An overview on Virtual Elements and their Applications

Franco Brezzi

Workshop NEMESIS; Online June 14-15 20121 New generation methods for numerical simulations

Franco Brezzi (IMATI-CNR, Pavia)

June 174h, 2021 1 / 54

Outline

- 2 Basic ideas of VEM
- 3 Enhancement and Serendipity
- 4 Nonconforming VEMs
- **5** C^1 -elements
- **6** VEM for Stokes Problem
- Hellinger-Reissner formulation of Linear Elasticity

3

イロト イボト イヨト イヨト

Nature does not stick on triangles - 1

Grape leaf

Э

DQC

◆□▶ ◆□▶ ◆三▶ ◆三▶

Nature does not stick on triangles - 2

Crystal Grain

Э

DQC

< □ > < □ > < □ > < □ > < □ >

Nature does not stick on triangles - 3

Prostate Cancer

Э

590

イロト イボト イヨト イヨト

Local adaptation might be heavy-1

Э

DQC

Local adaptation might be heavy-2

Vortices

Э

DQC

< □ > < □ > < □ > < □ > < □ >

Use of Polytopes: Boundary layers

The "interface" elements are treated as epta-gons.

Э

590

Use of Polytopes: Moving Objects

At each time step, the mesh is adapted to the object

3

Use of Polytopes: Local Refinement

Combining a fine mesh with a coarse one

Franco Brezzi (IMATI-CNR, Pavia)

June 174h, 2021 10 / 54

€ 990

イロト イポト イヨト イヨト

Use of Polytopes: Something going on there...

A fracture, or a 1-d intrusion

Image: A match a ma

э

Kick off: Recalling the basic idea of VEMs

Consider a pentagonal element E. For "order of precision k = 2" we set: $V_2(E) := \{ v \in C^0(\overline{E}) \text{ s.t. } v_{|e} \in \mathbb{P}_2(e) \forall \text{ edge } e, \text{ and } \Delta v \in \mathbb{P}_0(E) \}$.

Clearly, the dimension of $V_2(E)$ is equal to 11. Note that $V_2(E)$ contains all polynomials of degree ≤ 2 , **plus** 5 other smooth functions **that we don't want to compute**. We can take as (11) degrees of freedom

- the values at vertexes and midpoints, plus
- the average on E.

It is easy to see that these d.o.f.'s are *unisolvent*. Note: On a triangle we have the six \mathbb{P}_2 plus a bubble b: b=0 at the boundary, $\Delta b = 1$

Contructing Projectors $H^1(E) \to \mathbb{P}_k$ First example: Π_k^{∇} To every $\mathbf{v} \in H^1(E)$ we can associate $\Pi_2^{\nabla, E} \mathbf{v} \in \mathbb{P}_2(E)$ defined by $\int_E \nabla(\Pi_2^{\nabla, E} \mathbf{v}) \cdot \nabla q_2 = \int_E \nabla \mathbf{v} \cdot \nabla q_2$ for all $q_2 \in \mathbb{P}_2(E)$.

Note that the quantity on the right-hand side

$$\int_{E} \nabla \mathbf{v} \cdot \nabla q_{2} \equiv -\Delta q_{2} \int_{E} \mathbf{v} + \int_{\partial E} \mathbf{v} \frac{\partial q_{2}}{\partial n}$$

is computable (out of the above d.o.f.s) $\forall v \in V_2(E)$ and $\forall q_2 \in \mathbb{P}_2$. Note also that the $\Pi_2^{\nabla, E} v$ above is defined only up to a constant. To define it uniquely in \mathbb{P}_2 we must add, for instance,

$$\int_{\partial E} (\Pi_2^{\nabla, E} v - \mathbf{v}) \, \mathrm{d}\mathbf{s} = 0 \qquad \text{or} \qquad \int_E (\Pi_2^{\nabla, E} v - \mathbf{v}) \, \mathrm{d}\mathbf{E} = 0.$$

Note finally that $\Pi_2^{\nabla, E} \mathbf{v} = \mathbf{v}$ whenever $\mathbf{v} \in \mathbb{P}_2$ ($\Rightarrow \Pi_{2}^{\nabla, E}$ is a projection).

To every $\mathbf{v} \in H^1(E)$ we can associate $\Pi_2^{S,E} \mathbf{v} \in \mathbb{P}_2(E)$ defined by

$$\int_{\partial E} \Pi_2^{S,E} \mathbf{v} \, q_2 = \int_{\partial E} \mathbf{v} \, q_2 \text{ for all } q_2 \in \mathbb{P}_2(E).$$

Note that $\Pi_2^{S,E} v$ is uniquely defined since the only $q_2 \in \mathbb{P}_2(E)$ that vanishes identically on ∂E is the polynomial $\equiv 0$. Here too, $\Pi_2^{S,E} v = v$ whenever $v \in \mathbb{P}_2$ ($\Rightarrow \Pi_2^{S,E}$ is a **projection**).

Similarly one can define in $(\mathbb{P}_1(E))^2$ the L^2 projection $\Pi_1^{0,E}(\nabla v)$ of ∇v :

$$\int_E \Pi_1^{0,E}(\nabla \mathbf{v}) \cdot \mathbf{q}_1 = \int_E \nabla \mathbf{v} \cdot \mathbf{q}_1 \text{ for all } \mathbf{q}_1 \in (\mathbb{P}_1(E))^2.$$

Note that, here too, the rhs is computable using the dofs of v.

A simple model problem

For $f \in L^2(\Omega)$ consider the problem

Find u such that $-\Delta u = f$ in Ω and u = 0 on $\partial \Omega$.

Setting

$$a^{E}(u,v) := \int_{E} \nabla u \cdot \nabla v \qquad a(u,v) := \sum_{E} a^{E}(u,v).$$

and $(f,v)_{0,E} := \int_{E} f v \quad \text{and} \ (f,v) := \sum_{E} (f,v)_{0,E}$

the problem can be written as

Find $u \in H_0^1(\Omega)$ such that: a(u, v) = (f, v) $\forall v \in H_0^1(\Omega)$

Discretizing the local stiffness matrices

Let \mathcal{T}_h be a decomposition of Ω into polygons E. Defining

 $V_2(\Omega) := \{ v \in H_0^1(\Omega) \text{ such that } v_{|E} \in V_2(E) \mid \forall E \in \mathcal{T}_h \},$

we start setting, in each *E*, the *consistency part*

$$a_C^E(u,v) := \int_E \nabla \Pi_2^{\nabla,E} u \cdot \nabla \Pi_2^{\nabla,E} v$$
 for u and v in $H^1(E)$

with the fundamental property (\mathbb{P}_2 -Consistency!):

 $a_C^E(u, v) \equiv a^E(u, v)$ whenever either u or v is a polynomial of degree ≤ 2 . Finally we set:

$$a_C(u,v) := \sum_E a_C^E(u,v).$$

The discrete bilinear form a_h

We define, for u and v in $V_2(\Omega)$,

$$a_h(u,v) := a_C(u,v) + \sum_E S^E(u,v)$$

where the stabilizing terms $S^{E}(u, v)$ can be taken, for instance, as

$$S^{\mathcal{E}}(u,v) := \sum_{i} C_{i} \left(dof_{i} (u - \Pi_{2}^{\nabla, \mathcal{E}} u) \right) \cdot \left(dof_{i} (v - \Pi_{2}^{\nabla, \mathcal{E}} v) \right) \qquad (dofi - dofi)$$

and, for each E, the dof_i 's are the degrees of freedom in $V_2(E)$, and C_i is a suitable scaling factor, such that

 $\alpha_* a(v_h, v_h) \leq a_h(v_h, v_h) \leq \alpha^* a(v_h, v_h) \quad \forall v_h \in V_2(\Omega)$ for suitable positive constants α_* and α^* independent of h. Note: $S^E(u, v) = 0$ whenever either u or v is in \mathbb{P}_2 (saving consistency). The discretized problem will now be

Find u_h in $V_2(\Omega)$ such that $a_h(u_h, v_h) = (f, \Pi v_h) \quad \forall v_h \in V_2(\Omega)$.

Polygons

We point out that the same geometrical entity (say, a triangle) might be considered as a polygon (for instance, a quadrilateral or a pentagon, hexagon, etc.) according to the number of points on its boundary that we consider as *vertices*. See the figure below. This can be extremely helpful for example when doing adaptive mesh refinement (see the leftmost case).

Figure: Each of the three above polygons ia considered as a hexagon

In order to eliminate as many internal dofs as possible, and, at the same time, to allow the computation of all the moments of order $\leq k$, we first define the local space

$$\widetilde{V}_k^S(P) := \{ v \in C^0(\overline{P}) : \ v_{|e} \in \mathbb{P}_k(e) \ \forall e \subset \partial P, \ \Delta v \in \mathbb{P}_k(P) \},$$

with the same boundary degrees of freedom, plus

the internal moments of order up to
$$k : \int_P v p_k dx \ \forall p_k \in \mathbb{P}_k(P).$$

Clearly the space $\widetilde{V}_k^S(P)$ is much bigger than the original VEM space, apparently in contradiction with our first aim. Wait and see....

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

The Boundary-projection operator Π_k

We define locally an operator $\Pi_k : H^1(P) \to \mathbb{P}_k(P)$ as follows:

$$\Pi_k v \in \mathbb{P}_k(P): \int_{\partial P} (\Pi_k v - v) q_k \, \mathrm{d}s = 0 \quad \forall q_k \in \mathbb{P}_k(P).$$

We already saw it (under the name $\Pi_2^{S,E}$) for k = 2. For a general k the above system has a unique solution **unless** \mathbb{P}_k contains polynomials that are identically zero on the boundary, i.e. unless \mathbb{P}_k contains bubbles (that will have the form $v = \beta_r q_{k-r}$ where β_r is the *lowest order bubble*). In these cases we need to add internal conditions. For instance (assuming for simplicity that P is convex) we can add

$$\int_{P} (\Pi_{k} v - v) q_{k-r} \mathrm{d}x = 0 \quad \forall q_{k-r} \in \mathbb{P}_{k-r}$$

and then solve the system in the least-squares sense.

Copying the moments!

Once the polynomial $\Pi_k v$ has been computed, we define the new space by "copying" its moments. Namely, setting $\{N = \text{maximum degree of internal moments used to define } \Pi_k\}$, we set:

$$V_k^S(P) := \left\{ v \in \widetilde{V}_k^S(P) \text{ s. t. } \int_P v \, p_s \mathrm{d}x = \int_P \Pi_k v \, p_s \mathrm{d}x \, \forall p_s \in \mathbb{P}_s^{hom} \, N < s \le k \right\}$$

Figure: Triangles: dofs for serendipity VEM

Franco Brezzi (IMATI-CNR, Pavia)

June 174h, 2021 21 / 54

イロト 不得下 イヨト イヨト 二日

Copying the moments!

Figure: Quads: dofs for serendipity FEM and VEM

On triangles serendipity VEM have the same number of dofs as FEM (and actually the two spaces *coincide*.) On quadrilaterals Serendipity VEM and FEM have, again, the same number of dofs, but serendipity FEM are known to suffer from distorsions, while Serendipity VEM do not. $\exists r \in \mathcal{A} \subset \mathcal{A}$

Franco Brezzi (IMATI-CNR, Pavia)

The local VEM nonconforming space of order k is defined as:

$$V_k^{NC}(P) := \{ v \in H^1(P) : \frac{\partial v}{\partial n}_{|e} \in \mathbb{P}_{k-1}(e) \forall \text{ edge } e, \ \Delta v \in \mathbb{P}_{k-2}(P) \}.$$

The degrees of freedom for a VEM NC space are given by

$$\begin{array}{l} (D_1'): \text{ the moments } \int_e vp_{k-1} \mathrm{d}s \; \forall p_{k-1} \in \mathbb{P}_{k-1}(e) \; \forall e \\ (D_2'): \text{ for } k \geq 2 \; \text{the moments } \int_P vp_{k-2} \mathrm{d}x \; \forall p_{k-2} \in \mathbb{P}_{k-2}(P). \end{array}$$

(日) (同) (三)

Let $H^1(\mathcal{T}_h) = \prod_{P \in \mathcal{T}_h} H^1(P)$ (functions separately in H^1 of each element). For $\varphi \in H^1(\mathcal{T}_h)$ let $jump\{\varphi\}$ be the jump on internal edges $e \in \mathcal{T}_h$. Then, for $k \ge 1$ we consider the global non-conforming space

$$\begin{split} V_k^{NC}(\Omega) &:= \{ v \in H^1(\mathcal{T}_h) : v_{|P} \in V_k^{NC}(P) \; \forall P, \\ & \int_e jump\{v\} p_{k-1} \mathrm{d}s = 0 \; \forall \; \text{internal edge } e, \; \forall p_{k-1} \in \mathbb{P}_{k-1}(e), \\ & \int_e v p_{k-1} \mathrm{d}s = 0 \; \forall e \; \text{on} \; \partial \Omega, \; \forall p_{k-1} \in \mathbb{P}_{k-1}(e) \}. \end{split}$$

- Just to give an idea of the possible comparison between nonconforming FEM and VEM, we consider the case of k = 2 on triangles.
- **For both** we take first, as dofs, the moments, on each edge, of order ≤ 1 . But since k = 2 is *even*, FEM also need an additional dof *inside* (due to the presence of the so-called *nonconforming bubble*);
- VEM are not better off, since their internal degree of freedom cannot be eliminated through some sort of Serendipity trick, (exactly for the same reason: there is a p_2 that is orthogonal, on each edge, to all linear and to all constant functions).

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ - つく()

The typical escape, for FEM, is to add a seventh polynomial (see e.g. Fortin-Soulie): indicating by A, B, C the vertices of the triangle, and indicating with λ_A , λ_B , and λ_C the usual barycentric cohordinates, we add

 $\zeta := \lambda_A \lambda_B (\lambda_A - \lambda_B) + \lambda_B \lambda_C (\lambda_B - \lambda_C) + \lambda_C \lambda_A (\lambda_C - \lambda_A)$

and take the mean value on P as seventh degree of freedom.

When using VEM we already have seven functions and the distinction between k odd or k even is not necessary. In the case k = 2 we see that the VEM space obviously contains all polynomials of degree ≤ 2 , and can be seen as the union of the polynomials of degree ≤ 2 and of an additional function... (see next slide)

The additional VEM function

For instance the seventh VEM function, say $\chi(x, y)$, with the notation of the figure, could be identified by the following conditions:

$$\begin{split} &\int_{P} \chi \mathrm{d}x = 0, \qquad \int_{e} \chi \,\mathrm{d}s = 0 \quad \forall \text{ edge } e \quad (1 + 3 \text{ conditions}), \\ &\frac{1}{|e_{a}|} \int_{e_{a}} \chi \,q_{a} \mathrm{d}s = \frac{1}{|e_{b}|} \int_{e_{b}} \chi \,q_{b} \mathrm{d}s = \frac{1}{|e_{c}|} \int_{e_{c}} \chi \,q_{c} \mathrm{d}s = 1 \,(3 \text{ conds}), \end{split}$$

where: the edge e_a , with length $|e_a|$, is opposite to the vertex A, and q_a is the polynomial of degree 1 such that $q_a(a_1) = 1$ and $q_a(a_2) = -1$ (and similar notation for the edges e_b and e_c).

We first point out that on the boundary of our triangle the seventh VEM function χ cannot be the trace of a polynomial of degree ≤ 2 . Indeed, it is easy to check that every $v \in \mathbb{P}_2$ verifies

$$\frac{1}{|e_a|}\int_{e_a} v q_a \mathrm{d}s + \frac{1}{|e_b|}\int_{e_b} v q_b \mathrm{d}s + \frac{1}{|e_c|}\int_{e_c} v q_c \mathrm{d}s = 0.$$

On the boundary the behaviour of χ and ζ (the one proposed by Fortin-Soulie for FEM), is quite similar, but

- $\chi_{\it n}$ is on each edge a polynomial of degree 1 (and not 2 as $\zeta)$ and (most important)

- $\Delta \chi$ is constant (instead of linear)

features that might be convenient in problems where some equilibrium or conservation properties could be enforced strongly and not "on average".

C^1 VEMs - a model problem

As an example of problem that needs C^1 approximations we take a plate bending problem for a clamped plate (say, for Poisson ratio = 0). For $f \in L^2(\Omega)$ consider the problem

Find w such that
$$\Delta^2 w = f$$
 in Ω $w = \frac{\partial w}{\partial n} = 0$ on $\partial \Omega$.

The variational formulation of the problem is: Find $w \in H_0^2(\Omega)$ such that:

$$\underbrace{\int_{\Omega} D_2 w : D_2 v}_{a(w,v)} = \underbrace{\int_{\Omega} f v}_{(f,v)} \quad \forall v \in H_0^2(\Omega)$$

The problem has a unique solution.

Programming C^1 FEMs is feasible, but also an unforgettable experience

Figure: Tasting cod-liver oil

< □ > < 同 > < 回</p>

C^1 VEMs

Let P be a polygon in \mathcal{T}_h . For integers $r \ge 0$, $s \ge 0$, $m \ge -1$ we set $V_{r,s,m}(P) := \{ w \in H^2(P) : w_{|e} \in \mathbb{P}_r(e), w_{n|e} \in \mathbb{P}_s(e) \forall edge e, \Delta^2 w \in \mathbb{P}_m(P) \}$

Clearly, for H^2 -conformity, the dofs must be chosen conveniently. In the vertices we will need continuity of w and w_n . Hence we need as dofs

• (D_0) the values of $w, w_{/1}, w_{/2}$ at the vertices,

and this will require, in a natural way, that $r \ge 3$ and $s \ge 1$. Moreover w and $w_{/n}$ must be single-valued on edges, requiring as additional dofs, e.g.,

• (D₁) for $r \ge 4$, the moments $\int_{e} w q_{r-4} ds \quad \forall q_{r-4} \in \mathbb{P}_{r-4}(e), \quad \forall e \in \partial P,$ • (D₂) for $s \ge 2$, the moments $\int_{e} w_{/n} q_{s-2} dx \quad \forall q_{s-2} \in \mathbb{P}_{s-2}(e) \quad \forall e \in \partial P.$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへで

VEM version of "reduced HCT"

The smallest space will then correspond to r = 3, s = 1, m = -1, and is an extension to polygons of the *reduced Hsieh-Clough-Tocher* composite triangular element. The VEM space (for a *general* polygon *P*) will then be

 $V(P) := \{ w \in H^2(P) : w_{|e} \in \mathbb{P}_3(e), w_{n|e} \in \mathbb{P}_1(e), \forall \text{ edge } e, \text{ and } \Delta^2 w = 0 \text{ in } P \},$

whose degrees of freedom are the values of w, w_x, w_y at vertices.

Figure: C^1 VEM, reduced HCT-like

VEM version of HCT

Another example (for r = 3, s = 2, m = -1) is given here below; the corresponding element will have (D_0) and (D_2) as degrees of freedom and is a sort of VEM counterpart of the original *Hsieh-Clough-Tocher* composite triangular element.

Figure: C¹ VEM, HCT-like

At a general level, the above VEM elements will have order of precision:

$$\kappa \ (\equiv \text{ order of precision}) = \min\{r, s+1, m+4\}$$

and out of dofs $(D_0), ..., (D_3)$, (integrating by parts twice) we can compute an operator $\Pi_{\kappa}^P : V_{r,s,m}(P) \longrightarrow \mathbb{P}_{\kappa}(P)$ defined on each element by

$$a^P(\Pi^P_\kappa v\!-\!v,q_\kappa)\!=\!0 \quad orall q_\kappa\in\mathbb{P}_\kappa(P), \quad \int_{\partial P}(\Pi^P_\kappa v\!-\!v)q_1\mathrm{d}s\!=\!0 \quad orall q_1\in\mathbb{P}_1(P).$$

The discrete bilinear form, for v_h and w_h in $V_{r,s,m}(P)$, is then defined as

$$a_h^P(v_h, w_h) := a^P(\Pi_\kappa^P v_h, \Pi_\kappa^P w_h) + S^P((I - \Pi_\kappa^P) v_h, (I - \Pi_\kappa^P) w_h)$$

with $S^{P}(v_{h}, w_{h})$ taken, e.g., as *dofi-dofi*, with $(D_{0}) - (D_{3})$ properly scaled.

C^{p} -VEM with p > 2

Along the same lines, still for general polygons, we might easily construct C^p elements for $p \ge 2$. Just to give an example, we might consider

In particular, this figure refers to the local spaces

$$V(P):=\{v\in H^3(P): v_{|e}\in \mathbb{P}_5, v_{n|e}\in \mathbb{P}_4, v_{nn|e}\in \mathbb{P}_3 \forall e\in \partial P, \Delta^3v=0 \text{ in } P\}.$$

Stokes Problem

We recall (to set the notation) the **model Stokes problem** Find $\mathbf{u} \in (H_0^1(\Omega))^2$ and $p \in L^2(\Omega)$ such that:

$$\begin{cases} -\Delta \boldsymbol{u} + \nabla \boldsymbol{p} = \mathbf{f} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{u} = 0 & \text{in } \Omega. \end{cases}$$

Set: $\mathbf{V} := (H_0^1(\Omega))^2$, $Q := L_0^2(\Omega)$ (zero mean value), and define, for $\boldsymbol{u}, \boldsymbol{v}$ in \mathbf{V} , and $q \in Q$:

$$oldsymbol{a}(oldsymbol{u},oldsymbol{v}) := \int_{\Omega} arepsilon(oldsymbol{v}): arepsilon(oldsymbol{v},oldsymbol{q}) := \int_{\Omega} \operatorname{div} oldsymbol{v} \, oldsymbol{q} \, \mathrm{d}\Omega$$

(where $\varepsilon(\mathbf{v}) := (\nabla \mathbf{v} + (\nabla \mathbf{v})^T)/2$ is the symmetric gradient). The variational formulation is: Find $\mathbf{u} \in \mathbf{V}$, $p \in Q$ such that

$$\begin{cases} a(\boldsymbol{u},\boldsymbol{v})+b(\boldsymbol{v},p)=(\mathbf{f},\boldsymbol{v}) & \forall \boldsymbol{v}\in \mathbf{V}, \\ b(\boldsymbol{u},q)=0 & \forall q\in Q. \end{cases}$$

Taking a sequence of conforming discretizations of this problem with $\mathbf{V}_h \subset \mathbf{V}$ and $Q_h \subset Q$, and suitable approximations a_h and b_h of the bilinear forms a and b, respectively, one can write the discretized version as: Find $\mathbf{u}_h \in \mathbf{V}_h$ and $p_h \in Q_h$ such that

$$\left\{egin{aligned} & a_h(oldsymbol{u}_h,oldsymbol{v}_h)+b_h(oldsymbol{v}_h,p_h)=(oldsymbol{f}_h,oldsymbol{v}_h) & & orall oldsymbol{v}_h\inoldsymbol{V}_h, \ & b_h(oldsymbol{u}_h,q_h)=0 & & & orall q_h\in Q_h, \end{aligned}
ight.$$

where, in turn, \mathbf{f}_h is (if needed) a suitable approximation of \mathbf{f} . It is well known that \exists ! of the discrete solution with optimal error bounds requires ellipticity of a_h on the kernel of b_h and the *inf-sup* stability condition

$$\exists \beta > 0 \text{ such that } \inf_{q_h \in Q_h} \sup_{\mathbf{v}_h \in \mathbf{V}_h} \frac{b_h(\mathbf{v}_h, q_h)}{\|\mathbf{v}_h\|_V \|q_h\|_Q} \geq \beta \quad \forall h.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

One can wonder whether the velocity solution \boldsymbol{u}_h would satisfy *exactly*

```
\operatorname{div} \boldsymbol{u}_h \equiv 0 \quad \text{in } \Omega,
```

(ensuring the exact incompressibility of the discrete solution). This would require

$$\Big\{\{\boldsymbol{u}_h \in \boldsymbol{V}_h\} \text{ and } \{\int_P \operatorname{div} \boldsymbol{u}_h \, q_h \, \mathrm{d}x = 0 \, \forall q_h \in Q_h\}\Big\} \ \Rightarrow \ \Big\{\operatorname{div} \boldsymbol{u}_h = 0 \text{ in } P\Big\}.$$

verified only with very few (and sometimes rather cumbersome) choices of discretizations (and often only for special types of decompositions). See the excellent review by John-Linke-Merdon-Neilan-Rebholz (SIAM Review, 2017) and to the references therein.

Incompressible VEM

Following Beirão da Veiga - Lovadina- Vacca (2017), for the velocity space we start from the boundary, and define, for $k \ge 2$

 $\mathcal{B}_k(\partial P) := \{ \mathbf{v} \in (C^0(\partial P))^2 \text{ s.t. } \mathbf{v}_{|e} \in (\mathbb{P}_k(e))^2 \quad \forall \text{ edge } e \text{ of } \partial P \}.$

Clearly, the dimension of $\mathcal{B}_k(\partial P)$ for a polygon with *n* edges would be

 $\dim \mathcal{B}_k(\partial P) = 2nk.$

Then we can define the VEM space for velocities:

 $\mathcal{V}_k(P) := \{ \mathbf{v} \in (H^1(P))^2 \text{ s.t. } \mathbf{v}_{|\partial P} \in \mathcal{B}_k(\partial P), \operatorname{rot}(\Delta \mathbf{v}) \in \mathbb{P}_{k-3}, \operatorname{div} \mathbf{v} \in \mathbb{P}_{k-1} \}$

while for the pressure we simply take

 $Q_k(P) = \mathbb{P}_{k-1}(P).$

The dimension of $\mathcal{V}_k(P)$ is then equal to 2nk (dimension of $\mathcal{B}_k(\partial P)$) plus $dim(\mathbb{P}_{k-3})$, plus $dim(\mathbb{P}_{k-1}) - 1$ (since, from Gauss theorem, the mean value of the divergence is determined already by the boundary values).

Then the dimension of \mathcal{V}_k is given by

$$\dim(P) = 2nk + \frac{(k-2)(k-1)}{2} + \frac{k(k+1)}{2} - 1 = 2nk + k^2 - k.$$

Accordingly, one can show that a set of degrees of freedom for $\mathcal{V}_k(P)$ can be taken as

- the values of **v** at the *n* vertices (= 2n dofs),
- the values of **v** at k-1 points in each edge (= 2n(k-1) dofs),
- the values of $\int_P \mathbf{v} \cdot \mathbf{x}^{\perp} q_{k-3} \, \mathrm{d}s$ for every $q_{k-3} \in \mathbb{P}_{k-3}$,
- the values of k(k+1)/2 1 moments of divv.

The dofs for Q_k , in each element, will be (say) the moments against \mathbb{P}_{k-1}

A projection operator and the bilinear form a_h

Using the dofs, $\forall \mathbf{v} \in \mathcal{V}_k(P)$ one can compute its divergence (which is a polynomial), and also the operator $\Pi_k^{\varepsilon} : \mathcal{V}_k(P) \to (\mathbb{P}_k(P))^2$ defined by

$$\begin{cases} \int_{P} \varepsilon(\mathbf{v} - \mathbf{\Pi}_{k}^{\varepsilon} \mathbf{v}) : \varepsilon(\mathbf{q}_{k}) \, \mathrm{d}x = 0 \quad \forall \mathbf{q}_{k} \in (\mathbb{P}_{k})^{2} \\ \int_{\partial P} (\mathbf{v} - \mathbf{\Pi}_{k}^{\varepsilon} \mathbf{v}) \, \mathrm{d}s = \mathbf{0} \end{cases}$$

that, in turn, allows to define, on each element P, a discrete bilinear form:

$$a_h^P(\boldsymbol{u},\boldsymbol{v}) := \int_P \varepsilon(\Pi_k^\varepsilon \boldsymbol{u}) : \varepsilon(\Pi_k^\varepsilon \boldsymbol{v}) \, \mathrm{d} x + S^P(\boldsymbol{u} - \Pi_k^\varepsilon \boldsymbol{u}, \boldsymbol{v} - \Pi_k^\varepsilon \boldsymbol{v}) \qquad \forall \, \boldsymbol{u}, \boldsymbol{v} \in \mathcal{V}_k(P)$$

where S^P is again one of the common *stabilizing* bilinear forms of VEMs. The discrete bilinear form a_h will then be obtained (as usual) by summing the contributions a_h^P of all the polygons P

The bilinear form $b(\mathbf{v}, q)$ is directly computable, for every $\mathbf{v} \in \mathcal{V}_k(P)$ and $q \in Q_k(P)$, using the degrees of freedom. Finally, for the right-hand side we use $\prod_{k=2}^{0} \mathbf{f}$ instead of \mathbf{f} . Setting:

$$oldsymbol{V}_h = \{oldsymbol{v} \in oldsymbol{V}: oldsymbol{v}_{|P} \in \mathcal{V}_k(P) \ orall P \in \mathcal{T}_h\},$$
 $Q_h = \{q \mid q_{|P} \in Q_k(P) \ orall P \in \mathcal{T}_h, \ ext{and} \ \int_\Omega q = 0\},$

we have the discretized problem: Find $\boldsymbol{u}_h \in \boldsymbol{V}_h, \ p_h \in Q_h$ such that

$$\begin{cases} a_h(\boldsymbol{u}_h, \boldsymbol{v}_h) + b(\boldsymbol{v}_h, p_h) = (\Pi_{k-2}^0 \mathbf{f}, \boldsymbol{v}_h) & \forall \boldsymbol{v}_h \in \mathbf{V}_h, \\ b(\boldsymbol{u}_h, q_h) = 0 & \forall q_h \in Q_h. \end{cases}$$

Franco Brezzi (IMATI-CNR, Pavia)

Visualization of dofs. Triangular elements

The following figures show the degrees of freedom for k = 2 and k = 3 on triangles and quads. The squares are *vectorial* dofs (so, 2 dofs each). Note that, apart from the number *n* of edges (and then the dimension of \mathcal{B}_k), nothing changes passing from triangles to quads (and to general polygons).

Figure: Dofs for k = 2, on triangles, for velocities (left) and pressures (right)

Figure: Dofs for k = 3, on triangles, for velocities (left) and pressures (right)

Visualization of dofs. Quadrilateral elements

Figure: Dofs for k = 2, on quads, for velocities (left) and pressures (right)

Figure: Dofs for k = 3, on quads, for velocities (left) and pressures (right)

VEM and FEM (Crouzeix-Raviart)

Crouzeix-Raviart: Velocities = $(\mathbb{P}_2)^2 + (CubicBubbles)^2$, Pressures = \mathbb{P}_1

For VEM the cubic bubbles (for velocities) are replaced by two vectorial valued bubble-functions $\mathbf{b}^i (i = 1, 2)$ solutions of the local Stokes problems: Find $\mathbf{b}^{(i)} \in (H_0^1(P))^2$ and $p^{(i)} \in L^2(P)$ s.t.

$$\begin{cases} -\Delta \mathbf{b}^{(i)} + \nabla \boldsymbol{p}^{(i)} = \mathbf{0}, \\ \operatorname{div} \mathbf{b}^{(i)} = (\mathbf{x} - \bar{\mathbf{x}})_i & \bar{\mathbf{x}} = \text{ barycenter of } P. \end{cases}$$

Figure: Dofs of both FEM and VEM for k = 2

N.B. The VEM discrete solution is exactly incompressible

Limiting ourselves, for simplicity, to the 2-d case with homogeneous Dirichlet b. c. , we recall that the Hellinger-Reissner mixed formulation of linear elasticity problems in a domain Ω can be written as: Find (σ, \mathbf{u}) in $\mathbf{\Sigma} \times \mathbf{U}$ such that

 $\begin{aligned} &\operatorname{div} \boldsymbol{\sigma} + \mathbf{f} = 0 \quad \text{in } \Omega, \\ & \boldsymbol{\sigma} = \mathbb{C}(\varepsilon(\boldsymbol{u})) \quad \text{in } \Omega, \\ & \boldsymbol{u} = \mathbf{0} \text{ on } \partial \Omega, \end{aligned}$

where $\mathbf{\Sigma} := \left\{ \boldsymbol{\tau} \in (L^2(\Omega))^2, \tau_{12} = \tau_{21}, \operatorname{div} \boldsymbol{\tau} \in (L^2(\Omega))^2 \right\}$, $\mathbf{U} := (H_0^1(\Omega))^2$, and the costitutive law is the classical $\mathbb{C}\varepsilon := 2\mu\varepsilon + \lambda \operatorname{tr}(\varepsilon)$. With a common notation we also set $\mathbb{D} := \mathbb{C}^{-1}$.

Defining the bilinear forms (local and global)

$$a^{P}(\sigma, \tau) := \int_{P} \mathbb{D}\sigma : \tau dx \quad \forall P \quad \text{and} \quad a(\sigma, \tau) := \sum_{P} a^{P}(\sigma, \tau),$$

 $b^{P}(\tau, \mathbf{v}) := \int_{P} \mathbf{div} \tau \cdot \mathbf{v} dx \quad \forall P \quad \text{and} \quad b(\tau, \mathbf{v}) := \sum_{P} b^{P}(\tau, \mathbf{v}),$

the variational formulation of the HR problem can be written as: find $\sigma\in\mathbf{\Sigma}$ and $\textbf{\textit{u}}\in\mathbf{U}$ such that

$$\begin{cases} \mathsf{a}(\sigma,\tau) + \mathsf{b}(\tau,\mathbf{u}) = 0 & \forall \tau \in \mathbf{\Sigma}, \\ \mathsf{b}(\sigma,\mathbf{v}) = -(\mathbf{f},\mathbf{v}) & \forall \mathbf{v} \in \mathbf{U}. \end{cases}$$

3

イロト イヨト イヨト

Discrete problems and Targets

With finite dimensional subspaces $\Sigma_h \subset \Sigma$ and $U_h \subset U$, approximate bilinear forms a_h , b_h , and forcing term \mathbf{f}_h , we get the approximate problem: find $\sigma_h \in \Sigma_h$ and $u_h \in U_h$ such that

$$egin{cases} a_h(m{\sigma}_h,m{ au}_h)+b_h(m{ au}_h,m{u}_h)=0 & orall m{ au}_h\inm{\Sigma}_h,\ b_h(m{\sigma}_h,m{v}_h)=-(m{f}_h,m{v}_h) & orallm{ au}_h\inm{U}_h. \end{cases}$$

The difficulties come from the combined targets of

- i) getting a symmetric discrete stress tensor σ_h ,
- *ii*) getting a σ_h with *continuous tractions* at interelements,
- *iii*) getting a *stable pair* (Σ_h, U_h) (*inf-sup* condition),
- *iv*) making the formulation *hybridizable* (de Veubeke style),
- v) getting elementwise *self-equilibrium* ($\mathbf{f} = 0 \rightarrow \mathbf{div} \boldsymbol{\sigma}_h = 0$),
- vi) ensuring the *patch-test* of some order $k \ge 1$ (that is: if **u** is, globally, a polynomial of degree $\le k$, then $\mathbf{u}_h = \mathbf{u}$ and $\boldsymbol{\sigma}_h = \boldsymbol{\sigma}$).

500

Given a polygon P with n edges, we first introduce the space of local infinitesimal rigid body motions:

$$\mathit{RM}(\mathit{P}) = \{ \mathsf{r}(\mathsf{x}) = \mathsf{a} + b(\mathsf{x} - \mathsf{x}_B)^{\perp} \; \; \mathsf{with} \; \mathsf{a} \in \mathbb{R}^2, \; \mathsf{and} \; b \in \mathbb{R} \}$$

where \mathbf{x}_B is the baricenter of *P*. Introducing also the space

$$RM_k^{\perp}(P) = \{\mathbf{p} \in (\mathbb{P}_k)^2 : \int_P \mathbf{p}_k \cdot \mathbf{r} = 0 \ \forall \mathbf{r} \in RM(P)\},$$

we note that, obviously, we can always decompose $(\mathbb{P}_k)^2$ as a direct sum

 $(\mathbb{P}_k)^2 = RM(P) \oplus RM_k^{\perp}(P).$

The discrete stresses and displacements

Following Artioli-De Miranda-Lovadina-Patruno (2018), for $k \ge 1$ the the local tensor space of discretized stresses is given by:

$$\begin{split} \boldsymbol{\Sigma}_k(P) &:= \Big\{ \boldsymbol{\tau} \in \boldsymbol{\mathsf{H}}(\operatorname{\mathsf{div}};\Omega;\mathbb{S}) \text{ s.t. } \operatorname{\mathit{cur/curl}}(\mathbb{D}\boldsymbol{\tau}) = \boldsymbol{0}, \\ \boldsymbol{\tau} \cdot \boldsymbol{\mathsf{n}}_{|e} \in (P_k(e))^2 \, \forall e \in \partial P, \, \operatorname{\mathsf{div}}\boldsymbol{\tau} \in (\mathbb{P}_k)^2 \Big\}. \end{split}$$

We recall that $\mathbb{D} := \mathbb{C}^{-1}$, and $curlcurl(\mathbf{z}) := (z_{11})_{yy} - 2(z_{12})_{xy} + (z_{22})_{xx}$ so that $curlcurl(\mathbb{D}\tau) = 0$ iff $\tau = \mathbb{C}(\varepsilon(\mathbf{v}))$ for some vector \mathbf{v} . A $\tau \in \mathbf{\Sigma}_k(P)$ can be individuated by the following degrees of freedom:

for each edge
$$e$$
 in ∂P : $\int_e \boldsymbol{ au}_{\mathbf{n}} \cdot \mathbf{q}_k \, \mathrm{d}s \quad \forall \mathbf{q}_k \in (\mathbb{P}_k(e))^2,$

in
$$P$$
: $\int_P \operatorname{div} \boldsymbol{\tau} \cdot \mathbf{q}_k \, \mathrm{d}x \quad \forall \mathbf{q}_k \in (RM)_k^{\perp}.$

Finally, for displacements, we simply take in each element $U_h := (\mathbb{P}_k)_k^2$

Franco Brezzi (IMATI-CNR, Pavia)

The projector and the bilinear form a_h

Using the above dofs we can construct a projection Π_k^a onto $(\mathbb{P}_k)_{sym}^4$:

$$a^P(\Pi_k^a \boldsymbol{ au} - \boldsymbol{ au}, \mathbf{p}_k) = 0 \qquad \forall \mathbf{p}_k \in (\mathbb{P}_k)^4_{sym}.$$

We can also compute $\operatorname{div} \tau$, that belongs to $(\mathbb{P}_k)^2$. Then we define

$$a_h^P(\sigma_h, \tau_h) := a^P(\Pi_k^a \sigma, \Pi_k^a \tau_h) + S^P((I - \Pi_k^a)\sigma_h, (I - \Pi_k^a)\tau_h), \forall \sigma_h, \tau_h \in \mathbf{\Sigma}_k(P),$$

where again the bilinear form S^P is a stabilizing term (to fix ideas, of the *dofi-dofi* type).

Finally one gets the global bilinear form $a_h(\cdot, \cdot)$ summing over the elements.

On the other hand, no projection is needed for the second equation as both the divergence of tensors in Σ_h and the elements of U_h are polynomials.

We point out that VEM spaces enjoy, at the same time, all these features:

- A They pass the patch test (of order k).
- B They are easily hybridizable (having no vertex dofs).
- C The stress field is symmetric (equilibrium of momentums).
- D If the load $\mathbf{f} \in (\mathbb{P}_k)^2$, then $\mathbf{div}\boldsymbol{\sigma}_h + \mathbf{f} = 0$ (equilibrium of forces).
- E The definition, essentially, does not depend on the *shape* of the elements (triangles, quads, polygons, polyhedra etc.)

Figure: H-R VEM Dofs (Artioli-De Miranda-Lovadina-Patruno 2018) for k = 1

Figure: H-R FEM Dofs (Arnold-Winther 2002) Dofs for k = 1

イロト イボト イヨト イヨト

E

That's all, folks!!!

Thank you

for your PATIENCE!

Franco Brezzi (IMATI-CNR, Pavia)

June 174h, 2021 54 / 54

Image: A matrix and a matrix