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Nature does not stick on triangles - 1

Grape leaf
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Nature does not stick on triangles - 2

Crystal Grain
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Nature does not stick on triangles - 3

Prostate Cancer
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Local adaptation might be heavy-1

Pacman
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Local adaptation might be heavy-2

Vortices
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Use of Polytopes: Boundary layers

The ”interface” elements are treated as epta-gons.
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Use of Polytopes: Moving Objects

At each time step, the mesh is adapted to the object
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Use of Polytopes: Local Refinement

Combining a fine mesh with a coarse one
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Use of Polytopes: Something going on there...

A fracture, or a 1-d intrusion
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Kick off: Recalling the basic idea of VEMs

~E

~point value average

Consider a pentagonal element E. For ”order of precision k = 2” we set:

V2(E ) := {v ∈ C 0(Ē ) s.t. v|e ∈ P2(e) ∀ edge e, and ∆v ∈ P0(E )} .

Clearly, the dimension of V2(E ) is equal to 11. Note that V2(E ) contains
all polynomials of degree ≤ 2, plus 5 other smooth functions that we
don’t want to compute. We can take as (11) degrees of freedom

the values at vertexes and midpoints, plus

the average on E .

It is easy to see that these d.o.f.’s are unisolvent. Note: On a triangle we
have the six P2 plus a bubble b: b=0 at the boundary, ∆b = 1
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Contructing Projectors H1(E )→ Pk First example: Π∇k

To every v ∈ H1(E ) we can associate Π∇,E2 v ∈ P2(E ) defined by∫
E
∇(Π∇,E2 v) · ∇q2 =

∫
E
∇v · ∇q2 for all q2 ∈ P2(E ).

Note that the quantity on the right-hand side∫
E
∇v · ∇q2 ≡ −∆q2

∫
E

v +

∫
∂E

v
∂q2

∂n

is computable (out of the above d.o.f.s) ∀v ∈ V2(E ) and ∀q2 ∈ P2.

Note also that the Π∇,E2 v above is defined only up to a constant. To
define it uniquely in P2 we must add, for instance,∫

∂E
(Π∇,E2 v − v)ds = 0 or

∫
E

(Π∇,E2 v − v)dE = 0.

Note finally that Π∇,E2 v = v whenever v ∈ P2 (⇒ Π∇,E2 is a projection).
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Contructing Projectors H1(E )→ Pk . Two more examples

To every v ∈ H1(E ) we can associate ΠS ,E
2 v ∈ P2(E ) defined by∫

∂E
ΠS,E

2 v q2 =

∫
∂E

v q2 for all q2 ∈ P2(E ).

Note that ΠS ,E
2 v is uniquely defined since the only q2 ∈ P2(E ) that

vanishes identically on ∂E is the polynomial ≡ 0.
Here too, ΠS,E

2 v = v whenever v ∈ P2 (⇒ ΠS ,E
2 is a projection).

Similarly one can define in (P1(E ))2 the L2 projection Π0,E
1 (∇v) of ∇v :∫

E
Π0,E

1 (∇v) · q1 =

∫
E
∇v · q1 for all q1 ∈ (P1(E ))2.

Note that, here too, the rhs is computable using the dofs of v .
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A simple model problem

For f ∈ L2(Ω) consider the problem

Find u such that−∆u = f in Ω and u = 0 on ∂Ω.

Setting

aE (u, v) :=

∫
E
∇u · ∇v a(u, v) :=

∑
E

aE (u, v).

and (f , v)0,E :=

∫
E

f v and (f , v) :=
∑
E

(f , v)0,E

the problem can be written as

Find u ∈ H1
0 (Ω) such that: a(u, v) = (f , v) ∀v ∈ H1

0 (Ω)
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Discretizing the local stiffness matrices

Let Th be a decomposition of Ω into polygons E . Defining

V2(Ω) := {v ∈ H1
0 (Ω) such that v|E ∈ V2(E ) ∀E ∈ Th},

we start setting, in each E , the consistency part

aEC (u, v) :=

∫
E
∇Π∇,E2 u · ∇Π∇,E2 v for u and v in H1(E )

with the fundamental property (P2-Consistency!):

aEC (u, v) ≡ aE (u, v) whenever either u or v is a polynomial of degree ≤ 2.

Finally we set:

aC (u, v) :=
∑
E

aEC (u, v).
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The discrete bilinear form ah

We define, for u and v in V2(Ω),

ah(u, v) := aC (u, v) +
∑
E

SE (u, v)

where the stabilizing terms SE (u, v) can be taken, for instance, as

SE (u, v) :=
∑
i

Ci

(
dofi (u−Π∇,E2 u)

)
·
(

dofi (v −Π∇,E2 v)
)

(dofi−dofi)

and, for each E , the dof ′i s are the degrees of freedom in V2(E ), and Ci is
a suitable scaling factor, such that

α∗a(vh, vh) ≤ ah(vh, vh) ≤ α∗a(vh, vh) ∀vh ∈ V2(Ω)
for suitable positive constants α∗ and α∗ independent of h.
Note: SE (u, v) = 0 whenever either u or v is in P2 (saving consistency).
The discretized problem will now be

Find uh in V2(Ω) such that ah(uh, vh) = (f ,Πvh) ∀vh ∈ V2(Ω).
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Polygons

We point out that the same geometrical entity (say, a triangle) might be
considered as a polygon (for instance, a quadrilateral or a pentagon,
hexagon, etc.) according to the number of points on its boundary that we
consider as vertices. See the figure below. This can be extremely helpful
for example when doing adaptive mesh refinement (see the leftmost case).

Figure: Each of the three above polygons ia considered as a hexagon
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The Enhancement- Serendipity trick

In order to eliminate as many internal dofs as possible, and, at the same
time, to allow the computation of all the moments of order ≤ k , we first
define the local space

Ṽ S
k (P) := {v ∈ C 0(P) : v|e ∈ Pk(e) ∀e ⊂ ∂P, ∆v ∈ Pk(P)},

with the same boundary degrees of freedom, plus

the internal moments of order up to k :

∫
P

v pkdx ∀pk ∈ Pk(P).

Clearly the space Ṽ S
k (P) is much bigger than the original VEM space,

apparently in contradiction with our first aim. Wait and see....
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The Boundary-projection operator Πk

We define locally an operator Πk : H1(P) → Pk(P) as follows:

Πkv ∈ Pk(P) :

∫
∂P

(Πkv − v)qk ds = 0 ∀qk ∈ Pk(P).

We already saw it (under the name ΠS ,E
2 ) for k = 2. For a general k the

above system has a unique solution unless Pk contains polynomials that
are identically zero on the boundary, i.e. unless Pk contains bubbles (that
will have the form v = βrqk−r where βr is the lowest order bubble).
In these cases we need to add internal conditions. For instance (assuming
for simplicity that P is convex) we can add∫

P
(Πkv − v)qk−rdx = 0 ∀qk−r ∈ Pk−r

and then solve the system in the least-squares sense.
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Copying the moments!

Once the polynomial Πkv has been computed, we define the new space by
“copying” its moments. Namely, setting {N = maximum degree of
internal moments used to define Πk}, we set:

V S
k (P) :=

{
v ∈ Ṽ S

k (P) s. t.

∫
P

v psdx =

∫
P

Πkv psdx ∀ps ∈ Phom
s N < s ≤ k

}

VEMS k=3

FEM k=2FEM k=1 FEM k=3

VEMS k=1 VEMS k=2

Figure: Triangles: dofs for serendipity VEM
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Copying the moments!

VEMS k=4

FEMS k=1 FEMS k=2 FEMS k=3 FEMS k=4

VEMS k=1 VEMS k=2 VEMS k=3

Figure: Quads: dofs for serendipity FEM and VEM

On triangles serendipity VEM have the same number of dofs as FEM (and
actually the two spaces coincide.) On quadrilaterals Serendipity VEM and
FEM have, again, the same number of dofs, but serendipity FEM are
known to suffer from distorsions, while Serendipity VEM do not.
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The local VEM Nonconforming space

The local VEM nonconforming space of order k is defined as:

V NC
k (P) := {v ∈ H1(P) :

∂v

∂n |e
∈ Pk−1(e) ∀ edge e, ∆v ∈ Pk−2(P)}.

The degrees of freedom for a VEM NC space are given by

(D ′1) : the moments

∫
e

vpk−1ds ∀pk−1 ∈ Pk−1(e) ∀e

(D ′2) : for k ≥ 2 the moments

∫
P

vpk−2dx ∀pk−2 ∈ Pk−2(P).
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The global NC VEMs

Let H1(Th) =
∏

P∈Th H1(P) (functions separately in H1 of each element).

For ϕ ∈ H1(Th) let jump{ϕ} be the jump on internal edges e ∈ Th.

Then, for k ≥ 1 we consider the global non-conforming space

V NC
k (Ω) := {v ∈ H1(Th) : v|P ∈ V NC

k (P) ∀P,∫
e

jump{v}pk−1ds = 0 ∀ internal edge e, ∀pk−1 ∈ Pk−1(e),∫
e

vpk−1ds = 0 ∀e on ∂Ω, ∀pk−1 ∈ Pk−1(e)}.
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VEM and FEM on triangles

Just to give an idea of the possible comparison between nonconforming
FEM and VEM, we consider the case of k = 2 on triangles.

For both we take first, as dofs, the moments, on each edge, of order ≤ 1.

But since k = 2 is even, FEM also need an additional dof inside (due to
the presence of the so-called nonconforming bubble);

VEM are not better off, since their internal degree of freedom cannot be
eliminated through some sort of Serendipity trick, (exactly for the same
reason: there is a p2 that is orthogonal, on each edge, to all linear and to
all constant functions).
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Typical escapes

The typical escape, for FEM, is to add a seventh polynomial (see e.g.
Fortin-Soulie): indicating by A, B, C the vertices of the triangle, and
indicating with λA, λB , and λC the usual barycentric cohordinates, we add

ζ := λAλB(λA − λB) + λBλC (λB − λC ) + λCλA(λC − λA)

and take the mean value on P as seventh degree of freedom.

When using VEM we already have seven functions and the distinction
between k odd or k even is not necessary. In the case k = 2 we see that
the VEM space obviously contains all polynomials of degree ≤ 2, and can
be seen as the union of the polynomials of degree ≤ 2 and of an additional
function... (see next slide)
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The additional VEM function

For instance the seventh VEM function, say χ(x , y), with the notation of
the figure, could be identified by the following conditions:∫

P
χdx = 0,

∫
e
χds = 0 ∀ edge e (1 + 3 conditions),

1

|ea|

∫
ea

χ qads =
1

|eb|

∫
eb

χ qbds =
1

|ec |

∫
ec

χ qcds = 1 (3 conds),

where: the edge ea, with length |ea|, is opposite to the vertex A, and qa is
the polynomial of degree 1 such that qa(a1) = 1 and qa(a2) = −1 (and
similar notation for the edges eb and ec).

c1

c2

B a1 a2

A

C

b1

b2
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Comparing the two “additional seventh functions“

We first point out that on the boundary of our triangle the seventh VEM
function χ cannot be the trace of a polynomial of degree ≤ 2. Indeed, it is
easy to check that every v ∈ P2 verifies

1

|ea|

∫
ea

v qads +
1

|eb|

∫
eb

v qbds +
1

|ec |

∫
ec

v qcds = 0.

On the boundary the behaviour of χ and ζ (the one proposed by
Fortin-Soulie for FEM), is quite similar, but
- χn is on each edge a polynomial of degree 1 (and not 2 as ζ)
and (most important)
-∆χ is constant (instead of linear)
features that might be convenient in problems where some equilibrium or
conservation properties could be enforced strongly and not ”on average”.
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C 1 VEMs - a model problem

As an example of problem that needs C 1 approximations we take a plate
bending problem for a clamped plate (say, for Poisson ratio = 0) . For
f ∈ L2(Ω) consider the problem

Find w such that ∆2w = f in Ω w = ∂w
∂n = 0 on ∂Ω.

The variational formulation of the problem is:

Find w ∈ H2
0 (Ω) such that:∫

Ω
D2w : D2v︸ ︷︷ ︸ =

∫
Ω

f v︸ ︷︷ ︸ ∀v ∈ H2
0 (Ω)

a(w , v) (f , v)

The problem has a unique solution.
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Programming C 1 FEMs

Programming C 1 FEMs is feasible, but also an unforgettable experience

Figure: Tasting cod-liver oil
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C 1 VEMs

Let P be a polygon in Th. For integers r ≥ 0, s ≥ 0, m ≥ −1 we set

Vr ,s,m(P) :={w ∈H2(P):w|e ∈Pr (e),wn|e ∈Ps(e) ∀ edge e,∆2w ∈ Pm(P)}

Clearly, for H2-conformity, the dofs must be chosen conveniently. In the
vertices we will need continuity of w and wn. Hence we need as dofs

• (D0) the values of w ,w/1,w/2 at the vertices,

and this will require, in a natural way, that r ≥ 3 and s ≥ 1. Moreover w
and w/n must be single-valued on edges, requiring as additional dofs, e.g.,

• (D1) for r ≥ 4, the moments

∫
e

w qr−4ds ∀qr−4 ∈ Pr−4(e), ∀e ∈ ∂P,

• (D2) for s ≥ 2, the moments

∫
e

w/n qs−2dx ∀qs−2 ∈ Ps−2(e) ∀e ∈ ∂P.
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VEM version of “reduced HCT“

The smallest space will then correspond to r = 3, s = 1, m = −1, and is
an extension to polygons of the reduced Hsieh-Clough-Tocher composite
triangular element. The VEM space (for a general polygon P) will then be

V (P) :={w ∈H2(P): w|e ∈P3(e),wn|e ∈P1(e),∀ edge e, and ∆2w = 0 in P},

whose degrees of freedom are the values of w ,wx ,wy at vertices .

Ww, D

Figure: C 1 VEM, reduced HCT-like
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VEM version of HCT

Another example (for r = 3, s = 2, m = −1) is given here below; the
corresponding element will have (D0) and (D2) as degrees of freedom and
is a sort of VEM counterpart of the original Hsieh-Clough-Tocher
composite triangular element .

2

Dw,w, Wn

Figure: C 1 VEM, HCT-like
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More general cases

At a general level, the above VEM elements will have order of precision:

κ (≡ order of precision) = min{r , s + 1,m + 4}

and out of dofs (D0), .., (D3), (integrating by parts twice) we can compute
an operator ΠP

κ : Vr ,s,m(P) −→ Pκ(P) defined on each element by

aP(ΠP
κ v−v , qκ)=0 ∀qκ ∈ Pκ(P),

∫
∂P

(ΠP
κ v−v)q1ds =0 ∀q1 ∈ P1(P).

The discrete bilinear form, for vh and wh in Vr ,s,m(P), is then defined as

aPh (vh,wh) := aP(ΠP
κ vh,Π

P
κwh)+SP((I−ΠP

κ )vh, (I−ΠP
κ )wh)

with SP(vh,wh) taken, e.g., as dofi-dofi, with (D0)− (D3) properly scaled.
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C p-VEM with p > 2

Along the same lines, still for general polygons, we might easily construct
Cp elements for p ≥ 2. Just to give an example, we might consider

Dw,
n nWWW

2

tnn n tCIRCLES: Dw, W SQUARES
2

In particular, this figure refers to the local spaces

V (P):={v ∈H3(P) :v|e ∈P5, vn|e ∈P4, vnn|e ∈P3 ∀e ∈ ∂P,∆3v =0 in P}.

Franco Brezzi ( IMATI-CNR, Pavia) Non Pol June 174h, 2021 35 / 54



Stokes Problem

We recall (to set the notation) the model Stokes problem
Find u ∈ (H1

0 (Ω))2 and p ∈ L2(Ω) such that:{
−∆u +∇p = f in Ω,

divu = 0 in Ω.

Set: V := (H1
0 (Ω))2, Q := L2

0(Ω) (zero mean value), and define, for u, v
in V, and q ∈ Q:

a(u, v) :=

∫
Ω
ε(u) : ε(v)dΩ b(v, q) :=

∫
Ω
divv q dΩ

(where ε(v) := (∇v + (∇v)T )/2 is the symmetric gradient). The
variational formulation is: Find u ∈ V, p ∈ Q such that{

a(u, v) + b(v, p) = (f, v) ∀v ∈ V,

b(u, q) = 0 ∀q ∈ Q.
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Discretizations

Taking a sequence of conforming discretizations of this problem with
Vh ⊂ V and Qh ⊂ Q, and suitable approximations ah and bh of the
bilinear forms a and b, respectiveky, one can write the discretized version
as: Find uh ∈ Vh and ph ∈ Qh such that{

ah(uh, vh) + bh(vh, ph) = (fh, vh) ∀vh ∈ Vh,

bh(uh, qh) = 0 ∀qh ∈ Qh,

where, in turn, fh is (if needed) a suitable approximation of f. It is well
known that ∃! of the discrete solution with optimal error bounds requires
ellipticity of ah on the kernel of bh and the inf-sup stability condition

∃β > 0 such that inf
qh∈Qh

sup
vh∈Vh

bh(vh, qh)

‖vh‖V ‖qh‖Q
≥ β ∀h.
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Incompressible discrete solutions

One can wonder whether the velocity solution uh would satisfy exactly

divuh ≡ 0 in Ω,

(ensuring the exact incompressibility of the discrete solution). This would
require{
{uh ∈ Vh} and {

∫
P
divuh qh dx = 0∀qh ∈ Qh}

}
⇒
{
divuh = 0 in P

}
.

verified only with very few (and sometimes rather cumbersome) choices of
discretizations (and often only for special types of decompositions). See
the excellent review by John-Linke-Merdon-Neilan-Rebholz (SIAM Review,
2017) and to the references therein.

Franco Brezzi ( IMATI-CNR, Pavia) Non Pol June 174h, 2021 38 / 54



Incompressible VEM

Following Beirão da Veiga - Lovadina- Vacca (2017), for the velocity space
we start from the boundary, and define, for k ≥ 2

Bk(∂P) := {v ∈ (C 0(∂P))2 s.t. v|e ∈ (Pk(e))2 ∀ edge e of ∂P}.

Clearly, the dimension of Bk(∂P) for a polygon with n edges would be

dimBk(∂P) = 2nk.

Then we can define the VEM space for velocities:

Vk(P) := {v ∈ (H1(P))2 s.t. v|∂P ∈ Bk(∂P), rot(∆v) ∈ Pk−3, divv ∈ Pk−1},

while for the pressure we simply take

Qk(P) = Pk−1(P).

The dimension of Vk(P) is then equal to 2nk (dimension of Bk(∂P)) plus
dim(Pk−3), plus dim(Pk−1)− 1 (since, from Gauss theorem, the mean
value of the divergence is determined already by the boundary values).
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Incompressible VEM

Then the dimension of Vk is given by

dim(P) = 2nk +
(k − 2)(k − 1)

2
+

k(k + 1)

2
− 1 = 2nk + k2 − k .

Accordingly, one can show that a set of degrees of freedom for Vk(P) can
be taken as

the values of v at the n vertices (= 2n dofs),

the values of v at k − 1 points in each edge (= 2n(k − 1) dofs),

the values of
∫
P v · x⊥qk−3 ds for every qk−3 ∈ Pk−3,

the values of k(k + 1)/2− 1 moments of divv.

The dofs for Qk , in each element, will be (say) the moments against Pk−1
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A projection operator and the bilinear form ah

Using the dofs, ∀v ∈ Vk(P) one can compute its divergence (which is a
polynomial), and also the operator Πε

k : Vk(P)→ (Pk(P))2 defined by
∫
P
ε(v − Πε

kv) : ε(qk)dx = 0 ∀qk ∈ (Pk)2∫
∂P

(v − Πε
kv)ds = 0

that, in turn, allows to define, on each element P, a discrete bilinear form:

aPh (u, v) :=

∫
P
ε(Πε

ku) : ε(Πε
kv) dx+SP(u−Πε

ku, v−Πε
kv) ∀u, v ∈ Vk(P)

where SP is again one of the common stabilizing bilinear forms of VEMs.
The discrete bilinear form ah will then be obtained (as usual) by summing
the contributions aPh of all the polygons P
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The discrete problem

The bilinear form b(v, q) is directly computable, for every v ∈ Vk(P) and
q ∈ Qk(P), using the degrees of freedom. Finally, for the right-hand side
we use Π0

k−2f instead of f. Setting:

Vh = {v ∈ V : v|P ∈ Vk(P) ∀P ∈ Th},

Qh = {q
∣∣ q|P ∈ Qk(P)∀P ∈ Th, and

∫
Ω

q = 0},

we have the discretized problem: Find uh ∈ Vh, ph ∈ Qh such that{
ah(uh, vh) + b(vh, ph) = (Π0

k−2f, vh) ∀vh ∈ Vh,

b(uh, qh) = 0 ∀qh ∈ Qh.
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Visualization of dofs. Triangular elements

The following figures show the degrees of freedom for k = 2 and k = 3 on
triangles and quads. The squares are vectorial dofs (so, 2 dofs each). Note
that, apart from the number n of edges (and then the dimension of Bk),
nothing changes passing from triangles to quads (and to general polygons).

Figure: Dofs for k = 2, on triangles, for velocities (left) and pressures (right)

Figure: Dofs for k = 3, on triangles, for velocities (left) and pressures (right)
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Visualization of dofs. Quadrilateral elements

Figure: Dofs for k = 2, on quads, for velocities (left) and pressures (right)

Figure: Dofs for k = 3, on quads, for velocities (left) and pressures (right)
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VEM and FEM (Crouzeix-Raviart)

Crouzeix-Raviart: Velocities = (P2)2 +(CubicBubbles)2, Pressures = P1

For VEM the cubic bubbles (for velocities) are replaced by two vectorial
valued bubble-functions bi (i = 1, 2) solutions of the local Stokes problems:
Find b(i) ∈ (H1

0 (P))2 and p(i) ∈ L2(P) s.t.{
−∆b(i) +∇p(i) = 0,

div b(i) = (x− x̄)i x̄ = barycenter of P.

Figure: Dofs of both FEM and VEM for k = 2

N.B. The VEM discrete solution is exactly incompressible...
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The H-R problem and its (many!) difficulties

Limiting ourselves, for simplicity, to the 2-d case with homogeneous
Dirichlet b. c. , we recall that the Hellinger-Reissner mixed formulation of
linear elasticity problems in a domain Ω can be written as:
Find (σ,u) in Σ×U such that

divσ + f = 0 in Ω,

σ = C(ε(u)) in Ω,

u = 0 on ∂Ω,

where Σ :=
{
τ ∈ (L2(Ω))2, τ12 = τ21,divτ ∈ (L2(Ω))2

}
, U := (H1

0 (Ω))2,

and the costitutive law is the classical Cε := 2µε+ λtr(ε). With a
common notation we also set D := C−1.
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Variational formulation of HR

Defining the bilinear forms (local and global)

aP(σ, τ ) :=

∫
P
Dσ : τdx ∀P and a(σ, τ ) :=

∑
P

aP(σ, τ ),

bP(τ , v) :=

∫
P

divτ · vdx ∀P and b(τ , v) :=
∑
P

bP(τ , v),

the variational formulation of the HR problem can be written as:
find σ ∈ Σ and u ∈ U such that{

a(σ, τ ) + b(τ ,u) = 0 ∀τ ∈ Σ,

b(σ, v) = −(f, v) ∀v ∈ U.
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Discrete problems and Targets

With finite dimensional subspaces Σh ⊂ Σ and Uh ⊂ U, approximate
bilinear forms ah, bh, and forcing term fh, we get the approximate
problem: find σh ∈ Σh and uh ∈ Uh such that{

ah(σh, τ h) + bh(τ h,uh) = 0 ∀τ h ∈ Σh,

bh(σh, vh) = −(fh, vh) ∀vh ∈ Uh.

The difficulties come from the combined targets of

i) getting a symmetric discrete stress tensor σh,

ii) getting a σh with continuous tractions at interelements,

iii) getting a stable pair (Σh,Uh) ( inf-sup condition),

iv) making the formulation hybridizable (de Veubeke style),

v) getting elementwise self-equilibrium (f = 0 → divσh = 0),

vi) ensuring the patch-test of some order k ≥ 1 (that is: if u is,
globally, a polynomial of degree ≤ k , then uh = u and σh = σ).
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Towards HR VEM

Given a polygon P with n edges, we first introduce the space of local
infinitesimal rigid body motions:

RM(P) = {r(x) = a + b(x− xB)⊥ with a ∈ R2, and b ∈ R}

where xB is the baricenter of P. Introducing also the space

RM⊥k (P) = {p ∈ (Pk)2 :

∫
P

pk · r = 0 ∀r ∈ RM(P)},

we note that, obviously, we can always decompose (Pk)2 as a direct sum

(Pk)2 = RM(P)⊕ RM⊥k (P).

Franco Brezzi ( IMATI-CNR, Pavia) Non Pol June 174h, 2021 49 / 54



The discrete stresses and displacements

Following Artioli-De Miranda-Lovadina-Patruno (2018), for k ≥ 1 the the
local tensor space of discretized stresses is given by:

Σk(P) :=
{
τ ∈ H(div; Ω;S) s.t. curlcurl(Dτ ) = 0,

τ · n|e ∈ (Pk(e))2 ∀e ∈ ∂P, divτ ∈ (Pk)2
}
.

We recall that D := C−1, and curlcurl(z) := (z11)yy − 2(z12)xy + (z22)xx
so that curlcurl(Dτ )=0 iff τ = C(ε(v)) for some vector v.
A τ ∈ Σk(P) can be individuated by the following degrees of freedom:

for each edge e in ∂P :

∫
e
τ n · qk ds ∀qk ∈ (Pk(e))2,

in P :

∫
P

divτ · qk dx ∀qk ∈ (RM)⊥k .

Finally, for displacements, we simply take in each element Uh := (Pk)2
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The projector and the bilinear form ah

Using the above dofs we can construct a projection Πa
k onto (Pk)4

sym:

aP(Πa
kτ − τ ,pk) = 0 ∀pk ∈ (Pk)4

sym.

We can also compute divτ , that belongs to (Pk)2. Then we define

aPh (σh, τ h) :=aP(Πa
kσ,Π

a
kτ h)+SP((I−Πa

k)σh, (I −Πa
k)τ h),∀σh, τ h∈Σk(P),

where again the bilinear form SP is a stabilizing term (to fix ideas, of the
dofi-dofi type).
Finally one gets the global bilinear form ah(·, ·) summing over the
elements.
On the other hand, no projection is needed for the second equation as both
the divergence of tensors in Σh and the elements of Uh are polynomials.
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Qualities of H-R Virtual elements

We point out that VEM spaces enjoy, at the same time, all these features:

A - They pass the patch test (of order k) .

B - They are easily hybridizable (having no vertex dofs).

C - The stress field is symmetric (equilibrium of momentums).

D - If the load f ∈ (Pk)2, then divσh + f = 0 (equilibrium of forces).

E - The definition, essentially, does not depend on the shape of the
......elements (triangles, quads, polygons, polyhedra etc.)
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Normal Stress (2 dofs) Displacements (2 dofs)Divergence moments vs RT−ort (3 dofs)

Figure: H-R VEM Dofs (Artioli-De Miranda-Lovadina-Patruno 2018) for k = 1

Normal Stress (2 dofs) Displacements (2 dofs)Stress Average (3 dofs) Stress values (3 dofs)

Figure: H-R FEM Dofs (Arnold-Winther 2002) Dofs for k = 1
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That’s all, folks!!!

Thank you

for your PATIENCE!
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