On a Theorem of Shintani

Cédric Bonnafé*

Department of Mathematics, The University of Chicago, Chicago, Illinois 60637

Communicated by Michel Broué

Received June 13, 1998

Let χ be an irreducible character of $G_d = \mathbf{GL}_n(\mathbb{F}_q^d)$ invariant under the automorphism ϕ of G_d induced by the field automorphism $\mathbb{F}_{q^d} \to \mathbb{F}_{q^d}$, $x \mapsto x^q$, and let e be a divisor of d. By a theorem of Shintani, there exists an extension $\tilde{\chi}_e$ of χ to $G_d \rtimes \langle \phi^e \rangle$ whose Shintani descent to G_e is, up to a sign ε , an irreducible character of G_e . It is shown in this paper that $\tilde{\chi}_e$ may always be chosen such that $\varepsilon = 1$. With this particular choice, $\tilde{\chi}_e$ is the restriction of $\tilde{\chi}_1$. Our methods rely on the work of Digne and Michel on Deligne–Lusztig theory for nonconnected reductive groups. (© 1999 Academic Press

Let $\mathbf{G}^{\circ} = \mathbf{GL}_n(\mathbb{F})^d$, where \mathbb{F} is an algebraic closure of a finite field and where *n* and *d* are natural numbers. The symmetric group \mathfrak{S}_d acts on \mathbf{G}° by permutations of the components of \mathbf{G}° . We denote by \mathbf{G} the semidirect product $\mathbf{G} = \mathbf{G}^{\circ} \rtimes \mathfrak{S}_d$. It is a nonconnected reductive group, with neutral component \mathbf{G}° . We denote by $F_0: \mathbf{G} \to \mathbf{G}$ the natural split Frobenius endomorphism on \mathbf{G} (acting trivially on \mathfrak{S}_d), and we choose an element $\sigma \in \mathfrak{S}_d$. Let $F: \mathbf{G} \to \mathbf{G}$ denote the Frobenius endomorphism defined by $F(g) = {}^{\sigma}F_0(g)$.

In this paper we discuss the irreducible characters of \mathbf{G}^{F} (the unipotent characters of \mathbf{G}^{F} were described in [B]). We first prove that there exists a Jordan decomposition of characters (this result is well-known for \mathbf{G}°); moreover, this decomposition commutes with Lusztig generalized induction (cf. (3.2.1)). We also prove that all the irreducible characters of \mathbf{G}^{F} are linear combinations of generalized Deligne–Lusztig characters (this gener-

^{*} Current address: Université de Franche-Comté, Département de Mathématiques, 16 Route de Gray, 25 030 Besançon, France.

alizes the well-known result of G. Lusztig and B. Srinivasan [LS, Theorem 3.2)] about irreducible characters of the general linear group over a finite field).

As an application of these results, we obtain new results about Shintani descent in the case of the general linear group. In [S], Shintani proved that any irreducible characters of the finite group $G_d = \mathbf{GL}_n(\mathbb{F}_{q^d})$ stable under the automorphism ϕ induced by the field automorphism $\mathbb{F}_{q^d} \to \mathbb{F}_{q^d}, x \mapsto x^q$ can be extended to $G_d \langle \phi \rangle$ in such a way that its Shintani descent is, up to sign, an irreducible character of $G_1 = \mathbf{GL}_n(\mathbb{F}_q)$. In Theorem 4.3.1 we prove that this sign can always be chosen to be equal to 1 and get precise formulas for the corresponding extension. As a consequence, we obtain that the Shintani descent of this particular extension to G_e is an irreducible character of G_e (where *e* divides *d*).

0. NOTATION

0.1. General Notation

Let \mathbb{F} be an algebraic closure of a finite field. We denote by p its characteristic. We also fix a power q of p, and we denote by \mathbb{F}_q the subfield of \mathbb{F} with q elements. All algebraic varieties and all algebraic groups will be considered over \mathbb{F} . If **H** is an algebraic group (over \mathbb{F}), we will denote by \mathbf{H}° its connected component containing 1. If **H** is endowed with an \mathbb{F}_q -structure, we also define

$$\varepsilon_{\mathbf{H}^{\circ}} = (-1)^{\mathbb{F}_q \operatorname{-rank}(\mathbf{H}^{\circ})}$$

Let ℓ be a prime number different from p. We denote by $\overline{\mathbb{Q}}_{\ell}$ an algebraic closure of the ℓ -adic field \mathbb{Q}_{ℓ} . If G is a finite group, all representations and all characters of G will be considered over $\overline{\mathbb{Q}}_{\ell}$. For instance, a G-module is a $\overline{\mathbb{Q}}_{\ell}G$ -module of finite dimension. We will denote by Irr G the set of irreducible characters of G.

If *n* is a positive integer, we denote by \mathbf{GL}_n the group of invertible matrices with coefficients in \mathbb{F} , and if $g \in \mathbf{GL}_n$, we will denote by $g^{(q)}$ the matrix obtained from *g* by raising all coefficients to the *q*th power. We will denote by \mathbf{T}_n the split maximal torus of \mathbf{GL}_n consisting of diagonal matrices and by \mathbf{B}_n the rational Borel subgroup of \mathbf{GL}_n consisting of upper triangular matrices.

0.2. The Problem

Let r be a positive integer and let d_1, \ldots, d_r and n_1, \ldots, n_r also be positive integers. Throughout this paper \mathbf{G}° will denote the following

connected reductive group:

$$\mathbf{G}^{\circ} = \prod_{i=1}^{r} \underbrace{\left(\mathbf{GL}_{n_i} \times \cdots \times \mathbf{GL}_{n_i}\right)}_{d_i \text{ times}}.$$

We endow \mathbf{G}° with the split Frobenius endomorphism

$$F_{0}: \quad \begin{array}{c} \mathbf{G}^{\circ} \rightarrow \mathbf{G}^{\circ} \\ \left(g_{i1}, \dots, g_{id_{i}}\right)_{1 \leq i \leq r} \mapsto \left(g_{i1}^{(q)}, \dots, g_{id_{i}}^{(q)}\right)_{1 \leq i \leq r} \end{array}$$

We will denote by T_0° and B_0° the maximal torus and the Borel subgroup of $G^\circ,$ defined, respectively, by

$$\mathbf{T}_{\mathbf{0}}^{\circ} = \prod_{i=1}^{r} \underbrace{\left(\mathbf{T}_{n_{i}} \times \cdots \times \mathbf{T}_{n_{i}}\right)}_{d_{i} \text{ times}}$$

and

$$\mathbf{B}_{\mathbf{0}}^{\circ} = \prod_{i=1}^{r} \underbrace{\left(\mathbf{B}_{n_{i}} \times \cdots \times \mathbf{B}_{n_{i}}\right)}_{d_{i} \text{ times}}.$$

The group $\mathfrak{S} = \mathfrak{S}_{d_1} \times \cdots \times \mathfrak{S}_{d_r}$ acts on \mathbf{G}° in the natural way. More explicitly, if $\sigma = (\sigma_1, \dots, \sigma_r) \in \mathfrak{S}$ and if $(g_{i1}, \dots, g_{id_i})_{1 \le i \le r} \in \mathbf{G}^\circ$, we put

$${}^{\sigma}(g_{i1},\ldots,g_{id_i})_{1 \le i \le r} = (g_{i\sigma_i^{-1}(1)},\ldots,g_{i\sigma_i^{-1}(d_i)})_{1 \le i \le r}$$

The elements of \mathfrak{S} induce automorphisms of \mathbf{G}° , which stabilize \mathbf{T}_{0}° and \mathbf{B}_{0}° , so they are quasi-semisimple (cf. [DM2, Definition 1.1(i)]). In fact, they are all quasi-central (cf. [DM2, Definition-Theorem 1.15] and [B, Lemma 7.1.1]).

We extend the Frobenius endomorphism F_0 to $\mathbf{G}^{\circ} \rtimes \mathfrak{S}$ by letting F_0 act trivially on \mathfrak{S} . We fix once and for all an element $\sigma \in \mathfrak{S}$, and we denote by F the Frobenius endomorphism on $\mathbf{G}^{\circ} \rtimes \mathfrak{S}$ given by

$$F(g) = \sigma F_0(g) \sigma^{-1} = {}^{\sigma} F_0(g)$$

for all $g \in \mathbf{G}^{\circ} \rtimes \mathfrak{S}$.

We will denote by **G** an *F*-stable subgroup of $\mathbf{G}^{\circ} \rtimes \mathfrak{S}$ containing \mathbf{G}° . Hence **G** is a reductive group with neutral component \mathbf{G}° . Moreover, there exists an *F*-stable (that is, a σ -stable) subgroup *A* of \mathfrak{S} such that

$$\mathbf{G} = \mathbf{G}^{\circ} \rtimes A.$$

Thus we have $\mathbf{G}^F = \mathbf{G}^{\circ F} \rtimes A^F = \mathbf{G}^{\circ F} \rtimes A^{\sigma}$.

Problem. Parametrize the irreducible characters of \mathbf{G}^{F} .

For this purpose we can make the following hypothesis without loss of generality:

HYPOTHESIS. The Frobenius endomorphism F acts trivially on $\mathbf{G}/\mathbf{G}^{\circ}$, that is, A is contained in the centralizer of σ in \mathfrak{S} . Consequently,

$$\mathbf{G}^F = \mathbf{G}^{\circ F} \rtimes A.$$

Remark 0. Let $N = d_1n_1 + \cdots + d_rn_r$. Then \mathbf{G}° is isomorphic to a rational Levi subgroup \mathbf{H}° of a parabolic subgroup of \mathbf{GL}_N (endowed with the split Frobenius endomorphism $g \mapsto g^{(q)}$), and \mathbf{G} is isomorphic to a rational subgroup \mathbf{H} of the normalizer of \mathbf{H}° in \mathbf{GL}_N , containing \mathbf{H}° and such that all elements of $\mathbf{H}/\mathbf{H}^\circ$ are rational. Conversely, if \mathbf{H} is such a rational subgroup of \mathbf{GL}_N , then there exist positive integers r, $d_1, \ldots, d_r, n_1, \ldots, n_r$; an element σ of $\mathfrak{S}_{d_1} \times \cdots \times \mathfrak{S}_{d_r}$; and a subgroup A of \mathfrak{S}^σ such that \mathbf{H} is isomorphic to the group \mathbf{G} constructed as above. In particular, if \mathbf{L} is an F-stable Levi subgroup of a parabolic subgroup of \mathbf{G} (cf. [B, Definitions 6.1.1 and 6.1.2] for the definitions of parabolic subgroups, then all of the results proved for \mathbf{G} hold in \mathbf{L} .

1. JORDAN DECOMPOSITION OF CHARACTERS OF \mathbf{G}^{F}

1.1. Dual of G

Let $(\mathbf{G}^{\circ*}, \mathbf{T}_0^{\circ*}, F^*)$ be a dual triple of $(\mathbf{G}^{\circ}, \mathbf{T}_0^{\circ}, F)$. The elements α of \mathfrak{S} induce automorphisms α^* of $\mathbf{G}^{\circ*}$. The group \mathfrak{S}^* of automorphisms of $\mathbf{G}^{\circ*}$ induced by \mathfrak{S} is isomorphic to the opposite group of \mathfrak{S} . We extend the action of F^* to $\mathbf{G}^{\circ*} \rtimes \mathfrak{S}^*$ so that it acts on \mathfrak{S}^* by conjugation by σ^{*-1} . We denote by \mathbf{G}^* the semidirect product $\mathbf{G}^{\circ*} \rtimes A^*$, where A^* is the image of A under the preceding anti-isomorphism. In particular, $\mathbf{G}^{*\circ} = \mathbf{G}^{\circ*}!$

1.2. Lusztig Series of \mathbf{G}^{F}

Let *s* be a semisimple element of $\mathbf{G}^{* \circ F^*}$. We denote by (*s*) (or $(s)_{\mathbf{G}^{*F^*}}$ if confusion is possible) the \mathbf{G}^{*F^*} -conjugacy class of *s* and by $(s)^{\circ}$ (or $(s)_{\mathbf{G}^{*\circ F^*}}^{\circ}$) the $\mathbf{G}^{*\circ F^*}$ -conjugacy class of *s*.

DEFINITION 1.2.1. The *Lusztig series* $\mathscr{C}(\mathbf{G}^F, (s))$ of \mathbf{G}^F associated with s (or (s)) is the set of irreducible characters of \mathbf{G}^F occurring in some $\mathrm{Ind}_{\mathbf{G}^\circ F}^{\mathbf{G}^\circ}\gamma^\circ$, where γ° is an element of a usual Lusztig series $\mathscr{C}(\mathbf{G}^{\circ F}, (s')^\circ)$ with $s' \in (s)$.

The characters of the Lusztig series $\mathscr{C}(\mathbf{G}^F, 1)$ are called *unipotent*; this definition agrees with definitions given in [DM2, Section 5] or [B, Definition 6.4.1] (cf. [B, Lemma 6.4.2]).

The following lemma follows immediately from the definitions:

LEMMA 1.2.2. Let *s* be a semisimple element of $\mathbf{G}^{* \circ F^*}$, γ° be an element of $\mathscr{E}(\mathbf{G}^{\circ F}, (s)^{\circ})$, and $\alpha \in A$. Then ${}^{\alpha}\gamma^{\circ} \in \mathscr{E}(\mathbf{G}^{\circ F}, ({}^{\alpha^{*-1}}s)^{\circ})$.

COROLLARY 1.2.3.

Irr
$$\mathbf{G}^F = \bigcup_{(s)} \mathscr{E}(\mathbf{G}^F, (s)),$$

where (s) runs over the set of \mathbf{G}^{*F^*} -classes of semisimple elements of $\mathbf{G}^{*\circ F^*}$. Moreover, this union is disjoint.

Proof. The equality follows easily from the corresponding fact for $\mathbf{G}^{\circ F}$. Let us prove now that the union is disjoint. Let *s* and *t* be two semisimple elements of $\mathbf{G}^{*\circ F^*}$ and let γ be an irreducible character of \mathbf{G}^F belonging to both $\mathscr{E}(\mathbf{G}^F, (s))$ and $\mathscr{E}(\mathbf{G}^F, (t))$. Then by definition there exist irreducible characters γ_1° and γ_2° of $\mathbf{G}^{\circ F}$ occurring in the restriction of γ to $\mathbf{G}^{\circ F}$ such that $\gamma_1^{\circ} \in \mathscr{E}(\mathbf{G}^{\circ F}, (s')^{\circ})$ and $\gamma_2^{\circ} \in \mathscr{E}(\mathbf{G}^{\circ F}, (t')^{\circ})$, where $s' \in (s)$ and $t' \in (t)$.

But by Clifford theory there exists $\alpha \in A$ such that $\gamma_2^\circ = {}^{\alpha}\gamma_1^\circ$. It follows from Lemma 1.2.2 and from the fact that Corollary 1.2.3 holds in **G**° that $t' \in ({}^{\alpha}{}^{*-1}s')^\circ$, so $t \in (s)$.

COROLLARY 1.2.4. Let *s* be a semisimple element in $\mathbf{G}^{* \circ F^*}$, and let $\gamma \in \mathscr{E}(\mathbf{G}^F, (s))$.

(a) Let γ° be an irreducible component of the restriction of γ to $\mathbf{G}^{\circ F}$, and let t be a semisimple element of $\mathbf{G}^{* \circ F^*}$ such that $\gamma^{\circ} \in \mathscr{E}(\mathbf{G}^{\circ F}, (t)^{\circ})$. Then $t \in (s)$.

(b) There exists an irreducible component of the restriction of γ to $\mathbf{G}^{\circ F}$ belonging to $\mathscr{E}(\mathbf{G}^{\circ F}, (s)^{\circ})$.

Proof. (a) is a reformulation of Corollary 1.2.3, and (b) is an easy consequence of (a) and of Lemma 1.2.2. \blacksquare

1.3. Nice Elements

Let *s* be a semisimple element of $\mathbf{G}^{* \circ F^*}$. The centralizer of *s* in $\mathbf{G}^{* \circ}$ is connected and is a Levi subgroup of a parabolic subgroup of $\mathbf{G}^{* \circ}$. The image of $C_{G^*}(s)$ by the morphism

$$C_{\mathbf{G}^*}(s) \to \mathbf{G}^* \to A^*$$

is denoted by $A^*(s)$. Then the $\mathbf{G}^{*\circ}$ -conjugacy class of s is stable under $A^*(s)$. If we denote by $\mathbf{G}^{*\circ A^*(s)}$ the group of fixed points of $A^*(s)$ on $\mathbf{G}^{*\circ}$, then the $\mathbf{G}^{*\circ}$ -conjugacy class of s in $\mathbf{G}^{*\circ}$ meets $\mathbf{G}^{*\circ A^*(s)}$ in a single $\mathbf{G}^{*\circ A^*(s)}$ -conjugacy class because $A^*(s)$ acts by permutations on the components of $\mathbf{G}^{*\circ}$. This conjugacy class is F^* -stable and $\mathbf{G}^{*\circ A^*(s)}$ is connected, so there exists an F^* -stable element t in the $\mathbf{G}^{*\circ}$ -conjugacy class of s centralized by $A^*(s)$. Moreover, $C_{\mathbf{G}^{*\circ}}(s)$ is connected, so $t \in (s)^\circ$. It also implies that $A^*(t)$ contains $A^*(s)$. Because they are conjugate under A^* , they are equal.

DEFINITION 1.3.1. The element s is said to be *nice* (or \mathbf{G}^* -*nice*) if $A^*(s)$ centralizes s.

The preceding discussion shows that there exists a nice element in every semisimple $\mathbf{G}^{* \circ F^*}$ -conjugacy class. If *s* is a nice element of $\mathbf{G}^{* \circ F^*}$ and if $\alpha^* \in A^*$ is such that $\alpha^*(s)^\circ = (s)^\circ$, then $\alpha^* \in A^*(s)$.

1.4. The Group $\mathbf{G}(s)$

Until the end of this section, we fix a nice semisimple element *s* in $\mathbf{G}^{*\circ F^*}$. Let A(s) be the subgroup of *A* corresponding to $A^*(s)$. The group $C_{\mathbf{G}^{*\circ}}(s) = C_{\mathbf{G}^*}(s)^\circ$ if an F^* -stable Levi subgroup of a parabolic subgroup of $\mathbf{G}^*\circ$. Let $\mathbf{G}^\circ(s)$ be an *F*-stable Levi subgroup of a parabolic subgroup of \mathbf{G}° dual to $C_{\mathbf{G}^{*\circ}}(s)$; we can assume that A(s) normalizes $\mathbf{G}^\circ(s)$. We define $\mathbf{G}(s)$ to be the semidirect product

$$\mathbf{G}(s) = \mathbf{G}^{\circ}(s) \rtimes A(s). \tag{1.4.1}$$

Because A(s) acts on \mathbf{G}° by permutations of the components, there exists a parabolic subgroup of \mathbf{G}° that has $\mathbf{G}^{\circ}(s)$ as a Levi subgroup and is stable under A(s). Hence, $\mathbf{G}(s)$ is a Levi subgroup of a parabolic subgroup of \mathbf{G} . Moreover, $\mathbf{G}(s)^{\circ} = \mathbf{G}^{\circ}(s)$.

With the semisimple element *s* is associated a linear character \hat{s}° of $\mathbf{G}^{\circ}(s)^{F}$ (cf. [DM1, Proposition 13.30]). Since *s* is centralized by $A^{*}(s)$, the character \hat{s}° is invariant by A(s), so it extends to a character \hat{s} of $\mathbf{G}(s)^{F}$, where $\hat{s}(\alpha) = 1$ for $\alpha \in A(s)$.

1.5. A Lemma

Let $\gamma^{\circ}(s)$ be a unipotent character of $\mathbf{G}^{\circ}(s)^{F}$. By [B, Theorem 7.3.2 and Definition 7.3.3], there exists a canonical extension $\tilde{\gamma}(s)$ of $\gamma^{\circ}(s)$ to $\mathbf{G}^{\circ}(s)^{F} \rtimes A(s, \gamma^{\circ}(s))$, where $A(s, \gamma^{\circ}(s))$ is the stabilizer of $\gamma^{\circ}(s)$ in A(s).

LEMMA 1.5.1. $\varepsilon_{\mathbf{G}^{\circ}(s)}\varepsilon_{\mathbf{G}^{\circ}}R_{\mathbf{G}^{\circ}(s)}^{\mathbf{G}^{\circ}} \rtimes_{A(s, \gamma^{\circ}(s))}(\tilde{\gamma}(s) \otimes \hat{s})$ is an irreducible character of the group $\mathbf{G}^{\circ F} \rtimes A(s, \gamma^{\circ}(s))$. Its restriction to $\mathbf{G}^{\circ F}$ is the irreducible character $\varepsilon_{\mathbf{G}^{\circ}(s)}\varepsilon_{\mathbf{G}^{\circ}}R_{\mathbf{G}^{\circ}(s)}^{\mathbf{G}^{\circ}}(\gamma^{\circ}(s) \otimes \hat{s}^{\circ})$ which belongs to $\mathscr{E}(\mathbf{G}^{\circ F}, (s)^{\circ})$.

Remark. By [B, Theorem 7.3.2], the unipotent character $\tilde{\gamma}(s)$ of $\mathbf{G}^{\circ}(s)^{F} \rtimes A(s, \gamma^{\circ}(s))$ is a uniform function, that is, a linear combination of generalized Deligne-Lusztig characters. Hence the class function $\varepsilon_{\mathbf{G}^{\circ}(s)} \varepsilon_{\mathbf{G}^{\circ}} R_{\mathbf{G}^{\circ}(s)}^{G^{\circ} \rtimes A(s, \gamma^{\circ}(s))}(\tilde{\gamma}(s) \otimes \hat{s})$ is independent of the choice of a parabolic subgroup of **G** having $\mathbf{G}^{\circ}(s) \rtimes A(s, \gamma^{\circ}(s))$ as Levi subgroup. That is why the Lusztig functor is denoted without reference to the parabolic subgroup (the notion of a Lusztig functor for disconnected reductive groups has been defined in [DM2], and slightly generalized for the purpose of this article in [B]).

Proof of Lemma 1.5.1. To simplify notation, we can assume that $A = A(s, \gamma^{\circ}(s))$. Let

$$\tilde{\gamma} = \varepsilon_{\mathbf{G}^{\circ}(s)} \varepsilon_{\mathbf{G}^{\circ}} R^{\mathbf{G}}_{\mathbf{G}(s)} (\tilde{\gamma}(s) \otimes \hat{s})$$

and

$$\gamma^{\circ} = \varepsilon_{\mathbf{G}^{\circ}(s)} \varepsilon_{\mathbf{G}^{\circ}} R^{\mathbf{G}^{\circ}}_{\mathbf{G}^{\circ}(s)} (\gamma^{\circ}(s) \otimes \hat{s}^{\circ}).$$

It follows from [DM2, Corollary 2.4] that the restriction of $\tilde{\gamma}$ to $\mathbf{G}^{\circ F}$ is equal to γ° . Moreover, by [LS, Theorem 3.2], γ° is irreducible and lies in $\mathscr{E}(\mathbf{G}^{\circ F}, (s)^{\circ})$. So we need only prove that $\tilde{\gamma}$ is a character of \mathbf{G}^{F} . Let $\mathbf{P}(s)$ be a parabolic subgroup of $\mathbf{G}(s)$ that has $\mathbf{G}(s)$ as Levi subgroup,

Let $\mathbf{P}(s)$ be a parabolic subgroup of $\mathbf{G}(s)$ that has $\mathbf{G}(s)$ as Levi subgroup, and let **U** be its unipotent radical. We define

$$\mathbf{Y}_{\mathbf{U}} = \left\{ g \in \mathbf{G} | g^{-1} F(g) \in \mathbf{U} \right\}$$

and

$$\mathbf{Y}^{\circ}_{\mathbf{U}} = \{ g \in \mathbf{G}^{\circ} | g^{-1} F(g) \in \mathbf{U} \}.$$

Let $H_c^i(\mathbf{Y}_{\mathbf{U}})$ be the *i*th cohomology group with compact support with coefficients in the constant sheaf \mathbb{Q}_{ℓ} (where $i \in \mathbb{N}$). The group \mathbf{G}^F (respectively, $\mathbf{G}(s)^F$) acts on $\mathbf{Y}_{\mathbf{U}}$ by left (respectively, right) translation. Hence $H_c^i(\mathbf{Y}_{\mathbf{U}})$ inherits the structure of a \mathbf{G}^F -module- $\mathbf{G}(s)^F$. Let V be an irreducible $\mathbf{G}(s)^F$ -module affording $\tilde{\gamma}(s)$ as character. Then the virtual \mathbf{G}^F -module

$$\sum_{i\in\mathbb{N}} (-1)^i H^i_c(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathcal{F}}\mathbf{G}(s)^F} V$$

affords $\tilde{\gamma}$ as (virtual) character. We have similar results for $\mathbf{G}^{\circ F}$. We denote by V° the restriction of V to $\mathbf{G}^{\circ F}$.

By [DM1, Theorem 13.25(i)] there exists j in \mathbb{N} such that

$$H^i_c(\mathbf{Y}^\circ_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathcal{L}}\mathbf{G}^\circ(s)^F} V^\circ = \mathbf{0}$$

if $i \neq j$ and such that

 $H^j_c(\mathbf{Y}^\circ_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathscr{C}}\mathbf{G}^\circ(s)^F} V^\circ$

is irreducible (in [DM1], the statement and the proof of Theorem 13.25 are not entirely correct; a precise value for *j* is given, and it is not clear that this value is correct. However, the existence of *j* satisfying the above conditions has been established in a revised version of their book). Moreover, $(-1)^j = \varepsilon_{\mathbf{G}^\circ(5)} \varepsilon_{\mathbf{G}^\circ}$. But by [DM2, Proof of Proposition 2.3] we have

$$H^i_c(\mathbf{Y}_{\mathbf{U}}) = \overline{\mathbb{Q}}_{\mathscr{I}} \mathbf{G}^F \otimes_{\overline{\mathbb{Q}}_{\mathscr{I}} \mathbf{G}^{\circ F}} H^i_c(\mathbf{Y}^{\circ}_{\mathbf{U}})$$

as a \mathbf{G}^{F} -module. Hence we have

$$H^i_c(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathbf{Z}}\mathbf{G}^\circ(s)^F} V^\circ = \mathbf{0}$$

for all $i \neq j$. But

$$\begin{aligned} H_{c}^{i}(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}^{\circ}(s)^{F}} V^{\circ} &= \left(H_{c}^{i}(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}(s)^{F}} \overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}(s)^{F} \right) \otimes_{\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}^{\circ}(s)^{F}} V^{\circ} \\ &= H_{c}^{i}(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}(s)^{F}} \left(\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}(s)^{F} \otimes_{\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}^{\circ}(s)^{F}} V^{\circ} \right) \\ &= H_{c}^{i}(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathcal{A}}\mathbf{G}(s)^{F}} \operatorname{Ind}_{\mathbf{G}^{\circ}(s)^{F}}^{\mathbf{G}(s)^{F}} V^{\circ}. \end{aligned}$$

Since V is a direct summand of the $\mathbf{G}(s)^F$ -module $\mathrm{Ind}_{\mathbf{G}^\circ(s)^F}^{\mathbf{G}(s)^F}V^\circ$, it follows that

$$H_c^i(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathscr{L}}\mathbf{G}(s)^F} V = \mathbf{0}$$

if $i \neq j$ and that $\tilde{\gamma}$ is the character of the module

$$H^j_c(\mathbf{Y}_{\mathbf{U}}) \otimes_{\overline{\mathbb{Q}}_{\mathbf{Z}}\mathbf{G}(s)^F} V.$$

1.6. Clifford Theory

Let $\gamma^{\circ} \in \mathscr{E}(\mathbf{G}^{\circ F}, (s)^{\circ})$. By [LS, Theorem 3.2] there exists a unique unipotent character $\gamma^{\circ}(s)$ of $\mathbf{G}^{\circ}(s)^{F}$ such that

$$\gamma^{\circ} = \varepsilon_{\mathbf{G}^{\circ}(s)} \varepsilon_{\mathbf{G}^{\circ}} R_{\mathbf{G}^{\circ}(s)}^{\mathbf{G}^{\circ}} (\gamma^{\circ}(s) \otimes \hat{s}^{\circ}).$$
(1.6.1)

Let $A(\gamma^{\circ})$ be the stabilizer of γ° in A. Its dual $A^{*}(\gamma^{\circ})$ stabilizes the $\mathbf{G}^{*\circ F^{*}}$ -conjugacy class of s and hence is contained in $A^{*}(s)$. By duality $A(\gamma^{\circ})$ is contained in A(s). The uniqueness of $\gamma^{\circ}(s)$ implies that $A(\gamma^{\circ})$ is the stabilizer $A(s, \gamma^{\circ}(s))$ of $\gamma^{\circ}(s)$ in A(s).

We denote by $\tilde{\gamma}(s)$ the canonical extension of $\gamma^{\circ}(s)$ to $\mathbf{G}^{\circ}(s)^F \rtimes A(\gamma^{\circ})$ (as defined in [B, Definition 7.3.3]). We put

$$\tilde{\gamma} = \varepsilon_{\mathbf{G}^{\circ}(s)} \varepsilon_{\mathbf{G}^{\circ}} R_{\mathbf{G}^{\circ}(s) \rtimes A(\gamma^{\circ})}^{\mathbf{G}^{\circ} \rtimes A(\gamma^{\circ})} (\tilde{\gamma}(s) \otimes \hat{s}).$$
(1.6.2)

Then, by Lemma 1.5.1, $\tilde{\gamma}$ is an irreducible character of $\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})$ extending γ° .

DEFINITION 1.6.3. The irreducible character $\tilde{\gamma}$ of $\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})$ will be called the *canonical* extension of γ° .

If ξ is an irreducible character of $A(\gamma^{\circ})$, then by Clifford theory $\tilde{\gamma} \otimes \xi$ is an irreducible character of $\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})$, and $\mathrm{Ind}_{\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})}^{\mathbf{G}^{\circ F}}$ ($\tilde{\gamma} \otimes \xi$) is an irreducible character of \mathbf{G}^{F} (where ξ is lifted to $\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})$ in the natural way). Moreover,

$$\operatorname{Ind}_{\mathbf{G}^{\circ F}}^{\mathbf{G}^{F}}\gamma^{\circ} = \sum_{\xi \in \operatorname{Irr} A(\gamma^{\circ})} \xi(1) \operatorname{Ind}_{\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})}^{\mathbf{G}^{F}}(\tilde{\gamma} \otimes \xi).$$
(1.6.4)

1.7. Jordan Decomposition

Let γ be an irreducible character in $\mathscr{C}(\mathbf{G}^F, (s))$. By Corollary 1.2.4 there exists an irreducible character $\gamma^{\circ} \in \mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$ occurring in the restriction of γ to $\mathbf{G}^{\circ F}$. Let $\tilde{\gamma}$ be the canonical extension of γ° to $\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})$ defined in Definition 1.6.3. Then by Clifford theory there exists a unique irreducible character ξ of $A(\gamma^{\circ})$ such that

$$\gamma = \operatorname{Ind}_{\mathbf{G}^{\circ F} \rtimes A(\gamma^{\circ})}^{\mathbf{G}^{r}} (\, \widetilde{\gamma} \otimes \, \xi \,).$$

Let $\gamma^{\circ}(s)$ be the unipotent character of $\mathbf{G}^{\circ}(s)^{F}$ satisfying (1.6.1), and let $\tilde{\gamma}(s)$ be its canonical extension to $\mathbf{G}^{\circ}(s)^{F} \rtimes A(\gamma^{\circ})$ (recall that $A(\gamma^{\circ})$ is the stabilizer of $\gamma^{\circ}(s)$ in A(s)). Then

$$\gamma(s) = \operatorname{Ind}_{\mathbf{G}^{\circ}(s)^{F} \rtimes A(\gamma^{\circ})}^{\mathbf{G}(s)} (\tilde{\gamma}(s) \otimes \xi)$$

is an irreducible character of $\mathbf{G}(s)^F$ and is unipotent by definition. It follows from [B, Propositions 6.3.2 and 6.3.3] that

$$\gamma = \varepsilon_{\mathbf{G}^{\circ}(s)} \varepsilon_{\mathbf{G}^{\circ}} R^{\mathbf{G}}_{\mathbf{G}(s)}(\gamma(s) \otimes \hat{s}).$$
(1.7.1)

Remark. The remark following Lemma 1.5.1 shows that the Lusztig functor $R_{\mathbf{G}(s)}^{\mathbf{G}}$ does not depend on the choice of a parabolic subgroup of **G** that has $\mathbf{G}(s)$ as Levi subgroup.

THEOREM 1.7.2 (Jordan Decomposition). With the above notation the map

$$\nabla_{\mathbf{G},s} \colon \mathscr{E}(\mathbf{G}^{F},(s)) \to \mathscr{E}(\mathbf{G}(s)^{F},1)$$
$$\gamma \mapsto \gamma(s)$$

is well-defined and bijective. The inverse map is given by Formula (1.7.1).

Proof. First we have to prove that $\nabla_{\mathbf{G},s}$ is well defined. There is one ambiguity in the construction of $\gamma(s)$: in the first step, we chose an irreducible character $\gamma^{\circ} \in \mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$ occurring in the restriction of γ to $\mathbf{G}^{\circ F}$. If δ° is another element of the Lusztig series $\mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$ occurring in the restriction of γ to $\mathbf{G}^{\circ F}$, then there exists $\alpha \in A$ such that $\delta^{\circ} = {}^{\alpha}\gamma^{\circ}$. But both lie in $\mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$, so we have $\alpha \in A(s)$. If we construct $\delta^{\circ}(s)$, $\tilde{\delta}(s)$, and $\delta(s)$ in the same way as $\gamma^{\circ}(s)$, $\tilde{\gamma}(s)$, and $\gamma(s)$, respectively, then $\delta^{\circ}(s) = {}^{\alpha}\gamma^{\circ}(s)$ (by uniqueness), so $\tilde{\delta}(s) = {}^{\alpha}\tilde{\gamma}(s)$, and so $\delta(s) = {}^{\alpha}\delta(s) = \delta(s)$ because $\alpha \in A(s)$. Thus $\nabla_{\mathbf{G},s}$ is well defined.

 $\nabla_{\mathbf{G},s}$ is injective by Formula (1.7.1) and surjective by Lemma 1.5.1, which proves that Formula (1.7.1) always defines an element of $\mathscr{C}(\mathbf{G}^{F},(s))$.

2. UNIFORM FUNCTIONS

In [B, Formula 7.3.1 and Theorem 7.3.2] the unipotent characters of \mathbf{G}^{F} are described as linear combinations of generalized Deligne–Lusztig characters. It is possible using Formula (1.7.1) to describe all of the irreducible characters of \mathbf{G}^{F} as linear combinations of generalized Deligne–Lusztig characters.

2.1. Notation

Let *s* be a nice semisimple element of $\mathbf{G}^{* \circ F^*}$.

We fix an *F*-stable and A(s)-stable Borel subgroup $\mathbf{B}_{1}^{\circ}(s)$ of $\mathbf{G}^{\circ}(s)$ and an *F*-stable and A(s)-stable maximal torus $\mathbf{T}_{1}^{\circ}(s)$ of $\mathbf{B}_{1}^{\circ}(s)$. We denote by W(s) (respectively, $W^{\circ}(s)$) the Weyl group of $\mathbf{G}(s)$ (respectively, $\mathbf{G}^{\circ}(s)$) to $\mathbf{T}_{1}^{\circ}(s)$.

For each $\alpha \in A(s)$, we define $\mathbf{T}_{1}^{\circ}(s, \alpha)$ to be the semidirect product $\mathbf{T}_{1}^{\circ}(s) \rtimes \langle \alpha \rangle$. For each $w \in W^{\circ}(s)^{\alpha}$ (that is, the subgroup of $W^{\circ}(s)$ consisting of elements centralized by α), we denote by $\mathbf{T}_{w}(s, \alpha)$ the *quasi-maximal torus* of $\mathbf{G}^{\circ}(s) \rtimes \langle \alpha \rangle$ associated with w as in [DM2, Proposition 1.40] (for the definition of a quasi-maximal torus, cf. [B, Definition 6.1.3]). $\mathbf{T}_{w}(s, \alpha)$ is defined by the following property: $(\mathbf{T}_{w}(s, \alpha)^{\alpha})^{\circ}$ is an *F*-stable maximal torus of $\mathbf{G}^{\circ}(s)^{\alpha}$ of type w with respect to $\mathbf{T}_{1}^{\circ}(s)^{\alpha}$.

The group $W^{\circ}(s)$ is a product of symmetric groups, and A(s) and F act on $W^{\circ}(s)$ by permutations of the components (F acts on $W^{\circ}(s)$ as σ). By the argument used in [B, Sect. 7.3] we can associate canonically with each irreducible character χ° of $W^{\circ}(s)^{F}$ and each α in the stabilizer $A(s, \chi^{\circ})$ of χ° in A(s) an irreducible character $\tilde{\chi}_{\alpha}$ of $W^{\circ}(s)^{\alpha} \rtimes \langle \sigma \rangle$.

2.2. Irreducible Characters in $\mathscr{E}(\mathbf{G}^{\circ F}, (s)^{\circ})$ as Uniform Functions

Let χ° be an irreducible character of $W^{\circ}(s)^{F}$. We define

$$R_{\chi^{\circ}}^{\circ}(s) = R_{\chi^{\circ}}^{\mathbf{G}^{\circ}}(s) = \frac{\varepsilon_{\mathbf{G}^{\circ}(s)}\varepsilon_{\mathbf{G}^{\circ}}}{|W^{\circ}(s)|} \sum_{w \in W^{\circ}(s)} \tilde{\chi}_{1}(w\sigma) R_{\mathbf{T}_{w}(s,1)}^{\mathbf{G}^{\circ}}(\tilde{s}^{\circ}). \quad (2.2.1)$$

PROPOSITION 2.2.2 (Lusztig–Srinivasan [LS, Theorem 3.2]). (a) For all $\chi^{\circ} \in \operatorname{Irr} W^{\circ}(s)^{F}, R_{\chi^{\circ}}^{\circ}(s)$ is an irreducible character of $\mathbf{G}^{\circ F}$ in $\mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$. (b) The map

Irr
$$W^{\circ}(s)^{F} \to \mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$$

 $\chi^{\circ} \mapsto R^{\circ}_{\chi^{\circ}}(s)$

is bijective.

COROLLARY 2.2.3. (a) If $\chi^{\circ} \in \operatorname{Irr} W^{\circ}(s)^{F}$ and $\alpha \in A(s)$, then ${}^{\alpha}R_{\chi^{\circ}}^{\circ}(s) = R_{\alpha_{\chi^{\circ}}}^{\circ}(s)$.

(b) If $\chi^{\circ} \in \operatorname{Irr} W^{\circ}(s)^{F}$, then $A(R_{\chi^{\circ}}^{\circ}(s)) = A(s, \chi^{\circ})$.

2.3. Canonical Extensions as Uniform Functions

Let χ° be an irreducible character of $W^{\circ}(s)^{F}$. We define a function $\tilde{R}_{\chi^{\circ}}(s)$ on $G^{\circ F} \rtimes A(s, \chi^{\circ})$ by

$$\operatorname{Res}_{\mathbf{G}^{\circ}}^{\mathbf{G}^{\circ}}_{\cdot,\alpha}^{\mathcal{A}(s,\chi^{\circ})}\tilde{R}_{\chi^{\circ}}(s) = \frac{\varepsilon_{\mathbf{G}^{\circ}(s)}\varepsilon_{\mathbf{G}^{\circ}}}{\left|W^{\circ}(s)^{\alpha}\right|} \sum_{w \in W^{\circ}(s)^{\alpha}} \tilde{\chi}_{\alpha}(w\sigma) \quad \operatorname{Res}_{\mathbf{G}^{\circ}}^{\mathbf{G}^{\circ}}_{\cdot,\alpha}^{\mathcal{F}} \langle \alpha \rangle} R_{\mathbf{T}_{w}(s,\alpha)}^{\mathbf{G}^{\circ}}(\hat{s}) \quad (2.3.1)$$

for all $\alpha \in A(s, \chi^{\circ})$.

PROPOSITION 2.3.2. $\tilde{R}_{\chi^{\circ}}(s)$ is an irreducible character of $\mathbf{G}^{\circ F} \rtimes A(s, \chi^{\circ})$ and is in fact the canonical extension of $R_{\chi^{\circ}}^{\circ}(s)$ (cf. Definition 1.6.3).

Proof. This follows immediately from Formula (1.6.2), from [B, Theorem 7.3.2], and from [DM2, Proposition 2.3].

2.4. Parameterization of $\mathscr{E}(\mathbf{G}^{F},(s))$

We denote by $\mathcal{I}(s)$ the set of pairs (χ°, ξ) where χ° is an irreducible character of $W^{\circ}(s)^{F}$ and ξ is an irreducible character of $A(s, \chi^{\circ})$. The group A(s) acts by conjugation on $\mathcal{I}(s)$, and we denote by $\overline{\mathcal{I}}(s)$ the set of orbits of A(s) in $\mathcal{I}(s)$. Moreover, if $(\chi^{\circ}, \xi) \in \mathcal{I}(s)$, we denote by $\chi^{\circ} * \xi$ its orbit under A(s).

For all $\chi^{\circ} * \xi \in \overline{\mathscr{I}}(s)$, we define

$$R^{\mathbf{G}}_{\chi^{\circ}*\xi}(s) = R_{\chi^{\circ}*\xi}(s) = \operatorname{Ind}_{\mathbf{G}^{\circ}F \rtimes \mathcal{A}(s,\chi^{\circ})}^{\mathbf{G}^{F}}\left(\tilde{R}_{\chi^{\circ}}(s) \otimes \xi\right). \quad (2.4.1)$$

It follows from Corollary 2.2.2(a) that $R_{\chi^{\circ} * \xi}(s)$ only depends on the orbit of (χ°, ξ) under A(s). Moreover, it follows from Clifford theory and from Corollary 2.2.2(b) that we have

LEMMA 2.4.2. The map

$$\overline{\mathscr{I}}(s) \to \mathscr{E}(\mathbf{G}^F, (s))$$
$$\chi^{\circ} * \xi \mapsto R_{\chi^{\circ} * \xi}(s)$$

is bijective.

By [B, Proposition 2.3.1], χ° has a canonical extension $\tilde{\chi}$ to the semidirect product $W^{\circ}(s) \rtimes A(s, \chi^{\circ})$. By Clifford theory again we have

LEMMA 2.4.3. The map

$$\overline{\mathscr{I}}(s) \to \operatorname{Irr} W(s)^{F}$$
$$\chi^{\circ} * \xi \mapsto \operatorname{Ind}_{W^{\circ}(s)^{F} \rtimes A(s, \chi^{\circ})}^{W(s)^{F}}(\tilde{\chi} \otimes \xi)$$

is bijective.

Lemmas 2.4.2 and 2.4.3 imply the following:

THEOREM 2.4.4. There is a well-defined bijection

Irr
$$W(s)^F \to \mathscr{C}(\mathbf{G}^F, (s))$$

 $\chi \mapsto \mathbf{R}_{\chi}(s).$

Remark. If necessary, we will write $\mathbf{R}_{\chi}^{\mathbf{G}}(s)$ for the irreducible character $\mathbf{R}_{\chi}(s)$ of \mathbf{G}^{F} . By applying Theorem 2.4.4 in the case where $\mathbf{G} = \mathbf{G}(s)$ and s = 1, we obtain a bijection,

Irr
$$W(s)^F \to \mathscr{C}(\mathbf{G}(s)^F, 1)$$

 $\chi \mapsto \mathbf{R}_{\chi}^{\mathbf{G}(s)}(1),$

and it is easy to check that the following diagram is commutative:

$$\mathscr{E}(\mathbf{G}^{F},(s)) \xrightarrow{\nabla_{\mathbf{G},s}} \mathscr{E}(\mathbf{G}(s)^{F},1).$$

$$(2.4.5)$$

2.5. Induction from a Particular Subgroup of G

Let **G**' be a subgroup of **G** containing \mathbf{G}° . It is *F*-stable because *F* acts trivially on *A*. There exists a subgroup *A*' of *A* such that

$$\mathbf{G}' = \mathbf{G}^{\circ} \rtimes A'.$$

If we construct \mathbf{G}'^* in the way we construct \mathbf{G} , then \mathbf{G}'^* may be identified with a subgroup of \mathbf{G}^* . We can also construct $\mathbf{G}'(s)$ so that it is contained in $\mathbf{G}(s)$, and we denote by W'(s) the Weyl group of $\mathbf{G}'(s)$ relative to $\mathbf{T}_1^\circ(s)$ so that W'(s) is a subgroup of W(s).

PROPOSITION 2.5.1. Let χ' be an irreducible character of $W'(s)^F$. Suppose

$$\operatorname{Ind}_{W'(s)^{F}}^{W(s)^{F}}\chi' = \sum_{\chi \in \operatorname{Irr} W(s)^{F}} n_{\chi}\chi.$$

Then

$$\operatorname{Ind}_{\mathbf{G}'^{F}}^{\mathbf{G}^{F}}\mathbf{R}_{\chi'}^{\mathbf{G}'}(s) = \sum_{\chi \in \operatorname{Irr} W(s)^{F}} n_{\chi}\mathbf{R}_{\chi}^{\mathbf{G}}(s).$$

3. LUSZTIG FUNCTORS

HYPOTHESIS. Throughout this section, and only in this section, A will be assumed abelian.

3.1. Notation

Let **L** be an *F*-stable Levi subgroup of a parabolic subgroup **P** of **G**. Let $A_{\mathbf{L}}$ be the image of **L** through the composite morphism

$$\mathbf{L} \to \mathbf{G} \to \mathbf{G}/\mathbf{G}^\circ \to A$$

 $(A_{\mathbf{L}} \text{ is a subgroup of } A)$. Because A is abelian, we can use the same argument as in [B, 7.6] to assume that \mathbf{L} contains $A_{\mathbf{L}}$. Let $A_{\mathbf{L}}^*$ be the image of $A_{\mathbf{L}}$ under the anti-isomorphism $A \to A^*$.

Let $\mathbf{L}^{\circ *}$ be an F^* -stable Levi subgroup of a parabolic subgroup of $\mathbf{G}^{*\circ}$ that is a dual of \mathbf{L}° . We can choose $\mathbf{L}^{\circ *}$ to be $\mathcal{A}^*_{\mathbf{L}}$ -stable, and we define

$$\mathbf{L}^* = \mathbf{L}^{\circ *} \rtimes A^*_{\mathbf{L}}.$$

then \mathbf{L}^* is an F^* -stable Levi subgroup of a parabolic subgroup of \mathbf{G}^* and $\mathbf{L}^{*\circ} = \mathbf{L}^{\circ*}$.

3.2. Jordan Decomposition and Lusztig Functors

Let *s* be a semisimple element in $\mathbf{L}^{* \circ F^*}$. We may assume that *s* is nice in \mathbf{G}^* . Then the subgroup $\mathbf{L}(s)$ of \mathbf{L} following the construction of Section 1.4 can be chosen as a subgroup of $\mathbf{G}(s)$. The linear character of $\mathbf{L}(s)^F$ associated with *s* as defined in Section 1.4 is then the restriction of \hat{s} to $\mathbf{L}(s)^F$. It results from this remark and from the transitivity of Lusztig induction functors (cf. [B, Proposition 6.3.3]) that the following diagram is commutative:

The description of the functor $R_{\mathbf{L}(s)}^{\mathbf{G}(s)}$ in [B, Theorem 7.6.1] thus provides a description of the functor $R_{\mathbf{L}}^{\mathbf{G}}$ via the commutative diagram (3.2.1).

4. SHINTANI DESCENT IN THE GENERAL LINEAR GROUP

In this section, we explain the link between the theory of irreducible characters of \mathbf{G}^{F} and the theory of Shintani descent for the general linear group. For this purpose, we need to consider a particular case:

HYPOTHESIS AND NOTATIONS. Throughout this section, we assume that r = 1. We will denote $d = d_1$ and $n = n_1$ for simplicity. We also assume that $\sigma = (1, ..., d)$ and that A is generated by σ .

4.1. The Group \mathbf{G}^{F}

We denote by \mathbf{G}_1 the general linear group \mathbf{GL}_n , and we endow it with the split Frobenius endomorphism:

$$F_0: \mathbf{G}_1 \to \mathbf{G}_1$$
$$g \mapsto g^{(q)}$$

We denote by ϕ_0 the automorphism of $\mathbf{G}_1^{F_0^d}$ induced by F_0 . Then the map

$$\theta \colon \mathbf{G}_1^{F_0^d} \to \mathbf{G}^{\circ F}$$
$$g \mapsto \left(g, F_0(g), \dots, F_0^{d-1}(g)\right)$$

is an isomorphism of groups and the following diagram is commutative:

This implies that θ can be extended to an isomorphism denoted by

$$\begin{split} \tilde{\theta} \colon \mathbf{G}_{1}^{F_{0}^{d}} \rtimes \langle \phi_{0} \rangle \to \mathbf{G}^{F} \\ g \phi_{0}^{k} \mapsto \theta(g) \sigma^{-k} \end{split}$$

for all $g \in \mathbf{G}_1^{F_0^d}$ and $k \in \mathbb{Z}$.

4.2. Shintani Descent

Let $g \in \mathbf{G}_1^{F_0}$. By Lang's theorem, there exists $x \in \mathbf{G}_1$ such that $g = x^{-1}F_0^d(x)$. Then $g' = F_0(x)x^{-1}$ belongs to $\mathbf{G}_1^{F_0^d}$, and the map that sends the conjugacy class of g in $\mathbf{G}_1^{F_0}$ to the ϕ_0 -conjugacy class of g' in $\mathbf{G}_1^{F_0^d}$ is well-defined and is bijective. We denote it by

$$N_{F_0/F_0^d}$$
: Cl($\mathbf{G}_1^{F_0}$) $\to H^1(\phi_0, \mathbf{G}_1^{F_0^a}),$

where $H^1(\phi_0, \mathbf{G}_1^{F_0^d})$ denotes the set of ϕ_0 -conjugacy classes of $\mathbf{G}_1^{F_0^d}$ and $\operatorname{Cl}(\mathbf{G}_1^{F_0})$ denotes the set of conjugacy classes of $\mathbf{G}_1^{F_0}$. If we denote by $\mathscr{C}(\mathbf{G}_1^{F_0} \cdot \phi_0)$ (respectively, $\mathscr{C}(\mathbf{G}_1^{F_0})$) the space of class functions on $\mathbf{G}_1^{F_0^d} \cdot \phi_0$ obtained by restrictions from class functions on the group $\mathbf{G}_1^{F_0^d} \langle \phi_0 \rangle$ (respectively, $\mathbf{G}_1^{F_0}$), then $N_{F_0^d/F_0}$ induces an isomorphism

$$\operatorname{Sh}_{F_0^d/F_0} : \mathscr{C}(\mathbf{G}_1^{F_0^d} \cdot \phi_0) \to \mathscr{C}(\mathbf{G}_1^{F_0}),$$

called the Shintani descent from F_0^d to F_0 .

We recall the following theorem:

THEOREM 4.2.1 (Shintani). Let γ_1 be an irreducible character of $\mathbf{G}_1^{F_0^d}$ stable under ϕ_0 . Then there exists an extension $\tilde{\gamma}_1$ of γ_1 to $\mathbf{G}_1^{F_0^d} \rtimes \langle \phi_0 \rangle$ such that $\mathbf{Sh}_{F_0^d/F_0} \tilde{\gamma}_1$ is, up to a sign, an irreducible character of $\mathbf{G}_1^{F_0}$. 4.3. Shintani Descent and Characters of \mathbf{G}^{F}

We denote by θ^* and $\tilde{\theta}^*$ the isomorphisms of $\overline{\mathbb{Q}}_{\mathcal{L}}$ vector spaces:

$$\theta^* \colon \mathscr{C}(\mathbf{G}^{\circ F}) \to \mathscr{C}(\mathbf{G}_1^{F_0^d})$$

and

$$\tilde{\theta}^* \colon \mathscr{C}(\mathbf{G}^F) \to \mathscr{C}(\mathbf{G}_1^{F_0^d} \rtimes \langle \phi_0 \rangle),$$

induced by θ and $\tilde{\theta}$, respectively.

Let γ° be an irreducible character of $\mathbf{G}^{\circ F}$, and let $\gamma_1 = \theta^*(\gamma^{\circ})$. Then γ_1 is ϕ_0 -stable if and only if γ° is σ -stable.

HYPOTHESIS. From now on, we assume that γ_1 is ϕ_0 -stable.

Let *s* be a nice semisimple element of $\mathbf{G}^{*\circ F^*}$ such that $\gamma^{\circ} \in \mathscr{C}(\mathbf{G}^{\circ F}, (s)^{\circ})$. Then A(s) = A because γ_1 is ϕ_0 -stable. Let χ° be the irreducible character of $W^{\circ}(s)$ (stable under *F*) such that $\gamma^{\circ} = R_{\chi^{\circ}}^{\circ}(s)$. Then $A(s, \chi^{\circ}) = A$.

THEOREM 4.3.1. With the above notations, we have

(a) There exists a unique extension $\tilde{\gamma}_1$ of γ_1 to $\mathbf{G}_1^{F_0^d} \rtimes \langle \phi_0 \rangle$ such that $\operatorname{Sh}_{F_0^d/F_0} \tilde{\gamma}_1$ is an irreducible character of $\mathbf{G}_1^{F_0}$. We call it the Shintani extension of γ_1 .

(b) We have $\tilde{\gamma}_1 = \tilde{\theta}^*(\tilde{R}_{\gamma^\circ}(s))$.

(c) Let e be a divisor of d, and let $\tilde{\gamma}_1^{(e)}$ be the Shintani extension of γ_1 to $\mathbf{G}_1^{F_0^d} \rtimes \langle \phi_0^e \rangle$. Then $\tilde{\gamma}_1^{(e)}$ is the restriction of $\tilde{\gamma}_1$.

Remark. The result stated in (a) of Theorem 4.3.1 is slightly stronger than Shintani's. It was already known for characters of the principal series [DM3].

Proof. By Theorem 4.2.1, (a), (b), and (c) are immediate consequences of the following:

LEMMA 4.3.2. $\tilde{R}^{\mathbf{G}}_{\chi^{\circ}}(s)(\sigma^{e})$ is a positive integer for all $e \in \mathbb{Z}$.

Proof of Lemma 4.3.2. Let $e \in \mathbb{Z}$. We first prove that

$$\varepsilon_{\mathbf{G}^{\circ}(s)^{\sigma^{e}}} = \varepsilon_{\mathbf{G}^{\circ}(s)} \text{ and } \varepsilon_{(\mathbf{G}^{\circ})^{\sigma^{e}}} = \varepsilon_{\mathbf{G}^{\circ}}.$$
 (\bigstar)

Because $\mathbf{G}^{\circ}(s)$ is a direct product of groups of the same type as \mathbf{G}° , it is sufficient to prove the result for \mathbf{G}° . But $(\mathbf{T}_{0}^{\circ})^{\sigma}$ is a maximal split subtorus of \mathbf{G}° , so it is a maximal split subtorus of $(\mathbf{G}^{\circ})^{\sigma^{\circ}}$. That proves (\bigstar) .

Let $\tilde{\chi}_e$ be the irreducible character of $W^{\circ}(s)^{\sigma^e} \rtimes \langle \sigma \rangle$ associated with χ° as in Section 2.1 (it was denoted $\tilde{\chi}_{\sigma^e}$, but we just want to have simpler notations).

Then, by formulas (2.3.1) and (\bigstar) , we have

$$\tilde{R}_{\chi^{\circ}}^{\mathbf{G}}(s)(\sigma^{e}) = \frac{\mathcal{E}_{\mathbf{G}^{\circ}(s)}^{\sigma^{e}} \mathcal{E}_{(\mathbf{G}^{\circ})}^{\sigma^{e}}}{\left|W^{\circ}(s)^{\sigma^{e}}\right|} \sum_{w \in W^{\circ}(s)} \tilde{\chi}_{e}(w\sigma) R_{\mathbf{T}_{w}(s,\sigma^{e})}^{\mathbf{G}^{\circ} \rtimes \langle \sigma^{e} \rangle}(\hat{s})(\sigma^{e}).$$

Using [DM2, Theorem 4.13], we get

$$\tilde{R}_{\chi^{\circ}}^{\mathbf{G}}(s)(\sigma^{e}) = \frac{\varepsilon_{\mathbf{G}^{\circ}(s)^{\sigma^{e}}}\mathcal{C}_{\mathbf{G}^{\circ}}^{\sigma^{e}}}{\left|W^{\circ}(s)^{\sigma^{e}}\right|} \sum_{w \in W^{\circ}(s)^{\sigma^{e}}} \tilde{\chi}_{e}(w\sigma) \dim R_{(\mathbf{T}_{w}(s,\sigma^{e})^{\circ})^{\sigma^{e}}}^{(\mathbf{G}^{\circ})^{\sigma^{e}}}.$$
 (1)

But this last formula gives the degree of an irreducible character of $((\mathbf{G}^{\circ})^{\sigma^{e}})^{F}$ (cf. [LS, Theorem 3.2]).

ACKNOWLEDGMENTS

The author is very grateful to Paul Fong for pointing out to him these open problems on Shintani descent and for reading a first version of this paper and making very useful comments.

REFERENCES

- [B] C. Bonnafé, Produits en couronne de groupes linéaires, J. Algebra 211 (1999), 57-98.
- [DM1] F. Digne and J. Michel, "Representations of Finite Groups of Lie Type," London Mathematics Society Students Texts, Vol. 21, Cambridge Univ. Press, Cambridge, 1991.
- [DM2] F. Digne and J. Michel, Groupes réductifs non connexes, Ann. Sci. École Norm. Sup. (4) 27 (1994), 345–406.
- [DM3] F. Digne and J. Michel, Fonctions *L* des variétés de Deligne-Lusztig et descente de Shintani, Mém. Soc. Math. France (N.S.) 20 (1985).
- [LS] G. Lusztig and B. Srinivasan, The characters of the finite unitary groups, J. Algebra 49 (1977), 167–171.
- [S] T. Shintani, Two remarks on irreducible characters of finite general linear groups, J. Math. Soc. Japan 28 (1976), 396–414.