)M = 0. Indeed, if M = @4c4S,, where
S, is a simple left R-module, then M,, = ®q+q,Sq is a maximal submodule of M (and
M /Mgy ~ S,) for all ag € A, and (,c 4 My = 0.

(3) The isomorphy classes of simple left R-modules form a set. Indeed, let = denote the
equivalence relation on Max;(R) defined by m = m’ if the R-modules R/m and R/m’ are
isomorphic. Then, if (m;);ecr is a set of representative of equivalence classes of maximal
left ideals of R, then (R/m;);cs is a set of representatives of isomorphy classes of simple
left R-modules (see Lemma 5.4).

(4) Let I be a two-sided ideal of R and assume that IM = 0. Then M can be viewed as
an R-module, where R = R/I. Then M is R-semisimple if and only if it is R-semisimple. O

Before studying the semisimple modules, we shall review some properties of simple
modules:

Theorem 8.6 (Schur’s Lemma). Let S and T be two simple left R-modules. Then:
(a) If f € Hompg(S,T) and if f # 0, then f is an isomorphism.
(b) If S £ T, then Hompg(S,T) = 0.
(c) Endg(S) is a division ring.

PROOF - (a) Assume that f € Hompg(S,T) and that f # 0. Then Ker f (respectively

Im f) is a non-zero submodule of R (respectively T'), so Ker f = S (respectively Im f = T)

because S (respectively T') is simple. So f is injective and surjective: it is an isomorphism.
(b) and (c) now follow easily from (a). m

We now fix once and for all a family (5;);er of representatives of isomorphy classes of
simple left R-modules (see Remark 8.5 (3)). We set

Di = EndR(Sz)

for all ¢ € I. By Schur’s Lemma, D; is a division ring.

Theorem 8.7. Let M be a semisimple left R-module. Let (S;)ier denotes a set of rep-
resentatives of isomorphy classes of simple left R-modules. For each i € I, let M; denote
the submodule of M equal to the sum of all its simple submodules which are isomorphic to

S;. Then:
i€l
(b) If S is a simple submodule of M;, then S ~ S;.
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(¢c) Let mj : M — M; and v; : M; — M be the canonical projection and injection
respectively. Then the map
Endgp(M) — [l,c; Endgr(M;)
/ — (mifai)ier
18 a Ting isomorphism.

(d) Write M; = 6?4 Si.a, where S q are simple submodules of M; (which are isomor-
acA;

phic to S; by (b)). If moreover A; is finite and has cardinality n;, then
Endg(M;) ~ Mat,, (D;).

PROOF - Let us first prove (b). Let S be a simple submodule of M;. By Remark 8.5
(1), M; is semisimple so, by Theorem 8.3, there exists a submodule N of M; such that
M; =S@®N. Let m: M; — S be the projection on the first component. Now, M; is a sum
of submodules isomorphic to S;. So there exists a submodule S’ of M; which is isomorphic
to S; and such that w(S’) # 0. By Schur’s Lemma (a), we get that S’ ~ S, so that S ~ S;.

(a) It is clear that M = )", ; M;. Let us now show that this sum is direct. By Theorem
8.3, there exists a submodule L of M such that M = L& M;. Let j € I, j # i. It is enough
to show that M; C L. Let m: M — M;, l +m; — m; for all [ € L and m; € M;. Assume
that m(M;) # 0. Then there exists a simple submodule S of M; such that 7(S5) # 0. But
then 7(5) is a simple submodule of M;. So S ~ 7(S) by Schur’s Lemma (a). But S C M;
and 7(S) C M; so, by (a), S ~ S; and S ~ S;. This contradicts the fact that S; and S}
are not isomorphic.

(c) It is enough to show that, if f € Endr(M), then f(M;) C M;. Let M; denote the
set of simple submodules of M;. Then f(M;) = > sc . f(S). But, if S € M;, then f(5)
is equal to 0 or isomorphic to S;, so f(S) C M.

(d) We have an isomorphism S ~ M;, so we only need to show that Endg(S]") ~
Matni(Di)- But
Endg(S;")= @ Hompg(S;,S)= & D;

1<ab<n,; 1<ab<n;
and it is easy to see that the composition rule corresponds to the multiplication of matri-
ces. |

8.B. Semisimple rings.

Definition 8.8. The ring R is called left semisimple if R is a semisimple left R-module.
One can define similarly the notion of right semisimple ring.

We shall see later that left semisimple rings are right semisimple and conversely.

Theorem 8.9. Assume that R # 0. Then the following are equivalent:
(1) The ring R is left semisimple.
(2) Every left R-module is semisimple.
(3) R=L1®---® L, where L; are some minimal left ideals.
(4) R is left Artinian and J(R) = 0.
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PROOF - (1) = (2): assume that R is left semisimple. Then R = ) _, L4, where L, is
a simple left submodule of R (i.e. a minimal left ideal). If M is a left R-module, then
M =3 cadmen Lam. But Lym is a submodule of M which is a quotient of L, so it
is simple or zero. This shows that M is semisimple.

(2) = (3): Assume that all left R-modules are semisimple. Then we can write R =
®icrL; where L; are minimal left ideals of R. We must show that [ is finite. Let us write
1 =23 icrliwithl; € L;. Let J = {i € I |l; #0}. Then J is finite and we must show that
J=1.But R=R1C} ,;Rl; CY ;L. Sol=J, as desired.

(3) = (4): assume that (3) holds. It follows that R is left Artinian (as a left R-module)
by Corollary 4.5 and that J(R) = J(R)R = 0 by Remark 8.5 (2).

So it remains to show that (4) = (1). Assume that (4) holds. Let M be the set of
left ideals of R which are finite intersections of maximal left ideals. Since R is Artinian,
there exists a minimal element I in M. Now, let m be a maximal left ideal of R. Then
INméeMand INm C I. Since [ is a minimal element of M, we have that I "m = I:
in other words, I C m. So [ is contained in all maximal left ideals of R, so I = 0 because
J(R) =0.

Now, write 0 = [ =my N ---Nm,, where m; € Max;(R). Then the canonical map

R— R/m;i&---®R/m,

is injective. Since R/m; is simple, we get that R/m; @ --- @ R/m,, is semisimple, so R is
a semisimple left R-module by Remark 8.5 (1). m

Corollary 8.10. Let R and S be two Morita equivalent rings. Then R is left semisimple
if and only if S is left semisimple.

PROOF - Indeed, by Theorem 8.9, the ring R is left semisimple if and only if all the left
R-modules are semisimple. So the result follows from Lemma 8.2. ®

Corollary 8.11. If R/J(R) is left Artinian and M is a left R-module, then M is semisim-
ple if and only if J(R)M = 0.

PROOF - By Remark 8.5 (1), if M is semisimple, then J(R)M = 0. Conversely, assume
that R/J(R) is left Artinian and that J(R)M = 0. Then M can be viewed as a left
R-module, where R = R/J(R). Since J(R) = 0 (see Exercise I1.18), we get that M is a
semisimple R-module by Theorem 8.9. So M is a semisimple R-module by Remark 8.5
(4). m

Corollary 8.12. If R/J(R) is left Artinian, then R/J(R) is left semisimple. In particular,
if R is left Artinian, then R/J(R) is left semisimple.

PRrROOF - This follows from Theorem 8.9 and from Exercise I1.18. m

EXAMPLE 8.13 - Let D be a division ring. Then the ring D is (left and right) semisimple.
Therefore, by Theorem 7.6 and by Corollary 8.10, the ring Mat, (D) is (left and right)
semisimple. O

We are now ready to prove the following
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Theorem 8.14 (Wedderburn). The following are equivalent:

(1) R is a left semisimple ring.

(2) R is a right semisimple ring.

(3) There exists natural numbers ny,..., ng and division rings D1,. .., Dy such that
R~ Hi.“:l Mat,,, (D;).

PrROOF - (1) = (3): If r € R, let p, : R — R, s +— sr. Then p, € Endgr(R) (where R is
viewed as a left R-module). Moreover, the map R° — Endg(R), 7 — p, is a morphism of
rings. It is clearly injective and surjective. So R° ~ Endg(R). If R is moreover assumed
to be left semisimple, then it follows from Theorem 8.7 (c¢) and (d) and from Theorem
8.9 that R° ~ Hle Mat,, (D;) for some natural numbers n;’s and some division rings
D;’s. This shows (3) because Mat,, (D;)° ~ Mat,,, (D7) (by using the transpose map: see
Exercise 1.6).

(3) = (1): assume that R ~ Hle Mat,, (D;). By Example 8.13 and by Theorem 8.9,
the rings Mat,,, (D;) are Artinian and their radical is 0. Then it follows that R is Artinian
(see Exercise 11.13) and J(R) = 0 (see Exercise I1.17). So R is left semisimple by Theorem
8.9.

Now, the fact that (2) < (3) is proved similarly. m

From now on, we will speak only about semisimple rings (and not about left or right
semisimple rings).

8.C. Simple rings. We shall now come to the notion of simple rings. As for semisimple
rings, we define the notion of left simple and right simple rings and we shall see later that
these notions coincide.

Definition 8.15. A ring R is called left simple if R # 0, R is left Artinian and 0 and R
are the only two-sided ideals of R. One defines similarly the notion of right simple rings.

Here is an example of a simple ring:

Theorem 8.16. Let D be a division ring and let V' be a right D-module with dimpV =n
and A = Endp(V). Note that A ~ Mat, (D). Then:

(a) A is a (left or right) simple ring.

{fe€eA]| Imf CU}. Then Ly (respectively Ry ) is a left ideal (respectively a
right ideal) of A. Moreover, all left ideals (respectively right ideals) of A are of
this form.
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PrROOF - Homework. m
It turns out that the rings studied in the previous theorems are the only simple rings:

Theorem 8.17. The following are equivalent:
(1) R is left simple;
(2) R is right simple;
(3) There exists a division ring D and a natural number n such that R ~ Mat,,(D);
(4) R is semisimple and has only one simple module.

PROOF - We shall prove that (1) < (3) < (4). The fact that (2) < (3) is proved similarly.
e By Corollary 8.13 and by Theorem 8.16, we know that (3) = (1) and that (3) = (4).

o If R is left simple, then it is left Artinian and J(R) = 0, so it is semisimple by
Theorem 8.9. So, by Wedderburn’s Theorem, R ~ Mat,, (D) for some division ring D and
some natural number n (if there are at least to terms in a Wedderburn decomposition of
R, then there are non-trivial two-sided ideals). So (1) = (3).

e It remains to show that (4) = (3). This follows from Wedderburn’s Theorem: is there
are at least to terms in a Wedderburn decomposition of R, there are at least to isomorphy
classes of simple modules. B

Theorem 8.17 (equivalence between (1) and (4)) gives a characterization of simple rings
in terms of their category of modules (see also Theorem 8.9). Therefore:

Corollary 8.18. Let R and S be two Morita equivalent rings. Then R is simple if and
only if S is simple.

The next result describes the simple modules of a semisimple ring, once we have a Wed-
derburn’s decomposition. As a consequence, we obtain that a Wedderburn decomposition
is essentially unique.

Proposition 8.19. Let ni,..., ng be natural numbers and let Dy,..., Dy be division
rings. Let R = Hle Mat,,, (D;). Then:
(a) R has exactly k isomorphy classes of simple left R-modules: they are the S; = D",
dq
where (A1,...,A;) € R acts on | by multiplication by Aj;.
dn,
(b) D,L >~ EndR(Si)o.
(c) If R=L1®---® Ly, where Lj are minimal left ideals, then n = Z,’f:l n; and, for
all i, there are exactly n; of the L;’s which are isomorphic to S;.
(d) If R ~ Hé:l Mat,,, (E;), then k = | and there exists a permutation o € Sy such
that mi = ng;) and E; = D).

PROOF - The proof is left as an exercise. B



44

8.D. Example: finite dimensional algebras. Let K be a field and let A be a finite
dimensional K-algebra. Then A is left and right Artinian. Moreover, by Corollary 8.12,
the K-algebra A/J(A) is semisimple.

A left A-module M is also a K-vector space and the map py : A — Endg (M), a —
(m — am) is a morphism of unitary K-algebras. Conversely, if V' is a K-vector space and
p: A — Endg (V) is a morphism of unitary K-algebras, then V' can be endowed with a
structure of left A-module as follows: for all a € A and v € V, we set a.v = p(a)(v). In
other words:

The datum of a left A-module is equivalent to the datum of a K-vector
space V' and a morphism of K-algebras A — Endg (V).

Now, if M is an A-module (and if p); : A — Endg (M) denotes the corresponding
morphism of K-algebras), then End 4 (M) is the set of endomorphism of the K-vector space
M which commute with all elements of p(A). In particular, End4(M) is a K-algebra.

Now, since isomorphy classes of simple A-modules are in bijection with isomorphy
classes of simple A/J(A)-modules, it follows from Wedderburn Theorem that there are
only finitely many such isomorphy classes. Let Si,..., Sk denote a family of representa-
tives of simple A-modules. Let s; = dimg S;, D; = End4(S;), d; = dimg D; and write

AJJ(A) ~ & S, Then:
=1

Proposition 8.20. With the above notation, we have:

(a) D; is a division ring which is also a finite dimensional K -algebra.

(b) A/J(A) = [TE, Mat,, (D).
k

)
k
(C) dimK A/J(A) = Z Sin; = Z dzn?
i=1 i=1
(d) If K is algebraically closed, then D; = K (so d; = 1), s; = n; and A/J(A) ~

Hle Mat,,, (K). Moreover, if S is a simple A-module, then pg: A — Endg/(S) is
surjective (Burnside).

PROOF - Clear (for (d), use Exercise I1.27). m

8.E. Example: group algebras. Let G be a finite group and let K be a field. Let p
denote the characteristic of K. Then:

Theorem 8.21 (Maschke). The group algebra K|[G| is semisimple if and only if p does
not divide |G|.

PRrROOF - First, assume that p divides the order of G. Let e = deGg. Then ge = e for
every g € G. Therefore, we have K[Gle = Ke. So Ke is a left ideal of K[G]. Moreover,
e? = >_gec 9¢ = |Gle = 0 because p divides [G|. So e is a nilpotent element of K[G].
Therefore, Ke is a nil left ideal of K[G]. In particular, J(K[G]) # 0 by Lemma 5.10, so
K[G] is not semisimple by Theorem 8.9.

Conversely, assume that p does not divide |G|. Let V be a K[G]-module and let W be
a sub-K [G]-module of V. Then V is in particular a K-vector space and W is a K-vector
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subspace. Let W’ be a K-vector subspace of V such that V=W & W'. Let g : V — W
be the projection on the first factor. Now for v € V, we set

m(v) |G] Zgﬂ'o 11) .
geG

Recall that 7 is well-defined because |G| is invertible in K. Then 7 : V' — W is a K-linear
map. Moreover, if h € G and v € V, we have

m(hv) = =P Zgwo “hy) = h(|G\ Z(h_lg)Tro((h‘lg)‘lv)> _ (o),

Therefore, 7 is a morphlsm of K[G]-modules.
Now, let i : W — V denote the canonical injection Then, for all w € W, we have

m(i(w)) = m(w) e Z gmo(g w).
~lal =
But, if g € G, then g~lw € W (because W is a K[G]-submodule) and so mo(g~1w) = g~ lw.
So we get
m(i(w)) = w.
In other words, moi = Idy, so V=W @ Ker . Since 7 is a morphism of K[G]-modules,
Ker 7 is a sub-K[G]-module of V. This shows that V' is semisimple. m

Corollary 8.22 (Maschke, Wedderburn). If p does not divide the order of G and
if K is algebraically closed, then K[G] ~ H§:1 Mat,,, (K) for some natural numbers n;.
Moreover, k is the number of conjugacy classes of G.

PROOF - The first statement follows from Maschke’s Theorem, and from Proposition 8.20
(d). Let us prove the second statement. Let Z(R) denote the centre of the ring R, that is

Z(R)={reR|VzeR, zr=rz}.
Then it is clear that Z(Mat,(K)) = KI,,, where I,, is the identity matrix. So
k
(%) dimg Z(H Mat,,, (K)) = k.
=1

On the other hand, let C(G) denote the set of conjugacy classes of G. If C € C(G), let

~Y

geC
It is readily seen that (é)CEC( @) is a K-basis of Z(K[G]). So
() dimg Z(K[G]) = [C(G)].

Now the last statement follows from the comparison of (x) and (xx). ®
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EXERCISES FROM PART II

Exercise II.1. Let 2 : M — M’ and 7 : M’ — M be two morphisms of R-modules such
that 7 o2 = Idps. Show that ¢ is injective, 7 is surjective and M’ = (Ker ) @ (Imz2).

Exercise I1.2. Let m, n € N. Compute Z/mZ ®yz, Z/nZ, Q @z Z/mZ and Q @z Q.

Exercise I1.3. Let M be a left R-module and let ¢ € R be an idempotent (that is,
e? = e). Show that the map eR @ M — eM, r @z m +— rm is an isomorphism of
Z-modules (compare with Remark 3.18).

Exercise 1I1.4. Assume that R is commutative. Let X and Y be two sets. Show that
R[X x Y] ~ R[X]®g R[Y] as R-modules.

Exercise II.5. Show that the map C®rC — CxC, zQgrz’ — (22, 2Z’) is an isomorphism
of C-algebras.

Exercice I1.6 (Quaternions). Let H denote the R-vector space consisting of matrices

d
of z € C).
(a) Show that H is an R-algebra.
(b) Show that H is a division ring (i.e. any non-zero element is a unit).
(c) Show that the map C ®g H — Mat(C), A ®g M — AM is an isomorphism of
C-algebras.

<(z b> € Maty(C) such that d = a and b = —¢ (here, z denotes the complex conjugate

Exercise I1.7. Assume that R is commutative. Let A, A’, B and B’ be four R-algebras.

(a) Let I and J be two left ideals of A and B respectively. Show that the image of
the map I ®rJ — AQr B, a®@rb+— a®prb (!) is a left ideal of A ®p B. Show
that similar statements hold for right and two-sided ideals.

(b) If f: A — A" and g : B — B’ are morphisms of R-algebras, show that f ®pr g :
A®r B — A’ ®r B’ is a morphism of R-algebras.

Exercise I1.8. Let i denote a complex number such that i = —1. Let

Zi] = {a+ib | a,b € Z}

and Qi ={a+1ib|a,beQ}.
If p is a prime number, we denote by F, the field Z/pZ.

(a) Show that Z[i] is a subring of C and that Q[¢] is a subfield of C.
(b) Show that Q ®z Z[i] ~ Q[i] (as Q-algebras).

(c) Show that F ®7 Z[i] ~ F[X]/(X?) (as Fy-algebras).

(d) Show that F3 ®yz Z[i] is a field with 9 elements.

(e) Show that Fs ®yz Z[i] ~ F5 x F5 (as Fs-algebras).
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(f) Let R be the set of («,3) € Z[i] x Z[i] such that o — 3 € 2Z[i]. Show that R
is a sub-Z[i]-algebra of Z[i] x Z[i] and that the map Z[i] ®z Z[i] — Z[i] x Z][i],
a®z f+— (af,af) is an injective morphism of Z[i]-algebras whose image is R (in
other words, Z[i] ®z Z[i] ~ R).

Exercise 11.9. Assume that R is commutative. Let G and H be two groups. Show that
R|G x H] ~ R|G] ®r R[H] as R-algebras.

Exercise I1.10. Assume that R is commutative. Let M and N be two left R-modules.
Assume that (m;);er (respectively (n;)jcs) is a family of generators of M (respectively

N). Show that (m; ®r nj); jyerxs is a family of generators of the R-module M ®r N.

i,7)
Exercise I1.11. Assume that R is commutative and Noetherian. Show that the tensor
product of two Noetherian left R-modules is still Noetherian (Hint: use Exercise I1.10).

Exercise I1.12. Let M be an R-module and let L be a submodule. Assume that M/L
and L are finitely generated. Show that M is finitely generated.

Exercise 11.13. Let R; and Ry be two rings and let M; and My be left modules for
Rq1 and Rj respectively. Show that M; x M is naturally endowed with a structure of
(Ry x Rz)-module.

Show that M; x Ms is Noetherian (respectively Artinian) if and only if M; is Noetherian
(respectively Artinian) for all i € {1,2}.

Show that the ring Ry x Ry is left Noetherian (respectively Artinian) if and only if the
rings Ry and Ry are left Noetherian (respectively Artinian).

Show that R; X Ry is semisimple if and only if R; and Ro are semisimple.

Exercise I1.14. Let R be a Noetherian commutative ring and let S be a multiplicative
subset of R. Show that S™!'R is Noetherian.

Exercice I1.15 (Fitting’s Lemma). Let M be a Noetherian and Artinian left R-module
and let o : M — M be an endomorphism of M.
(a) Show that there exists ng € N such that Imo™ = Imo™*! and Kero™ =
Ker g™0t1,
(b) Show that Im o™ = Im ¢™! and Ker o™ = Ker o™ *! for all n > no.
(¢) Show that M = (Imo™) & (Ker c™).

Exercise I1.16. Let K beafieldandlet o : K[X,Y] — K[X,Y], P(X,Y) — P(—X,-Y).
We denote by S the ring K[X, Y] and we set

R={PecS|o(P)=P}.

(a) Show that o is an automorphism of the K-algebra S and that o o o = Idg.

(b) Show that R is a sub-K-algebra of S. Find a K-basis of R.

(c) Show that the K-algebra R is generated, as a K-algebra, by X2, XY and Y?2.

(d) Let U, V and W be three other indeterminates. Let m : K[U,V,W] — S,
P(U,V,W) — P(X? XY,Y?). Show that the image of 7 is R.

(e) Show that the kernel of 7 is generated (as an ideal of K[U,V,W]) by V2 — UW.
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(f) Show that R is isomorphic to K[U,V,W]/(VZ—-UW).
(g*) Show that S = RX + RY but that S is not a free R-module.

Exercise I1.17. Let Ry and Ry be two rings and let m be a maximal left ideal of
Ry X Ry. Show that m = R; x mg for some my € Max;(R2) or that m = m; x Ry for some
my € Maxl(Rg).

Deduce that J(R; x Ry) = J(R1) x J(R2).

Exercise I1.18. Let I be a two-sided ideal of R contained in J(R). Show that J(R/I) =
J(R)/I.

Exercise I1.19. Let R be a ring and let n be a natural number. We propose to prove in
several steps that J(Mat,(R)) = Mat,(J(R)) (by Mat,(J(R)), we mean the set of n x n
matrices with coefficients in J(R): it is not a unitary ring).

Let E;; € Mat,(R) denote the matrix whose entries are all zero except the (i, j)-entry
which is equal to 1. We denote by 1,, the identity matrix. Let I = Mat,(J(R)) and
J = J(Mat,(R)). For j € {1,2,...,n}, we set I; = @} J(R)E;;. We shall first prove
that I C J.

(a) Show that I is a two-sided ideal of Mat,,(R).

(b) Show that I; is a left ideal of Mat,,(R) and that I = ®}_, I;.

(c) Assume here, ond only in this question, that R is commutative, so that det :
Mat, (R) — R is well-defined. Show that det(1,, —a) € 1+ J(R) for any a € I.
Deduce that I C J in this case.

(d) Leta € I;. Writea =Y ;" | o, E;j, with ; € J(R). Since 1—q; is invertible, we can
define 3; = Oéi(l — Oéj)_l. Let b= — Z?:l ﬁlEU Show that (]-n — b)(]_n — CL) =1,.

(e) Deduce from (b) and (d) that /; C J and I C J.

We shall now prove that J C I. Let a € J and write a = Z ajjEij. We want to
1<ij<n
prove that a;; € J(R) for all (¢,7). So fix ¢ and j in {1,2,...,n}.
(f) Let b= E”CLEJZ Show that b = aijEii-
(g) Show that 1,, — rb is invertible for any r € R.
(h) Deduce that 1 — ray; is invertible for any » € R. Conclude.

Exercise 11.20. Let G be a finite group and let 6 : G — C* be a morphism of groups.
Let .
€p = el Z 0(9)"'g €C[q].
geG
Show that eg is an idempotent of C[G] and that egC[G]eg ~ C.

Exercise I1.21. Let R be a commutative integral domain. Let I and J be two non-zero
ideals of R such that the ideal I.J is principal. We shall prove that I (and J) are projective
modules. For this, let r € R be such that I.J = Rr and write r = > " | x;y; with z; € [
and y; € J. Let
p: I — (Rr)"
x — (Ty1,...,TYn)
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and
P (Rr)" — I

(F1yeesrn) o (ramg) /.
(a) Show that ¢ and 1 are well-defined morphisms of R-modules.
(b) Show that the image of ¢ is contained in (Rr)".
(¢) Show that ¢ o ¢ = Id;.
(d) Show that ¢ is injective and that (Rr)"™ = ¢(I) ® Ker .
(e) Deduce that I is a projective R-module.

Exercise 11.22. Let R = {a + biv/5 | a,b € Z}.
(a) Show that R is a subring of C.

Let p (respectively p’) be the ideal of R generated by 3 and 1+ i+/5 (respectively 3 and

1 —iV/5).

(b) Show that pp’ = 3R.

(¢) Show that p and p’ are not principal ideal.

(d) Show that p and p’ are projective R-modules (Hint: use Exercise 11.21) but are
not free (use (b)).

Exercise I1.23. Prove that the following are equivalent:

(a) Every left R-module is projective.
(b) Every left R-module is injective.

Exercise I1.24. Let M and N be two flat left R-modules and assume that R is commu-
tative. Show that the left R-module M ®p N is flat.

Exercise I1.25. Let G be a finite p-group and let R = F,[G] be the group algebra of
G over [F,. The aim of this exercise is to prove that R is a local ring. We first recall the
following result from group theory: if X is a G-set (i.e. a set endowed with an action of
G) and if we denote by X¢ ={z €z |V g € G, g.x = x}, then
(%) 1X| = X% mod p.
We now need some more notation. Let
o R — E,
deG agg +—— deG Qg
and
m = Kero.

(a) Show that o is a morphism of F,-algebras.
(b) Show that m is a two-sided ideal and is a maximal left ideal of R.

Let S be a simple R-module. We also view S as a G-set (because G C R* acts on 5).
Let z € S, x #0.

(c) Show that S is an [F,-vector space.
(d) Show that the map 7 : R — S, r — rz is a surjective morphism of R-modules
(and of F,-vector spaces). Deduce that S is finite dimensional.
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) Show that S¢ is an R-submodule of S.

f) Show that S¢ # 0 (use (x)). Deduce that S = S©.
g) Show that m = Ker .
h) Show that J(R) = m and that R is a local ring.

(e
(

(
(
Exercise 11.26. Let R be a commutative ring such that all finitely generated projective
modules are free. Let o : Mat, (R) — Mat, (R) be an anti-automorphism of the R-algebra
Mat,,(R) (i.e. o is an isomorphism of R-modules satisfying o(zy) = o(y)o(x) for all z,

y € Mat,(R)). Show that there exists g € Mat,(R)* such that o(x) = glzg™! for all
x € Mat,(R) (here, ‘x denotes the transposed of z).

Exercise I1.27. Let K be an algebraically closed field and let D be a finite dimensional
K-algebra. Assume that D is a division ring. Show D ~ K as a K-algebra.

Exercice I1.28* (Burnside). Let K be a field, let V be a finite dimensional vector space
and let A be a sub-K-algebra of Endg (V). We assume that, viewed as an A-module, V'
is simple. Show that A = Endg (V).

Exercice I1.29* (Kolchin?). Let K be a field and let G be a subgroup of GL,(K) such
that all elements of G are unipotent (i.e. have (X — 1)" as characteristic polynomial).
Show that there exists g € GL,(K) such that gGg~! is contained in the group U, (K) of
unipotent upper triangular matrices.
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Part III. Dedekind domains

All along this part, we fix a commutative ring R. Unless otherwise specified, rings will
be commutative. The proofs of the theorems/propositions/lemmas/corollaries are not
written: they have been given in class (except for the Theorems 10.11 and 10.12 which
have been stated without proof).

9. INTEGRAL ELEMENTS, INTEGRAL EXTENSIONS

NOTATION - If L is a field which is a finite extension of the field K and if o € L, we denote
by x1/k(a) € K[X] the characteristic polynomial of the K-linear map L — L, ¥ — ax.
The minimal polynomial of o over K is denoted by ming (). The trace (respectively the
determinant) of this map will be denoted by Try,/x () (respectively Ny, (a)) and will be
called the trace of o (respectively the norm of a) relative to the extension L/K. If L/K
is Galois with group G = Gal(L/K), then

(9.1) vuyicl) = [](X = 7a).

oeG
Consequently,
(9.2) Trp/(a) =) o(a)
ceG
and
(9.3) Nijw(e) =[] o(a).
celG

9.A. Definitions. Let S be a commutative R-algebra: in other words, we are given a
morphism of rings R — S with S commutative (for instance, R can be a subring of S and
the morphism R — S is the canonical injection).

Definition 9.4. An element s € S is said integral over R if there exists a monic
polynomial P(X) € R[X] such that P(s) = 0.

The ring S is called an integral extension of R (or S is said to be integral over R)
if every s € S is integral over R.

The integral closure of R in S is the set of elements s € S which are integral over R.

EXAMPLES 9.5 - (0) If 0 : S — S’ is a morphism of rings (and view S’ as an R-algebra
through the composition R — S -%» §’) and if s € S is integral over R, then o(s) is
integral over R.

(1) If R and S are fields, then an element s € S is integral over R if and only if it is
algebraic over R.

(2) An element z € Q is integral over Z if and only if it belongs to Z. Also, /2, e?™/™
and ¢ = /—1 are integral over Z.
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(3) If S is a ring on which a finite group G acts and if R = S¢ = {r € S |V o €
G, o(r) =r}, then S is integral over R.
(4) If I is an ideal of S and if I’ denotes the inverse image of I in R (for instance

I'=INRif RCS), then S/I is an R/I'-algebra. Moreover, if S is integral over R, then
S/I is integral over R/I'. O

REMARK 9.6 - Let R’ be the subring R.1g of S. Then an element s € S is integral over
R if and only if it is integral over R’. In particular, the integral closure of R in S is the
integral closure of R’ in S. O

Definition 9.7. If R C S, we say that R is integrally closed in S if it is equal to its
integral closure. If R is an integral domain, the integral closure of R in its field of fractions
is called the normalization of R. An integral domain is called integrally closed (or
normal) if it is integrally closed in its field of fractions.

EXAMPLES 9.8 - (1) By Example 9.5 (2), Z is integrally closed.

(2) More generally, a unique factorization domain is integrally closed.

(3) If K is a field, then K[X?2, X?3] (which is a subring of K[X]) is an integral domain
which is not integrally closed. O

9.B. First properties. If s € S, we denote by R[s] the subring of S equal to
R[s] ={P(s) | P(X) € R[X]}.

It is a sub-R-algebra of S. The following proposition characterizes integral elements:

Proposition 9.9. Let s € S. Then the following are equivalent:

(1) s is integral over R.

(2) The subring R[s| of S is a finitely generated R-module.

(3) There exists a commutative ring T containing R[s] which is a finitely generated
R-module.

Corollary 9.10. If s and t are elements of S which are integral over R, then s+1t, s —t
and st are integral over R. In particular, the integral closure of R in S is a subring of S.

Corollary 9.11. Let T' be a commutative S-algebra (so in particular it is an R-algebra).
If S is integral over R and T is integral over S, then T is integral over R.

Corollary 9.12. Assume that S is integral over R. Then S is a finitely generated R-
algebra if and only if it is a finitely generated R-module.

Corollary 9.13. If S is a finitely generated R-module, then S is integral over R.

EXAMPLE 9.14 - Let G be a finite group and let C(G) denotes the set of conjugacy classes
in G. If C € C(G), let

C':ZQER[G].
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~

Then, as in the proof of Corollary 8.22, (C)cec(q) is an R-basis of the centre of R[G]
(which we denote by Z(R[G]). Consequently, Z(R[G]) is a commutative R-algebra which
is a finitely generated R-module. So Z(R|G]) is integral over R. O

9.C. Integral/algebraic. In this subsection, we fix an integral domain R with field of
fractions K. We also fix a finite extension L of K of degree n and we denote by S the
integral closure of R in L. We set R = SN K. Then R is the normalization of R.

Proposition 9.15. Let x € L. The following are equivalent:

(a) z is integral over R.
(b) x is integral over R.
(©) x1/x(x) € FIX].
(d) ming(z) € R[X].

Corollary 9.16. Let x € S. Then Trp/k(z) € R and Npk(z) € R.

Theorem 9.17. Assume that R is integrally closed and that L/ K is a separable extension.
Then:

(a) If R is Noetherian, then S is an R-module of finite type. In particular, S is
Noetherian.

(b) If R is principal, then S is a free R-module of rank n = [L : K|. Moreover, any
R-basis of S is a K-basis of L.

Corollary 9.18. Let x € S. Then x € S if and only if Np i (z) € R”.

9.D. Integral extensions and prime ideals. If 0 : R — S is a morphism of rings and
if g is a prime ideal of S, then o~!(q) is a prime ideal of R. We denote by Spec(R) the
set of prime ideals of R and by o' : Spec(S) — Spec(R), q — o~ 1(q).

Proposition 9.19. Assume that R C S and that S is integral over R.
(a) If r € R, then € R* if and only if r € S*.
(b) Assume that S is an integral domain. Then S is a field if and only if R is a field.

The next corollary gives further results about the map o' : Spec(S) — Spec(R) in the
case of integral extensions:

Corollary 9.20. Assume that S is integral over R (and denote by o : R — S, r —rlg).
(a) Let q be a prime ideal of S. Then q is a mazimal ideal of S if and only if o~*(q)
1s mazimal in R.
(b) Let p be a prime ideal of R. Then there exists a prime ideal q of S such that
p=0"1(q). In other words, the map o~ : Spec(S) — Spec(R) is surjective.

Theorem 9.21 (Going-up Theorem). Assume that S is integral over R. Let p; C
po C --- C p, be a chain of prime ideals in R, let m < n and suppose there is a chain
q1 € q2 C - -+ C qm of prime ideals of S such that c=1(q;) = p; for 1 <i < m. Then there
exists a chain qmy1 C -+ - C qn of prime ideals of S such that qm C qmy1 and o~ 1(q;) = p;
form+1<i<n.
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Theorem 9.22 (Going-down Theorem). Assume that R C S and that R is integrally
closed in S. Let p1 D pa O -+ D p, be a chain of prime ideals in R, let m < n and
suppose there is a chain q1 2 q2 2 -+ 2 qm of prime ideals of S such that q; N R = p;
for 1 < i <m. Then there exists a chain qms1 2 -+ 2 qn of prime ideals of S such that
Om 2 qme1 ond q; "R =9p; form+1<i < n.

9.E. Agebraic integers. Let K be a field of characteristic 0. An element z € K is called

an algebraic integer if it is integral over Z. We denote by O the ring of algebraic integers
of K.

Theorem 9.23. Let K be a finite extension of Q of degree n. Then O is a free Z-module
of rank n. Moreover, any Z-basis of Ok is a Q-basis of K.

1+V5 ]
5 |-
(2) If n > 1 and if ¢, € C* is a primitive n-th root of unity, then Og,) = Z[(,]. O

EXAMPLES 9.24 - (1) Og(z) = Z[V2] and Oy 5 = Z[

Let K be a finite extension of Q of degree n. First, note that the symmetric bilinear
form K x K — Q, (a, ) = Trg g(af) is non-degenerate. Let (ai,...,ay) be a Z-basis
of Or. We then set

A(K) = det(Tl"K/Q(OéiOéj))l <ij<n
The number A(K) is called the discriminant of K (it does not depend on the choice of
the Z-basis of Ok).

10. DEDEKIND DOMAINS

10.A. Definition.

Definition 10.1. The ring R is called a Dedekind domain if it satisfies the following
three conditions:

(D1) R is Noetherian;
(D2) R is an integral and integrally closed domain;
(D3) Every non-zero prime ideal is mazimal.

ExAaMPLES 10.2 - (1) A field and, more generally, a principal ideal domain are Dedekind
domains.

(2) If K is a field, then K[X,Y] is Noetherian, integral, integrally closed and even a
unique factorization domain but is not a Dedekind domain. O

Theorem 10.3 (Dedekind). Let R be a Dedekind domain and let K denote its field of
fractions. Let L be a finite separable extension of K and let S be the integral closure of R
in L. Then S is a Dedekind domain and is a finitely generated R-module.

Corollary 10.4. If K is a finite extension of Q, then O is a Dedekind domain.

10.B. Fractional ideals. From now on, R will denote an integral domain and K will
denote its field of fractions.
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Definition 10.5. A fractional ideal of R is an R-submodule I of K such that dI C R
for some d € R\ {0}.

EXAMPLE 10.6 - If I and J are fractional ideals of R, then I+ .J and I.J are also fractional
ideals of R. O

Definition 10.7. A fractional ideal I of R is called invertible if there exists a fractional
ideal J of R such that IJ = R.

REMARK 10.8 - If I and J are two fractional ideals of R such that IJ = R, then
J={x€e K |zI CR}.O

EXAMPLE 10.9 - Let R = Z[i1/5] and let p = (3,1 +4v/5) and p’ = (3,1 — i1/5). Then
p.(p’/3) = R by Exercise 11.22 (a). So p and p’ are invertible. O

Proposition 10.10. If I is an invertible fractional ideal of R, then R is a finitely generated
projective R-module.

Theorem 10.11. The following are equivalent:

(1) R is a Dedekind domain.

(2) For each p € Spec(R), Ry, is principal.

(3) Ewvery non-zero fractional ideal of R is invertible.

(4) Every non-zero fractional ideal is a projective R-module.

(5) Ewvery non-zero proper ideal I of R is a (finite) product of prime ideals.
Moreover, if these conditions are satisfied and if p1,..., Pr, q1,-.., qs are prime ideals
such that p1...pr =q1...qs, then r = s and there exists a permutation o € G, such that
Ao(i) = Pi for all 1.

Let R be a Dedekind domain and let K be its field of fractions. Let L be a finite
algebraic extension of K of degree n. Let S be the integral closure of R in L. Let p be a
prime number. Write

pS=qi'...q"

where q; are distinct prime ideals of S. Then:

Theorem 10.12. With the above notation, we have:
(a) eiNR=p.
(b) If q is a prime ideal of S containing p, then q € {q1,...,9,}.
(¢c) Let f; be the natural number such that Ok /q; is a finite extension of R/p of degree
fi- Then Y i eifi =n.
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EXERCISES FROM PART II1

Exercise ITI.1. Let D € Z be square-free (i.e., if n € Z is such that n? divides D, then
n = £1). Compute the rings of algebraic integers of Q(v/D).

Exercice III.2 (Gauss). Let R be a unique factorization domain and let K be its field
of fractions. If P(X) = a, X" + -+ a1 X + ag € R[X], we define

(P) = lem(ag, a, ..., an).

C
(a) Show that C(PQ) = C(P)C(Q) (first, reduce to the case where C(P) = C(Q) = 1).
(b) Assume that a, = 1. Show that P is irreducible in R[X] if and only if P is
irreducible in K[X].

Exercice I11.3 (Eisenstein’s criterion). Let R be a principal ideal domain and let K
be its field of fractions. Let p € R be irreducible. Let P(X) = X" +a, 1 X" 1 4+ .- +
a1 X +ag € R[X]. Assume that p|a; for all 4 and that p? does not divide ag. Show that P
is irreducible in K[X] (Hint: use Exercise II1.2 and reduce modulo p).

Exercise II1.4. Let n > 1 and let (,, be a primitive n-th root of unity in C, that is, a
generator of the cyclic group u,,(C) = {z € C | 2" = 1} (for instance, ¢, = €*™/™). Let
®,,(X) denote the n-th cyclotomic polynomial

a.0)= [[ x-q)
1<j<n
ng(nvj):]'
Let ¢(n) denote the degree of ®,(X) (i.e. the Euler p-function).
(a) Compute ®,, for 1 < n < 6.
(b) Show that X" — 1 = [ [®a(X).
din
(¢) Deduce by induction that ®,(X) belongs to Z[X] and is monic.
(d) Let p be a prime number. Compute ®, and show that ®, is irreducible (Hint:
compute ®,(X + 1) and use Eisenstein’s criterion of Exercise I11.3).

The aim of the next questions is to show that ®,, is irreducible for all n. Write ®,,(X) =
P(X)Q(X) where P(X), Q(X) € Z[X] are monic and P is irreducible in Q[X]. Let ¢ be
a root of P and let p be any prime number not dividing n. We denote by P(X) € F,[X]
the reduction modulo p of P(X) € Z[X]. Since (P is a root of ®,,, we must have P(¢?) =0

or Q(¢7) = 0.

(e) Assume that Q(¢P) = 0. Show that P(X) divides Q(XP).
(f) Show that Q(XP) = Q(X)P.
(g) Assume that Q(¢P) = 0 and let f € F,[X] be any irreducible factor of P.
(g1) Deduce from (e) and (f) that f also divides Q.
(g2) Deduce that f? divides X™ — 1 and that f divides nX"~! (Hint: take the
derivative) so that f divides also X" ~!. Show that it is impossible.
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(h) Deduce from (g) that P((?) = 0 for all prime number p which does not divide n.
Deduce that P = ®,,, and that ®,, is irreducible.

The fact that ®,, is irreducible shows that the field Q((,) is isomorphic to Q[X]/(®,,)
and that [Q((,) : Q] = ¢(n). Let O,, denote the ring of integers of Q((,). Then it is clear
that Z[¢,] € O,. It can be proved that O,, = Z[(,]. The aim of the next questions is to
prove this result whenever n is a prime number (note that the case n = 2 is trivial). So
let p be an odd prime number.

) Show that det(T‘rK/Q(@Cﬁ)) = 4+pP2,

Deduce that, if & € O, then there exists r € Z> ¢ such that p"a € Z[(,].

Show that, if 1 <i<p—1, then (1—¢})/(1—¢p) € O)F.

Show that [T/~ (1 — ¢}) = ®,(1) = p (Hint: use (d)).

Let p = (1-¢,)Z[¢p] and q = (1—(,)Op. Deduce from (k) and (1) that p?~1 = pZ[(,)]

and P~ = pOp.

(n) Show that p is a prime ideal of Z[(,] and that Z[(,]/p ~ F,.

(n) Deduce from (m) that q is a prime ideal of O, and that O,/q ~ F, (use Theorem
10.12 (c)).

(0) Deduce from (m) and (n) that p = q N Z[(p).

(p) Deduce that p’ = q° N Z[(,)] for all i > 1.

(q) Deduce from (j) that O, = Z[(p).

(i
(J
(k
1

(m

~— — — —

Exercise IIL.5. Let n > 1 and let (,, be primitive n-th root of unity. Let K,, = Q((,). If
k € Z/nZ, we still denote by (¥ the number (¥ where k is a representative of k in Z.
(a) Show that K, is a Galois extension of Q.
(b) Let I';, = Gal(K,,/Q). Let 0 € I',,. Show that there exists a unique k(o) € Z/nZ
such that o(Cy) = (F). Show that k(o) € (Z/nZ)*.
(c) Show that the map I', — (Z/nZ)*, o — k(o) is an isomorphism of groups (Hint:
use the irreducibility of the n-th cyclotomic polynomial: see Exercise 111.4 (h)).
(d) Let &,..., & denote roots of unity in C and assume that (£ + -+ + &,)/r is an
algebraic integer. Show that & + --- + & = 0 or that § = & = --- = & (Hint:
compute the norm using 9.3).
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Part IV. Algebraic geometry

All along this part, we fix a field K of characteristic p > 0. If R is a ring and if E is a
subset of R, we denote by (E) (or (E)pr if necessary) the ideal of R generated by E.

REMARK - Most of the geometric theorems of algebraic geometry are based on algebraic
theorems about rings. We have gathered in the Appendix the results we need. The section
15 and this Appendix have not been treated in class. O

11. THE MAPS Z AND 7

11.A. Definitions and first properties. We denote by A™(K) the affine space K".
Let E be a subset of K[X1,...,X,]. We set
Z(E)={(x1,...,zn) € A"(K) |Vf € E, f(x1,...,2,) =0}.
Let X be subset of A"(K). We set
I(X)={fe K[Xy,...,.X,] | Vx € X, f(z)=0}.

Proposition 11.1. With the above notation, we have:
(a) f ECFCKI[Xy,...,X,)], then Z(F) C Z(E).
(b) Z(E) = Z((E))
(¢) If (Ex)xen is a family of subsets of K[X1,...,X,], then ﬂ Z(E)y) = Z(U E)).

AEA AEA
(d) If E and F are two subsets of K[X1,...,Xy,], then Z(E)U Z(F) = Z(E « F),

where Ex F ={ab | a€ E and b € F}.
(e) Z2(@)=A"K) and Z2(1) = @.

PROOF - Easy. B

Corollary 11.2. Let (I)aen be a family of ideals of K[X1,...,Xy]. Then:
(@) ()2 =20 In).

AEA AEA

(b) If A is finite, then | J Z2(I) = Z(]] In)-

AEA AEA
PROOF - Easy. m

Proposition 11.3. With the above notation, we have:
(a) If X CY C AM(K), thenZ(Y) CZ(X).
(b) If (Xx)xea is a family of subsets of A™(K), then ZI(XA) CI( ﬂ X)).

AEA AEA
(¢) If (X2)ren is a family of subsets of A™(K), then I ( U X)) = ﬂ Z(Xy). If more-
AEA AEA

over A is finite, then H Z(Xy) C I(U XA).
AEA A€A
(d) Z(@) = K[X4,...,Xy] and, if K is infinite, then Z(A"(K)) = 0.
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PROOF - Easy. m

Proposition 11.4. We have:
(a) If EC K[X1,...,Xy], then (E) CZ(Z(FE)) and Z(E) = Z(Z(Z(E))).
(b) If X C A™(K), we have X C Z(Z(X)) and Z(X) = Z(Z(Z(X))).

PRrROOF - Easy. m
11.B. Algebraic sets.

Definition 11.5. A subset V of A™(K) is called an affine algebraic set (or just an
algebraic set) if there exists a subset E of K[X1,...,X,] such that V. = Z(E) (or,
equivalently, if there exists an ideal I of K[X1,...,X,] such that V = Z(I)).

If V is an algebraic set, then
(11.6) V= Z(Z(V)).
PROOF - By Proposition 11.4 (b), we have V' C Z(Z(V)). On the other hand, there exists
an ideal I of K[X1,...,X,] such that V' = Z(I). Therefore, by Proposition 11.4 (a), we
have I CZ(V). So Z(Z(V)) C Z(I) =V by Proposition 11.3 (a). ®

An immediate consequence of 11.6 is the following:

(11.7) If V and W are two algebraic sets such that V-G W, then Z(W) & Z(V).

ExXAMPLES 11.8 - (0) @ and A"(K) are algebraic sets (see Proposition 11.1 (e)).
(1) If (a1,...,a,) € A"(K), then {(a1,...,a,)} is an algebraic set. Indeed,
{(a1,...,an)} = 2(X1 —aq,..., X, — ap).

It then follows from Proposition 11.1 (c) that any finite subset of A™(K) is an algebraic
set.

(2) If V C AL(K), then V is an algebraic set if and only if V = A'(K) or V is finite.
(3) The curve {(z,y) € A%(K) | y?> = 23} is an algebraic set.

(4) Let V be the set of matrices M € Mat,,(K) which are not invertible. Then V' is an

algebraic set: indeed, X = Z(det) and det is a polynomial in n? variables. O

Definition 11.9. The Zariski topology on A™(K) is the topology for which the closed
subsets are the algebraic sets.

The statements (c) and (d) of Proposition 11.1 show that this indeed defines a topology
on A"(K). If X is a subset of A"(K), we denote by X its closure for the Zariski topology.
Then

(11.10) X = Z(I(X)).

PROOF - Let V = Z(Z(X)). By Proposition 11.4 (b), we have X C V, and V is closed by
definition. So X C V. On the other hand, since X is an algebraic set, there exists an ideal
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I of K[Xy,...,X,] such that X = Z(I). Since X C X, we have I C Z(X) by Proposition
11.3 (a), so V = Z(Z(X)) € Z(I) = X by Proposition 11.1 (a). m

EXAMPLE 11.11 - If K = C, then Z = A(C) (Z is dense in C!). O

If V C A™(K) is an algebraic set, we define the Zariski topology to be the topology
induced by the Zariski topology on A™(K): by Proposition 11.1 (c), the closed subsets of
V for the Zariski topology are the algebraic sets V/ which are contained in V.

A topological space X is called irreducible if, for all closed subsets Z and Z’ of X such
that X = ZU Z’, we have Z = X or Z/ = X. For instance, an algebraic set is irreducible
(for the Zariski topology) is it is not the union of two proper algebraic subsets.

Proposition 11.12. Let V C A™(K) be an algebraic set. Then V is irreducible if and
only if Z(V') is a prime ideal.

PROOF - Assume that V is not irreducible. Write V' = V7 U Vs, where V7 and V5, are
proper algebraic subsets of V' and let I} = Z(V1), I = Z(V2) and I = Z(V). Recall from
11.6 that V = Z(I), V; = Z(1;). Moreover, 111> C I by Proposition 11.3 (c¢). By 11.7, we
have I ¢ I1 and I & Is. So there exists f € I} and g € Iz such that f ¢ I and g ¢ I. But
fg €1, s0 I is not prime.

Conversely, assume that [ is not prime. Let f1, fo € K[X7,..., X,] be such that f; & I,
fo Q lTand fifoel. Let 1 =1+ Rf; and Is = I + Rfs and let V; = Z(Il) Then V; CV
by Proposition 11.1 (a) and, since I115 C I, we get that V' C Vj U V4 by Proposition 11.1
(¢). So V. =1V; UVs. It remains to show that V; # V. But, since f; & Z(V), there exists
x € V such that fi(x) #0. Soxz ¢ V;. &

Corollary 11.13. If K is infinite, then A™(K) is irreducible.
11.C. Regular maps. We fix an algebraic set V' C A™(K).

Definition 11.14. A map f:V — K is called regular (or polynomial) if there exists

feK[Xy,...,X,] such that f(z) = f(z) for allz € V.
We denote by K[V] the set of reqular maps V. — K : it is called the coordinate ring
of V.

It is readily seen that K[V]is a K-algebra. Moreover, the map K[X1,...,X,] — K[V],
fr(xeV = f(x) € K) is a surjective morphism of algebras, whose kernel is Z(V'). So
(11.15) K[V] ~ K[X1,..., Xa]/Z(V).

We shall identify K[V] and K[Xy,...,X,]/Z(V) in the rest of this part. Note that the
Proposition 11.12 can be reinterpreted as follows:

Proposition 11.16. V is irreducible if and only K[V] is an integral domain.

The Proposition 11.16 is the first illustration of what is the essential subject of Algebraic
Geometry:

Relate ”"geometric” properties of V' and algebraic properties of K[V].
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Note that K[V] is, by 11.15, a finitely generated K-algebra, so it is Noetherian by Hilbert’s
Basis Theorem.

REMARK 11.17 - Even though its definition is simple, the computation of the ideal Z(V')
can be very difficult. For instance, if K = Q, if p is a prime number and if V- = Z(XP+YP+
ZP), then it took more than 400 years (!) to compute Z(V'): this is Fermat’s last Theorem,
proved by Wiles and Taylor in the 1990’s (it says that Z(V) = (XP + YP + ZP, XY 7)).

If K is algebraically closed, then Hilbert’s Nullstellensatz (see next section) gives a very
efficient way to compute Z(V'). O

We shall now define maps Zy and Zy in the same way as the maps Z and Z. If F is a
subset of K[V], we set
Zy(E)={xze€V |V fekE, f(x)=0}
If X is a subset of V', we set
Iy(X)={f e K[V]|Vx e X, f(z)=0}.
It is clear that
(11.18) Zy(E) = 2(E),

where E is the inverse image of F in K[X1,...,X,] (under the isomorphism 11.15). In
particular,

(11.19) Zy(E) is an algebraic subset of V.
Also
(11.20) Iy (X)) =Z(X)/Z(V).

Proposition 11.21. Let f € K[V] (and view it as a map V — AY(K)). Then f is
continuous.

PROOF - This amounts to show that f~1(WW) is an algebraic subset of V for all algebraic
subsets W of AY(K). If W = A!(K), this is easy. So we may assume that W # A(K).
Then W is finite by Example 11.8 (2). Write W ={a1,..., 0, }, with a; € K. Then
71wy = 2v([J(f = o)),
i=1
So f~Y(W) is an algebraic subset of V by 11.19. m

Definition 11.22. Let A be a K-algebra. A maximal ideal m of A is called K-rational
if the natural map K — A/m is an isomorphism. We denote by Maxi(A) the set of
K -rational maximal ideals of A.

Let V C A"(K) be an algebraic set. If z € V, we denote by m, (or m) is necessary)

the ideal Zy (z). Then the map K[V] — K, f — f(z) is surjective and its kernel is m,.
In particular, m, is a K-rational maximal ideal of K[V]. In fact:

Proposition 11.23. IfV is an algebraic set, then the map V — Maxk (K[V]), © +— m,
is bijective.
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PROOF - The map K[Xy,...,X,] — K, f — f(z) is surjective and has kernel Z(z), so
I(z) € Maxg (K[X1,...,X,]). Then, if x = (21,...,z,), then

(11.24) I(x) = (X1 —x1,..., Xy — zp).

In particular, Z(Z(z)) = {z}. So

(11.25) z € Z(E) if and only if E C I(x).

Let us now show the following result:

(11.26) The map A™(K) — Maxg (K[X1,...,X,]), © — Z(x) is bijective.

First, the equality 11.24 shows that this map is injective. Let us now show that it is
surjective. Now, let m € Maxg(K[X1,...,X,]). Then the natural map ¢ : K —
K[Xi,...,X,]/m is an isomorphism. Let x; = 0~1(X;). Then X; — x; € m by con-
struction. So, if z = (z1,...,2y,), then Z(x) € m. Since Z(z) is maximal, we get that
m =Z(z), as desired.

Now, let my : K[X1,...,X,] — K[V] be the canonical morphism of algebras. Then the
map Maxg (K[V]) — Maxg (K[X1,...,X,]), m — 7, (m) is a bijection and it is clear
that, if x € V, then mY = my(Z(z)) = Z(x)/Z(V). So the result follows. m

11.D. Morphisms. Let V C A™(K) and W C A™(K) be two algebraic sets.

Definition 11.27. A map ¢ : V. — W is called a morphism of algebraic sets (or
a polynomial map, or a regular map) if, for all reqular maps f : V — K, the map
fow: W — K is reqular.

If ¢ : V. — W is a morphism of algebraic sets, we denote by ¢* : K[V] — K[W],
f = f oy the map induced by ¢ (it is an homomorphism of K -algebras).

1

The morphism ¢ : V. — W is called an isomorphism if o= : W — V is a morphism of

algebraic sets.

In particular, if ¢ is an isomorphism of algebraic sets, then ¢* is an isomorphism of
K-algebras. We shall see later (see Corollary 11.33) that in fact ¢ is an isomorphism if
and only if ¢* is an isomorphism of K-algebras.

We denote by Morg (V, W) the set of morphisms of algebraic sets V. — W. If A and
B are two K-algebras, we denote by Hompg _,15(A, B) the set of homomorphisms of K-
algebras A — B.

Proposition 11.28. Let V, W and X be three algebraic sets and let ¢ : V. — W and
Y : W — X be two morphisms of algebraic sets. Then pow : V — X is a morphism of
algebraic sets, and (1 o p)* = p* o ™.

PROOF - Clear. m

The Proposition 11.28 shows that there is a well-defined category Aff(K) whose objects
are algebraic sets and morphisms are morphisms of algebraic sets. If we denote by galg
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the category of finitely generated K-algebras, the Proposition 11.28 shows also that
Aff(K) — kalg
V — KI[V]
p — ¢

is a contravariant functor.

Proposition 11.29. Let ¢ : V — W be a map. Then the following are equivalent:
(1) ¢ is a morphism of algebraic sets.
(2) There exists reqular maps ¢1,..., ©m € K[V] such that, for all x € V, p(x) =
(p1(z), ..., om(z)).
(3) There exists polynomials p1,..., om € K[X1,...,X,] such that, for all x € V,
o(x) = (p1(2), .., om(x)).

PROOF - It is clear that (2) and (3) are equivalent. Assume that (1) holds. Then the map
X W — K, (x1,...,2,) — z; is regular, so ¢; := Xj o ¢ is also a regular map on V.
Then it is immediately checked that p(x) = (¢1(x),...,om(x)) for all z € V, so (2) holds.

Conversely, assume that (3) holds. Let f € K[W] and let f € K[X1,..., X,] be such
that f(z) = f(z) for all z € W. Now, let § = f(e1(X1,..., X0)s s om(X1, ..., X))
Then g € K[X1,...,X,] and let ¢ : V — K, x — g(x). Then g is a regular map by
definition and it is readily seen that g = f o . This shows (1). m

Corollary 11.30. If ¢ : V — W is a morphism of algebraic sets and if V' and W' are
algebraic subsets of V. and W respectively such that o(V') C W', then the map V' — W/,
x +— @(x) (the restriction of ) is a morphism of algebraic sets.

Proposition 11.31. The map Morg (V,W) — Homg 15 (K[W], K[V]), ¢ +— ¢* is bijec-
tive.

PROOF - Let us denote by 6 the map Morg (V, W) — Homg a1, (K[W], K[V]), ¢ — ¢*.

Let us first show that 6 is injective. Let ¢ and ¢ be two morphisms of algbebraic sets
such that p* = ¢*. Write p(x) = (p1(x),...,om(x)) and ¥(x) = (Y1(x),...,Yn(x)) for
all x € V, where the ¢;’s and the ¢;’s are regular maps V — K. Let &; : W — K,
(Z1y...,@m) — x;. Then A; is regular, so X; 0o ¢ = X; 0 1), so p; = 1; for all i. So ¢ = 1.

Let us now show that 6 is surjective. Let v : K[W] — K[V] be a morphism of K-
algebras. Let p; = v(&;) € K[V] and let ¢ : V — A™(K), x — (¢1(2),...,om(z)). We
only need to show that (V) € W (see Corollary 11.30). Let f € Z(W) and let 2 € V. We
only need to show that f(p(x)) = 0. Let 4 : K[X1,..., X,,] — K[V] be the composition
K[X1,...,X,] — K[W] -5 K[V]. Then, by definition, ¢; = 7(X;). So f o ¢ = 3(f).
But 4(f) = 0 by construction. So ¢(z) € Z(Z(V))=V.m

REMARK 11.32 - The Proposition 11.31 says that the functor Aff(K) — galg, V — K[V]
is fully faithful. O

Corollary 11.33. A morphism of algebraic sets ¢ : V. — W is an isomorphism if and
only if ©* is an isomorphism of K -algebras.
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We shall now show that the map Morg (V,W) — Hompg_a,(K[W], K[V]) is ”com-
patible” with the bijections V — Maxg (K[V]) and W — Maxy (K[W]) described in
Proposition 11.23.

Proposition 11.34. Let ¢ : V. — W be a morphism of algebraic sets and let x € V.
Then

PRrOOF - Easy. m

11.E. Image, inverse image. A morphism of algebraic sets ¢ : V. — W is called
dominant if (V') = W.

Proposition 11.35. Let ¢ : V. — W be a morphism of algebraic sets and let I be
an ideal of K[V]. Then ITw(e(V)) = Kery*. In particular, o(V) = Zw (Ker ¢*) and
Iw (p(V)) = Ker ™.

PROOF - Easy. m

Corollary 11.36. A morphism of algebraic sets ¢ :' V. — W is dominant if and only if
©* is injective.
PROOF - Clear. B

Proposition 11.37. Let ¢ : V. — W be a morphism of algebraic sets and let E C K[W].
Then ¢~ ' (2w (E)) = 2v(¢*(E)).

PROOF - Let x € V. Then ¢(x) € Zw(E) if and only if f(p(z)) =0 for all f € E. In
other words, ¢(x) € Zw(E) if and only if *(f)(z) = 0 for all f € E that is, if and only
ifreZy(p*(E)).

Corollary 11.38. A morphism of algebraic sets is continuous.
11.F. Finite morphisms.

Definition 11.39. A morphism ¢ : V. — W of algebraic sets is called finite if K[V] is
a finitely generated K[W]-module (here, K[V is viewed as a K[W]-algebras through the
morphism ©* : K[W] — K[V]).

REMARK 11.40 - If ¢ is a finite morphism, then K[V] is integral over K[W]. In fact, the
converse is also true. Indeed, if K[V] is integral over K[W] then, since K[V] is a finitely
generated K-algebra, it is a fortiori a finitely generated K [WW]-algebra, so the result follows
from Proposition 9.9. O

Here is a geometric consequence of such notion:

Proposition 11.41. Let ¢ : V — W be a finite morphism of algebraic sets and let w € W.
Then o~ Y(w) is finite.
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PROOF - Recall from Proposition 11.37 that ¢! (w) = Zy(¢*(m%)). So, by Proposition
11.23 (and its proof), an element v € V lies in ¢! (w) if and only if m) contains o*(m!V).
So it is sufficient to show that the set of maximal ideals of K[V] containing *(m!/) is

finite. Let I be the ideal of K[V] generated by ¢*(m!V). Then ¢* induces a morphism
o: K[W]/m!V — K[V]/I. Two case may occur:

o If I = K[V], then K[V]/T=0s0 ¢~ (w)=92.

e If I # K[V], then ¢ is injective because K[V]/m!Y ~ K. Moreover, K[V]/I is integral
over K (because K[V] is integral over K [W]). Moreover, K[V]/I is finitely generated over
K. So A = K[V]/I is a finite dimensional commutative K-algebra. Therefore, A/J(A)
is a finite dimensional commutative semisimple K-algebra and we only need to show that
such an algebra has a finite number of maximal ideals. But, by Wedderburn’s Theorem,
A is a finite product of fields: this shows the result. B

12. NOETHER’S NORMALIZATION THEOREM, HILBERT’S NULLSTELLENSATZ

Since geometric properties of algebraic sets are intimately related to algebraic properties
of finitely generated algebras, it will be useful to study these algebras a priori. The first
important result about these algebras is the following:

Noether’s Normalization Theorem. Let A be a commutative K-algebra which is
generated by n elements. Then there exists m € {0,1,2,...,n} and elements x1,..., Tp,
of A which are algebraically independent and such that A is integral over K|x1,...,Tpn].

REMARK - A family of elements (z;)1 <i<n of a K-algebra A are called algebraically
independent (over K) if the map K[X,...,X,] — A, f— f(z1,...,2,) is injective. O

PROOF - We argue by induction on n. The result is obvious if n = 0. So we assume that
n > 1 and that it is true for all algebras generated by n/ elements, with n’ < n.

Let y1,..., yn be generators of A. First, if they are algebraically independent, we
take m = n and (z1,...,%m) = (Y1,.-.,Yn).- So we may, and we will, assume that
(y1,...,yn) are not algebraically independent. Then there exists P € K[Y1,...,Y,] such
that P(y1,...,yn) = 0, where the Y;’s are algebraically independent indeterminates. Let
us write

P= ) ag..aY " Y
(d1,...,dn)€D
where D is a finite subset of (Z>()" and aq # 0 for all d € D. We define the degree of P
to be

degP= max di+---+d,.

Let d = deg P and let o;; = (1 +d)*. Then d > 1 because P is not constant. Now, let
QY1,....Y,) =PY1+Y 1 ... )Y, 1+ YY)

and Z =y — Y.
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Then z1,..., zn—1, yn generate A and Q(z1,...,2n—1,yn) = 0. If (d1,...,d,) € D, we
define

e(dy,...,d,) = aidi+agdy+---+ay_1dy_1+dy
= dp+di(1+d)+do(l+d)°+ - +dpy(L+d)" "

Then the map D — N, d — e(d) is injective (because d; < d for all (dy,...,d,) € D). Let
dy € D be such that e(dp) is maximal. Then

QY1,.... V) = ag, Y2 + > hi(Wi,... Y)Y,
i<e(d0)
for some h; € K[Y1,...,Y,_1]. Let A’ be the subalgebra of A generated by z1,..., z,_1.
Since K is a field, we can define

Q =1T° (do) + CL Z h Zl, . ,Zn_l)Ti.
z<e (do)
Then Qo € A'[X] is monic and Qo(y,) = 0. So A = A'[y,] is integral over A’, so it is a
finitely generated A’-module.

Now, by the induction hypothesis (and since A’ is generated by n — 1 elements), there
exists m <n — 1 and a family (z1,...,2,,) of algebraically independent elements of A’
such that A’ is a finitely generated K|[z1,...,z;,]-module. So A is a finitely generated
Klzy,...,zp]-module. B

REMARK 12.1 - If V. C A"(K) is an algebraic set, then K[V] is a K-algebra generated by
n elements (see 11.15). So, by Noether’s normalization Theorem, there exists x1,..., Ty,
in K[V] which are algebraically independent and such that K[V] is a finitely generated
Klxi,...,zy])-module. Let ¢* : K[X1,...,X;] — K[V] be the morphism of K-algebras
X; — x;. Then, by Proposition 11.31, ¢* corresponds to a morphism of algebraic sets
¢ : V. — A™(K). By construction, this morphism is finite (so, by Proposition 11.41,
¢~ 1(x) is finite for all z € A™(K)) and is dominant (by Proposition 11.36). O

Corollary 12.2. Let A be a finitely generated commutative K-algebra. We assume that
A is a field. Then A is a finite algebraic extension of K.

PRrROOF - This follows from Noether’s Normalization Theorem and from Proposition 9.19
(b). m

Corollary 12.3. Let A and B be two finitely generated K -algebras, let o* : A — B be a
morphism of K -algebras and let m € Max(B). Then ¢*~(m) € Max(A).

Corollary 12.4. Let A be a finitely generated commutative K -algebra and assume that
K is algebraically closed. Then Max(A) = Maxg (A).

PROOF - Let m € Max(A). Then A/m is a finitely generated commutative K-algebra
which is a field, so it is a finite extension of K. Since K is algebraically closed, it must be
equal to the image of K. B

Corollary 12.5 (Hilbert’s Nullstellensatz - weak form). Assume that K is alge-
braically closed and let I be a proper ideal of K[X1,...,X,]. Then Z(I) # @.
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PROOF - Indeed, by Corollary 5.2, there exists a maximal ideal m of K[X;,..., X,] con-
taining /. By Corollary 12.4, m is K-rational. So m = (X —ay,..., X, — a,) for some
a=(ai,...,an) € A"(K). The fact that I C m implies that a € Z(I). ®

Hilbert’s Nullstellensatz. Let E C K[X1,...,X,] and assume that K is algebraically
closed. Then I(Z(E)) = \/(E).

REMARK - For the definition of the radical v/T of an ideal I, see the Appendix. O

PROOF - It is clear that /(E) C Z(Z(FE)). Let us now prove the reverse inclusion. Let
f € I(Z(FE)). We may assume that f # 0. Let I be the ideal of K[Xy,...,X,,T]
generated by F and 1 — T f. Then
Z(I) = {(z1,...,2n0,t) € A"Y(K) |Vg € E, g(x1,...,2,) =0and f(zy,...,z,)t =1}

= {(z1,...,2n,t) | (x1,...,2,) € Z(FE) and f(x1,...,2,)t = 1}

= 9
because f(x1,...,zy,) = 0 for all (z1,...,2z,) € Z(E). So, by Corollary 12.5, I =
K[Xy,...,X,,T]. So there exists Pp,..., P. € E and Q1,..., @, Q in K[Xy,...,X,,T|
such that .

1=(1-THQ+ Y PQ
i=1

Now, by working in the field of fractions K(X1,...,X,), we can specialize the previous
equality through T +— 1/f. We get

1= ZPZ(XL v 7XTL)Qi(X17 v ,X’na ]-/f)
1=1

Now, let N € N be large enough so that R; = fNQ;(X1,..., X, 1/f) € K[X1,..., X,]
for all 5. Then

N =Y PR € (E),
i=1

as desired. m

13. ALGEBRAIC SETS OVER ALGEBRAICALLY CLOSED FIELDS

From now on, and until the end of this part, we assume that K is alge-
braically closed. We define an affine variety (over K) to be an irreducible algebraic
subset of some A"(K).

EXAMPLE 13.1 - Let f € K[X1,..., X,] be non-constant. Let us factorize f = f{* ... f;*
where 7; > 1 and the f;’s are irreducible and distincts. Then Z(f) = Z(f1...fx) =
Z(fi)U---UZ2(fx) and Z(Z(f)) = (f1... fx) by Hilbert’s Nullstellensatz. We say that
Z(f) is an hypersurface if k = 1: this is equivalent to say that Z(f) is irreducible. O

13.A. Properties of the correspondence V — K[V]. Recall that the definitions
of the radical of an ideal and of the nilradical of a commutative ring are given in the
Appendix.
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Definition 13.2. A commutative K-algebras A is called reduced if its nilradical is 0 (in
other words, if 0 is the only nilpotent element). We denote by galg,.q the category of
finitely generated commutative reduced K -algebras.

If VC A"(K), then K[V] € galg,.q. Moreover, as explained in §11.D, the correspon-
dence

Aff(K) —  kalgreq
V — KJ[V]
o — ¢
is a contravariant functor which is fully faithful. We shall now show that it is essentially

surjective (i.e. that, for A € galg,.q, there exists an algebraic set V such that K[V] ~ A)
and will study further the properties of this functor.

Theorem 13.3. Recall that K is algebraically closed. Let V € Aff(K). Then:

(a) The functor K[—] : Aff(K) — galg,.q is essentially surjective.

(b) The map W — Zy (W) induces a bijection between algebraic subsets of V' and
radical ideals of K[V].

(¢c) The map W +— Iy (W) induces a bijection between irreducible algebraic subsets
of V and prime ideals of K[V].

(d) The map x +— mY induces a bijection between V and mazimal ideals of K[V].

(e) V is irreducible if and only if K[V] is integral.

(f) If W € Aff(K), then the map Morg (V, W) — Hompg s (K[W], K[V]), ¢ — ¢* is

bijective.

PROOF - (a) Let A € galg,.q. Let z1,..., z, € A be such that A = KJz1,...,x,]. Let
7w K[Xy,...,X,] — A denote the unique morphism of K-algebras such that 7(X;) = x;
for all 9. Let I = Kerm. Then A ~ K[X1,...,X,]/I so I is a radical ideal. In particular
Z(Z(I)) = I by Hilbert’s Nullstellensatz, so K[X1,...,X,]/I ~ K[Z(I)]. Therefore,
A~ K[Z(I)].

(b) and (c) follow easily from Hilbert’s Nullstellensatz (note that a prime ideal is always
radical).

(d) follows from Proposition 11.23 and the weak form of Hilbert’s Nullstellensatz (Corol-
lary 12.5).

(e) is Proposition 11.16.

(f) is Proposition 11.32. m

We shall study geometric properties of algebraic sets: by geometric properties, we mean
properties which are ”functorial” with respect to morphism of algebraic sets and in par-
ticular which are invariant under isomorphism of algebraic sets.

13.B. Irreducible components. Since an isomorphism of algebraic sets is an homeo-
morphism, the topology of an algebraic set is ”part” of its geometry. For instance, being
irreducible is a property which is stable by homeomorphism (and which is functorial by
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Exercise IV.1. For general topological spaces (not necessarily irreducible), we introduce
the following notion:

Definition 13.4. If X is a topological space and if Z C X, we say that Z is an irreducible
component of X if Z is an irreducible closed subset of X which is maximal for these
properties. We denote by Irr(X) the set of irreducible components of X .

Proposition 13.5. Let V € Aff(K). The map W +— Iy (W) induces a bijection between
irreducible components of V' and minimal prime ideals of K[V]. Moreover, Irr(V') is a

finite set and
v= U =

Zelrr(V)
Also, if E is a proper subset of Irr(V'), then

v# 2z

Zek

PROOF - This follows from Theorem 13.3 and from Proposition 16.6 (see the Appendix). ®

ExAMPLE 13.6 - Keep the notation of Example 13.1. Then

r(2(f)) = {2(f1),-. .. 2(f))
and Z(f)) # Z(f;) if i # 4. O

13.C. Dimension. There is an intuitive notion of dimension for an algebraic set: for
instance, we would like that an hypersurface in A™(K') has dimension n—1. The following
definition, which holds for any topological space, meets this requirement:

Definition 13.7. If X is a topological space, we define the dimension of X (and we denote
by dim X' ) to be the mazimal number n such that there exists a chain Zo & Z1 & -+ & Zy
of non-empty irreducible closed subsets of X .

Theorem 13.8. Let V € Aff(K). Then:
(a) dimV = Krulldim K[V].
(b) If x1,..., xy are algebraically independent elements of K[V] such that K[V] is
integral over K[zy,...,xm] (such a family exists by Noether’s Normalization The-
orem), then dimV = m.

PROOF - This follows from Theorems 13.3 (c) and 17.5 and from Proposition 17.3 (see the
Appendix). m

Corollary 13.9. dim A™(K) = n.

Note also that, if V' € Aff(K), then

(13.10) dimV = sup dimZ.
Zelrr(X)
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ExAMPLE 13.11 - Keep the notation of Example 13.1. Then it follows from the proof of
Noether’s Normalization Theorem that dim Z(f) =n —1. O

13.D. Tangent space. If v € A"(K) and if f € K[Xy,...,X,], we denote by d,f :

K™ — K the differential of f at v: it is a linear form. We have

N Of
o 0%

Now, let V' be an algebraic subset of A"(K) and let v € V.

(13.12) dof(z1,...,20) (v)x;.

Definition 13.13. A vector x € K™ is called a tangent vector to V at v if, for all
feZ(V), dyf(z) = 0. The tangent space of V at v is the set of tangent vectors to V
at v. It will be denoted by T,(V').

We have, by definition,

(13.14) T,(V)= () Kerd,f.
fez(v)

In particular,
(13.15) T, (V') is a vector space.
Also, if W is an algebraic subset of V' containing v, then
(13.16) T,(W) C T,(V).
(Indeed, Z(V') CZ(V).) Note also that
(13.17) T,(A"(K)) = K".

The next proposition gives an efficient way for computing the tangent space of V' at v:

Proposition 13.18. Let v € V and let E be a set of generators of the ideal Z(V'). Then

T,(V) = (] Kerd,f.
fer

REMARK - Since Z(V) is finitely generated, if one can find a finite set of generators of
Z(V), then the computation of the tangent space of V' at v is reduced to solving a finite
system of linear equations. O

PROOF - Let z € ﬂ Kerd,f and let g € Z(V'). By definition, we only need to show that
fer
dyg(xz) = 0. Since g € Z(V), there exists fi,..., fr € F and g1,..., g» € K[X1,...,X,]

such that g = g1 f1 + - + grfr. Since f;(v) =0 for all i, we have d,g = g1(v)dyf1 + -+
gr(v)dy fr, whence the result. m

EXAMPLE 13.19 - Let V = Z(Y? — X3) and let v = (a,b) € V. We shall compute the
tangent space of V' at v. First, note that Z(V) = (Y2 — X3). Therefore, (z,y) € T,(V) if
and only if 3a%x — 2by = 0. So, if v = (0,0), then dimT,(V) = 2 and, if v # (0,0), then
a and b are not 0 so 3a? and 2b cannot be both zero (even in positive characteristic) so
dim7,,(V) = 1 in this case. O
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If fi,..., fr € K[Xy1,...,X,] and if v € A"(K), we define the Jacobian matriz of
(f1,-.., fr) at v to be the matrix

Tl ) = (5 0))

Then, if v € V and Z(V) = (f1,..., fr), then

(13.20) T,(V)=KerJo(f1,..., fr) ={(z1,...,2n) € K" | Jo(f1,-.., f-) | : | =0}

TIn

We shall now define the differential of a morphism of algebraic sets. Before, we must
define the differential of a regular map. Solet f € K[V] and let v € V. If f and f' are two
elements of K[X1,..., X,] which represent f, and if = € T,,(V'), then d, f(x) = d, f'(x) by
definition of T,,(V'). So we can define the differential of f at v to be the map

dof: T,(V) — K
r — dyf(x).

It is a linear form that is, an element of the dual of T,,(V).

Proposition 13.21. Let W C A™(K) be an algberaic set and let ¢ : V. — W, v
(p1(v),...,om(v)) be a morphism of algebraic sets with ¢; € K[V]. Let v € V. Then:
(a) If v € To,(V), then (dyp1(z),. .., dvom(x)) € Ty (W).
(b) Let dyp : Ty(V) = Ty (W), @ = (dop1(x), . .., doom(z)). Then dyp is K-linear.
It is called the differential of ¢ at v.
(c) If Y+ W — X is a morphism of algebraic sets, then dy(y o ) = dy)¥ © dyp.

PROOF - Only (a) needs a proof, the other statements being straightforward. Let f €
Z(W). Let ¢1,..., @ be elements of K[X1,...,X,] representing ¢1,..., ¢, respectively.
Now, let ¢ = f(¢1( X1y, Xn)s ooy & (X1, ..., X)) € K[X1,...,X,]. Then, for all
v eV, we have g(v) = f(¢(v)) =0, so g € Z(V). In particular, d,g(z) = 0. But

dvg(‘r) = (dgo(v)f)(dvgpl ($)7 R dvgpm(x)) =0,
as desired. ®

Corollary 13.22. Let ¢ : V — W be an isomorphism of algebraic sets. Then dy,p is an
isomorphism of vector spaces for allv € V.

The next problem, still unsolved, is particularly difficult:

Jacobian Conjecture. Assume that K is an algebraically closed field of
characteristic 0. Let ¢ : A™(K) — A™(K) be a morphism of algebraic sets
such that d,p is an isomorphism of vector spaces. Then ¢ is an isomor-
phism of algebraic sets.
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EXAMPLE 13.23 - Let V be the hyperbola Z(XY —1) andlet o : V — V, (z,y) — (22,9?).
Assume here that K has characteristic different from 2. Then T),(V') has dimension 1 and
dy is an isomorphism of vector spaces for all v € V. However, ¢ is not an isomorphism
of affine varieties. O

13.E. Smoothness. We shall define the notion of smooth affine algebraic variety. For
this, we need to obtain a description of the tangent space of V' at v in algebraic terms.

So we fix an algebraic set V' and a point v € V. If z € T,(V), then the map 97 :
K[V] — K, f v (dyf)(z) is well-defined and satisfies

(13.24) 9y (f9) = f(v)0;(g) + 9(v)05(f)-

In particular, m? is contained in the kernel of d%. We shall denote by 9% : m,/m2 — K

the map induced by 97. So we have constructed a map

dy: Ty(V) — (m, /m2)*

T — oy,

It is readily seen to be K-linear. In fact:

Proposition 13.25. The map 8, : T,(V) — (m,/m2)* is an isomorphism of K -vector
spaces.

PROOF - Let z € T,(V) be such that & = 0. Then, since d,f(z) = 0 for all constant
functions, we have that d,f(z) = 0 for all f € K[V]. Now, if fe K[Xy,...,Xy], then
dyf(x) = dyf(z) = 0 (where f denotes the image of f in K[V] = K[X1,...,X,]/Z(V)).
In other words,

" 9P

for all P € K[X;,...,X,]. If we apply this equality for P = X;, we get that z; = 0 for all
1, so x = 0. Hence 0, is injective.

Now, let us show that 8, is surjective. Let 7 : (m,/m?) — K be K-linear. Write
v = (ay,...,a,) and denote by X; : V' — K the image of X;. Then &; — a; € m, and we
denote by x; the image, via 7, of the projection of X; —a; on my /m2. Let x = (z1,...,7,).
We shall prove that = € T,(V) and that 5;’53 = 7. First, let 71 : K[X3,...,X,] — K,
P+ 7(P — P(v)), where P — P(v) denotes the image of P — P(v) in m,/m2. Then it is
readily seen that 77 (PQ) = P(v)7(Q) + Q(v)7T(P). To prove our claim, we only need
to show that d, P(z) = 7(P) for all P. By the previous equality, we only need to prove it
for P = X, but this is just the definition of 7. ®

We define the Zariski tangent space of V at v to be the dual of m,/m2. Note that, by
the previous proposition, the Zariski tangent space is canonically isomorphic to T3,(V'), so
that in particular it has finite dimension. We shall explain now why the isomorphism Dy
is 7functorial”. We first need some notation: if ¢ : V' — W is a morphism of algebraic
sets and if v € V, then ¢*}(m)) = mgzv) (see Proposition 11.34). In other words,

w

gp*(m(p(v)) C mY. This also implies that go*((mgfv))z) C (mY)2. Therefore, ¢* induces a
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K-linear map ¢} : mWU) / (mWU))2 — mY /(mY)2. We denote by ‘o its transpose. Then
the diagram

av
T,(V) = (m)/(m))?)"
(13.26) dyo o
0
e(v *
TLP(”) (V) (mzv)/(mzv))g)

is commutative. The proof is left as an exercise.

Theorem 13.27. If V is an affine algebraic variety and if v € V, we have dim T, (V') =
dimm,/m? > Krulldim K[V] = dim V.

PROOF - See any good book dealing with ” Commutative Algebra” (Matsumura, or Atiyah-
McDonald...). We shall prove it only in the case where V' is an hypersurface (see Ex-
ample 13.1). So we assume that V' = Z(f), where f is an irreducible polynomial in
K[Xy,...,X,]. Then dimV = n — 1 by Example 13.11 and, since Z(V') = (f), we have
dim 7, (V) = Kerd, f by Proposition 13.18. This shows the result. m

Definition 13.28. If V is an affine algebraic variety and if v € V, we say that V is
smooth at v (or that v is a regular or smooth point of V') if dimT,(V) = dim V. The
variety V is said to be smooth (or non-singular, or regular) if it is smooth at each of
its points.

We denote by Sing(V') the set of singular points of V.

Theorem 13.29. If V is an affine algebraic variety, then Sing(V') is a closed subset of V
and V' \ Sing(V) is not empty.

PROOF - Let fi,..., fr be a set of generators of the ideal Z(V'). Then T3 (V) is the kernel
of the Jacobian J,(f1,..., fr). By Theorem 13.27, we know that the rank of this matrix
is always greater than or equal to n — dim V. And v € Sing(V) if and only if this rank is
< n—dim V. But this last condition is then equivalent to the vanishing of all determinant
of submatrices of J,(f1,..., fr) of size (n —dim V) x (n —dim V). So Sing(V') is a closed
subset of V.

We shall prove the second statement only whenever V' is an hypersurface (for the general
case, see R. HARTSHORNE, Algebraic geometry, Graduate Texts in Mathematics 52, Part
I, Theorem 5.3). So assume that V' = Z(f), where f is an irreducible polynomial of
K[Xy,...,X,] and assume that V = Sing(V'). By the proof of Theorem 13.27, this means

0
that we have d,f = 0 for all v € V. In other words, 8)]2 (v) =0 for all i and all v € V.
i

- =0 for all 4. If K has characteristic 0, this

Since Z(Z(f)) = (f), this implies that ;}‘?

(2
is impossible. Assume that K has positive characteristic p. Then this means that f is
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a polynomial in X7...., XL So f is the p-th power of some polynomial, so f is not
irreducible: we also get a contradiction. B

14. EXAMPLES

We shall need in the sequel the following theorem:

Theorem 14.1. Let ¢ : V. — W be a morphism of algebraic sets and assume that V is

irreducible. Let r = dimV — dim (V). Then ¢(V) and ¢(V) are irreducible and there
exists an open subset U of o(V') such that:

(a) UCp(V) Ce(V);
(b) U # 2;
(c) For allx € U, dimp~t(z) =r.

EXAMPLE 14.2 - Let P € K[X1,...,X,—1] and let
V= {(.’L‘l,.. .,fL‘n) € An(K) ’ Ty = P(l‘l,.. . ,$n,1)}
Then V is an hypersurface in A™(K) (indeed, X,, — P(X1,...,X,_1) is irreducible) and

the map 7 : V — A" Y(K), (21,...,2,) — (21,...,7,_1) is an isomorphism (its inverse
is given by (z1,...,2n—1) — (1, ., Tn-1, P(T1,.. ., Tp_1)). O

EXAMPLE 14.3 - Let P € K[X] and let C = {(z,y) € A%(K) | y?> = P(z)}. We assume
that P is not the square of a polynomial in K[X]. We also assume that the characteristic
of K is different from 2. Then Y2 — P(X) is irreducible, so Z(C) = (Y? — P(X)) by
Hilbert’s Nullstellensatz and C is an affine curve (i.e. an affine variety of dimension 1). A
point (z,y) € C is singular if and only if 2y = P’(z) = 0. In other words,

Sing(C) = {(,0) | P(x) = P'(x) = 0}.

So
C is smooth if and only if P and P’ are relatively prime. O

EXAMPLE 14.4 - Ifa € K* and b € K, we denote by o, : A'(K) — AY(K), z — az+b.
Let A= {045 | a € KX, b € K}. Then A is a subgroup of Aut(A!(K)), the group of
automorphisms of A(K) as an affine variety. Moreover,

A~ K* x K.
In fact, it is easy to check that
A= Aut(A'(K))

by investigating the automorphisms of the K-algebra K[X]. Finally, note that o4y is an
involution if and only if a = —1. O

ExXaMPLE 14.5 - Assume that K has characteristic different from 2 and 3. Let C =
{(z,y) € A%(K) | y?> = 23 — x + 1}. Then, by Example 14.3, C is a smooth curve. We
shall prove here that C is not isomorphic to A(K).
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First, let 0 : C — C, (x,y) — (x,—y). Then o is an involutive automorphism of C. In
particular, o* is an involutive automorphism of the K-algebra A = K|[C] = K[X,Y]/(Y?% -
X34+ X —1).

So assume that that C ~ A!(K). Then K[T] ~ A: we denote by ¢ the image of T
in A through this isomorphism. Then, by example 14.4, there exists b € K such that
o*(t) = b—t. If we write t = P(X) + YQ(X) where P and Q are (uniquely determined)
polynomials in one variable and X and Y denote respectively the images of X and Y in
A, then o*(t) = P(X) — YQ(X) so P(X) = b— P(X). This show that P(X) = b/2. So,
by translating the variable T, we may assume that t = YQ(X). But K[t] = A, which is
impossible. O

EXAMPLE 14.6 - Assume that K has characteristic different from 2 and 3. Let C =
{(z,y) € A%(K) | y?> = 2% + 2?}. Then C is not smooth: (0,0) is the unique singular
point of C. Let ¢ : AY(K) — C, t — (t> — 1,t(t* — 1)). Then ¢ is a surjective morphism
of varieties. Let A = K[C]. Then ¢* : A — KIT], and K|[T] is contained in the field of
fractions of A (indeed, p*(Y /X) = T). In fact, K[T] is the normalization of A. O

EXAMPLE 14.7 - Let A and B be the matrices in GL2(C) equal to
t 0 0 1
A= <0 —i> and B = (_1 0>'
Let C = AB. Then

AB=-BA=(C, BC=-CB=A and CA=-AC =B.
Also
A*=B*=C%=-],
where [ is the identity matrix. This shows that
G=(AB)={I,-1,A,—A,B,—-B,C,—-C}.

It is called the quaternion group of order 8. Then G acts on A%(C) by matrix multiplica-
tion. It is readily seen that the polynomials

u=X"4+Y" v=X%? and w=XY(X'-Y?

are elements of C[X,Y]%. Moreover, w? = v(u? — 4v?). In particular, the morphism of
algebras C[U,V,W] — C[X,Y]%, U + u, V + v, W + w induces a well-defined morphism
of C-algebras
™ C[U,V,W]/(W? - V(U? - 4V?)) - C[X, Y]C.
It turns out that 7* is an isomorphism of algebras.
In other words, A%(C)/G is isomorphic to the variety {(a,b,c) € A3(C) | ¢* = b(a? —
4b?)}. Tts only singular point is (0,0, 0). O

EXAMPLE 14.8 - Let V = Z(Z% — XY?). The polynomial Z? — XY ? being irreducible,
V is an hypersurface and Z(V) = (Z? — XY?). In particular, Sing(V) = Z(Y, 2).

Let a € K. Then V N Z(X — a) is the union of two lines if a # 0. Also VN Z(Y — a)
is a parabola if a # 0. And V N Z(Z — a) is isomorphic to Z(XY? — a?) C A%(K): it is
smooth except if a # 0. O
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EXAMPLE 14.9 - Let p be the characteristic of K and assume that p > 0. Let ¢ be a
power of p and let F, = {# € K | 29 = z}: it is the unique subfield of cardinal g. Then
the additive finite group F, acts on A1(K) by translation (an element ¢ € F, acts through
t > t+¢). Then the map 7 : AY(K) — AY(K), t — t9 — t is a quotient of A'(K) by the
action of F, (see the Homework).

Proposition 14.10. Let C' be a smooth affine variety of dimension 1 (a smooth affine
curve) and let G be a finite group acting on C. Assume that C/G ~ AY(K) and that,
forall g € G, g # 1, we have g(v) # v for allv € C. Then G is generated by its Sylow
p-subgroups.

More astonishing is the following result, which can be seen as an inverse Galois problem
for the affine line in positive characteristic:

Theorem 14.11 (Raynaud). Let G be a finite group generated by its Sylow p-subgroups.
Then there exists a smooth affine curve C endowed with an action of G and such that:
(1) C/G ~ ANK);
(2) Forallge G, g # 1 and for allv € C, we have g(v) # v.

SUB-EXAMPLE - The finite group SLo(IF,) is generated by its Sylow p-subgroups (check
it!). So there must exists a smooth affine curve C' endowed with an action of SLo(IF,)
satisfying the requirements in Raynaud’s Theorem. An example is given in Exercise IV.7
(Deligne-Lusztig curve). O

EXAMPLE 14.12 - Identify Mat,, (K) with A" (K). Let A, be the set of nilpotent matrices
in Mat, (K). In fact,

(14.13) N, ={M € Mat,(K) | M" = 0}.
In particular, N, is an algebraic set.

Let SL,(K) = {M € Mat,(K) | detM = 1} and N, (K) be the set of triangular
nilpotent matrices in Mat,, (K). Then N, (K) ~ A" D/2(K) is irreducible. Also, the
polynomial det —1 is irreducible, so SL,,(K) is an hypersurface in Mat,,(K) (in particular,
it is irreducible). Now, the map

¢ SL,(K)x No(K) — N,
(9, M) — gMg™!

1

is a morphism of algebraic sets (indeed, the map SL,(K) — SL,(K), g — g~ is polyno-

mial). The map is surjective by Jordan decomposition. So, by Exercise IV.1,
(14.14) N, is irreducible.
If M € Mat,(K), we denote by o1(M),..., 0,(M) the coefficients of X"~ ... X, 1

respectively in the characteristic polynomial of M (o1 = +Tr and o,, = £det). Then the
map
o: Mat,(K) — A"(K)
M —  (o1(M),...,0n(M))

is a morphism of algebraic sets. It is surjective. Moreover,
(14.15) Ny = o 1(0).
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01 0 ... 0

Let J, = | : . -, 0o|- We denote by P(n) the set of partitions of n, i.e.
: o1
O ... ... ... 0

the set of finite sequences A = (\1,..., \;) of natural numbers such that \y +---+ X\, =n
and A\ > X > ... 2 A\ > 1. We denote by J, the matrix which is diagonal by blocks,
the blocks being equal to Jy,,..., Jy,. Finally, we denote by Cy the orbit of J\ under
the action (by conjugacy) of SL,(K): Cy = {gJxg~' | g € SL,(K)}. Then, by Jordan
decomposition,

(14.16) No= | an,
AEP(n)

and this is the partition of N, into SL,,(K)-orbits. If A € P(n), the closure of C) is stable
under the action of SL,,(K’), We then define a relation < on P(n) as follows:

Adu<C\CC, (<C\CCp).
We also define a morphism of varieties

ox: SLy(K) — N,
g —  gag?

Then the image of ) is Cy, so

(14.17) Cy and Cy are irreducible subsets of Ny,.
Moreover,
(14.18) Cy is an open subset of Cy.

Indeed, by Theorem 14.1, there exists a non-empty open subset U of Cy containing the
image of ¢, (which is Cy). Then C) = UgGSLn(K) gUg™! is still open in Cy.

Theorem 14.19. Let A\, u € P(n). Then:

(a) Cy is an open irreducible subset of the irreducible closed set Cy.

(b) dimCy = n® — 1 —dim Cs,, 5y (Jr)-

(c) If X< p, then dimCy < dimC,,.

(d) < is a partial order on P(n).

(e) Ch, ={M e N,, | M™ 1 #£0}.

(f) C, is open (md dense in Ny,.

(g) dimN, =n? —n.

(h) If M € C,,, then M is a smooth point of Ny,.

(i) Let X = (A1,..., A) and = (p1, ..., 1s) be two partitions of n. Then A < u if
and only if \y + -+ XN < pr+ -+ p; for all > 1 (here, by convention, \ry1 =
Arg2 = = [ls41 :Ms+2:"':0)-
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15. LOCALIZATION
If X is a set, we denote by Maps(X, K) the set of maps X — K: this is a K-algebra.

15.A. Regular functions on open subsets. Let V' be an algebraic set, let U be an
open subset of V and let x € U. A map f : U — K is called regular at x if there exists
an open subset U’ of U containing x and two regular functions P, @ € K[V] such that
@ does not vanish on U’ and f(y) = P(y)/Q(y) for all y € U'. Amap f: U — K is
called regular if it is regular at all elements of U. We denote by Oy (U) the set of regular
functions on U. It is clearly a commutative K-subalgebra of Maps(U, K).

REMARK - If U =V, we have defined two notions of regular functions on V: this one and
the one defined in §11.C. We shall prove in Corollary 15.2 that these notions coincide, i.e.
that Oy (V) = K[V] (note that it is clear from the definitions that K[V] C Oy (V)). O

If f € K[V], we denote by V; = {x € V| f(x) # 0}. By definition, V; is an open subset
of V' (it is the complement of Zy (f) in V'): it is called a principal open subset of V. Since
any closed subset is a finite intersection of some Zy (f), any open subset is a finite union
of principal open subsets.

Since K[V] is reduced, f is not nilpotent. If f # 0, we shall denote by K[V]; the
localization of K[V] at the multiplicative set {f™ | n > 0} (this last set does not contain
0). In other words, K[V]; = K[V][1/f] ~ K[V][T]/{1 = Tf).

Proposition 15.1. Let f € K[V], f #0. Then Oy (Vy) ~ K[V];.
PROOF - See Hartshorne. m

Corollary 15.2. Oy (V) = K[V].

PROOF - Apply the Proposition 15.1 to f=1. ®

15.B. Sheaves of functions. If X C X’ are two sets and if f : X’ — K is a map, we
denote by f|x (or Resx f, or Res? f) the restriction of f to X.

If X is a topological space, a sheaf of functions on X (with values in K) is a collection
F = (F(U))us open in x such that, for all open subsets U of X, F(U) C Maps(U, K) and
satisfying the following axioms:

(S1) If U C U’ are two open subsets of X and if f € F(U’), then f|, €
FU,K).

(S2) If (U;)ier is a family of open subsets of X and if f € Maps(U, K)
(where U is the union of the U;’s) is such that f|, € F(U;) for all 4,
then f € F(U).

If F is a sheaf of functions on X, we say that F is a sheaf of K-vector spaces (respec-
tively a sheaf of K -algebras) if, for all open subsets U of X', F(U) is a K-vector subspace
(respectively a K-subalgebra) of Maps(U, K).

EXAMPLE 15.3 - (0) (Maps(U, K))t open in x is a sheaf of functions on X'
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(1) Assume that K is endowed with a topology (for instance the usual topology if K = R
or C, or the Zarisky topology, or the p-adic topology if K is an algebraic extension of Q,),
then the collection (Cont(U, K'))i/ open in & is a sheaf (where Cont(U, K') denotes the set
of continuous functions on U).

(2) If V is an algebraic set, then Oy is a sheaf of K-algebras on V. O

A ringed space is a pair (X, ), where X is a topological space and O is a sheaf of
algebras on X. If (X’,)) is another ringed space, a morphism from (X,0) to (X’,0’) is
a continuous map ¢ : X — X’ such that, for any open subset U of X’ and any f € O'(U),
the map fo g : p 1 (U) — K belongs to O(¢~1(U)).

EXAMPLE 15.4 - If V is an algebraic set, then (V,Oy) is a ringed space. The sheaf Oy
is called the structural sheaf on V. Moreover, if ¢ : V' — W is a morphism of algebraic
sets, then ¢ is a morphism of ringed spaces. Conversely, if ¢ : (V,0y) — (W,Ow)
is a morphism of ringed spaces (where V and W are two algebraic sets), then, for all
f € K[W] = Ow (W), we have that f o € Oy(V) = K[V], so ¢ is a morphism of
algebraic sets. O

EXAMPLE 15.5 - Let (X, 0) be a ringed space and let & be an open subset of X. We
denote by O|; the sheaf on U obtained by restriction of O (i.e., if V¥ C U is open, we set
Olu(V) = O(V)). Then (U, O|y) is a ringed space.

15.C. Variety. A scheme of finite type (over K) is a ringed space (X, Q) satisfying the
following axiom:

(Sch) There exists open subsets Ui,..., U, of X such that X = [J U
and such that, for all ¢, there exists an algebraic set V; such that
(Ui, Oluy,) ~ (Vi, Oy;).

Let (X,0) and (X', O') be two schemes of finite type over K. We shall define a topology
on X x X’ which is in general different from the product topology. Let (Ui)1 < <n» and
(U)1 < j <m be a covering of X and X’ respectively satisfying the axiom (Sch). Then we
endow X x X’ with the topology generated by the open subsets of the U; x L{]’-.

Then a scheme of finite type (X, Q) is called separated if the image of the map A : X —
X XX, x— (x,x) is closed in X x X.

An algebraic variety (over K) is a scheme of finite type which is irre-
ducible and separated. A morphism of algebraic varieties is a morphism
of ringed spaces. A wvariety is called affine if it is isomorphic to some
(V,Ov) where V is an irreducible algebraic set.

15.D. Example: open subsets of varieties. Let (V,O) be a variety and let U be an
open subset of V. Then (U, O|y) is a variety. Indeed, we only need to prove it whenever
V is affine. Then U = (J;_, Vy, for some f; € O(V) = K[V], so we are reduced to prove
that (Vy,Oly,) is an affine variety for all f € K[V], f # 0. Assume that V C A"(K) and
let

W ={(z1,...,2p,t) € A" YK) | (x1,...,2,) €V and f(x1,...,2,)t — 1 =0}.
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Let m: W =V, (21,...,2n,t) — (x1,...,2,). Then W is an affine algebraic set and the
map 7 is a morphism of algebraic sets. Moreover, the image of 7 is equal to V. it is now
readily seen that m : W — V} is an isomorphism of ringed spaces.

EXAMPLE 15.6 - Let GL,(K) = {M € Mat,(K) | det(M) # 0} viewed as an open set
of the affine space Mat,,(K). Then GL,,(K) = Mat,, (K )q4et and it is readily seen that the
maps
GL,(K) x GL,(K) — GL,(K)
(M,N) —  MN
GL.(K) — GL,(K)
M — Mt

are morphisms of varieties (the last one is an isomorphism). O

15.E. Example: projective varieties. We denote by K[Xg, X1,...,X,], the set of
homogeneous polynomials in K[Xg, X1,...,X,]. If B C K[X, X1,...,Xp]n, we set

Zh(E) = {[1'0,21)1, c ,:L'n] S Pn(K) | v f e F, f(l’o,fL‘l, c ,:L'n) = 0}.

Then the map Zj, shares almost the same properties as the map Z: in particular, if we
define a projective algebraic set as an element of the image of Zj, then projective algebraic
sets are the closed subsets of some topology on P"(K), the Zariski topology on P"(K).

If V. C P"(K) is a projective algebraic set and if U is an open subset of V', then a map
f: U — K is called regular if, for all x € U, there exists an open subset U’ of U and
two homogeneous polynomials P and @) of the same degree such that Q(v) # 0 for all
w e U and f(u) = P(u)/Q(u) for all uw € U’. This defines a sheaf Oy on V.

We denote by Af; (K) the subset of P™(K) consisting of the [z, x1,...,z,] such that
x; # 0. Then the map A"(K) — AZ.)(K), (1,...,xn) — (21, ., 21, 1,24, ..., 2y) iS an
homeomorphism.

IfV =2,(F) CP"K), let V(z) =Vn A?Z)(K) Then V = U?:O V(z) and (V(z)’ OV‘V@))
is an affine variety (it is isomorphic to Z(E(;)), where
E(z) = {f(Xl, X, L, X ,Xn) | fe E} )
In fact,
(15.7) (V,Oy) is a separated scheme of finite type.

A variety is called projective if it is isomorphic to some (V, Oy ) where V' is an irreducible
projective algebraic set.
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EXERCISES FROM PART II1

In all these exercises, we assume that K is algebraically closed.

Exercise IV.1. Let f : X — ) be a continuous map between topological spaces. Show
that f(X) is an irreducible subset of ).

Exercise IV.2. Let X be a topological space and let ) be an irreducible subset of X.
Show that Y is irreducible.

Exercise IV.3. Find the irreducible components of the following algebraic sets:
(a) Z(X?+Y?2 -5 XY —2).
(b) Z(X%2-Y?).
() Z2(X?-YZ,XZ - X).

Exercise IV.4. Let ¢ : AY(K) — A3(K), t — (t3,t%,#°). Let V denote the image of ¢.

(a) Show that ¢ is a morphism of varieties.

(b) Show that Z(V) = (X3 - YZ,Y? - XZ,Z? — X?Y) and that V = Z(Z(V)) (in
other words, V = V).

(¢) Show that dimV = 1.

(d) Show that Z(V') cannot be generated by two elements.

(e) Show that V is irreducible.

Exercise IV.5. Determine the set Sing(V') in the following cases:
(a) V=Z2(Y?-X3-X?).
(b) V=2(2%-X?-Y?).
(c) V=Z2(XY? - Z2).

Exercise IV.6. Assume that K has characteristic p > 0. Show that the map ¢ :
AYK) — AYK), t — tP — t is not an isomorphism. Nevertheless, show that d;p is an
isomorphism for all t € A}(K). Compare with the Jacobian Conjecture.

Exercice IV.7* (Deligne-Lusztig). Assume that the characteristic p of K is positive.
Let ¢ be a power of p. We denote by F, the subfield of K with ¢ elements (i.e. F, = {z €
K | z9=2z}). Let
G =SLy(F,) = {g € GLy([F,) | detg =1}.
Let V = Z(XY?7—YX9—1) C A%(K). If g = Z Z
through the map A%(K) — A2%(K), (z,y) — (az + by, cz + dy) (= g.(z,y)).
(a) Compute dim V.
(b) Show that V' is smooth.
(c) Show that G acts on A?(K) as a group of automorphisms of varieties.
(d) Show that G stabilizes V.
(e***) Show that V/G ~ A}(K).

€ G, we let it act on A%(K)
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Exercise IV.8. Identify Mat, (K) with A"*(K) and let det : Mat,(K) — K and Tr :
Mat,,(K) — K be respectively the determinant and the trace. We also identify Mat,, (K)
with the tangent space Ty Mat,, (K) for all M € Mat,,(K). If V is an algebraic subset of
Mat,,(K) and if v € V, then we shall identify 7, (V') with the corresponding subspace of

)
Mat,, (K). If a € K, we denote by V, the algebraic set Z(det —a).

2 variables.

(a) Show that det —a is an irreducible polynomial in n

(b) Deduce that V, is irreducible. Compute dim V.

(c) Let M € Mat, (K). Show that dps det : Mat,(K) — K, X — Tr(C(M)X), where
C(M) is the matrix of the cofactors of M.

(d) Let @ € K. Show that ald,, € V,» (where Id,, denotes the identity matrix) and
compute T}, 1q, Var.

(e) Show that V is smooth if and only if a # 0.

Exercise IV.9*. Let f € K[X,Y] be irreducible and let V' = Z(f). Show that V is
smooth if and only if K[V] = K[X,Y]/(f) is integrally closed.
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Appendix. Algebraic background for algebraic geometry

We fix a commutative ring.

16. RADICAL IDEALS

Definition 16.1. If I is an ideal of a commutative ring R, we define the radical of I to
be the set

Vi={zeR|3neN, z"el}.
The radical of the zero ideal (that is, the set of milpotent elements of R, see §5.C) is
called the nilradical of R. An ideal I of R is called radical if it is equal to its radical.

Recall that, if R is Artinian, then the nilradical of R is equal to its Jacobson radical.

Proposition 16.2. Let I be an ideal of the commutative ring R. Then:
(a) I CVI.

(b) VVI=VI.
(¢) VI is an ideal.
(d) VI/I is the nilradical of R/I.

PROOF - (a), (b) and (d) are easy. Let us prove (c). Let x € R and y € /1. Tt is then
clear that 2y € v/I. The only difficult part is to show that, if moreover z € /I, then
r—y € VI. Let m and n be two natural numbers such that 2™ € I and y" e V. Then,
since R is commutative, we have

m—+n m+n
_ m+n __ i, m+n—i
@ =Y () ety
i=0
Leti € {0,1,2,...,m+n}. Ifi <m, then m+n—i > n and so y™ "% € I, so aly™tn=t ¢
I. If i > m, then 2% € I and again 2'y™*" " c 1. So (z —y)™™" €. m

EXAMPLES 16.3 - (1) Prime ideals are radical.
(2) If R = Z, then /{180) = (30). O

Proposition 16.4. Let I be an ideal of the commutative ring R. Then

\/f:ﬂp.

peSpec(R)
ICp

PROOF - By Proposition 16.2 (d), we may, and we will, assume that I = 0. Let
J= () »
peSpec(R)

It is clear v/O C J. It remains to show that J C /0. In other words, we must show that,
if r € R is not nilpotent, then r ¢ J. So let r € R which is not nilpotent. Let M be the
set of ideals of R which does not contain any positive power of r. Then 0 € M because r
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is not nilpotent, so M is not empty. It is readily seen from Zorn’s Lemma that M has a
maximal element. Let p be a maximal element of M.

We only need to show that p is a prime ideal. So let a and b be two elements of R such
that a ¢ p and b ¢ p. By the maximality of p, there exist k, [ > 1 such that 7* € p + Ra
and r! € p + Rb. Therefore, *+! € p + Rab. Therefore, ab ¢ p. m

Proposition 16.5. Let I be an ideal of the commutative Noetherian ring R. Then there
exists k > 1 such that (VI)* C I.

PROOF - By Proposition 16.2 (d), we may assume that I = 0. Since Ris Noetherian, there
exists r1,..., 7, € R such that /O = (r1,...,r,). For each 4, there exists k; > 1 such that
rfi €1l. Let k=ki+---+ky,. Then, if we proceed as in the proof of Proposition 16.2 (c),
it is easily checked that (vI)* C I. m

We conclude this section with a result concerning minimal prime ideals in Noetherian
rings.

Proposition 16.6. Let R be a commutative Noetherian ring and let I be an ideal of R and
let P denote the set of prime minimal prime ideals containing I. Then P is non-empty,
finite and /I = ﬂ p. Moreover, if P’ is a proper subset of P, then /I & ﬂ p.

peP peP’

PROOF - Let M be the set of proper radical ideals of R which cannot be written as a
finite intersection of prime ideals. We want to show that M is empty. If M # @&, then
there exists a maximal element J in M because R is Noetherian. By construction, J is
not prime, so there exists two elements ¢ and b in R such that a &€ J, b ¢ J and ab € J.
Let J'=+J+ Ra, J' =+ J+Rb. Then J C J' NJ" and J ¢ J and J & J”. Let us
show that J = J' N J"”. Let x € J'NJ". Then there exists m and n € N, j' € J, j” € J
and r and s € R such that 2™ = j’ + ra and 2" = j” + sb. Therefore 2™ € J, so x € J
because J is radical. In particular, J’ and J” are proper ideal of R. So they do not belong
to M by the maximality of .J. But then J = J'N.J” can be written as a finite intersection
of prime ideals. So we have proved the following result:

() Every radical ideal of R is a finite intersection of prime ideals of R.

Let us now come back to the proof of the proposition. By working with R/I instead
of R, we may assume that I = 0. Also, by Proposition 16.4, we may assume that the
nilradical of R is 0. Let Py be a set of minimal cardinality such that I = ﬂ p. To

p€Po
prove the proposition, we only need to show that P = Py. In other words, we only need

to show that, if p € Spec(R), then there exists py € Py such that py C p. We shall need
the following easy result:

Lemma 16.7. Let p be a prime ideal of R and let I,. .., I, be ideals of R such
that I ... I, Cp. Then there exists k € {1,2,...,n} such that I, C p.

PROOF - By an easy induction argument, we are reduce to prove this lemma
whenever n = 2. So we assume that I35 C p. We also may assume that I; € p.
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Let a € I; be such that a &€ p. Then, for all b € I5, we have ab € I1I; Cpsob e p
because p is prime. So I C p. O

Let us now come back to the proof of the Proposition 16.6. If p € Spec(R), then

II poc () po=0Cy.

PoE€Po po€Po

So, by Lemma 16.7, there exists pg € Py such that pg C p. The proof of the Proposition
is complete. W

17. KRULL DIMENSION

Definition 17.1. Let p be a prime ideal of R. We define the height of p, and we denote
by height(p), the mazimal n > 0 such that there exists a chain of prime ideals po & p1 &
<o G pp = p. We define the Krull dimension of R, and we denote by Krulldim(R), the
number

Krulldim(R) = max height(p).
(1) peiax helg (p)

Note that it might happen that height(p) = oo or that Krulldim(R) = oo even if
height(p) is finite for all p € Spec(R). Note also that, by Corollary 5.2, we have
(17.2) Krulldim(R) = max _height(m).
meSpec(R)

The first result about Krull dimension is that it is preserved by integral extensions:

Proposition 17.3. Let R and S be two rings such that R C S and S is integral over R.
Then Krulldim(R) = Krulldim(S).

PROOF - Let m = Krulldim(R) and n = Krulldim(S). By definition, there exists a chain
of prime ideals pg & p1 & -+ & py of R. So, by the Going-up Theorem 9.21, there exists
a chain qg C q; C - -- C @y, of prime ideals of S such that q; N R = p;. So m < n.

Conversely, let us show that n < m. There exists a chain q9 & q1 & -+ & g, of prime
ideals of S. Let p; = q; N R. Then pg C p; C --- C p, is a chain of prime ideals of R. We
only need to show that p; # p;+1. By working in the integral ring extension R/p; — S/q;,
we are reduced to show the following;:

Lemma 17.4. Let R and S be two integral rings such that R C S and let
q be a non-zero prime ideal of S. Then q N R # 0.

PROOF - Let = € q, © # 0. Let P(X) € R[X] be a monic polynomial of
minimal degree such that P(x) = 0. Write P(X) = X" +a, 1 X" 1 +... +
a1X + ag. Then ag # 0 by the minimality of the degree of P and because
S is integral. On the other hand,

ap=—z(a1 + - +a,_ 12" 24+ eqnS =p.

The proof of the lemma is complete. B
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Theorem 17.5. Let K be a field. Then Krulldim K[X,..., X,] =n.

PROOF - Let f(n) = Krulldim K[X;, ..., X,]. First,

0C (X1) G (X1, X0) & & (Xq,..., Xn)
is a chain of prime ideals of K[X71,...,X,]. So f(n) > n.

We shall show by induction on n that f(n) <n. Let 0 =po & p1 & -+ & Py be a
chain of prime ideals of K[X7,..., X,]. We shall first need the following result:

Lemma 17.6 (Krull’s Hauptidealsatz). Let R be a unique factorization
domain and let p be a prime ideal of height 1. Then p is principal.

PROOF - Let f € p, f # 0. Since R is a U.F.D., we can write f = f1... f,
where the f; are irreducible elements of R. Since p is prime, there exists ¢
such that f; € p. Therefore, Rf; C p. But Rf; is a prime ideal because R
is a U.F.D. So Rf; = p because p has height 1. m

By construction, p; is a prime ideal of height 1, so, by Krull’s Hauptidealsatz, p; =
(f) for some f € K[Xy,...,X,] (since K[X1,...,X,] is a UF.D.). Now, by Noether’s
Normalization Theorem (and its proof), there exists m < n and algebraically independent
elements uq,..., u, of A= K[X1,...,X,]/p1 such that A is integral over Kuq, ..., Up).
In particular, Krulldim(A) = Krulldim(K{uy,...,uy]) by Proposition 17.3. So, by the
induction hypothesis, we have Krulldim(4) < m < n. But 0 = p1/p1 € p2/p1 & -+ &
P f(n)/P1 is chain of prime ideals of A, so f(n)—1 < Krulldim(A). Therefore, f(n)—1 < n,
so f(n) < n, as desired. ®

The previous Theorem has for consequence that, in the statement of Noether’s Normal-
ization Theorem, the number m of algebraically independent elements (z;)1 < <m of A
such A is integral over K|x1,...,x,,] is uniquely determined by A:

Corollary 17.7. Let K be a field and let A be a finitely generated K-algebra. Let
(i)1 <i <m and (Yi)1 <i <n be two finite families of algebraically independent elements of
A such that A is integral over K|xi,...,xy] and also integral over K[yi,...,yn]. Then
m=n.

PROOF - Indeed, by Proposition 17.3, we have Krulldim(A) = Krulldim(K [z1, ..., zy]) =
Krulldim(K[yi,...,yn]). So m =n by Theorem 17.5. ®
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Homeworks
HOMEWORK FOR WEDNESDAY, OCTOBER 11

Exercise 1. Let M be a left R-module and let e € R be an idempotent (that is, e? = e).
Show that the map eR ®r M — eM, r g m — rm is an isomorphism of Z-modules
(compare with Remark 3.18).

Exercise 2. Let i denote the complex number such that i> = —1. Let

Zli| = {a+ib | a,b e Z}

and Qi ={a+1ib|a,beQ}.

If p is a prime number, we denote by F, the field Z/pZ.

(a) Show that Z[i] is a subring of C and that Q[] is a subfield of C.

(b) Show that Q ®z Z[i] ~ Q[i] (as Q-algebras).

(c) Show that |, ®z Z[i] ~ F[X]/(X?) (as Fy-algebras).

(d) Show that 3 @z Z[i] is a field with 9 elements.

(e) Show that F5 ®y Z[i] ~ F5 x F; (as [Fs-algebras).

(f) Let R be the set of (o, 5) € Z[i] x Z[i] such that o — f € 2Z[i]. Show that R
is a sub-Z[i]-algebra of Z[i] x Z[i] and that the map Z[i] ®z Z[i] — Z[i] x Z][i],
a®z B+ (af,af) is an injective morphism of Z[i]-algebras whose image is R (in
other words, Z[i| ®7 Z[i] ~ R).

Problem. First part. Let R be a commutative ring and let M be an R-module. For
n € Zxo, we define
T"(M)=MQ®g - @r M,

n times

with the convention that T°(M) = R. Let
TM)= & T"(M).

n€l>o

zZ

We have then a natural map
T (M) x T" (M) — T™ (M)
(z,y) —  TORY
(see Proposition 3.20). This extends to a map
®@r: T(M)xT(M) — T(M)
(x,y) — T QRY.

(a) Show that the R-module T'(M) together with the product ® is an R-algebra. It
is called the tensor algebra of M over R.

Second part. Let f : M — M’ be a morphism of R-modules. For each n € Zx, we
define

T(f)=f®r-- Qg f: T"(M) — T"(M").

n times
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Let T(f) = @& T"(f) be the morphism of R-modules T'(M) — T'(M").

n€ZLxq

(b) Show that T'(f) is a morphism of R-algebras.

(¢) Show that T : gMod — grAlg, M — T(M), f — T(f) is a functor. Here,
rAlg denotes the category of R-algebras (where morphisms are morphisms of R-
algebras).

(d) Let A be an R-algebra and let f : M — A be a morphism of R-modules. Show
that there exists a unique morphism of R-algebras f7 : T(M) — A such that the
restriction of f7 to T'(M) = M coincides with f.

(e) (optional) Let F : rAlg — grMod, A — A, f — f be the forgetful functor.
Show that the functor 7' is left adjoint to F (use (d)).

Third part (examples). We denote by R{Xi,...,X,} the ring of non-commutative
polynomials in the variables X1,..., X,,. If necessary, we denote by Tr(M) the R-algebra
T(M).

(f) Assume here that M is free with basis (e1,...,e,). Show that there is a unique
morphism of R-algebras R{Xy,...,X,,} — T(M) that sends X; to e;. Show that
it is an isomorphism.

(g) Show that T7/pz(Z/mZ) ~ (Z/mZ)[X] and T7(Z/mZ) ~ Z[X]/(mX), where X
is an indeterminate.

(h) Show that 77(Q) ~ {P € Q[X] | P(0) € Z}.

Fourth part (optional). Let I(M) be the two-sided ideal of T'(M) generated by the
elements of the form m ® g m' —m’ @g m, for m, m’ € M. Let S(M) =T(M)/I(M).
(i) Show that S(M) is a commutative R-algebra. It is called the symmetric algebra
of M.
(G) If f: M — M’ is a morphism of R-modules, show that T'(f)(I(M)) C I(M’).
Deduce from this that T'(f) induces a morphism of algebras S(f) : S(M) — S(M').
(k) Show that S : pMod — rAlg,., M +— S(M), f— S(f) is a functor. Here, pAlg,
denotes the category of commutative R-algebras.
(1) If n € Zxp, let I"(M) =I(M)NT"(M) and S™(M) =T"™(M)/I"(M). Show that
IM)= & I"(M) and that S(M)= & S"(M).

n€Zxo n€Zxo

(m) Show that I'(M) =0 and S'(M) = M.

(n) Let A be a commutative R-algebra and let f : M — A be a morphism of R-
modules. Show that there exists a unique morphism of R-algebras f° : T(M) — A
such that the restriction of ¥ to S'(M) = M coincides with f.

(o) Let F.: rAlg, — rRMod, A — A, f +— f be the forgetful functor. Show that the
functor S is left adjoint to F..

(p) Show that S(M &g M') ~ S(M) ®@r S(M').

(q) Assume here that M is free with basis (ej,...,e,). Show that there is a unique
morphism of R-algebras R[ X1, ..., X,] — S(M) that sends X; to e;. Show that it
is an isomorphism.
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HOMEWORK FOR WEDNESDAY, OCTOBER 18

Exercise 1 (Fitting’s Lemma). Let M be a Noetherian and Artinian left R-module
and let o : M — M be an endomorphism of M.
(a) Show that there exists ng € N such that Imo™ = Imo™*! and Kero™ =
Ker g™+,
(b) Show that Im ¢™ = Im ¢"*! and Ker 0" = Ker o™ *! for all n > no.
(c) Show that M = (Imo™) & (Kero™).

Exercise 2. Let R be a ring and let n be a natural number. We propose to prove in
several steps that J(Mat,(R)) = Mat,(J(R)) (by Mat,(J(R)), we mean the set of n x n
matrices with coefficients in J(R): it is not a unitary ring).

Let E;; € Mat,(R) denote the matrix whose entries are all zero except the (i, j)-entry
which is equal to 1. We denote by 1,, the identity matrix. Let I = Mat,(J(R)) and
J = J(Mat,(R)). For j € {1,2,...,n}, we set I; = @} J(R)E;;. We shall first prove
that I C J.

(a) Show that I is a two-sided ideal of Mat,(R).

(b) Show that I; is a left ideal of Mat,,(R) and that I = &7_, I;.

(c) Assume here, ond only in this question, that R is commutative, so that det :
Mat,(R) — R is well-defined. Show that det(1,, —a) € 1 + J(R) for any a € I.
Deduce that I C J in this case.

(d) Leta € I;. Writea =Y ;" | o; E;j, with o; € J(R). Since 1—q; is invertible, we can
define §; = a;(1 — oej)*l. Let b=—>"", B;E;;. Show that (1, —b)(1, —a) = 1,.

(e) Deduce from (b) and (d) that /; C J and I C J.

We shall now prove that J C I. Let a € J and write a = Z a;jF;;. We want to
1<ij<n
prove that «;; € J(R) for all (4, 7). So fix ¢ and j in {1,2,...,n}.
(f) Let b= EiiCLEjZ’. Show that b = OéijEii-
(g) Show that 1,, — rb is invertible for any r € R.
(h) Deduce that 1 — ray; is invertible for any r € R. Conclude.
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HOMEWORK FOR WEDNESDAY, OCTOBER 25

Exercise 1. Let G be a finite p-group and let R = [F,[G] be the group algebra of G over
[F,. The aim of this exercise is to prove that R is a local ring. We first recall the following
result from group theory: if X is a G-set (i.e. a set endowed with an action of G) and if
we denote by X¢ ={x €2 |V g€ G, ga =z}, then

(%) 1X| = X% mod p.
We now need some more notation. Let
o: R — E,
deG agg deG Qg
and
m = Kero.

(a) Show that o is a morphism of [F,-algebras.
(b) Show that m is a two-sided ideal and is a maximal left ideal of R.

Let S be a simple R-module. We also view S as a G-set (because G C R* acts on S5).
Let x € S, 2 #0.

(c) Show that S is a F,-vector space.

(d) Show that the map 7 : R — S, r — rz is a surjective morphism of R-modules
(and of F,-vector spaces). Deduce that S is finite dimensional.

(e) Show that S¢ is an R-submodule of S.

(f) Show that S& # 0 (use (x)). Deduce that S = S©.

(g) Show that m = Ker .

(h) Show that J(R) = m and that R is a local ring.

Exercise 2. Let R be a commutative integral domain. Let I and J be two non-zero ideals

of R such that the ideal I.J is principal. We shall prove that I (and J) are projective

modules. For this, let r € R be such that I.J = Rr and write r = > " | x;y; with z; € [

and y; € J. Let

e: I — (Rr)™
x — (Ty1,...,TYn)
and
P (Rr)" — I
(P, oo, mn) > >0 (rmg) /T

(a) Show that ¢ and i are well-defined morphisms of R-modules.
(b) Show that the image of ¢ is contained in (Rr)".

(¢) Show that ¢ o ¢ = Id;.

(d) Show that ¢ is injective and that (Rr)" = ¢(I) & Ker .

(e) Deduce that I is a projective R-module.
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HOMEWORK FOR WEDNESDAY, NOVEMBER 1ST

Exercise. Prove Theorem 8.16. Hint: identify V' with Col, (D) as a right D-module and
A with Mat,, (D) acting on V on the left; for (a) and (b), use the Homework for October
18 (Exercise 2); for (c¢), (d) and (e), you can use (if you want...) the Morita equivalence
between A and D (tensorizing with Col, (D) =V and Row,(D)); (f) is standard.
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HOMEWORK FOR WEDNESDAY, NOVEMBER 8

Exercise 1. Let K be a field and let n be a natural number. We denote by A the K-
subalgebra of Mat,,(K) consisting of upper triangular matrices. Let J denote the set of
nilpotent upper triangular matrices in Mat,, (K).

(a) Show that J = J(A).

(b) Show that A/J(A) ~ K x --- x K (n times) as K-algebras.

(c) Determine the number and the dimension of the simple A-modules.

(d) Let V be an A-module of finite type. Show that V is a finite dimensional K-vector
space, that V has finite length and that 1g(V') = dimg V.

Exercise 2. Let R be a semisimple ring. Show that every R-module is injective and
projective.

Exercise 3. Let K be a field and let P(X) € K[X] be a polynomial. Show that the
K-algebra K[X]/(P(X)) is semisimple if and only if P and P’ are relatively prime.

Exercise 4. Let G be a finite group. Show that G is abelian if and only if all simple
C[G]-modules have dimension 1.

Exercise 5. Let C be a cyclic group of order 6. Find the number and the dimension of
the simple Q[C]-modules.
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HOMEWORK FOR WEDNESDAY, NOVEMBER 15

Problem. Let n > 1 and let (,, be a primitive n-th root of unity in C, that is, a generator
of the cyclic group ., (C) = {z € C | z® = 1} (for instance, ¢, = €*™/"). Let ®,(X)
denote the n-th cyclotomic polynomial

(X)) = ] x-¢
1<j<<n
ged(n,j)=1

Let ¢(n) denote the degree of @, (X) (i.e. the Euler p-function).
(a) Compute ®@,, for 1 < n < 6.
(b) Show that X" —1 = [ [®a(X).
d|n
(c) Deduce by induction t‘hat ®,,(X) belongs to Z[X] and is monic.
(d) Let p be a prime number. Compute ®, and show that ®, is irreducible (Hint:
compute ®,(X + 1) and use Eisenstein’s criterion of Exercise II1.3).

The aim of the next questions is to show that ®,, is irreducible for all n. Write ®,,(X) =
P(X)Q(X) where P(X), Q(X) € Z[X] are monic and P is irreducible in Q[X]. Let ¢ be
a root of P and let p be any prime number not dividing n. We denote by f(X) € F,[X]
the reduction modulo p of f(X) € Z[X]. Since ¢? is a root of ®,,, we must have P(¢?) = 0

or Q) = 0.

(e) Assume that Q(¢?) = 0. Show that P(X) divides Q(XP).

(f) Show that Q(XP) = Q(X)P.

(g) Assume that Q(¢?) = 0 and let f € F,[X] be any irreducible factor of P.
(g1) Deduce from (e) and (f) that f also divides Q.
(g2) Deduce that f2 divides X™ — 1 and that f divides nX"~! (Hint: take the

derivative) so that f divides also X" ~!. Show that it is impossible.

(h) Deduce from (g) that P(¢?) = 0 for all prime number p which does not divide n.

Deduce that f = ®,,, and that &, is irreducible.

The fact that ®,, is irreducible shows that the field Q((,) is isomorphic to Q[X]/(®,,)
and that [Q((,) : Q] = ¢(n). Let O,, denote the ring of integers of Q((,). Then it is clear
that Z[(,] C O,. It can be proved that O, = Z[(,]. The aim of the next questions is to
prove this result whenever n is a prime number (note that the case n = 2 is trivial). So
let p be an odd prime number.
(i) Show that det(TrK/Q(C;C]];))O <ij <p—2 = :bpp72.

(j) Deduce that, if & € Op, then there exists r € Z > o such that p"a € Z[(,)].

(k) Show that, if 1 <i<p—1, then (1—¢})/(1—¢) € OF.

(1) Show that JJV7/ (1 — ¢}) = ®,(1) = p (Hint: use (d)).

(m) Let p = (1—(p)Z[(p) and q = (1—(,)Op. Deduce from (k) and (1) that pP~! = pZ|(,]
and P! = pO,,.

(n) Show that p is a prime ideal of Z[(,] and that Z[(,]/p ~ E,.

(0) Deduce from (m) that q is a prime ideal of O, and that O,/q ~ F, (use Theorem
10.12 (c)).

(p) Deduce from (m) and (n) that p = q N Z[(p).

— — — ~—
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((q) geduce that p’ = q' N Z[¢,) for all i > 1.
r) Deduce from (j) that O, = Z[(,].
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HOMEWORK FOR MONDAY, NOVEMBER 27

Problem: quotient of affine varieties by finite groups. Let K be a field, let A be
a finitely generated commutative K-algebra and let G be a finite group acting on A by
automorphisms of K-algebras. The aim of this problem is to study the algebra A®, where

A ={aec A|VoecG, ola)=a},

and to see some geometric consequences.
(a) Show that A% is a commutative K-algebra.

Part I. The aim of this part is to show that A% is a finitely generated K-algebra and that
A is a finitely generated AS-module. If a € A, we set

P.(X) = [[ (X = o(a)) € A[X].
ceqG
We fix some elements ay,..., a, € A such that A = Klai,...,a,]. Let & be the set
of coefficients of the polynomials P,,(X), 1 <i<n. Then £ is finite and let B be the
subalgebra of A generated by &: it is a finitely generated commutative K-algebra.
(a) Show that P, € AY[X].
(b) Deduce that B C A% and that A is integral over B. In particular, A is integral
over A% (see also Example 9.5 (3)).
(c) Show that A is a finitely generated B-module (show that monomials ai' ...al" for
0 <r; < |G| —1 form a set of generators of the B-module A).
(d) Deduce that AY is a finitely generated B-module (Hint: recall that, since B is
finitely generated, then B is Noetherian by Hilbert’s Basis Theorem).

(e) Deduce that A is a finitely generated K-algebra and that A is a finitely generated
A% module.

Part II. The aim of this part is to study the map 7 : Spec(A) — Spec(A%), p — pN AC.

(f) Show that 7 is surjective and that 7(p) is maximal if and only if p is maximal.

(g) Show that, if o € G and p € Spec(A), then o(p) € Spec(A4) and 7(o(p)) = 7(p).
Show also that p is maximal if and only if o(m) is maximal.

(h) Let m; and mg € Max(A) such that 7(m;) = m(mgz). Show that there exists
o € G such that mo = o(my) (Hint: Assume that mg # o(my) for all o € G, and
consider an element a € A such that a =0 mod my and @ =1 mod o(my) for all
o € G. Such an element exists by the Chinese Remainder Theorem: then consider
o )

(i*) (Optional) Let p; and p2 € Spec(A) such that 7(p;) = m(p2). Show that there
exists ¢ € G such that py = o(py) (Hint: let p = 7(p1) = 7(p2), let D = AY\ p

and consider the extension S71AY C S71A. Then apply (h)).

Part II1. We shall now apply the previous results to a geometric situation. From now
on, and until the end of this problem, we assume that K is algebraically closed.
Let V be an affine variety (over K) and let G be a finite group of automorphisms of V.
If f € K[V], let o(f) = foo ! (in other words, we denote by o the automorphism
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o* 1 = (671)* of A). Then G can also be viewed as a finite group of automorphisms of
K[V].
A pair (W, r), where W is an affine variety and 7 : V' — W is a morphism of varieties,
is called a geometric quotient of V' by G if the following two conditions are satisfied:
(Q1) 7 is surjective and, if w € W, 7~!(w) is a G-orbit.
(Q2) If ¢ : V — V' is a morphism of algebraic varieties which is constant on
the G-orbits, there exists a unique morphism of varieties ¢ : W — V'’
such that ¢ = pom.

(j) Let (W,m) and (W', 7") be two geometric quotients of V' by G. Show that there
exists a unique isomorphism of varieties ¢ : W — W' such that 7’ = p o 7.

We shall now show that there exists a geometric quotient of V' by G. By (e), there exists
fiyy fn € K[V]9 such that K[V]Y = K[f1,..., fa]. Let v be the unique morphism of
K-algebras K[X1,...,X,] — K[V]®, X; +— fi, let I denote its kernel and let W = Z(I).

(k) Show that K[Xy,...,X,]/I is an integral domain which is isomorphic to K[V]%.
(1) Deduce that I = Z(W) (Hint: use Hilbert’s Nullstellensatz).
(m) Show that v induces an injective morphism of algebras 4 : K[W] — K[V]. Let
w:V — W be the morphism of varieties such that 7* = 7.
(n) Show that (W, ) is a quotient of V' by G (hint: use (h) and Proposition 11.34).
(0) Recall that 7* is injective (see (m)). Show also that 7 is a finite morphism. Deduce
that dimV = dim W.



