Conforming finite element sequences for strain and curvature.

Snorre H. Christiansen

Department of Mathematics
University of Oslo
joint work with Kaibo Hu

Outline

- Elasticity complexes: strain and curvature
- New finite element discretization
- Finite element systems : sheaves
- Vector bundles: RM cochains
- de Rham theorem and Bianchi identity

Elasticity Strain Complex

- Continuous metrics:

$$
\begin{equation*}
\mathrm{H}^{2}(U, \mathbb{V}) \xrightarrow{\text { def }} \mathrm{H}_{\text {sven }}^{1}(U, \mathbb{S}) \xrightarrow{\text { sven }} \mathrm{H}^{0}(U, \mathbb{R}) . \tag{1}
\end{equation*}
$$

with:

$$
\begin{equation*}
\mathrm{H}_{\text {sven }}^{1}(U, \mathbb{S})=\left\{u \in \mathrm{H}^{1}(U, \mathbb{S}): \text { sven } u \in \mathrm{H}^{0}(U, \mathbb{R})\right\} \tag{2}
\end{equation*}
$$

- Exactness and rigid motions.
- Saint Venant compatibility and linearized curvature.
- Lower regularity and partitions of unity.

New finite element

Figure: Strain complex with continuous metrics.

Spaces

- Vector valued Clough Tocher:

$$
\begin{equation*}
A^{0}(T)=\mathrm{C}^{1} \mathrm{P}^{3}(\mathcal{R}(T), \mathbb{V}) \tag{3}
\end{equation*}
$$

- Continuous P^{2} metrics with integrable sven (cont. $\partial_{\nu} u \tau \cdot \tau$):

$$
\begin{equation*}
A^{1}(T)=\mathrm{C}_{\mathrm{sven}}^{0} \mathrm{P}^{2}(\mathcal{R}(T), \mathbb{S}) \tag{4}
\end{equation*}
$$

DoFs: - values at vertices (3×3),

- pairings with $M(E) \approx R M$ for each edge $E(3 \times 3)$,
- integral against normal vector on edges (3×2).
- Piecewise constants:

$$
\begin{equation*}
A^{2}(T)=\mathrm{P}^{0}(\mathcal{R}(T), \mathbb{R}) \tag{5}
\end{equation*}
$$

DoFs: integration against affine functions $(\cdot \approx R M)$.

BGG

$$
\begin{align*}
& \mathrm{H}^{2}(U, \mathbb{V}) \xrightarrow{\text { grad }} \mathrm{H}_{\text {sven }}^{1}(U, \mathbb{M}) \xrightarrow{\text { skew }} \mathrm{H}_{\text {curl } \mathrm{T}}^{0}(U, \mathbb{V}), \tag{6}\\
& \mathrm{H}^{1}(U, \mathbb{R}) \xrightarrow{\text { grad }} \mathrm{H}_{\text {curl }}^{0}\left(U, \mathbb{V}^{\mathrm{T}}\right) \xrightarrow{\text { curl }} \mathrm{H}^{0}(U, \mathbb{R}) .
\end{align*}
$$

Discrete BGG

Finite element systems [C. 08, C.-Hu 18]

- Fix a cellular complex \mathcal{T}.
- A finite element system A is
$A^{k}(T)$ for $k \in \mathbb{N}$ and $T \in \mathcal{T}$ of all dimensions.
- differentials: $\mathrm{d}: A^{k}(T) \rightarrow A^{k+1}(T)$.
- restrictions: $T^{\prime} \subseteq T$ gives r : $A^{k}(T) \rightarrow A^{k}\left(T^{\prime}\right)$.
- de Rham map.
commutation relations.
- Associated global space:

$$
A^{k}(\mathcal{T})=\left\{u \in \bigoplus_{T \in \mathcal{T}} A^{k}(T):\left.\quad T^{\prime} \subseteq T \Rightarrow u_{T}\right|_{T^{\prime}}=u_{T^{\prime}}\right\}
$$

Encodes continuity.

- - FES is a contravariant functor from a cellular complex to differential complexes.
- Global space is the inverse limit.

Induced operators (on faces)

Cochains with coefficients

- For each $T \in \mathcal{T}$, a vectorspace $L(T)$. A discrete vectorbundle.
- When T^{\prime} is a codim 1 face of T, an isomorphism $\mathrm{t}_{T T^{\prime}}: L\left(T^{\prime}\right) \rightarrow L(T)$. A discrete connection.
- Flatness:

$$
\begin{equation*}
\mathrm{t}_{T T_{0}^{\prime}} \mathrm{t}_{T_{0}^{\prime} T^{\prime \prime}}=\mathrm{t}_{T T_{1}^{\prime}} \mathrm{t}_{T_{1}^{\prime} T^{\prime \prime}} \tag{7}
\end{equation*}
$$

- Cochains $\mathcal{C}^{k}(\mathcal{T}, L):(u(T))_{T \in \mathcal{T}^{k}}$ such that $u(T) \in L(T)$.
- Differential $\delta_{\mathrm{t}}^{k}: \mathcal{C}^{k}(\mathcal{T}, L) \rightarrow \mathcal{C}^{k+1}(\mathcal{T}, L)$ defined by:

$$
\begin{equation*}
\left(\delta_{\mathrm{t}}^{k} u\right)(T)=\sum_{T^{\prime} \unlhd T} \mathrm{o}\left(T, T^{\prime}\right) \mathrm{t}_{T T^{\prime}} u\left(T^{\prime}\right) \tag{8}
\end{equation*}
$$

- Flatness gives $\delta_{\mathrm{t}}^{k+1} \circ \delta_{\mathrm{t}}^{k}=0$.

FES and cochains

- e : $A^{k}(T) \rightarrow L(T)$. Generalized Stokes: For $u \in A^{k-1}(T)$:

$$
\begin{equation*}
\mathrm{e}_{T} \mathrm{~d}_{T} u=\sum_{T^{\prime} \in \partial T} \mathrm{o}\left(T, T^{\prime}\right) \mathrm{t}_{T T^{\prime}} \mathrm{e}_{T^{\prime}} \mathrm{r}_{T^{\prime} T} u \tag{9}
\end{equation*}
$$

- Commutes with differentials:

$$
\begin{equation*}
\mathrm{e}: A^{\bullet}\left(\mathcal{T}^{\prime}\right) \rightarrow \mathcal{C}^{\bullet}\left(\mathcal{T}^{\prime}, L\right) \tag{10}
\end{equation*}
$$

Example

- Spaces:
$M(T)$: affine functions, on T.
$M(E):(u, v)$ with u affine, v constant, on E. $M(V): \mathbb{R}^{2} \times \mathbb{R}$.
- Restrictions:
$M(T) \rightarrow M(E): u \mapsto\left(u, \partial_{\nu} u\right)$ on E.
$M(E) \rightarrow M(V):(u, v) \mapsto\left(v \tau-\partial_{\tau} u \nu, u\right)$ on V.
- Vectorbundle with discrete connection by duality. Check flatness.

de Rham theorem

- The evaluation map e : $A^{\bullet}\left(\mathcal{T}^{\prime}\right) \rightarrow \mathcal{C}^{\bullet}\left(\mathcal{T}^{\prime}, L\right)$ induces isomorphisms on cohomology groups.
- Proof: Induction on dimension: add top dimensional cells. Write Mayer Vietoris short exact sequences for A and \mathcal{C}, and connect them by e. Deduce long exact sequences that are connected by e. Use five lemma.

Bianchi identity

- Drop requirement of flatness, and introduce curvature:

$$
\begin{equation*}
\mathrm{c}_{\mathrm{t}}\left(T, T^{\prime \prime}\right)= \pm\left(\mathrm{t}_{T T_{0}^{\prime}} \mathrm{t}_{T_{0}^{\prime} T^{\prime \prime}}-\mathrm{t}_{T T_{1}^{\prime}} \mathrm{t}_{T_{1}^{\prime} T^{\prime \prime}}\right) \tag{11}
\end{equation*}
$$

- Then $\delta_{\mathrm{t}}^{k+1} \circ \delta_{\mathrm{t}}^{k} u(T)=\sum_{T^{\prime \prime}} c_{\mathrm{t}}\left(T, T^{\prime \prime}\right) u\left(T^{\prime \prime}\right)$.
- Introduce cubical complex, and discrete connection on endomorphisms.
- Bianchi:

The covariant exterior derivative of the curvature is 0 . Combinatorial identity attached to cubes.

