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Space-time finite element methods

why space-time? (instead of space discretization & time stepping)

high-order approximation in both space and time is simple to obtain

spectral convergence of the space-time error can be obtained by p-refinement

stability is achieved under a local CFL condition

the numerical solution is available at all times in (0, T )

drawback: high complexity

time dipendent problem in d space dimensions → (d+ 1)-dimensional problem
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Outline

model problem: the acoustic wave equation

space-time discontinuous Galerkin (DG) discretization

reduction of the complexity:

Trefftz basis functions + tent pitching [1], [2]
tensor-product (in time) elements and combination formula [3]

[1] A. Moiola, I. Perugia, A space-time Trefftz discontinuous Galerkin method for the acoustic
wave equation in first-order formulation, Num.Math., 139 (2018), 389-435.

[2] I. Perugia, J. Schöberl, P. Stocker, C. Wintersteiger, Tent pitching and Trefftz-DG method for
the acoustic wave equation, Comput.Math. withAppl., 70 (2020), 2987-3000.

[3] P. Bansal, A. Moiola, I. Perugia, C. Schwab, Space-time discontinuous Galerkin approximation

of acoustic waves with point singularities, IMAJ.Numer.Anal., online.
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Model problem

the acoustic wave problem as a 1st order system

Q = Ω× (0, T ), Ω ⊂ Rd Lipschitz, bounded polygon/polyhedron

c = c(x) piecewise constant on a fixed, finite polygonal/polyhedral partition {Ωi} of Ω

f ∈ L2(Q), v0 ∈ L2(Ω), σ0 ∈ L2(Ω)d

find (v,σ) such that

∇v +
∂σ

∂t
= 0, ∇ · σ + c−2 ∂v

∂t
= f in Q

v(·, 0) = v0, σ(·, 0) = σ0 on Ω

v = 0 on ∂Ω× [0, T ]

U ∈ C0
(
[0, T ];H1

0 (Ω)
)
∩ C1

(
[0, T ];L2(Ω)

)
∩H2(0, T ;H−1(Ω))

[Dautray, Lions, 1992]
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Some references

space-time finite element methods for wave problems

early works (FEM): [Hughes, Hulbert, 1988, 1990], [French, 1993], [Johnson, 1993], . . .

DG: [Falk, Richter, 1999], [Yin, Acharya, Sobh, Haber, Tortorelli, 2000],

DG: [Monk, Richter, 2005], [Costanzo, Huang, 2005], [Abedi, Petracovici, Haber, 2006],

DG: [van der Vegt, 2006], [Feistauer, Hájek, Švadlenka, 2007], . . . ,

DG: [Gopalakrishnan, Monk, Sepúlveda, 2015], [Dörfler, Findeisen, Wieners, 2016],

DG: [Gopalakrishnan, Schöberl, Wintersteiger, 2017, 2019], . . .

Trefftz: [Macia̧g, Wauer, Sokala, 2005–2011], [Liu, Kuo, 2016],

Trefftz: [Petersen, Farhat, Tezaur, 2009], [Wang, Tezaur, Farhat, 2014]

Trefftz: [Egger, Kretzschmar, Schnepp, Tzukermann, Weiland, 2014, 2015],

Trefftz: [Banjai, Georgoulis, Lijoka, 2017], [Barucq, Calandra, Diaz, Shishenina, 2018, 2020],

Trefftz: [1], [2]

recent, on tensor-product meshes: [Steinbach, Zank, 2019], [Ernesti, Wieners, 2019], [3]
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Space-time variational formulation

∇v +
∂σ

∂t
= 0, ∇ · σ + c−2 ∂v

∂t
= f in Q Lwave(v,σ) = (f,0)

multiply by test functions τ and w, respectively, and integrate by parts in Q = Ω× (0, T ):

space-time variational formulation

−
∫
Q

[
v
(
∇ · τ + c−2 ∂w

∂t

)
+ σ ·

(
∇w +

∂τ

∂t

)]
dV +

∫
Ω×{T}

(σ · τ + c−2v w) dx

=

∫
Q
f w dV +

∫
Ω×{0}

(σ0 · τ + c−2v0w) dx

∇v +
∂σ

∂t
= 0 holds in C0

(
[0, T ];H0(div; Ω)∗

)
∇ · σ + c−2 ∂v

∂t
= f holds in L2

(
0, T ;H−1(Ω)

)
v = 0 on ∂Ω× [0, T ] is imposed weakly (details in [3])
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Space-time discontinuous Galerkin discretization

∇v +
∂σ

∂t
= 0, ∇ · σ + c−2 ∂v

∂t
= f in Q = Ω× (0, T )

introduce a polytopic space-time mesh Th = {K} of Q, with c constant in each element

multiply by test functions and integrate by parts element by element

discretize (v,σ) and (w, τ ) in discontinuous, piecewise polynomial spaces Vp(Th)

replace interelement traces by numerical fluxes

elemental DG formulation

−
∫
K

[
vh

(
∇ · τh + c−2 ∂wh

∂t

)
+ σh ·

(
∇wh +

∂τh

∂t

)]
dV

+

∫
∂K

[
(v̂h τh + σ̂h wh) · nx

K +
(
σ̂h · τh + c−2 v̂h wh

)
ntK

]
dS =

∫
K
f wh dV

where (nx
K , n

t
K) ∈ Rd+1 denotes the unit normal vector to ∂K pointing outside K

global DG formulation

add over all K ∈ Th → ADG(vh,σh;wh, τh) = `DG(wh, τh)
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Assumption on the meshes and numerical fluxes

assumption on Th
each internal face F is either

space-like: c |nx
F | < ntF (F ⊂ F space

h ), or

time-like: ntF = 0 (F ⊂ F time
h )

F0
h := Ω× {0}, FTh := Ω× {T}

F∂h := ∂Ω× (0, T )

t

x
F0

h

FT
h

0

T

Knx
K

F time
h

F space
h

assumptions on the numerical fluxes

v̂h :=


v−h
{{vh}}+ β [[σh]]N

v0

0

σ̂h :=


σ−h on F space

h ∪ FTh (upwind fluxes)

{{σh}}+ α [[vh]]N on F time
h (DG-elliptic fluxes)

σ0 on F0
h

σh − αvnx
Ω on F∂h

α, β ∈ L∞(F time
h ∪ F∂h ); α = β = 0 [Egger & al., 2014] , αβ ≥

1

4
[Monk, Richter, 2005]
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Assumption on the approximation spaces

recall the definition of the wave operator Lwave(w, τ ) :=
(
∇ · τ + c−2 ∂w

∂t
, ∇w +

∂τ

∂t

)

assumption on Vp(Th)

for all (wh, τh) ∈ Vp(Th), Lwave(wh, τh) ∈ Vp(Th)

this is satisfied, e.g., if the restriction of Vp(Th) to each mesh element is made of

total degree space-time polynomials Ppx,t,

tensor product (in time) polynomials Ppx × Ppt ,

Trefftz polynomials Lwave(wh, τh) = (0,0)
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Well-posedness

case of tensor product (in time) meshes∗
t

x

key property: coercivity in seminorm

ADG(vh,σh; vh,σh) = |(vh,σh)|2DG

DG seminorm

|(w, τ )|2DG =
1

2

∥∥∥c−1
[[w]]t

∥∥∥2

L2(Fspace
h

)
+

1

2

∥∥∥[[τ ]]t

∥∥∥2

L2(Fspace
h

)d
+

∥∥∥α 1
2 [[w]]N

∥∥∥2

L2(Ftime
h

)d
+

∥∥∥β 1
2 [[τ ]]N

∥∥∥2

L2(Ftime
h

)

+
1

2

∥∥∥c−1
w
∥∥∥2

L2(F0
h
∪FT

h
)
+

1

2

∥∥∥τ∥∥∥2

L2(F0
h
∪FT

h
)d

+
∥∥∥α 1

2w
∥∥∥2

L2(F∂
h

)

by adapting [Monk, Richter, 2005], one deduces well-posedness, with no condition on ht

————————
∗The case of general, admissible meshes requires minor, technical changes.
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Well-posedness

Well-posedness
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Error estimates

case of tensor product (in time) meshes
t

x

tn

error estimates (with no condition on ht)

assume that all the traces of the analytical solution on mesh faces are in L2

→ error bound in the L2 norm in space at every discrete time tn:∥∥c−1(v − vh)
∥∥
L2(Ω×{tn})

+ ‖σ − σh‖L2(Ω×{tn})d ≤ |(v,σ)− (vh,σh)|DG(Qn)

. |(v,σ)− Π(v,σ)︸ ︷︷ ︸
∈Vp(Th)

|DG+

(proven by restricting to partial space-time cylinders Qn = Ω× (0, tn))

projector Π:

total degree space-time polynomials Ppx,t: construction in [Monk, Richter, 2005]

tensor product (in time) polynomials Ppx × Ppt : L2 projection [3]

Trefftz polynomials: best approximation [1]
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Trefftz finite element spaces (case f = 0)

recall: Lwave(w, τ ) =

(
∇ · τ + c−2 ∂w

∂t
, ∇w +

∂τ

∂t

)

Trefftz spaces

continuous spaces T(K) :=
{

(w, τ ) ∈ H1(K) : Lwave(w, τ ) = (0,0)
}

T(Th) :=
{

(w, τ ) ∈ H1(Th)1+d : (w, τ )|K ∈ T(K) ∀K ∈ Th
}

discrete spaces Vp(K) ⊂ T(K), Vp(Th) ⊂ T(Th)

in each element K, the linear operator Lwave is

homogeneous (= all terms are derivatives of the same order)

with constant coefficients

⇒ Taylor polynomials of (smooth) functions in ker(Lwave) are in ker(Lwave)

therefore, we can choose Vp(K) ⊂ T(K)

as a subspace of the polynomial space Pp(K)1+d

with the same order of approximation in h as Pp(K)1+d for functions in ker(Lwave)
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Trefftz approximation spaces (f = 0)

Example:

Tp(K) :=

{
u ∈ Pp(K) : −∆u+ c−2 ∂

2u

∂t2
= 0

}
Vp(K) :=

(
∂Tp+1(K)

∂t
,−∇(Tp+1(K))

)

reduction of number of degrees of freedom to that of a d-dimensional problem

Trefftz polyn. Tp(K) full polyn. Pp(K)

d+ 1 = 1 + 1 2p+ 1 1
2 (p+ 1)(p+ 2)

d+ 1 = 2 + 1 (p+ 1)2 1
6 (p+ 1)(p+ 2)(p+ 3)

d+ 1 = 3 + 1 1
6 (p+ 1)(p+ 2)(2p+ 3) 1

24 (p+ 1)(p+ 2)(p+ 3)(p+ 4)

O(pd) O(pd+1)

dim(Tp(K)) = O(pd) << dim(Pp(K)) = O(pd+1)

same orders of approximation in h as with the full polynomial spaces
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Trefftz approximation spaces (f = 0)

[2] P., Schöberl, Stocker, Wintersteiger, 2020

d = 1, smooth solution, Cartesian mesh; Trefftz (blue) and Qp (orange) polynomials
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p-version: error (in L2(Ω× {T})) vs. polynomial degree (left) and number of dof.s (right)
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Space-time Trefftz DG method: analysis

[1] Moiola, P., 2018

in T(Th), the DG seminorm is actually a norm

existence and uniqueness of solutions follow from ADG(vh,σh; vh,σh) = |(vh,σh)|2DG

error bounds in the (spatial) L2 norm on space-like interfaces (e.g. on Ω× {tn}) and in
DG norm also follow

error bounds in a global, mesh-independent norm (L2(Q), in the best case scenario∗)
have also been proven in [1] by a modified duality argument from [Monk, Wang, 1999]

piecewise smooth coefficients: space-time quasi-Trefftz DG method
[Imbert-Gérard, Moiola, Stocker, 2020]

————————
∗i.e. for d = 1 or d > 1 and no time-like faces (for impedance b.c.) ;

in H−1(0, T ;L2(Ω))× L2(0, T ;H−1(Ω)d) for tensor product elements (with Dirichlet b.c.)
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Tent pitching (hyperbolic problems)

PDE-driven, front-advancing mesh construction technique

x

t

ch
ar

. s
pe

ed
1

c

T

nK
x

K

F0
h

FT
h

F∂
h

F space
h

progressively advancing in time and stacking tent-pitched objects on top of each other

each tent is union of (d+ 1)-dimensional simplices

the high of each tent (local advancement in time) is chosen so that the casuality
constraint of the PDE is respected (local CFL condition)

→ the PDE is explicitly solvable within each tent

————————
[Falk, Richter, 1999], [Yin, Acharya, Sobh, Haber, Tortorelli, 2000] [Üngör, Sheffer, 2002],
[Monk, Richter, 2005], [Abedi, Petracovici, Haber, 2006], . . . ,

[Gopalakrishnan, Monk, Sepúlveda, 2015], [Gopalakrishnan, Schöberl, Wintersteiger, 2017, 2019]
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Tent pitching & Trefftz

x

t

T

advancing front
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Tent pitching & Trefftz

x

t

characteristic speed 1
c

T

advancing front
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Tent pitching & Trefftz

x

t

T
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Tent pitching & Trefftz

x

t

T

solution at the tent bottom → solution at the tent top

Trefftz (no volume terms): solution of local problems [1], [2]; for an interior tent:∫
∂Ktop

(
(vh τh + σh wh) · nx

K +
(
σh · τh + c−2 vh wh

)
ntK

)
dS

= −
∫
∂Kbot

(
(vboth τh + σbot

h wh) · nx
K +

(
σbot
h · τh + c−2 vboth wh

)
ntK

)
dS

mapping + RK or Taylor [Gopalakrishnan, Schöberl, Wintersteiger, 2017, 2019]
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Tent pitching & Trefftz

x

t

T
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Tent pitching & Trefftz

x

t

T
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Tent pitching & Trefftz

x

t

T

the solution within these two tents can be evolved in parallel
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Tent pitching & Trefftz

x

t

T
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz
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Tent pitching & Trefftz

x

t
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Tent pitching & Trefftz

x
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Tent pitching & Trefftz

x

t

T
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Tent pitching

d = 2 and refined mesh towards a corner
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Numerical results: Trefftz + tent pitching

[2] P., Schöberl, Stocker, Wintersteiger, 2020

d = 3, smooth solution, Trefftz on tent-pitched meshes; h- and p-version
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convergence of order p+ 1 in h (left) and exponential convergence in p (right)
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Numerical results: Trefftz + tent pitching

d = 2, smooth solution, Trefftz; tensor product (in time) meshes and tent-pitching
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Numerical results: Trefftz + tent pitching

d = 2, singular solution, Trefftz on tent-pitched meshes

U(r, ϕ, t) = cos(10 t) sin(ν ϕ)Jν(10 r)

ν = 2
3
→ U ∈ H

5
3
−ε(Q)

10−
2

2×10−
3

3×10−
3

4×10−
3

6×10−
3

dof−1/3

10−3

10−2

er
ro
r

1 4

uniform mesh
refined mesh

p = 3; spatial mesh at t = 0: uniform (blue) or with corner refinement (orange)
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Tensor product meshes, focus on singular solutions

Regularity theory in 2D [Kokotov, Plamenevskii, 1999, 2004], [Luong, Tung, 2015]

S := {cj , j = 1, . . . ,M} set of all vertices of {Ωi}, in which c is piecewise constant

acoustic waves exhibit conical singularities at S: regularity results are given in weighted
Sobolev spaces in Ω with weight function

Φδ(x) = ΠMj=1 |x− cj |δj , δj ∈ [0, 1) ∗

e.g. |u|
H

1,1
δ

(Ω)
:= ‖Φδ∇u‖L2(Ω)2 (H1,1

δ

(
Ω) 6⊂ H1(Ω)

)
(used for the analysis of DG + time-stepping [Müller, Schötzau, Schwab, 2018]).

Example: if v0, u0 ∈ C∞0 (Ω), σ0 = −∇u0, f ∈ C∞0 (Q), ∃ δ ∈ [0, 1)M such that ∀ kt, kx ∈ N,

v ∈ Ckt−1([0, T ];Hkx+1,2
δ (Ω)) σ ∈ Ckt ([0, T ];Hkx,1

δ (Ω))2

[Müller, 2017]
————————

∗ ‖u‖2
H

k,`
δ

(Ω)
:= ‖u‖2

H`−1(Ω)
+|u|2

H
k,`
δ

(Ω)
, |u|2

H
k,`
δ

(Ω)
:=

k∑
m=`

∫
Ω

(
Φδ+m−`

∑
|α|=m

|Dαu|2
)
dx.
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Tensor product meshes

[3] Bansal, Moiola, P., Schwab, 2020

tensor product (in time) space-time meshes

time mesh: T tht
partition of (0, T ) into N intervals In

spatial meshes: for each 1 ≤ n ≤ N , T x
hx,n

shape-regular mesh of Ω

with non-degenerating faces
aligned with {Ωi}
each mesh element touches at most one element of S

space-time mesh: Th := Th(Q) := {K = Kx × In : Kx ∈ T x
hx,n

, 1 ≤ n ≤ N}

abstract error analysis (Galerkin error . L2 projection error)

the critical solution regularity is the regularity in space of σ close to any c ∈ S:

if F is a time-like face of an element K adjacent to a corner c,
then σ|F ∈ L

1(F )2, not necessarily L2(F )2

→ modify the DG seminorm and apply Hölder in L1-L∞ (instead of Cauchy-Schwarz)
[Wihler, 2002]
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Tensor product meshes

mesh grading in space (like in the elliptic case)

lack of smoothness → loss in the accuracy of the L2 projection of the solution in the
lack of smoothness → elements K = Kx × In that are close to any c ∈ S

a reduction of the size of Kx depending on

the corner weight δc
the polynomial approximation degree pK

can restore the largest possible convergence rates

suitable graded spatial meshes T x
hx

can be constructed from a quasi-uniform initial

mesh T x
0 of Ω of size hx by J levels of local bisection refinement (J = J(hx, δc, pK))

[Gaspoz, Morin, 2009]
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Error bounds on locally refined meshes

assume, for simplicity, constant c, uniform p

fix ht, hx > 0, and construct the uniform mesh T tht
and the locally refined mesh T x

hx

on any time-like face F , define the numerical flux parameters as α = β−1 =
hx

c |Fx|
assume that c ht ' hx (hx is the size of the largest element of T x

hx
)

error bounds

for every discrete time tn, we have∥∥c−1(v − vh)
∥∥
L2(Ω×{tn})

+ ‖σ − σh‖L2(Ω×{tn})2 ≤ |(v,σ)− (vh,σh)|DG(Qn) . hp+
1
2

(same convergence rates as for smooth solutions)

Remark: dim(V(Th)) = O(h−3) (like for a (2 + 1)-dimensional elliptic problem)

Q: Can we obtain the same convergence rates with O(h−2) degrees of freedom ?
(like for a 2-dimensional elliptic problem)
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Combination formula

the assumption c ht ' hx is necessary to obtain the highest convergence rates

stability of the DG formulation and best approximation-type estimates are valid with
no condition on ht

the solutions obtained with anysotropic (in time) space-time meshes are not accurate,
still they contain meaningful information

T(0,0) coarsest space-time mesh
T(L,L) finest space-time mesh (red)
T(lx,lt) intermediate meshes

w(lx,lt) := (v(lx,lt),σ(lx,lt)) solution on T(lx,lt)

wF := w(L,L) full space-time solution

wS :=
L∑
l=0

w(l,L−l) −
L∑
l=1

w(l−1,L−l) “sparse” solution
lx

lt

L

L

0

[Bungartz, Griebel, 2004]

Count of degrees of freedom (h-version): # d.o.f.s for wF . 23L = O(h−3
L )

Count of degrees of freedom (h-version): # d.o.f.s for wS . 22L = O(h−2
L )

(' one time-step on the finest spatial mesh)
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Numerical results: combination formula

[3] Bansal, Moiola, P., Schwab, 2020

FEniCS

Expected convergence rates: full O(Ndofs)−
p+1/2
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p+1/2
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Obtained convergence rates: full O(Ndofs)−
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3 , sparse O(Ndofs)−

p+1
2
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Numerical results: combination formula

[3] Bansal, Moiola, P., Schwab, 2020
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Thank you for your attention!
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