Gradient discretization of two-phase flows in fractured and deformable porous media

Roland Masson¹

joint work with F. Bonaldi¹, K. Brenner¹, J. Droniou², A. Pasteau³ and L. Trenty³

¹Laboratoire J.A. Dieudonné Inria & Univ. Côte d'Azur

²School of Mathematics ³Andra Monash University

NEMESIS - NEw generation MEthods for numerical SImulationS

June 14-15, 2021

Fractured/faulted porous media: multiple scales (figures from J. R. de Dreuzy, Geosciences Rennes and Inria)

Fractured/faulted porous media: applications

- Oil and gas
- Hydrogeology
- Geothermal energy
- Geological storages
- Soil remediation

Motivation

Representing the fracture network of the Excavation Damaged Zone (EDZ)

Capturing the influence of gas pressure on fractures width

Outline

Modelling concepts

Discretization

- Gradient discretization
- Convergence analysis
- Numerical examples
 - Gas injection
 - Drying by suction
- Extensions
 - Discontinuous pressure model
 - Frictional contact

Two-phase Darcy flow: generalized Darcy law

 $\alpha = w$: wetting phase $\alpha = nw$: non wetting phase p^{α} : phase pressure s^{α} : phase saturation $\mathbf{q}^{\alpha} = -\frac{k_{r}^{\alpha}(s^{\alpha})}{\mu^{\alpha}} \quad \mathbb{K}(\mathbf{x})(\nabla p^{\alpha} - \rho^{\alpha}\mathbf{g})$ $n^{\alpha}(s^{\alpha})$ $k_r^{\alpha}(s^{\alpha})$: phase relative permeability $\eta^{\alpha}(s^{\alpha})$: phase mobility $p_c(s^{nw}) = p^{nw} - p^w$: capillary pressure

Two-phase Darcy flow: incompressible flow in phase pressure formulation

with

$$\mathbf{q}^{\alpha} = -\eta^{\alpha}(S^{\alpha}(p_c)) \ \mathbb{K}(\mathbf{x})(\nabla p^{\alpha} - \rho^{\alpha}\mathbf{g}), \quad \alpha = \mathrm{nw}, \mathrm{w}.$$

Hybrid-dimensional model

[Granet et al 2001], [Jaffré et al. 2002], [Bogdanov et al 2003], [Faille et al 2003], [Karimi Fard 2004], [Jaffré et al. 2005], [Angot et al. 2009], [Girault et al 2015], [Hanowski et al 2016]

- Dimensional reduction: averaging the model equations over the fracture width
- Objectives: facilitate the mesh generation and lower the number of degrees of freedom

Hybrid-dimensional model

Hybrid-dimensional model (flow)

+ transmission conditions at matrix fracture interfaces.

Main modelling concepts (flow)

Poiseuille's law for the *tangential velocity* in the fractures, extended to two-phase flow using generalized Darcy laws

$$\mathbf{q}_f^{\alpha} = -\eta_f^{\alpha}(s_f^{\alpha})(\frac{1}{12}d_f^3)\nabla_{\tau}p_f^{\alpha}$$

Continuous phase pressures at matrix fracture interfaces:

$$p_m^lpha=p^lpha$$
 and $p_f^lpha=\gamma p^lpha$

Discontinuous saturations at matrix fracture interfaces due to different capillary pressure functions

Two-phase hybrid-dimensional Darcy flow: $\alpha \in \{nw, w\}$

$$\begin{aligned} \partial_t \left(\boldsymbol{\phi}_m \boldsymbol{s}_m^{\alpha} \right) + \operatorname{div} \left(\mathbf{q}_m^{\alpha} \right) &= h_m^{\alpha}, \\ \mathbf{q}_m^{\alpha} &= -\eta_m^{\alpha} (\boldsymbol{s}_m^{\alpha}) \mathbb{K}_m \nabla p^{\alpha}, \\ \partial_t \left(\boldsymbol{d}_f \boldsymbol{s}_f^{\alpha} \right) + \operatorname{div}_{\tau} (\mathbf{q}_f^{\alpha}) - \llbracket \mathbf{q}_m^{\alpha} \rrbracket &= h_f^{\alpha} \\ \mathbf{q}_f^{\alpha} &= -\eta_f^{\alpha} (\boldsymbol{s}_f^{\alpha}) (\frac{1}{12} \boldsymbol{d}_f^3) \nabla_{\tau} \gamma p^{\alpha}, \\ s_m^{\alpha} &= S_m^{\alpha} (p_c), \\ s_f^{\alpha} &= S_f^{\alpha} (\gamma p_c). \end{aligned}$$

with $[\![\mathbf{q}_m^{\alpha}]\!] = \mathbf{q}_m^{\alpha} \cdot \mathbf{n}^+ + \mathbf{q}_m^{\alpha} \cdot \mathbf{n}^-.$

Linear poro-elastic mechanical model

$$-\mathrm{div}\ \boldsymbol{\sigma}^T(\mathbf{u}) = \mathbf{f},$$

with

$$\begin{split} \sigma^{T}(\mathbf{u}) &= \sigma(\mathbf{u}) - b \ p_{m}^{E} \mathbb{I}, \\ \sigma(\mathbf{u}) &= 2\mu \ \varepsilon(\mathbf{u}) + \lambda \ \mathrm{div}(\mathbf{u}) \ \mathbb{I}. \end{split}$$

Fracture model with **no contact**: $\sigma^T(\mathbf{u})\mathbf{n}^{\pm} = -p_f^E \mathbf{n}^{\pm}$, p_m^E , p_f^E : matrix and fracture **equivalent pressures**.

Following [Coussy], the equivalent pressures p_m^E and p_f^E are based on the capillary energy density $U_{\rm rt}(p_c) = \int_0^{p_c} q\left(S_{\rm rt}^{\rm nw}\right)'(q) dq$, ${\rm rt} = m, f$ and

$$p_m^E = \sum_{\alpha \in \{\text{nw,w}\}} p^{\alpha} s_m^{\alpha} - U_m(p_c),$$
$$p_f^E = \sum_{\alpha \in \{\text{nw,w}\}} \gamma p^{\alpha} s_f^{\alpha} - U_f(\gamma p_c).$$

Choice of the equivalent pressures

It is motivated by the energy estimate resulting formally from:

$$\sum_{\alpha \in \{\mathrm{nw,w}\}} p^{\alpha} \partial_t \Big(\phi_m S_m^{\alpha}(p_c) \Big) - b \ p_m^E \operatorname{div}(\partial_t \mathbf{u})$$
$$= \partial_t \Big(\phi_m U_m(p_c) + \frac{1}{2M} (p_m^E)^2 \Big),$$

$$\sum_{\alpha \in \{\mathrm{nw,w}\}} \gamma p^{\alpha} \partial_t \Big(d_f S_f^{\alpha}(\gamma p_c) \Big) + p_f^E \llbracket \partial_t \mathbf{u} \rrbracket$$
$$= \partial_t \Big(d_f U_f(\gamma p_c) \Big).$$

Weak solution: \bar{p}^{α} and $\bar{\mathbf{u}}$ such that for all smooth test functions $\bar{\varphi}^{\alpha}$ and $\bar{\mathbf{v}}$:

$$\begin{split} &\int_{0}^{T}\int_{\Omega} \left(-\bar{\boldsymbol{\phi}}_{m}\bar{s}_{m}^{\alpha}\partial_{t}\bar{\varphi}^{\alpha}+\eta_{m}^{\alpha}(\bar{s}_{m}^{\alpha})\mathbb{K}_{m}\nabla\bar{p}^{\alpha}\cdot\nabla\bar{\varphi}^{\alpha}\right)\mathrm{d}\mathbf{x}\mathrm{d}t \\ &+\int_{0}^{T}\int_{\Gamma} \left(-\bar{d}_{f}\bar{s}_{f}^{\alpha}\partial_{t}\gamma\bar{\varphi}^{\alpha}+\eta_{f}^{\alpha}(\bar{s}_{f}^{\alpha})\frac{\bar{d}_{f}^{3}}{12}\nabla_{\tau}\gamma\bar{p}^{\alpha}\cdot\nabla_{\tau}\gamma\bar{\varphi}^{\alpha}\right)\mathrm{d}\sigma(\mathbf{x})\mathrm{d}t \\ &-\int_{\Omega}\bar{\phi}_{m}^{0}\bar{s}_{m}^{\alpha,0}\bar{\varphi}^{\alpha}(0,\cdot)\mathrm{d}\mathbf{x}-\int_{\Gamma}\bar{d}_{f}^{0}\bar{s}_{f}^{\alpha,0}\gamma\bar{\varphi}^{\alpha}(0,\cdot)\mathrm{d}\sigma(\mathbf{x}) \\ &=\int_{0}^{T}\int_{\Omega}h_{m}^{\alpha}\bar{\varphi}^{\alpha}\mathrm{d}\mathbf{x}\mathrm{d}t+\int_{0}^{T}\int_{\Gamma}h_{f}^{\alpha}\gamma\bar{\varphi}^{\alpha}\mathrm{d}\sigma(\mathbf{x})\mathrm{d}t, \quad \alpha\in\{\mathrm{w,nw}\}, \end{split}$$

$$\begin{split} &\int_0^T \int_\Omega \left(\boldsymbol{\sigma}(\bar{\mathbf{u}}) : \boldsymbol{\varepsilon}(\bar{\mathbf{v}}) - b\bar{p}_m^E \operatorname{div}(\bar{\mathbf{v}}) \right) \mathrm{d}\mathbf{x} \mathrm{d}t + \int_0^T \int_\Gamma \bar{p}_f^E \, [\![\bar{\mathbf{v}}]\!] \mathrm{d}\boldsymbol{\sigma}(\mathbf{x}) \mathrm{d}t \\ &= \int_0^T \int_\Omega \mathbf{f} \cdot \bar{\mathbf{v}} \mathrm{d}\mathbf{x} \mathrm{d}t, \end{split}$$

R. Masson (University Côte d'Azur)

Gradient discretization: motivation

- Abstract discretization framework accounting for a large class of conforming and non conforming discretizations (FEM, FV, HMM, HHO, VEM, ...) and based on
 - Vector spaces of discrete unknowns
 - Reconstruction operators
 - Discrete variational formulation
- Allow a generic stability and convergence analysis under general properties such as
 - Coercivity (discrete Poincaré inequality)
 - Consistency
 - Limit Conformity (for non-conforming methods)
 - Compacity

Gradient discretization of the poro-mechanical model

Two-phase flow

 $X_{\mathcal{D}_p}^0 =$ space of discrete unknowns. Reconstruction operators:

gradient operators on matrix and fracture network

$$\nabla_{\mathcal{D}_p}^m : X^0_{\mathcal{D}_p} \to L^{\infty}(\Omega)^d, \qquad \nabla_{\mathcal{D}_p}^f : X^0_{\mathcal{D}_p} \to L^{\infty}(\Gamma)^{d-1};$$

piecewise-constant function operators on matrix and fracture network

$$\Pi^m_{\mathcal{D}_p}: X^0_{\mathcal{D}_p} \to L^\infty(\Omega), \qquad \Pi^f_{\mathcal{D}_p}: X^0_{\mathcal{D}_p} \to L^\infty(\Gamma).$$

Assume $\|v\|_{\mathcal{D}_p} \coloneqq \|\nabla^m_{\mathcal{D}_p} v\|_{L^2(\Omega)^d} + \|d_0^{3/2} \nabla^f_{\mathcal{D}_p} v\|_{L^2(\Gamma)^{d-1}}$ to be a norm on $X^0_{\mathcal{D}_p}$.

Poromechanics

- $X_{\mathcal{D}_{\mathbf{u}}}^{0}$ = space of discrete unknowns. Reconstruction operators:
 - symmetric gradient operator $\mathfrak{C}_{\mathcal{D}_{\mathbf{u}}}: X^0_{\mathcal{D}_{\mathbf{u}}} \to L^2(\Omega, \mathcal{S}_d(\mathbb{R})),$
 - displacement function operator $\Pi_{\mathcal{D}_{\mathbf{u}}} : X^0_{\mathcal{D}_{\mathbf{u}}} \to L^2(\Omega)^d$,
 - normal jump function operator $\llbracket \cdot \rrbracket_{\mathcal{D}_{\mathbf{u}}} : X^0_{\mathcal{D}_{\mathbf{u}}} \to L^4(\Gamma).$

Assume $\|\mathbf{v}\|_{\mathcal{D}_{\mathbf{u}}} \coloneqq \|\varepsilon_{\mathcal{D}_{\mathbf{u}}}(\mathbf{v})\|_{L^{2}(\Omega)}$ to be a norm on $X_{\mathcal{D}_{\mathbf{u}}}^{0}$.

Gradient scheme

$$\begin{split} & \operatorname{Find} p^{\alpha} \in (X_{\mathcal{D}_{p}}^{0})^{N+1} \text{ and } \mathbf{u} \in (X_{\mathcal{D}_{u}}^{0})^{N+1} \text{ such that for all} \\ & \varphi^{\alpha} \in (X_{\mathcal{D}_{p}}^{0})^{N+1}, \mathbf{v} \in (X_{\mathcal{D}_{u}}^{0})^{N+1} \text{:} \\ & \int_{0}^{T} \int_{\Omega} \left(\delta_{t} \left(\phi_{\mathcal{D}} \Pi_{\mathcal{D}_{p}}^{m} s_{m}^{\alpha} \right) \Pi_{\mathcal{D}_{p}}^{m} \varphi^{\alpha} + \eta_{m}^{\alpha} (\Pi_{\mathcal{D}_{p}}^{m} s_{m}^{\alpha}) \mathbb{K}_{m} \nabla_{\mathcal{D}_{p}}^{m} p^{\alpha} \cdot \nabla_{\mathcal{D}_{p}}^{m} \varphi^{\alpha} \right) \mathrm{d}\mathbf{x} \mathrm{d}t \\ & + \int_{0}^{T} \int_{\Gamma} \delta_{t} \left(d_{f,\mathcal{D}_{u}} \Pi_{\mathcal{D}_{p}}^{f} s_{f}^{\alpha} \right) \Pi_{\mathcal{D}_{p}}^{f} \varphi^{\alpha} \mathrm{d}\sigma(\mathbf{x}) \\ & + \int_{0}^{T} \int_{\Gamma} \eta_{f}^{\alpha} (\Pi_{\mathcal{D}_{p}}^{f} s_{f}^{\alpha}) \frac{d_{f,\mathcal{D}_{u}}^{3}}{12} \nabla_{\mathcal{D}_{p}}^{f} p^{\alpha} \cdot \nabla_{\mathcal{D}_{p}}^{f} \varphi^{\alpha} \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t \\ & = \int_{0}^{T} \int_{\Omega} h_{m}^{\alpha} \Pi_{\mathcal{D}_{p}}^{m} \varphi^{\alpha} \mathrm{d}\mathbf{x} \mathrm{d}t + \int_{0}^{T} \int_{\Gamma} h_{f}^{\alpha} \Pi_{\mathcal{D}_{p}}^{f} \varphi^{\alpha} \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t, \quad \alpha \in \{\mathrm{w}, \mathrm{nw}\}, \\ & \int_{0}^{T} \int_{\Omega} \left(\sigma_{\mathcal{D}_{u}}(\mathbf{u}) : \varepsilon_{\mathcal{D}_{u}}(\mathbf{v}) - b(\Pi_{\mathcal{D}_{p}}^{m} p_{m}^{E}) \mathrm{d}\mathbf{v}_{\mathcal{D}_{u}}(\mathbf{v}) \right) \mathrm{d}\mathbf{x} \mathrm{d}t \\ & \quad + \int_{0}^{T} \int_{\Gamma} (\Pi_{\mathcal{D}_{p}}^{f} p_{f}^{E}) [\![\mathbf{v}]\!]_{\mathcal{D}_{u}} \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t = \int_{0}^{T} \int_{\Omega} \mathbf{f} \cdot \Pi_{\mathcal{D}_{u}} \mathbf{v} \mathrm{d}\mathbf{x} \mathrm{d}t, \end{split}$$

Convergence result

There are $\bar{p}^{\alpha} \in L^2(\mathbb{T}; V^0)$ and $\bar{\mathbf{u}} \in L^{\infty}(\mathbb{T}; \mathbf{U}^0)$ satisfying the weak formulation s.t.

$$\begin{split} \Pi^m_{\mathcal{D}^l_p} p^{\alpha}_l &\to \bar{p}^{\alpha} & \text{weakly in } L^2(\mathbb{T}; L^2(\Omega)), \\ \Pi^f_{\mathcal{D}^l_p} p^{\alpha}_l &\to \gamma \bar{p}^{\alpha} & \text{weakly in } L^2(\mathbb{T}; L^2(\Gamma)), \\ \Pi_{\mathcal{D}^l_u} \mathbf{u}^l &\to \bar{\mathbf{u}} & \text{weakly-}\star \text{ in } L^{\infty}(\mathbb{T}; L^2(\Omega)^d), \\ \phi_{\mathcal{D}^l} &\to \bar{\phi}_m & \text{weakly-}\star \text{ in } L^{\infty}(\mathbb{T}; L^2(\Omega)), \\ d_{f, \mathcal{D}^l_u} \to \bar{d}_f & \text{ in } L^{\infty}(\mathbb{T}; L^p(\Gamma)) \text{ for } 2 \leqslant p < 4, \\ \Pi^m_{\mathcal{D}^l_p} S^{\alpha}_m(p^l_c) \to S^{\alpha}_m(\bar{p}_c) & \text{ in } L^2(\mathbb{T}; L^2(\Omega)), \\ \Pi^f_{\mathcal{D}^l_p} S^{\alpha}_f(p^l_c) \to S^{\alpha}_f(\gamma \bar{p}_c) & \text{ in } L^2(\mathbb{T}; L^2(\Gamma)), \end{split}$$

where $\bar{\phi}_m = \bar{\phi}_m^0 + b \operatorname{div}(\bar{\mathbf{u}} - \bar{\mathbf{u}}^0) + \frac{1}{M}(\bar{p}_m^E - \bar{p}_m^{E,0})$ and $\bar{d}_f = -[\![\bar{\mathbf{u}}]\!]$.

Convergence analysis: main assumptions

• The sequences $(\mathcal{D}_p^l)_{l \in \mathbb{N}}$, $(\mathcal{D}_{\mathbf{u}}^l)_{l \in \mathbb{N}}$, $\{(t_n^l)_{n=0}^{N^l}\}_{l \in \mathbb{N}}$ of space time Gradient Discretizations satisfy **coercivity**, **consistency**, **limit-conformity and compactness** properties.

• There exist a solution $p_l^{\alpha} \in (X_{\mathcal{D}_p^l}^0)^{N^l+1}$, $\mathbf{u}^l \in (X_{\mathcal{D}_{\mathbf{u}}^l}^0)^{N^l+1}$ such that

(i) $\phi_{\mathcal{D}^l}(t, \mathbf{x}) \ge \phi_{m,\min}$ for a.e. $(t, \mathbf{x}) \in \mathbb{T} \times \Omega$,

- (ii) $d_{f,\mathcal{D}_{\mathbf{u}}^{l}}(t,\mathbf{x}) \ge d_{0}(\mathbf{x})$ for a.e. $(t,\mathbf{x}) \in \mathbb{T} \times \Gamma$, where $d_{0} \ge 0$ is continuous and vanishes only at the fracture tips.
- \blacksquare Mobility function $\eta^{\alpha}_{\mathrm{rt}}$ continuous, non-decreasing, such that

 $0 < \eta^{\alpha}_{\mathrm{rt,min}} \leqslant \eta^{\alpha}_{\mathrm{rt}}(s) \leqslant \eta^{\alpha}_{\mathrm{rt,max}} < +\infty \quad \forall s \in [0,1]$

Main convergence result - Comments

• Existing analysis (Girault et al., '15): single-phase flow, linear case, d_f^3 freezed

Main steps of the proof

- Energy estimates by suitable test functions
- Weak estimates on time derivatives
- \blacksquare Strong convergence of s^{α}_m
 - Separate matrix from fractures using cut-off functions
 - Time and space translates estimates
 - Recover compacity on the full domain from $s_m^\alpha \in [0,1]$

Strong convergences of $d_f s_f^{\alpha}$, d_f^{α} and s_f^{α}

- Uniform in time weak in space estimates + discrete Ascoli–Arzelà theorem
- Isolate fracture tips for compacity in space of s_f
- Recover compacity on the full domain from $s_f^\alpha \in [0,1]$

Identification of the limit fields and weak solution

Numerical experiments: TPFA - \mathbb{P}_2 discretization

- Two-Point Flux Approximation (TPFA) scheme for Darcy
- \blacksquare \mathbb{P}_2 elements for mechanics

Numerical experiment: convergence test

Gas injection in the fractures • $K_m = 3.\ 10^{-15}\ \mathrm{m}^2$ • $\phi_m^0 = 0.2$, ■ $p_{c.m}(s) = -10^4 \log(1-s)$, Γ_4 ■ $p_{c,f}(s) = -10\log(1-s)$, • $\lambda = 1.5 \, \text{GPa}.$ • $\mu = 2 \, \text{GPa}$, $M = 18.4 \, \text{GPa}.$ ■ *b* = 0.81. **T** = 1000 days L

 $\mathbf{u} = \mathbf{0}$ on $(0, T) \times \partial \Omega$

Numerical experiment: convergence test

Numerical experiment: fixed point algorithm [Kim et al 2011, Girault et al 2016]

We define the following "fixed stress" type fixed point function:

$$\mathbf{g}_{p,\mathbf{u}} \begin{pmatrix} \widetilde{\mathbf{u}} \\ \widetilde{p}_m^E \\ \widetilde{p}_f^E \end{pmatrix} = \begin{pmatrix} \mathbf{u} \\ p_m^E \\ p_f^E \end{pmatrix}, \text{ with } \begin{pmatrix} \widetilde{\mathbf{u}} \\ \widetilde{p}_m^E \\ \widetilde{p}_f^E \end{pmatrix} \underset{\text{Solve}}{\overset{\rightarrow}{\rightarrow}} \begin{pmatrix} p_m^E \\ p_m^E \\ p_f^E \end{pmatrix} \underset{\text{Solve}}{\overset{\rightarrow}{\rightarrow}} \mathbf{u},$$

where the Darcy solve of the time step \boldsymbol{n} uses

$$\phi_m = \phi_m^{n-1} + \operatorname{div}\left(\widetilde{\mathbf{u}} - \mathbf{u}^{n-1}\right) + \frac{1}{M}\left(p_m^E - p_m^{E,n-1}\right) + \frac{C_{r,m}}{C_{r,m}}\left(p_m^E - \widetilde{p}_m^E\right),$$

$$d_f = d_f^{n-1} - \left[\left[\widetilde{\mathbf{u}} - \mathbf{u}^{n-1}\right]\right] + \frac{C_{r,f}}{C_{r,f}}\left(p_f^E - \widetilde{p}_f^E\right),$$

in the accumulation terms and $d_f = d_f^{n-1} - [\![\widetilde{\mathbf{u}} - \mathbf{u}^{n-1}]\!]$ in the fracture conductivity.

R. Masson (University Côte d'Azur)

Fixed point vs non linear GMRes acceleration

We compare the fixed point algorithm to its non linear GMRes acceleration for different time stepping and either $C_{r,m} = C_{r,f} = 0$ (only for nlgmres) or

$$C_{r,m} = \frac{b^2}{2\mu + 2\lambda}, \quad C_{r,f} = \tilde{d}_f C_{r,m}, \quad \tilde{d}_f = 10^{-3} \,\mathrm{m},$$

δt^{init}	Algorithm	$N_{\Delta t}$	N _{Newton}	$N_{FixedPoint}$	CPU (s)
0.1 d	Fixed-point	139	2621	2060	238
0.1 d	nlgmres	139	1088	705	118
0.1 d	nlgmres $C_{r,\mathrm{rt}} = 0$	139	1300	900	140
0.025 d	Fixed-point	153	8009	7351	675
0.025 d	nlgmres	153	1588	1118	159
0.025 d	nlgmres $C_{r,\mathrm{rt}}=0$	153	1349	903	139
$10^{-3} \mathrm{d}$	Fixed-point	х	x	х	x
$10^{-3} \mathrm{d}$	nlgmres	187	2370	1601	208
$10^{-3} {\rm d}$	nlgmres $C_{r,\mathrm{rt}} = 0$	187	2197	1453	192

Porous medium initially water-saturated and prestressed:

 $\sigma^{0} = \sigma_{x}^{0} \mathbf{e}_{x} \otimes \mathbf{e}_{x} + \sigma_{r}^{0} \mathbf{e}_{r} \otimes \mathbf{e}_{r} + \sigma_{\theta}^{0} \mathbf{e}_{\theta} \otimes \mathbf{e}_{\theta}$

- Atmospheric gas pressure and fixed gas saturation at the bottom boundary
- Axisymmetric model with a 2D triangular mesh of 28945 cells of the xr-domain $(0, 10 m) \times (5 m, 35 m)$
- Fracture network in the EDZ:
 7 oblique fractures and
 1 horizontal fracture

Data set provided by Andra

Data set

- **Lamé coefficients**: $\lambda = 1.5 \text{ GPa}$, $\mu = 2 \text{ GPa}$
- **Biot coefficient**: b = 1
- **Biot Modulus**: $M = 1 \,\mathrm{GPa}$
- **Pre-stresses**: $\sigma_x^0 = 16 \text{ MPa}$, $\sigma_r^0 = \sigma_\theta^0 = 12 \text{ MPa}$
- **Initial aperture**: $d_f = 1$ cm,
- Matrix rock type: Callovo Oxfordian argilite

•
$$K_m = 5 \cdot 10^{-20} \,\mathrm{m}^2$$
, $\phi_m^0 = 0.15$

$$p_{c,m}(s) = -2. \ 10^8 \log(1-s),$$

Fracture rock type:

•
$$K_f = d_f^2/12$$
,
• $p_{c,f}(s) = -10^2 \log(1-s)$,

■ Simulation time: 200 years

Gas matrix saturation at final time

Porosity at final time

Fracture aperture at first time step and at final time

Continuous vs discontinuous pressure models

Continuous vs. discontinuous pressure models

■ **Discontinuous pressure model** (a = ±, damaged rock) [Droniou et al 2019]:

$$\begin{aligned} \eta_{f,\mathfrak{a}}^{\alpha} &\approx \eta_{\mathfrak{a}}^{\alpha} (S_{\mathfrak{a}}^{\alpha}(\gamma_{\mathfrak{a}} p_{c,m})) K_{f,\mathbf{n}} \Big(\frac{\gamma_{\mathfrak{a}} p_{m}^{\alpha} - p_{f}^{\alpha}}{\frac{d_{f}}{2}} - \rho^{\alpha} \mathbf{g} \cdot \mathbf{n}^{\mathfrak{a}} \Big)^{+} \\ &- \eta_{f}^{\alpha} (S_{f}^{\alpha}(p_{c,f})) K_{f,\mathbf{n}} \Big(\frac{\gamma_{\mathfrak{a}} p_{m}^{\alpha} - p_{f}^{\alpha}}{\frac{d_{f}}{2}} - \rho^{\alpha} \mathbf{g} \cdot \mathbf{n}^{\mathfrak{a}} \Big)^{-} \end{aligned}$$

$$\mathbf{q}_{m}^{\alpha}\cdot\mathbf{n}^{\mathfrak{a}}-Q_{f,\mathfrak{a}}^{\alpha}=d_{\mathfrak{a}}\phi_{\mathfrak{a}}\partial_{t}S_{\mathfrak{a}}^{\alpha}(\gamma_{\mathfrak{a}}p_{c,m})$$

Continuous pressure model $\left(\frac{K_{f,\mathbf{n}}}{d_f} \gg \frac{K_{m,\mathbf{n}}}{L}\right)$: $\gamma_+ p_m^{\alpha} = \gamma_- p_m^{\alpha} = p_f^{\alpha}$

Gradient scheme for the discontinuous pressure model

$$\begin{split} & \operatorname{Find} \left(p_m^{\alpha}, p_f^{\alpha} \right) \in (X_{\mathcal{D}_p}^0)^{N+1} \text{ and } \mathbf{u} \in (X_{\mathcal{D}_u}^0)^{N+1} \text{ such that for all} \\ & (\varphi_m^{\alpha}, \varphi_f^{\alpha}) \in (X_{\mathcal{D}_p}^0)^{N+1}, \mathbf{v} \in (X_{\mathcal{D}_u}^0)^{N+1} \text{:} \\ & \int_0^T \int_\Omega \left(\delta_t \left(\phi_{\mathcal{D}} \Pi_{\mathcal{D}_p}^m s_m^{\alpha} \right) \Pi_{\mathcal{D}_p}^m \varphi_m^{\alpha} + \eta_m^{\alpha} (\Pi_{\mathcal{D}_p}^m s_m^{\alpha}) \mathbb{K}_m \nabla_{\mathcal{D}_p}^m p_m^{\alpha} \cdot \nabla_{\mathcal{D}_p}^m \varphi_m^{\alpha} \right) \mathrm{d}\mathbf{x} \mathrm{d}t \\ & + \int_0^T \int_\Gamma \delta_t \left(d_{f,\mathcal{D}_u} \Pi_{\mathcal{D}_p}^f s_f^{\alpha} \right) \Pi_{\mathcal{D}_p}^f \varphi_f^{\alpha} \mathrm{d}\sigma(\mathbf{x}) \\ & + \int_0^T \int_\Gamma \eta_f^{\alpha} (\Pi_{\mathcal{D}_p}^f s_f^{\alpha}) \frac{d_{f,\mathcal{D}_u}^3}{12} \nabla_{\mathcal{D}_p}^f p_f^{\alpha} \cdot \nabla_{\mathcal{D}_p}^f \varphi_f^{\alpha} \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t \\ & + \sum_{a=\pm} \int_0^T \int_\Gamma \left(Q_{f,a}^{\alpha} [\![\varphi^{\alpha}]\!]_{\mathcal{D}_p}^a + d_a \phi_a \delta_t \left(\mathbb{T}_{\mathcal{D}_p}^a s_a^{\alpha} \right) \mathbb{T}_{\mathcal{D}_p}^a \varphi_m^{\alpha} \right) \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t \\ & = \int_0^T \int_\Omega h_m^{\alpha} \Pi_{\mathcal{D}_p}^m \varphi_m^{\alpha} \mathrm{d}\mathbf{x} \mathrm{d}t + \int_0^T \int_\Gamma h_f^{\alpha} \Pi_{\mathcal{D}_p}^f \varphi_f^{\alpha} \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t, \quad \alpha \in \{\mathrm{w}, \mathrm{nw}\}, \\ & \int_0^T \int_\Omega \left(\sigma_{\mathcal{D}_u}(\mathbf{u}) : \varepsilon_{\mathcal{D}_u}(\mathbf{v}) - b(\Pi_{\mathcal{D}_p}^m p_m^E) \mathrm{d}\mathrm{v}_{\mathcal{D}_u}(\mathbf{v}) \right) \mathrm{d}\mathbf{x} \mathrm{d}t \\ & + \int_0^T \int_\Gamma \left(\Pi_{\mathcal{D}_p}^f p_f^E) [\![\mathbf{v}]\!]_{\mathcal{D}u} \mathrm{d}\sigma(\mathbf{x}) \mathrm{d}t = \int_0^T \int_\Omega \mathbf{f} \cdot \Pi_{\mathcal{D}u} \mathbf{v} \mathrm{d}\mathbf{x} \mathrm{d}t \end{split}$$

Main convergence result

There are $(\bar{p}^{\alpha}_m, \bar{p}^{\alpha}_f) \in L^2(\mathbb{T}; V^0_m \times V^0_f)$ and $\bar{\mathbf{u}} \in L^{\infty}(\mathbb{T}; \mathbf{U}^0)$ satisfying the weak formulation s.t.

$\Pi^m_{\mathcal{D}^l_p} p^{\alpha}_{m,l} \rightharpoonup \bar{p}^{\alpha}_m$	weakly in $L^2(\mathbb{T}; L^2(\Omega)),$
$\Pi^{f}_{\mathcal{D}^{l}_{p}} p^{\alpha}_{f,l} \to \bar{p}^{\alpha}_{f}$	weakly in $L^2(\mathbb{T}; L^2(\Gamma))$,
$\Pi_{\mathcal{D}_{\mathbf{u}}^{l}}\mathbf{u}^{l} \rightharpoonup \bar{\mathbf{u}}$	weakly-* in $L^{\infty}(\mathbb{T}; L^2(\Omega)^d)$,
$\phi_{\mathcal{D}^l} \rightharpoonup \bar{\phi}_m$	weakly-* in $L^{\infty}(\mathbb{T}; L^{2}(\Omega))$,
$d_{f,\mathcal{D}^l_{\mathbf{u}}} \to \bar{d}_f$	in $L^{\infty}(\mathbb{T}; L^{p}(\Gamma))$ for $2 \leq p < 4$,
$\Pi^m_{D^l_p} S^{\alpha}_m(p^l_{c,m}) \to S^{\alpha}_m(\bar{p}_{c,m})$	in $L^2(\mathbb{T}; L^2(\Omega)),$
$\Pi_{D_p^l}^f S_f^{\alpha}(p_{c,f}^l) \to S_f^{\alpha}(\bar{p}_{c,f})$	in $L^2(\mathbb{T}; L^2(\Gamma)),$
$Q_{f,\mathfrak{a}}^{lpha} ightarrow ar{Q}_{f,\mathfrak{a}}^{lpha}$	weakly in $L^2(\mathbb{T}; L^2(\Gamma))$.

TPFA - \mathbb{P}_2 discretization

Gas saturation (top) and porosity (bottom) given by the continuous (left) and discontinuous (right) models

Extension to Coulomb frictional contact

- \blacksquare Jump of the displacement field: $[\![\mathbf{u}]\!] = \mathbf{u}^+ \mathbf{u}^-$
- Normal and tangential jumps: $\llbracket \mathbf{u} \rrbracket_n = \llbracket \mathbf{u} \rrbracket \cdot \mathbf{n}^+, \quad \llbracket \mathbf{u} \rrbracket_{\tau} = \llbracket \mathbf{u} \rrbracket - \llbracket \mathbf{u} \rrbracket_n \mathbf{n}^+$
- Stress vectors :

$$\mathbf{T}^{\pm}(\mathbf{u}) = \boldsymbol{\sigma}^{T}(\mathbf{u})\mathbf{n}^{\pm} + p_{f}^{E}\mathbf{n}^{\pm}$$

Normal and and tangential stresses :

 $T_n(\mathbf{u}) = \mathbf{T}^+(\mathbf{u}) \cdot \mathbf{n}^+, \quad \mathbf{T}_\tau(\mathbf{u}) = \mathbf{T}^+(\mathbf{u}) - (\mathbf{T}^+(\mathbf{u}) \cdot \mathbf{n}^+)\mathbf{n}^+$

Extension to Coulomb frictional contact [Garipov et al 2016, Berge et al 2019]

Contact conditions

-

$$\begin{cases} \mathbf{T}^{+}(\mathbf{u}) + \mathbf{T}^{-}(\mathbf{u}) = \mathbf{0}, \\ T_{n}(\mathbf{u}) \leq 0, \ \llbracket \mathbf{u} \rrbracket_{n} \leq 0, \ \llbracket \mathbf{u} \rrbracket_{n} T_{n}(\mathbf{u}) = 0 \end{cases}$$

Aperture :
$$d_f = d_0 - \llbracket \mathbf{u}
rbracket_n$$

Slip-stick conditions $(F \ge 0 \text{ friction coeff.})$:

$$\begin{cases} |\mathbf{T}_{\tau}(\mathbf{u})| \leqslant -F \ T_n(\mathbf{u}) \\ \mathbf{T}_{\tau}(\mathbf{u}) \cdot [\![\dot{\mathbf{u}}]\!]_{\tau} - F \ T_n(\mathbf{u}) |[\![\dot{\mathbf{u}}]\!]_{\tau}| = 0 \end{cases}$$

Desaturation by suction with contact

Fracture contact state and aperture at first time step and at final time

Desaturation by suction with contact

Gas matrix saturation at final time

Desaturation by suction with contact

Porosity at final time

Conclusions

 Numerical analysis of the poro-mechanical coupling for two-phase flows in deformable and fractured porous media

- open fractures, no contact
- full nonlinear coupling
- Continuous and discontinuous pressure models
- gradient discretization framework

Perspectives

- Contact, slip, friction between fracture surfaces (ongoing)
- More advanced discretizations in 3D

Thanks for your attention

