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The problem

We are interested in devising, as systematically as possible, fully discrete
numerical schemes for hyperbolic problems which are high-order accurate
and preserve, not only the energy of the system, but as many as possible
other physical quantities of interest when long-term simulations are sought.

We are developing an approach to achieve this for hyperbolic problems
with Hamiltonian structure. Here, we consider the case of linear,
wave-propagation problems.
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Three model wave equations

acoustic elastic electromagnetic

ü = ∇ · (κ∇u)+ f ρ ü = ∇·(Cεεε(u))+ f ε Ë =−∇× 1
µ

∇×E

{
κ−1q̇ = ∇v

v̇ = ∇ · q+ f

{
C−1 σ̇ = εεε(v)

ρ v̇ = ∇ ·σ + f

{
ε Ė = ∇×H
µ Ḣ =−∇×E

{
u̇ = v

ε v̇ = ∇ · (κ∇u)+ f

{
u̇ = v

ρ v̇ = ∇·(Cεεε(u))+ f

{
Ė = V

εV̇ =−∇× 1
µ

∇×E
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Linear Symmetric hyperbolic or Hamiltonian systems?

• A DG discretization of each of the three wave equations, written as
hyperbolic, symmetric systems, typically produces a dissipative scheme.

• A new DG discretization of each of the three wave equations, written as
Hamiltonian systems, produces a non-dissipative scheme which can also
provide non-drifting approximations to invariant functionals.
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A numerical illustration
A Dissipative DG method for the acoustic wave equation
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A numerical illustration
An S-H DG method for the acoustic wave equation
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A numerical illustration
The total energy for the acoustic wave equation
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The main idea and its two ingredients

To devise such schemes, the idea is to first discretize the Hamiltonian
system in space so that the resulting system of ODEs is also Hamiltonian.

Then, an application of a symplectic time-marching scheme guarantees the
non-drifting property of the Hamiltonian (and other first integrals of the
system).
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The first ingredient: Symplectic methods
The simplest Hamiltonian system

The simplest Hamiltonian system is the following:

ṗ =− ∂

∂q
H(p,q), q̇ =

∂

∂p
H(p,q),

and H(p,q) is called the Hamiltonian.

On the orbits of the system, t 7→ (p(t),q(t)), the Hamiltonian remains
constant because

d

dt
H(p(t),q(t)) = ṗ

∂

∂p
H + q̇

∂

∂q
H = 0.

Let us find what happens when this system is discretized by a symplectic
method.
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The first ingredient: Symplectic methods
The symplectic Euler method

We discretize our Hamiltonian system by the symplectic Euler method:

pn+1 = pn−∆t
∂

∂q
H(pn+1,qn), qn+1 = qn + ∆t

∂

∂p
H(pn+1,qn),

That the method is symplectic means that we have

dpn+1∧dqn+1 = dpn∧dqn,

and this implies that there is a discrete Hamiltonian H∆t , close to H, such
that

H∆t(pn+1,qn+1) = H∆t(pn,qn).

Bernardo Cockburn (U. of Minnesota, USA) Symplectic-Hamiltonian FEM methods NEMESIS, 2021 12 / 28



The first ingredient: Symplectic methods
The Harmonic oscillator

For the harmonic oscillator, H(p,q) = q2/2 +p2/2, we can easily find that

H∆t(pn+1,qn+1) = H∆t(pn,qn)

where
H∆t(p,q) = H(p,q)−∆t p q.

This shows that all the discrete orbits of the Symplectic Euler method stay
on the ellipse H∆t(p,q) = H(p0,q0)−∆t p0 q0, and that the approximate
energy does not drift from the exact one for all time.

Bernardo Cockburn (U. of Minnesota, USA) Symplectic-Hamiltonian FEM methods NEMESIS, 2021 13 / 28



The first ingredient: Symplectic methods
References for symplectic methods

• There is a vast literature on symplectic methods: see the 92 review by
J.M. Sanz-Serna in Acta Numerica.

• Of particular interest to us are the symplectic Runge-Kutta methods
characterized in 94 by P.B. Bochev and C. Scovel in BIT.

• For separable Hamiltonians, the Explicit Partitioned Runge-Kutta
methods can be very efficiently implemented and are symplectic, see the
93 paper by L. Abia and J.M. Sanz-Serna in Math. Comp..
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The second ingredient: The Hamiltonian machinery
The initial-boundary value problem

u̇ = v in Ω× (0,T ],

ρ v̇ = ∇·(Cεεε(u)) + f in Ω× (0,T ],

u = uD on ΓD × (0,T ],

Cεεε(u)n = σσσN on ΓN × (0,T ].
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The second ingredient: The Hamiltonian machinery
The Hamiltonian formulation

The mappings t 7→ (u(t),v(t)) are orbits on a smooth manifold M

defining a dynamical system which is Hamiltonian if we can rewrite it as

Ċ = {C ,H},

for the coordinates functionals C , defined on the phase space M and
identified with a space of test functions T. Here H is the Hamiltonian and
{·, ·} is the Poisson bracket. The triple (M,{·, ·},H) is called a
Hamiltonian dynamical system.
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The second ingredient: The Hamiltonian machinery
The Hamiltonian formulation

The Hamiltonian is

H(u(t),v(t)) =
1

2

∫
Ω

(ρ v(t) ·v(t) +Cεεε(u(t)) : εεε(u(t)))

−
∫

Ω
f ·u(t)−

∫
ΓN

σσσN ·u(t).

The Poisson bracket is

{F ,G}=
∫

Ω
ρ
−1

(
δF

δu
· δG

δv
− δF

δv
· δG

δu

)
,

for F = F (u,v) and G = G (u,v) functionals on M, where δF
δu

and δF
δv

denote the functional derivatives of the functional F .
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The second ingredient: The Hamiltonian machinery
The Hamiltonian formulation

The phase manifold is

M = {ωωω ∈ L2(Ω)d : ∇ · (Cεεε(ωωω)) ∈ L2(Ω)d , ωωω = uD on ΓD}×L2(Ω)d ,

The coordinates functionals are

Cu(φφφ) =
∫

Ω
ρ u ·φφφ , Cv (ψψψ) =

∫
Ω

ρ v ·ψψψ,

for (φφφ ,ψψψ) in the space of test functions

T = C∞(Ω)d ×{ηηη ∈ C∞(Ω)d : ηηη = 0 on ΓD},
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The second ingredient: The Hamiltonian machinery
The Hamiltonian formulation

Taking C := Cu(φφφ) and C := Cv (ψψψ), we get∫
Ω

ρ u̇ ·φφφ = Ċu(φφφ) = {Cu(φφφ),H}=
∫

Ω
ρ
−1 δCu(φφφ)

δu
· δH

δv
=
∫

Ω
ρ v ·φφφ ,∫

Ω
ρ v̇ ·ψψψ = Ċv (ψψψ) = {Cv (ψψψ),H}=−

∫
Ω

ρ
−1 δCv (ψψψ)

δv
· δH

δu

=−
∫

Ω
Cεεε(u) : εεε(ψψψ) +

∫
Ω
f ·ψψψ +

∫
ΓN

σσσN ·ψψψ,

for all (φφφ ,ψψψ) ∈ T. This means that the equations of linear elastodynamics
define a Hamiltonian dynamical system.
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The second ingredient: The Hamiltonian machinery
Conservation Laws

Assume that ΓD = /0, f = 0 and σσσN = 0.
• Take J := ηηη ·

∫
Ω ρv = Cv (ψψψ) where ψψψ = ηηη because ΓD = /0. Then

J̇ = {J,H}= {Cv (ψψψ),H}=−
∫

Ω
Cεεε(u) : εεε(ηηη) = 0,

because f = 0 and σσσN = 0. This proves the conservation of the linear
momentum.

• Take J := ηηη ·
∫

Ω x×ρv . Then, by a similar argument, we see that
J = Cv (ψψψ) where ψψψ = ηηη×x . As a consequence,

{J,H}=−
∫

Ω
Cεεε(u) : εεε(ηηη×x) = 0

This proves the conservation of angular momentum.

• For J := H, the conservation in time of H follows from the fact that
{H,H}= 0, by the antisymmetry of the Poisson bracket.
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The second ingredient: The Hamiltonian machinery
The space discretization

We now discretize the equations of elastodynamics by using weak
formulations of the original equations with mixed, DG or HDG methods.
The resulting mappings t 7→ (uh(t),vh(t)) are now orbits on a smooth
manifold Mh defining a dynamical system which can be shown to be
Hamiltonian. This means we can rewrite the equations defining the
method as

Ċh = {Ch,Hh}h,

for some discrete coordinates functionals Ch, defined on the
finite-dimensional phase space Mh and identified with a space of test
functions in the finite-dimensional space Th. Here Hh is the discrete
Hamiltonian and {·, ·}h is the discrete Poisson bracket. The triple
(Mh,{·, ·}h,Hh) is then a Hamiltonian dynamical system.
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Combining the two ingredients: Elastic waves
The fully discrete method

By applying a symplectic scheme to the Hamiltonian system of ODEs
defined by the space discretization, we obtain a fully discrete scheme. As a
consequence, non-drifting approximations to the conserved quantities are
immediately obtained.
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Combining the two ingredients: Elastic waves
Numerical illustration. P-wave
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Combining the two ingredients: Elastic waves
Numerical illustration. S-wave
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Combining the two ingredients: Elastic waves
Numerical illustration. P-wave
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Combining the two ingredients: Elastic waves
Numerical illustration. S-wave
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Previous and related work

The idea of using Symplectic-Hamiltonian methods with
finite-difference and finite volume methods is very old. Yee’s 1966
famous scheme for electromagnetism uses the Symplectic Euler
method which is fully explicit for Maxwell equations.

The interest in using finite element methods for S-H methods is more
recent: first in 2008 by Y. Xu et al. (DG), then in 2015 by Kirby and
Kieu (mixed method).

S-H HDG methods for the acoustic wave equation, JCP, 2017, with
C. Ciuca. First work using HDG methods. Canonical formulation.

New DG methods for symmetric, hyperbolic systems, JCP, 2019, by
G. Fu and C.-W. Shu.

S-H HDG methods for linear elastodynamics, CMAME, 2021. The
Poisson bracket formulation and the incorporation of test functions.
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Ongoing work

Electromagnetism, with Shukai Du, U. of Wisconsin-Madison.

Large deformations.

Nonlinear water waves.
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