Numerical Neural Network

Jinchao Xu

Penn State University
xu@math.psu.edu http://www.math.psu.edu/xu/

NEMESIS, June 14, 2021
(NEw generation MEthods for numerical SImulationS)
NSF: DMS-1819157
(1) Finite element methods and neural networks
(2) Approximation properties

(3) Application to elliptic boundary value problems

4 Numerical experiments

5 Summary and Further Research

Finite element: Piecewise linear functions

Finite element: Piecewise linear functions

- Uniform grid \mathcal{T}_{h}

$$
0=x_{0}<x_{1}<\cdots<x_{N+1}=1, \quad x_{j}=\frac{j}{N+1}(j=0: N+1) .
$$

Figure: 1D uniform grid

Finite element: Piecewise linear functions

- Uniform grid \mathcal{T}_{h}

$$
0=x_{0}<x_{1}<\cdots<x_{N+1}=1, \quad x_{j}=\frac{j}{N+1}(j=0: N+1) .
$$

Figure: 1D uniform grid

- Linear finite element space

$$
V_{h}=\left\{v: v \text { is continuous and piecewise linear w.r.t. } \mathcal{T}_{h}\right\} .
$$

Finite element in multi-dimensions

```
(k=1)
```

$$
w_{1} x+b \quad w_{1} x_{1}+w_{2} x_{2}+b \quad w_{1} x_{1}+w_{2} x_{2}+w_{3} x_{3}+b \quad \cdots
$$

FEM basis function in 1D

- Denote the basis function in \mathcal{T}_{1}

$$
\varphi(x)= \begin{cases}2 x & x \in\left[0, \frac{1}{2}\right] \tag{1}\\ 2(1-x) & x \in\left[\frac{1}{2}, 1\right] \\ 0, & \text { others }\end{cases}
$$

FEM basis function in 1D

- Denote the basis function in \mathcal{T}_{1}

$$
\varphi(x)= \begin{cases}2 x & x \in\left[0, \frac{1}{2}\right] \tag{1}\\ 2(1-x) & x \in\left[\frac{1}{2}, 1\right] \\ 0, & \text { others }\end{cases}
$$

- All basis functions φ_{i} can be written as

$$
\begin{equation*}
\varphi_{i}=\varphi\left(\frac{x-x_{i-1}}{2 h}\right)=\varphi\left(w_{h} x+b_{i}\right) . \tag{2}
\end{equation*}
$$

with $w_{h}=\frac{1}{2 h}, \quad b_{i}=\frac{-(i-1)}{2}$.

FEM basis function in 1D

- Denote the basis function in \mathcal{T}_{1}

$$
\varphi(x)= \begin{cases}2 x & x \in\left[0, \frac{1}{2}\right] \tag{1}\\ 2(1-x) & x \in\left[\frac{1}{2}, 1\right] \\ 0, & \text { others }\end{cases}
$$

- All basis functions φ_{i} can be written as

$$
\begin{equation*}
\varphi_{i}=\varphi\left(\frac{x-x_{i-1}}{2 h}\right)=\varphi\left(w_{h} x+b_{i}\right) . \tag{2}
\end{equation*}
$$

with $w_{h}=\frac{1}{2 h}, \quad b_{i}=\frac{-(i-1)}{2}$.

- Let $x_{+}=\max (0, x)=\operatorname{ReLU}(x)$,

$$
\varphi(x)=2 x_{+}-4(x-1 / 2)_{+}+2(x-1)_{+} .
$$

- $\varphi_{i} \in \operatorname{span}\left\{(w x+b)_{+}, w, b \in \mathbb{R}^{1}\right\}$

$\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$

- $\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$ (make w_{h} and b_{i} arbitrary)

$\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$

- $\operatorname{FEM} \Longrightarrow \Sigma_{n}^{1}$ (make w_{h} and b_{i} arbitrary)

$$
\text { FEM } \subset \operatorname{span}\left\{(w x+b)_{+}, w, b \in \mathbb{R}^{1}\right\}=\Sigma_{n}^{1} .
$$

$\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$

- $\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$ (make w_{h} and b_{i} arbitrary)

$$
\mathrm{FEM} \subset \operatorname{span}\left\{(w x+b)_{+}, w, b \in \mathbb{R}^{1}\right\}=\Sigma_{n}^{1} .
$$

- Example:

$$
\begin{equation*}
f \in \operatorname{span}\left\{(w x+b)_{+}, w, b \in \mathbb{R}^{1}\right\} \longleftrightarrow f=\sum_{j=1}^{n} a_{j}\left(w_{j} x+b_{j}\right)_{+} . \tag{3}
\end{equation*}
$$

$\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$

- $\mathrm{FEM} \Longrightarrow \Sigma_{n}^{1}$ (make w_{h} and b_{i} arbitrary)

$$
\text { FEM } \subset \operatorname{span}\left\{(w x+b)_{+}, w, b \in \mathbb{R}^{1}\right\}=\Sigma_{n}^{1} .
$$

- Example:

$$
\begin{equation*}
f \in \operatorname{span}\left\{(w x+b)_{+}, w, b \in \mathbb{R}^{1}\right\} \longleftrightarrow f=\sum_{j=1}^{n} a_{j}\left(w_{j} x+b_{j}\right)_{+} . \tag{3}
\end{equation*}
$$

f is one hidden layer "deep" neural network with activation function ReLU, n neurons.

Generalization to multi-dimension:

Higher dimension $d \geq 1$

$$
\begin{equation*}
\Sigma_{n}^{1}=\left\{\sum_{i=1}^{n} a_{i}\left(\omega_{i} \cdot x+b_{i}\right)_{+}: \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\} \tag{4}
\end{equation*}
$$

Generalization to multi-dimension:

Higher dimension $d \geq 1$

$$
\begin{equation*}
\Sigma_{n}^{1}=\left\{\sum_{i=1}^{n} a_{i}\left(\omega_{i} \cdot x+b_{i}\right)_{+}: \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\} \tag{4}
\end{equation*}
$$

Shallow Neural Network: General activation function: $\sigma: \mathbb{R}^{1} \mapsto \mathbb{R}^{1}$, namely

$$
\begin{equation*}
\Sigma_{n}^{\sigma}=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right): \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\} \tag{5}
\end{equation*}
$$

Generalization to multi-dimension:

Higher dimension $d \geq 1$

$$
\begin{equation*}
\Sigma_{n}^{1}=\left\{\sum_{i=1}^{n} a_{i}\left(\omega_{i} \cdot x+b_{i}\right)_{+}: \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\} \tag{4}
\end{equation*}
$$

Shallow Neural Network: General activation function: $\sigma: \mathbb{R}^{1} \mapsto \mathbb{R}^{1}$, namely

$$
\begin{equation*}
\Sigma_{n}^{\sigma}=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right): \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\} \tag{5}
\end{equation*}
$$

Common activation functions:

- Heaviside $\sigma= \begin{cases}0 & x \leq 0 \\ 1 & x>0\end{cases}$
- Sigmoidal $\sigma=\left(1+e^{-x}\right)^{-1}$
- Rectified Linear with $\sigma=\max (0, x)$
- Power of a ReLU $\sigma=[\max (0, x)]^{k}$
- Cosine $\sigma=\cos (x)$

σ-DNN: Linears, activation and composition

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

(3) Compose with another linear function:

$$
w^{1} x^{(1)}+b^{1}
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

(3) Compose with another linear function:

$$
w^{1} x^{(1)}+b^{1}
$$

4 Compose with the activation function:

$$
x^{(2)}=\sigma\left(W^{1} x^{(1)}+b^{1}\right)
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

(3) Compose with another linear function:

$$
w^{1} x^{(1)}+b^{1}
$$

4 Compose with the activation function:

$$
x^{(2)}=\sigma\left(W^{1} x^{(1)}+b^{1}\right)
$$

(5) Compose with another linear function

$$
f(x ; \Theta)=W^{2} x^{(2)}+b^{2}
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

(3) Compose with another linear function:

$$
w^{1} x^{(1)}+b^{1}
$$

4 Compose with the activation function:

$$
x^{(2)}=\sigma\left(W^{1} x^{(1)}+b^{1}\right)
$$

(5) Compose with another linear function

$$
f(x ; \Theta)=W^{2} x^{(2)}+b^{2}
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

(3) Compose with another linear function:

$$
w^{1} x^{(1)}+b^{1}
$$

4 Compose with the activation function:

$$
x^{(2)}=\sigma\left(W^{1} x^{(1)}+b^{1}\right)
$$

(5) Compose with another linear function

$$
f(x ; \Theta)=W^{2} x^{(2)}+b^{2}
$$

6
Deep neural network functions with ℓ-hidden layers

$$
\Sigma_{n_{1: \ell}}^{\sigma}=\left\{W^{\ell} x^{(\ell)}+b^{\ell}, W^{i} \in \mathbb{R}^{n_{i}}, b_{i} \in \mathbb{R}\right\}
$$

σ-DNN: Linears, activation and composition

(1) Start from a linear function

$$
w^{0} x+b^{0}
$$

(2) Compose with the activation function:

$$
x^{(1)}=\sigma\left(W^{0} x+b^{0}\right)
$$

(3) Compose with another linear function:

$$
w^{1} x^{(1)}+b^{1}
$$

4 Compose with the activation function:

$$
x^{(2)}=\sigma\left(W^{1} x^{(1)}+b^{1}\right)
$$

(5) Compose with another linear function

$$
f(x ; \Theta)=W^{2} x^{(2)}+b^{2}
$$

6
Deep neural network functions with ℓ-hidden layers

$$
\begin{gathered}
\Sigma_{n_{1: \ell}}^{\sigma}=\left\{W^{\ell} X^{(\ell)}+b^{\ell}, W^{i} \in \mathbb{R}^{n_{i}}, b_{i} \in \mathbb{R}\right\} \\
\sum_{n_{1: \ell}}^{k}=\Sigma_{n_{1: \ell}}^{R e L U^{k}}
\end{gathered}
$$

What does a function in ReLU-DNN look like?

Obviously:

$$
\Sigma_{n_{1: \ell}}^{1}=\text { a space of continuous piecewise linear functions! }
$$

What does a function in ReLU-DNN look like?

Obviously:

$$
\Sigma_{n_{1: \ell}}^{1}=\text { a space of continuous piecewise linear functions! }
$$

Figure: $\ell=1$ and $\ell=2$

How is \mathcal{N}_{ℓ}^{1} compared with (adaptive) linear FEM?

Figure: $(40,40)$

Figure: Adaptive Grid

Connection of ReLU DNN and Linear FEM

(1) $d=1$,

$$
\mathrm{FE} \subset \Sigma_{n}^{1}
$$

Connection of ReLU DNN and Linear FEM

(1) $d=1$,

$$
\mathrm{FE} \subset \Sigma_{n}^{1}
$$

(2) $d \geq 2$,

$$
\mathrm{FE} \nsubseteq \Sigma_{n}^{1} .
$$

Connection of ReLU DNN and Linear FEM

(1) $d=1$,

$$
\mathrm{FE} \subset \Sigma_{n}^{1}
$$

(2) $d \geq 2$,

$$
\mathrm{FE} \nsubseteq \Sigma_{n}^{1} .
$$

(3) $d \geq 2$,

$$
\mathrm{FE} \subset \Sigma_{n_{1: \ell}}^{1} \quad \text { for some } \ell>1
$$

A 2D example: FE basis function

Consider a 2D FE basis function, $\phi(x)$:

[^0]
A 2D example: FE basis function

Consider a 2D FE basis function, $\phi(x)$:

Here g_{i} is linear in Domain i, and $x_{7}=x_{1}$, satisfying

$$
\begin{align*}
& g_{i}\left(x_{0}\right)=1 \quad g_{i}\left(x_{i}\right)=0 \quad g_{i}\left(x_{i+1}\right)=0 \\
& \phi(x)=\left\{\begin{aligned}
g_{i}(x), & x \in \text { Domain } i \\
0 . & x \in \mathbb{R}^{2}-\overline{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}
\end{aligned}\right. \tag{6}
\end{align*}
$$

[^1]
A 2D example: FE basis function

Consider a 2D FE basis function, $\phi(x)$:

Here g_{i} is linear in Domain i, and $x_{7}=x_{1}$, satisfying

$$
\begin{align*}
& g_{i}\left(x_{0}\right)=1 \quad g_{i}\left(x_{i}\right)=0 \quad g_{i}\left(x_{i+1}\right)=0 \\
& \phi(x)=\left\{\begin{aligned}
g_{i}(x), & x \in \text { Domain } i \\
0 . & x \in \mathbb{R}^{2}-\overline{x_{1} x_{2} x_{3} x_{4} x_{5} x_{6}}
\end{aligned}\right. \tag{6}
\end{align*}
$$

It is non-obvious, but in fact we have ${ }^{1}$

$$
\begin{equation*}
\phi(x) \in \mathrm{DNN}_{2}(\operatorname{ReLU}) \tag{7}
\end{equation*}
$$

[^2]
ReLU-DNN and Linear FEM for H^{1}

$\operatorname{ReLU}-D N N=\sum_{n_{1: \ell}}^{1}$

ReLU-DNN and Linear FEM for H^{1}

$\operatorname{ReLU}-D N N=\Sigma_{n_{1: \ell}}^{1}=L$ inear $F E M \subset H^{1}(\Omega)$

(1) Finite element methods and neural networks

(2) Approximation properties

(3) Application to elliptic boundary value problems

4 Numerical experiments
(5) Summary and Further Research

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

$$
\Sigma_{n}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), a_{i} \in \mathbb{R}, \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\}
$$

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

$$
\Sigma_{n}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), a_{i} \in \mathbb{R}, \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\}
$$

- Is

$$
\begin{equation*}
\bigcup_{n=1}^{\infty} \Sigma_{n}^{\sigma} \tag{8}
\end{equation*}
$$

dense in $L^{2}(\Omega)$ or C^{k} ?

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

$$
\Sigma_{n}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), a_{i} \in \mathbb{R}, \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\}
$$

- Is

$$
\begin{equation*}
\bigcup_{n=1}^{\infty} \Sigma_{n}^{\sigma} \tag{8}
\end{equation*}
$$

dense in $L^{2}(\Omega)$ or C^{k} ?

- Yes, if and only if σ is NOT a polynomial!

Basic Approximation Properties

Can shallow networks approximate arbitrary functions?
Let

$$
\Sigma_{n}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), a_{i} \in \mathbb{R}, \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}\right\}
$$

- Is

$$
\begin{equation*}
\bigcup_{n=1}^{\infty} \Sigma_{n}^{\sigma} \tag{8}
\end{equation*}
$$

dense in $L^{2}(\Omega)$ or C^{k} ?

- Yes, if and only if σ is NOT a polynomial!
- Our interest: When can this approximation be done in a stable manner?

Stable Neural Network Approximation

- Consider approximation from the class

$$
\begin{equation*}
\Sigma_{n, M}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}, \sum_{i=1}^{n}\left|a_{i}\right| \leq M\right\} \tag{9}
\end{equation*}
$$

of neural networks with ℓ^{1}-bounded outer coefficients.

Stable Neural Network Approximation

- Consider approximation from the class

$$
\begin{equation*}
\Sigma_{n, M}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}, \sum_{i=1}^{n}\left|a_{i}\right| \leq M\right\} \tag{9}
\end{equation*}
$$

of neural networks with ℓ^{1}-bounded outer coefficients.

- More generally for a dictionary $\mathbb{D} \subset H=L^{2}(\Omega)$, consider

$$
\begin{equation*}
\Sigma_{n, M}(\mathbb{D})=\left\{\sum_{i=1}^{n} a_{i} h_{i}, h_{i} \in \mathbb{D}, \sum_{i=1}^{n}\left|a_{i}\right| \leq M\right\} \tag{10}
\end{equation*}
$$

Stable Neural Network Approximation

- Consider approximation from the class

$$
\begin{equation*}
\Sigma_{n, M}^{\sigma}:=\left\{\sum_{i=1}^{n} a_{i} \sigma\left(\omega_{i} \cdot x+b_{i}\right), \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R}, \sum_{i=1}^{n}\left|a_{i}\right| \leq M\right\} \tag{9}
\end{equation*}
$$

of neural networks with ℓ^{1}-bounded outer coefficients.

- More generally for a dictionary $\mathbb{D} \subset H=L^{2}(\Omega)$, consider

$$
\begin{equation*}
\Sigma_{n, M}(\mathbb{D})=\left\{\sum_{i=1}^{n} a_{i} h_{i}, h_{i} \in \mathbb{D}, \sum_{i=1}^{n}\left|a_{i}\right| \leq M\right\} \tag{10}
\end{equation*}
$$

- Let $M<\infty$ be fixed and consider approximation as $n \rightarrow \infty$.

Stable Dictionary Approximation Space

Siegel \& Xu, 2021^{2} :

- Define a closed convex hull of $\pm \mathbb{D}$:

$$
\begin{equation*}
B_{1}(\mathbb{D})=\overline{\left\{\sum_{j=1}^{n} a_{j} h_{j}: n \in \mathbb{N}, h_{j} \in \mathbb{D}, \sum_{i=1}^{n}\left|a_{i}\right| \leq 1\right\}} \tag{11}
\end{equation*}
$$

[^3]
Stable Dictionary Approximation Space

Siegel \& Xu, 2021^{2} :

- Define a closed convex hull of $\pm \mathbb{D}$:

$$
\begin{equation*}
B_{1}(\mathbb{D})=\overline{\left\{\sum_{j=1}^{n} a_{j} h_{j}: n \in \mathbb{N}, h_{j} \in \mathbb{D}, \sum_{i=1}^{n}\left|a_{i}\right| \leq 1\right\}} \tag{11}
\end{equation*}
$$

- Define a norm

$$
\begin{equation*}
\|f\|_{\mathcal{K}_{1}(\mathbb{D})}=\inf \left\{r>0: f \in r B_{1}(\mathbb{D})\right\}, \tag{12}
\end{equation*}
$$

as the guage of the set $B_{1}(\mathbb{D})$.

[^4]
Stable Dictionary Approximation Space

Siegel \& Xu, 2021^{2} :

- Define a closed convex hull of $\pm \mathbb{D}$:

$$
\begin{equation*}
B_{1}(\mathbb{D})=\overline{\left\{\sum_{j=1}^{n} a_{j} h_{j}: n \in \mathbb{N}, h_{j} \in \mathbb{D}, \sum_{i=1}^{n}\left|a_{i}\right| \leq 1\right\}} \tag{11}
\end{equation*}
$$

- Define a norm

$$
\begin{equation*}
\|f\|_{\mathcal{K}_{1}(\mathbb{D})}=\inf \left\{r>0: f \in r B_{1}(\mathbb{D})\right\} \tag{12}
\end{equation*}
$$

as the guage of the set $B_{1}(\mathbb{D})$.

- The unit ball is

$$
\begin{equation*}
\left\{f \in H:\|f\|_{\mathcal{K}_{1}(\mathbb{D})} \leq 1\right\}=B_{1}(\mathbb{D}) \tag{13}
\end{equation*}
$$

[^5]
Stable Dictionary Approximation Space

Siegel \& Xu, 2021^{2} :

- Define a closed convex hull of $\pm \mathbb{D}$:

$$
\begin{equation*}
B_{1}(\mathbb{D})=\overline{\left\{\sum_{j=1}^{n} a_{j} h_{j}: n \in \mathbb{N}, h_{j} \in \mathbb{D}, \sum_{i=1}^{n}\left|a_{i}\right| \leq 1\right\}} \tag{11}
\end{equation*}
$$

- Define a norm

$$
\begin{equation*}
\|f\|_{\mathcal{K}_{1}(\mathbb{D})}=\inf \left\{r>0: f \in r B_{1}(\mathbb{D})\right\}, \tag{12}
\end{equation*}
$$

as the guage of the set $B_{1}(\mathbb{D})$.

- The unit ball is

$$
\begin{equation*}
\left\{f \in H:\|f\|_{\mathcal{K}_{1}(\mathbb{D})} \leq 1\right\}=B_{1}(\mathbb{D}) \tag{13}
\end{equation*}
$$

- We have

$$
\begin{equation*}
\left\{f \in H:\|f\|_{\mathcal{K}_{1}(\mathbb{D})}<\infty\right\} \tag{14}
\end{equation*}
$$

is a Banach space.

[^6]
Example: $H=\ell^{2}$

- Let $H=\ell^{2}, \mathbb{D}=\left\{e_{1}, e_{2}, \ldots.\right\}$.
- What is $B_{1}(\mathbb{D})$?

Example: $H=\ell^{2}$

- Let $H=\ell^{2}, \mathbb{D}=\left\{e_{1}, e_{2}, \ldots.\right\}$.
- What is $B_{1}(\mathbb{D})$?
- The convex hull of $\pm \mathbb{D}$ is

$$
\begin{equation*}
B_{1}(\mathbb{D})=\left\{\left(a_{1}, a_{2}, \ldots\right) \in \ell^{2}: \sum_{i=1}^{\infty}\left|a_{i}\right| \leq 1\right\} \tag{15}
\end{equation*}
$$

Example: $H=\ell^{2}$

- Let $H=\ell^{2}, \mathbb{D}=\left\{e_{1}, e_{2}, \ldots ..\right\}$.
- What is $B_{1}(\mathbb{D})$?
- The convex hull of $\pm \mathbb{D}$ is

$$
\begin{equation*}
B_{1}(\mathbb{D})=\left\{\left(a_{1}, a_{2}, \ldots\right) \in \ell^{2}: \sum_{i=1}^{\infty}\left|a_{i}\right| \leq 1\right\} \tag{15}
\end{equation*}
$$

- Thus the norm is given by

$$
\begin{equation*}
\mathcal{K}_{1}(\mathbb{D})=\ell^{1} \subset \ell^{2} \tag{16}
\end{equation*}
$$

Stable Dictionary Approximation Space

Theorem (Siegel \& Xu 2021)

A function $f \in H=L^{2}(\Omega)$ can be approximated at all, i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf _{f_{n} \in \Sigma_{n, M}(\mathbb{D})}\left\|f-f_{n}\right\|_{H}=0 \tag{17}
\end{equation*}
$$

for a fixed $M<\infty$ if and only if

$$
f \in M B_{1}(\mathbb{D}) \subset \mathcal{K}_{1}(\mathbb{D})
$$

Stable Dictionary Approximation Space

Theorem (Siegel \& Xu 2021)

A function $f \in H=L^{2}(\Omega)$ can be approximated at all, i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \inf _{f_{n} \in \Sigma_{n, M}(\mathbb{D})}\left\|f-f_{n}\right\|_{H}=0 \tag{17}
\end{equation*}
$$

for a fixed $M<\infty$ if and only if

$$
f \in M B_{1}(\mathbb{D}) \subset \mathcal{K}_{1}(\mathbb{D}) .
$$

Furthermore, if

$$
\|\mathbb{D}\| \equiv \sup _{h \in \mathbb{D}}\|h\|_{H}<\infty
$$

we have

$$
\begin{equation*}
\inf _{f_{n} \in \Sigma_{n, M(\mathbb{D})}}\left\|f-f_{n}\right\|_{H} \leq n^{-\frac{1}{2}}\|\mathbb{D}\|\|f\|_{\mathcal{K}_{1}(\mathbb{D})} \tag{18}
\end{equation*}
$$

The Spectral Barron Space

- Let $f \in B_{1}(\mathbb{D}), H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{F}_{s}^{d}:=\left\{(1+|\omega|)^{-s} e^{2 \pi i \omega \cdot x}: \omega \in \mathbb{R}^{d}\right\} \tag{19}
\end{equation*}
$$

${ }^{3}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

The Spectral Barron Space

- Let $f \in B_{1}(\mathbb{D}), H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{F}_{s}^{d}:=\left\{(1+|\omega|)^{-s} e^{2 \pi i \omega \cdot x}: \omega \in \mathbb{R}^{d}\right\} \tag{19}
\end{equation*}
$$

- In this case the norm is characterized by ${ }^{3}$

$$
\begin{equation*}
\|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)}=\inf _{\left.f_{e}\right|_{B_{1}^{d}}=f} \int_{\mathbb{R}^{d}}(1+|\xi|)^{s}\left|\hat{f}_{e}(\xi)\right| d \xi \tag{20}
\end{equation*}
$$

where the infimum is taken over all extensions $f_{e} \in L^{1}\left(\mathbb{R}^{d}\right)$.
${ }^{3}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

The Spectral Barron Space

- Let $f \in B_{1}(\mathbb{D}), H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{F}_{s}^{d}:=\left\{(1+|\omega|)^{-s} e^{2 \pi i \omega \cdot x}: \omega \in \mathbb{R}^{d}\right\} \tag{19}
\end{equation*}
$$

- In this case the norm is characterized by ${ }^{3}$

$$
\begin{equation*}
\|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)}=\inf _{f_{e} \overline{\mathbb{B}}_{1}^{d} f} \int_{\mathbb{R}^{d}}\left(1+\left.|\xi|\right|^{s}\left|\hat{f}_{e}(\xi)\right| d \xi,\right. \tag{20}
\end{equation*}
$$

where the infimum is taken over all extensions $f_{e} \in L^{1}\left(\mathbb{R}^{d}\right)$.

- Property:

$$
\begin{equation*}
H^{s+\frac{d}{2}+\varepsilon}(\Omega) \hookrightarrow B^{s}(\Omega) \hookrightarrow W^{s, \infty}(\Omega) . \tag{21}
\end{equation*}
$$

${ }^{3}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.

The Barron Space

The results are proved in Siegel and $\mathrm{Xu} 2021^{4}$

- Let $H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{P}_{k}^{d}:=\left\{\sigma_{k}(\omega \cdot x+b): \omega \in S^{d-1}, b \in[-2,2]\right\} \tag{22}
\end{equation*}
$$

where $\sigma_{k}=[\max (0, x)]^{k}$.

[^7]
The Barron Space

The results are proved in Siegel and $\mathrm{Xu} 2021^{4}$

- Let $H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{P}_{k}^{d}:=\left\{\sigma_{k}(\omega \cdot x+b): \omega \in S^{d-1}, b \in[-2,2]\right\} \tag{22}
\end{equation*}
$$

where $\sigma_{k}=[\max (0, x)]^{k}$.

- When $k=1, \mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right)$ is equivalentto the Barron space (introduced in ${ }^{5}$).

[^8]
The Barron Space

The results are proved in Siegel and $\mathrm{Xu} 2021^{4}$

- Let $H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{P}_{k}^{d}:=\left\{\sigma_{k}(\omega \cdot x+b): \omega \in S^{d-1}, b \in[-2,2]\right\} \tag{22}
\end{equation*}
$$

where $\sigma_{k}=[\max (0, x)]^{k}$.

- When $k=1, \mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right)$ is equivalentto the Barron space (introduced in ${ }^{5}$).
- When $k=0, d=1, \mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right)=B V([-1,1])$.

[^9]
The Barron Space

The results are proved in Siegel and $\mathrm{Xu} 2021^{4}$

- Let $H=L^{2}(\Omega), \Omega=B_{1}^{d}=\left\{x \in \mathbb{R}^{d}:|x| \leq 1\right\}$, and

$$
\begin{equation*}
\mathbb{D}=\mathbb{P}_{k}^{d}:=\left\{\sigma_{k}(\omega \cdot x+b): \omega \in S^{d-1}, b \in[-2,2]\right\} \tag{22}
\end{equation*}
$$

where $\sigma_{k}=[\max (0, x)]^{k}$.

- When $k=1, \mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right)$ is equivalentto the Barron space (introduced in ${ }^{5}$).
- When $k=0, d=1, \mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right)=B V([-1,1])$.
- We have $\mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right) \supset \mathcal{K}_{1}\left(\mathbb{F}_{k+1}^{d}\right)\left(\right.$ for $k=0$, Barron $\left.1993^{6}\right)$

[^10]
Previous State-of-the-art Results

For some dictionaries \mathbb{D}, the $n^{-\frac{1}{2}}$ approximation rate can be improved!

- For $\mathbb{D}=\mathbb{P}_{0}^{d}$, we have ${ }^{7}$

$$
\begin{equation*}
\sup _{f \in B_{1}(\mathbb{D})} \inf _{f_{n} \in \Sigma_{n, M}}\left\|f-f_{n}\right\|_{L^{2}\left(B_{1}^{d}\right)} \lesssim n^{-\frac{1}{2}-\frac{1}{2 d}} . \tag{23}
\end{equation*}
$$

- For $\mathbb{D}=\mathbb{P}_{k}^{d}$ for $k \geq 1$, we have ${ }^{8},{ }^{9}$, if f is in some spectral Barron space:

$$
\begin{equation*}
\inf _{f_{n} \in \Sigma_{n, M}}\left\|f-f_{n}\right\|_{L^{2}\left(B_{1}^{d}\right)} \lesssim n^{-\frac{1}{2}-\frac{1}{d}} . \tag{24}
\end{equation*}
$$

[^11]
Previous State-of-the-art Results

For some dictionaries \mathbb{D}, the $n^{-\frac{1}{2}}$ approximation rate can be improved!

- For $\mathbb{D}=\mathbb{P}_{0}^{d}$, we have ${ }^{7}$

$$
\begin{equation*}
\sup _{f \in B_{1}(\mathbb{D})} \inf _{f_{n} \in \Sigma_{n, M}}\left\|f-f_{n}\right\|_{L^{2}\left(B_{1}^{d}\right)} \lesssim n^{-\frac{1}{2}-\frac{1}{2 d}} . \tag{23}
\end{equation*}
$$

- For $\mathbb{D}=\mathbb{P}_{k}^{d}$ for $k \geq 1$, we have ${ }^{8},{ }^{9}$, if f is in some spectral Barron space:

$$
\begin{equation*}
\inf _{f_{n} \in \Sigma_{n, M}}\left\|f-f_{n}\right\|_{L^{2}\left(B_{1}^{d}\right)} \lesssim n^{-\frac{1}{2}-\frac{1}{d}} . \tag{24}
\end{equation*}
$$

- What are the optimal approximation rates?

[^12]
New Optimal Bounds ${ }^{10}$

Theorem

For $\mathbb{D}=\mathbb{P}_{k}^{d}$ for $k \geq 1$, we have

$$
\begin{equation*}
n^{-\frac{1}{2}-\frac{2 k+1}{2 d}} \lesssim \sup _{f \in B_{1}(\mathbb{D})} \inf _{n \in \Sigma_{n, M}}\left\|f-f_{n}\right\|_{L^{2}(\Omega)} \lesssim n^{-\frac{1}{2}-\frac{2 k+1}{2 d}} \tag{25}
\end{equation*}
$$

[^13]
New Optimal Bounds ${ }^{10}$

Theorem

For $\mathbb{D}=\mathbb{P}_{k}^{d}$ for $k \geq 1$, we have

$$
\begin{equation*}
n^{-\frac{1}{2}-\frac{2 k+1}{2 d}} \lesssim \sup _{f \in B_{1}(\mathbb{D})} \inf _{n \in \Sigma_{n, M}}\left\|f-f_{n}\right\|_{L^{2}(\Omega)} \lesssim n^{-\frac{1}{2}-\frac{2 \kappa+1}{2 d}} \tag{25}
\end{equation*}
$$

In comparison: optimal bound for finite elements

Theorem

Assume that V_{h}^{k} is a finite element of degree k on quasi-uniform mesh $\left\{\mathcal{T}_{h}\right\}$ of $\mathcal{O}(N)$ elements. Assume u is sufficiently smooth and not piecewise polynomials, then we have

$$
\begin{equation*}
c(u) n^{-\frac{k}{d}} \leq \inf _{v_{h} \in V_{h}^{k}}\left\|u-v_{h}\right\|_{L^{2}(\Omega)} \leq C(u) n^{-\frac{k}{d}}=\mathcal{O}\left(h^{k}\right) . \tag{26}
\end{equation*}
$$

Ref: Q. Lin, H. Xie and J. Xu, Lower Bounds of the Discretization Error for Piecewise Polynomials, Math. Comp., 83, 1-13 (2014)

[^14]
Removing ${ }^{12}$ the constraint that $\sum_{i=1}^{n}\left|a_{i}\right| \leq M$

Define

$$
\begin{equation*}
\Sigma_{n}^{k}:=\left\{\sum_{i=1}^{n} a_{i} \sigma_{k}\left(\omega_{i} \cdot x+b_{i}\right), \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R},\right\} \tag{27}
\end{equation*}
$$

Theorem (Siegel and Xu)

$$
\inf _{f_{n} \in \Sigma_{n}^{k}}\left\|f-f_{n}\right\|_{\Omega} \lesssim \begin{cases}n^{-\frac{1}{2}} & \|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)} \tag{28}\\ n^{-(k+1)} \log n & \|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)} \text { if } s=\frac{1}{2} \\ \text { for some } s>1\end{cases}
$$

- Improves result of Barron ${ }^{11}$ by relaxing condition on f

[^15]
Removing ${ }^{12}$ the constraint that $\sum_{i=1}^{n}\left|a_{i}\right| \leq M$

Define

$$
\begin{equation*}
\Sigma_{n}^{k}:=\left\{\sum_{i=1}^{n} a_{i} \sigma_{k}\left(\omega_{i} \cdot x+b_{i}\right), \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R},\right\} \tag{27}
\end{equation*}
$$

Theorem (Siegel and Xu)

$$
\inf _{f_{n} \in \sum_{n}^{k}}\left\|f-f_{n}\right\|_{\Omega} \lesssim\left\{\begin{array}{ll}
n^{-\frac{1}{2}} & \|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)} \tag{28}\\
n^{-(k+1)} \log n & \|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)}
\end{array} \quad \text { if } s=\frac{1}{2}\right.
$$

- Improves result of Barron ${ }^{11}$ by relaxing condition on f
- Shows that very high order approximation rates can be attained with sufficient smoothness

[^16]
Removing ${ }^{12}$ the constraint that $\sum_{i=1}^{n}\left|a_{i}\right| \leq M$

Define

$$
\begin{equation*}
\Sigma_{n}^{k}:=\left\{\sum_{i=1}^{n} a_{i} \sigma_{k}\left(\omega_{i} \cdot x+b_{i}\right), \omega_{i} \in \mathbb{R}^{d}, b_{i} \in \mathbb{R},\right\} \tag{27}
\end{equation*}
$$

Theorem (Siegel and Xu)

$$
\inf _{f_{n} \in \Sigma_{n}^{k}}\left\|f-f_{n}\right\|_{\Omega} \lesssim \begin{cases}n^{-\frac{1}{2}} & \|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)} \tag{28}\\ n^{-(k+1)} \log n & \|f\|_{\mathcal{K}_{1}\left(\mathbb{F}_{s}^{d}\right)} \text { if } s=\frac{1}{2} \\ \text { for some } s>1\end{cases}
$$

- Improves result of Barron ${ }^{11}$ by relaxing condition on f
- Shows that very high order approximation rates can be attained with sufficient smoothness
- Comparison with FEM:

$$
\inf _{w \in V_{n}^{k}(N N)}\|u-w\| \approx\left\{\inf _{v \in V_{n}^{k}(F E)}\|u-v\|\right\}^{d} .
$$

[^17]
(1) Finite element methods and neural networks

(2) Approximation properties
(3) Application to elliptic boundary value problems

4 Numerical experiments
(5) Summary and Further Research

Model problem

(for any $d \geq 1, m \geq 1$)

Given $\Omega \subset \mathbb{R}^{d}$, consider a $2 m$-th order elliptic problems

$$
\sum_{|\alpha|=m}(-1)^{m} \partial^{\alpha}\left(a_{\alpha}(x) \partial^{\alpha} u\right)+u=f \quad \text { in } \Omega .
$$

Model problem

(for any $d \geq 1, m \geq 1$)

Given $\Omega \subset \mathbb{R}^{d}$, consider a $2 m$-th order elliptic problems

$$
\sum_{|\alpha|=m}(-1)^{m} \partial^{\alpha}\left(a_{\alpha}(x) \partial^{\alpha} u\right)+u=f \quad \text { in } \Omega .
$$

Special cases:

Model problem

(for any $d \geq 1, m \geq 1$)

Given $\Omega \subset \mathbb{R}^{d}$, consider a $2 m$-th order elliptic problems

$$
\sum_{|\alpha|=m}(-1)^{m} \partial^{\alpha}\left(a_{\alpha}(x) \partial^{\alpha} u\right)+u=f \quad \text { in } \Omega .
$$

Special cases:

$$
-\Delta u=f \quad(m=1)
$$

Model problem

(for any $d \geq 1, m \geq 1$)

Given $\Omega \subset \mathbb{R}^{d}$, consider a $2 m$-th order elliptic problems

$$
\sum_{|\alpha|=m}(-1)^{m} \partial^{\alpha}\left(a_{\alpha}(x) \partial^{\alpha} u\right)+u=f \quad \text { in } \Omega .
$$

Special cases:

$$
-\Delta u=f \quad(m=1), \quad \Delta^{2} u=f \quad(m=2)
$$

Open Problem: For any $m, d \geq 1$, how to construct conforming finite element space

$$
V_{h} \subset H^{m}(\Omega) \Longleftrightarrow V_{h} \subset C^{m-1}(\Omega) ?
$$

Nonconforming finite element method

Nonconforming finite element method

- Variational "crime":

$$
V_{h} \nsubseteq V
$$

Nonconforming finite element method

- Variational "crime":

$$
V_{h} \nsubseteq V
$$

- Bilinear form (with piecewise derivatives: $\partial_{h}^{\alpha} v_{h}$)

$$
a_{h}\left(u_{h}, v_{h}\right):=\sum_{|\alpha|=m} \sum_{K \in \mathcal{T}_{h}}\left(a_{\alpha} \partial^{\alpha} u_{h}, \partial^{\alpha} v_{h}\right)_{0, K}+\left(u_{h}, v_{h}\right) .
$$

Nonconforming finite element method

- Variational "crime":

$$
V_{h} \nsubseteq V
$$

- Bilinear form (with piecewise derivatives: $\partial_{h}^{\alpha} v_{h}$)

$$
a_{h}\left(u_{h}, v_{h}\right):=\sum_{|\alpha|=m} \sum_{K \in \mathcal{T}_{h}}\left(a_{\alpha} \partial^{\alpha} u_{h}, \partial^{\alpha} v_{h}\right)_{0, K}+\left(u_{h}, v_{h}\right)
$$

- Find $u_{h} \in V_{h}$ such that

$$
a_{h}\left(u_{h}, v_{h}\right)=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

Lowest order P_{m} nonconforming and DG with minimal stabilization
Universal construction

$m \backslash d$	1	2	3
0	\square		
1	\square		
2	\square		
3	\bigcirc		
4	(-)		

References:

Lowest order P_{m} nonconforming and DG with minimal stabilization

Universal construction

$m \backslash d$	1	2	3
0	\square		
1	\square		
2	\square		
3	\bigcirc		
4	\bigcirc		

References:

(1) $m \leq d$: Wang, and $\mathbf{X u}, 2013$

- Minimal finite element spaces for $2 m$-th-order partial differential equations in \mathcal{R}^{n}, Mathematics of Computation. 82, 25-43, 2013.

Lowest order P_{m} nonconforming and DG with minimal stabilization

Universal construction

$m \backslash d$	1	2	3
0	\square		
1	\square		
2	\square		
3	\bigcirc		
4	$\bigcirc \cdot \bigcirc$		

References:
(1) $m \leq d$: Wang, and $\mathbf{X u}, 2013$

- Minimal finite element spaces for $2 m$-th-order partial differential equations in \mathcal{R}^{n}, Mathematics of Computation. 82, 25-43, 2013.
(2) $m>d: \mathrm{Wu}$, and Xu 2017-2020
- \mathcal{P}_{m} interior penalty nonconforming finite element methods for 2m-th Order PDEs in \mathbb{R}^{n}, arXiv:1710.07678.

Example: $n=d=2, m=3$

DOF at different levels:

level 1

level 0

- The highest level $(I=1)$: preserve the crucial property

$$
\int_{F}\left[\nabla^{m-1} u\right]=0 .
$$

- NO weak continuity for the point value \Rightarrow interior-element-boundary penalty

$$
\left(\nabla_{h}^{3} u_{h}, \nabla_{h}^{3} v_{h}\right)+\eta \sum_{e \in \mathcal{E}_{h}} h_{e}^{-5} \int_{e} \llbracket u_{h} \rrbracket \cdot \llbracket v_{h} \rrbracket=\left(f, v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

(Arnold 1982)

On the construction of smooth FEM

Question: For any $m, d \geq 1$, how to construct conforming finite element space

$$
V_{h} \subset H^{m}(\Omega) \Longleftrightarrow V_{h} \subset C^{m-1}(\Omega) ?
$$

Refs: Argyris et al., (1968); Bramble \& Zlámal, (1970); Zhang (2009); Hu \& Zhang (2015); Fu, Guzmán \& Neilan (2020).

On the construction of smooth FEM

Question: For any $m, d \geq 1$, how to construct conforming finite element space

$$
V_{h} \subset H^{m}(\Omega) \Longleftrightarrow V_{h} \subset C^{m-1}(\Omega) ?
$$

Refs: Argyris et al., (1968); Bramble \& Zlámal, (1970); Zhang (2009); Hu \& Zhang (2015); Fu, Guzmán \& Neilan (2020).

Answer: mostly open, especially when $m \geq 3, d \geq 3$ until recently (2021)

On the construction of smooth FEM

Question: For any $m, d \geq 1$, how to construct conforming finite element space

$$
V_{h} \subset H^{m}(\Omega) \Longleftrightarrow V_{h} \subset C^{m-1}(\Omega) ?
$$

Refs: Argyris et al., (1968); Bramble \& Zlámal, (1970); Zhang (2009); Hu \& Zhang (2015); Fu, Guzmán \& Neilan (2020).

Answer: mostly open, especially when $m \geq 3, d \geq 3$ until recently (2021)

Theorem (Hu, Lin, \& Wu 2021, ArXiv: 2103.14924))

For any $d \geq 1, r \geq 0$, a globally C^{r} finite element of degree $k \geq 2^{d} r+1$ can be constructed on any simplicial mesh with locally defined DOF.

Conforming elements by neural network: $V_{n}^{k} \subset H^{m}(\Omega)$

 Definition:$$
V_{n}^{k}=\left\{\sum_{i=1}^{n} a_{i}\left(w_{i} x+b_{i}\right)_{+}^{k}, w_{i} \in \mathbb{R}^{1 \times d}, a_{i}, b_{i} \in \mathbb{R}^{1}\right\}
$$

Conforming elements by neural network: $V_{n}^{k} \subset H^{m}(\Omega)$

 Definition:$$
V_{n}^{k}=\left\{\sum_{i=1}^{n} a_{i}\left(w_{i} x+b_{i}\right)_{+}^{k}, w_{i} \in \mathbb{R}^{1 \times d}, a_{i}, b_{i} \in \mathbb{R}^{1}\right\}
$$

where

$$
x_{+}=\max (0, x)=\operatorname{ReLU}(x)
$$

Conforming elements by neural network: $V_{n}^{k} \subset H^{m}(\Omega)$

Definition:

$$
V_{n}^{k}=\left\{\sum_{i=1}^{n} a_{i}\left(w_{i} x+b_{i}\right)_{+}^{k}, w_{i} \in \mathbb{R}^{1 \times d}, a_{i}, b_{i} \in \mathbb{R}^{1}\right\}
$$

where

$$
x_{+}=\max (0, x)=\operatorname{ReLU}(x)
$$

Properties:

(1) Conforming for any $m, d \geq 1$ if $k \geq m$:

$$
V_{n}^{k} \subset H^{k}(\Omega) \subset H^{m}(\Omega)
$$

Conforming elements by neural network: $V_{n}^{k} \subset H^{m}(\Omega)$

 Definition:$$
V_{n}^{k}=\left\{\sum_{i=1}^{n} a_{i}\left(w_{i} x+b_{i}\right)_{+}^{k}, w_{i} \in \mathbb{R}^{1 \times d}, a_{i}, b_{i} \in \mathbb{R}^{1}\right\}
$$

where

$$
x_{+}=\max (0, x)=\operatorname{ReLU}(x)
$$

Properties:
(1) Conforming for any $m, d \geq 1$ if $k \geq m$:

$$
V_{n}^{k} \subset H^{k}(\Omega) \subset H^{m}(\Omega)
$$

(2) Piecewise polynomials of degree k in the following grids

Application to high order PDE in any dimension

Consider

$$
\left\{\begin{align*}
& L u=f \text { in } \Omega, \tag{29}\\
& B_{N}^{k}(u)=0, \\
& \text { on } \partial \Omega, \quad 0 \leq k \leq m-1 .
\end{align*}\right.
$$

Application to high order PDE in any dimension

Consider

$$
\left\{\begin{align*}
L u=f & \text { in } \Omega, \tag{29}\\
B_{N}^{k}(u)=0, & \text { on } \partial \Omega, \quad 0 \leq k \leq m-1 .
\end{align*}\right.
$$

\Longleftrightarrow Find $u \in V=H^{m}(\Omega)$ such that

$$
\begin{equation*}
J(u)=\min _{v \in V} J(v) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha}\left|\partial^{\alpha} v\right|^{2}+v^{2} d x-(f, v) \tag{31}
\end{equation*}
$$

Application to high order PDE in any dimension

Consider

$$
\left\{\begin{align*}
L u=f & \text { in } \Omega, \tag{29}\\
B_{N}^{k}(u)=0, & \text { on } \partial \Omega, \quad 0 \leq k \leq m-1 .
\end{align*}\right.
$$

\Longleftrightarrow Find $u \in V=H^{m}(\Omega)$ such that

$$
\begin{equation*}
J(u)=\min _{v \in V} J(v) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha}\left|\partial^{\alpha} v\right|^{2}+v^{2} d x-(f, v) \tag{31}
\end{equation*}
$$

NN-FEM:

Application to high order PDE in any dimension

Consider

$$
\left\{\begin{align*}
L u=f & \text { in } \Omega, \tag{29}\\
B_{N}^{k}(u)=0, & \text { on } \partial \Omega, \quad 0 \leq k \leq m-1 .
\end{align*}\right.
$$

\Longleftrightarrow Find $u \in V=H^{m}(\Omega)$ such that

$$
\begin{equation*}
J(u)=\min _{v \in V} J(v) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha}\left|\partial^{\alpha} v\right|^{2}+v^{2} d x-(f, v) \tag{31}
\end{equation*}
$$

NN-FEM:Find $u_{n} \in V_{n}^{k}$ as follows:

$$
\begin{equation*}
J\left(u_{n}\right)=\min _{v \in V_{n}^{k}} J(v) \tag{32}
\end{equation*}
$$

Application to high order PDE in any dimension

Consider

$$
\left\{\begin{align*}
L u=f & \text { in } \Omega, \tag{29}\\
B_{N}^{k}(u)=0, & \text { on } \partial \Omega, \quad 0 \leq k \leq m-1
\end{align*}\right.
$$

\Longleftrightarrow Find $u \in V=H^{m}(\Omega)$ such that

$$
\begin{equation*}
J(u)=\min _{v \in V} J(v) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha}\left|\partial^{\alpha} v\right|^{2}+v^{2} d x-(f, v) \tag{31}
\end{equation*}
$$

NN-FEM:Find $u_{n} \in V_{n}^{k}$ as follows:

$$
\begin{equation*}
J\left(u_{n}\right)=\min _{v \in V_{n}^{k}} J(v) \tag{32}
\end{equation*}
$$

Theorem:

$$
\left\|u-u_{n}\right\|_{a}=\inf _{v_{n} \in V_{n}^{k}}\left\|u-v_{n}\right\|_{a}
$$

Application to high order PDE in any dimension

Consider

$$
\left\{\begin{align*}
L u=f & \text { in } \Omega, \tag{29}\\
B_{N}^{k}(u)=0, & \text { on } \partial \Omega, \quad 0 \leq k \leq m-1 .
\end{align*}\right.
$$

\Longleftrightarrow Find $u \in V=H^{m}(\Omega)$ such that

$$
\begin{equation*}
J(u)=\min _{v \in V} J(v) \tag{30}
\end{equation*}
$$

where

$$
\begin{equation*}
J(v)=\frac{1}{2} \int_{\Omega} \sum_{|\alpha|=m} a_{\alpha}\left|\partial^{\alpha} v\right|^{2}+v^{2} d x-(f, v) \tag{31}
\end{equation*}
$$

NN-FEM:Find $u_{n} \in V_{n}^{k}$ as follows:

$$
\begin{equation*}
J\left(u_{n}\right)=\min _{v \in V_{n}^{k}} J(v) \tag{32}
\end{equation*}
$$

Theorem:

$$
\begin{equation*}
\left\|u-u_{n}\right\|_{a}=\inf _{v_{n} \in V_{n}^{k}}\left\|u-v_{n}\right\|_{a}=\mathcal{O}\left(n^{m-(k+1)} \log n\right) \tag{33}
\end{equation*}
$$

Superconvergence (?) property

For $d=2, m=1$, consider

$$
\Delta^{2} u=f
$$

Superconvergence (?) property

For $d=2, m=1$, consider

$$
\Delta^{2} u=f
$$

(1) $k=2$

- Morley: $\quad\left\|u-u_{n}\right\|_{2, h}=\mathcal{O}\left(h^{1}\right)=\mathcal{O}\left(n^{-\frac{1}{2}}\right)$.

Superconvergence (?) property

For $d=2, m=1$, consider

$$
\Delta^{2} u=f
$$

(1) $k=2$

- Morley: $\quad\left\|u-u_{n}\right\|_{2, h}=\mathcal{O}\left(h^{1}\right)=\mathcal{O}\left(n^{-\frac{1}{2}}\right)$.
- NN-FEM: $\left\|u-u_{n}\right\|_{2}=\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-1}\right)$.

Superconvergence (?) property

For $d=2, m=1$, consider

$$
\Delta^{2} u=f
$$

(1) $k=2$

- Morley: $\quad\left\|u-u_{n}\right\|_{2, h}=\mathcal{O}\left(h^{1}\right)=\mathcal{O}\left(n^{-\frac{1}{2}}\right)$.
- NN-FEM: $\left\|u-u_{n}\right\|_{2}=\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-1}\right)$.
(2) $k=5$
- Argyris: $\quad\left\|u-u_{h}\right\|_{2}=\mathcal{O}\left(h^{4}\right)=\mathcal{O}\left(n^{-2}\right)$.

Superconvergence (?) property

For $d=2, m=1$, consider

$$
\Delta^{2} u=f
$$

(1) $k=2$

- Morley: $\quad\left\|u-u_{n}\right\|_{2, h}=\mathcal{O}\left(h^{1}\right)=\mathcal{O}\left(n^{-\frac{1}{2}}\right)$.
- NN-FEM: $\left\|u-u_{n}\right\|_{2}=\mathcal{O}\left(h^{2}\right)=\mathcal{O}\left(n^{-1}\right)$.
(2) $k=5$
- Argyris: $\quad\left\|u-u_{h}\right\|_{2}=\mathcal{O}\left(h^{4}\right)=\mathcal{O}\left(n^{-2}\right)$.
- NN-FEM: $\quad\left\|u-u_{n}\right\|_{2}=\mathcal{O}\left(h^{8}\right)=\mathcal{O}\left(n^{-4}\right)$.

Properties of $[R e L U]^{k}-D_{\ell}$

Properties of $[R e L U]^{k}-D N N_{\ell}$

(1) Piecewise polynomials on "curved" elements

Properties of $[R e L U]^{k}-D_{\ell}$

(1) Piecewise polynomials on "curved" elements
(2) Best possible error estimate $\mathcal{O}\left(n^{m-(k+1)} \log n\right)$

Properties of $[R e L U]^{k}-D^{2} N_{\ell}$

(1) Piecewise polynomials on "curved" elements
(2) Best possible error estimate $\mathcal{O}\left(n^{m-(k+1)} \log n\right)$
(3) If $k \geq 2$, we have spectral accuracy for smooth solution as ℓ increase.

Properties of $[R e L U]^{k}-D^{2} N_{\ell}$

(1) Piecewise polynomials on "curved" elements
(2) Best possible error estimate $\mathcal{O}\left(n^{m-(k+1)} \log n\right)$
(3) If $k \geq 2$, we have spectral accuracy for smooth solution as ℓ increase.
(4) Possible multi-scale adaptivity features (?):

- local singularity.
- global smoothness

Some challenges

- Discretization of the integral in $J(u)$, i.e. how do we evaluate

$$
\begin{equation*}
\int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} f(x) u(x) d x ? \tag{34}
\end{equation*}
$$

Some challenges

- Discretization of the integral in $J(u)$, i.e. how do we evaluate

$$
\begin{equation*}
\int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} f(x) u(x) d x ? \tag{34}
\end{equation*}
$$

- How to analyze the convergence when numerical quadratures are used?

Some challenges

- Discretization of the integral in $J(u)$, i.e. how do we evaluate

$$
\begin{equation*}
\int_{\Omega}|\nabla u(x)|^{2} d x-\int_{\Omega} f(x) u(x) d x ? \tag{34}
\end{equation*}
$$

- How to analyze the convergence when numerical quadratures are used?
- Optimization of the discrete energy, i.e. how can we efficiently solve

$$
\begin{equation*}
\min J_{N}(u) \tag{35}
\end{equation*}
$$

Discretization of the Integral

There are two approaches for discetizing $J(u)$

- Sample points x_{1}, \ldots, x_{N} uniformly at random from Ω and form

$$
\begin{equation*}
J_{N}(u)=\frac{1}{N} \sum_{i=1}^{N}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right) . \tag{36}
\end{equation*}
$$

Discretization of the Integral

There are two approaches for discetizing $J(u)$

- Sample points x_{1}, \ldots, x_{N} uniformly at random from Ω and form

$$
\begin{equation*}
J_{N}(u)=\frac{1}{N} \sum_{i=1}^{N}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right) . \tag{36}
\end{equation*}
$$

- Use a numerical quadrature rule such as Gaussian quadrature

$$
\begin{equation*}
J_{N}(u)=\sum_{i=1}^{N} a_{i}\left(\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right)\right) . \tag{37}
\end{equation*}
$$

Error analysis

Numerical quadrature: for any $g(x), N=\frac{(k-1) d}{2}$

$$
\left|\int_{\Omega} g(x) d x-|\Omega| \sum_{i=1}^{N} w_{i} g\left(x_{i}\right)\right| \lesssim N^{-\frac{r+1}{d}}\|g\|_{r, 1} .
$$

Challenges: how to bound

$$
\|g\|_{r, 1} \leq ?, \quad \text { for } \quad g \in \Sigma_{n}^{\sigma}
$$

OK if the following Bernstein or inverse inequality holds for $r>s$

$$
\begin{equation*}
\left\|v_{n}\right\|_{r} \lesssim n^{\beta}\left\|v_{n}\right\|_{s}, \quad \forall v_{n} \in \sum_{n}^{k} \tag{38}
\end{equation*}
$$

Many attempts have been made in existing literature

Bad news: Bernstein inequalty does not hold for NN

Given any $\epsilon>0$, consider an NN function with 3 neurons:

$$
u_{3}(x)=\operatorname{ReLU}\left(x-\frac{1}{2}+\epsilon\right)-2 \operatorname{ReLU}\left(x-\frac{1}{2}\right)+\operatorname{ReLU}\left(x-\frac{1}{2}-\epsilon\right), \quad \forall x \in(0,1)
$$

A direct calculation shows that

$$
\int_{0}^{1}\left|u_{3}^{\prime}(x)\right|^{2} d x=2 \epsilon \quad \text { and } \quad \int_{0}^{1}\left|u_{3}(x)\right|^{2} d x=\epsilon^{2}
$$

Therefore

$$
\left|u_{3}\right|_{H^{1}}=\sqrt{\frac{2}{\epsilon}}\left\|u_{3}\right\|_{L^{2}}, \quad \forall \epsilon>0
$$

As a result, the following Bernstein inequality can not hold for any constant ${ }^{13} \mathrm{C}(n)$

$$
\left|v_{n}\right|_{H^{1}} \leq C(n)\left\|v_{n}\right\|_{L^{2}}, \quad \forall v_{n} \in \Sigma_{n}^{\sigma}
$$

[^18]
Our approach

Development and analysis of stable neural network!

The use of $\mathcal{K}_{1}(\mathbb{D})$

- We consider the following variational form of Laplace's equation with Neumann boundary conditions

$$
\begin{equation*}
\min _{v \in H^{1}(\Omega)} J(v):=\int_{\Omega}|\nabla v(x)|^{2} d x-\int_{\Omega} f(x) v(x) d x \tag{39}
\end{equation*}
$$

The use of $\mathcal{K}_{1}(\mathbb{D})$

- We consider the following variational form of Laplace's equation with Neumann boundary conditions

$$
\begin{equation*}
\min _{v \in H^{1}(\Omega)} J(v):=\int_{\Omega}|\nabla v(x)|^{2} d x-\int_{\Omega} f(x) v(x) d x \tag{39}
\end{equation*}
$$

- We solve this problem by restricting

$$
\begin{equation*}
\min _{\|v\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M} J(v):=\int_{\Omega}|\nabla v(x)|^{2} d x-\int_{\Omega} f(x) v(x) d x \tag{40}
\end{equation*}
$$

for some M.

The use of $\mathcal{K}_{1}(\mathbb{D})$

- We consider the following variational form of Laplace's equation with Neumann boundary conditions

$$
\begin{equation*}
\min _{v \in H^{1}(\Omega)} J(v):=\int_{\Omega}|\nabla v(x)|^{2} d x-\int_{\Omega} f(x) v(x) d x \tag{39}
\end{equation*}
$$

- We solve this problem by restricting

$$
\begin{equation*}
\min _{\|v\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M} J(v):=\int_{\Omega}|\nabla v(x)|^{2} d x-\int_{\Omega} f(x) v(x) d x \tag{40}
\end{equation*}
$$

for some M.

- With numerical quadrature

$$
\begin{equation*}
\min _{\|v\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M} J_{N}(v) \approx \int_{\Omega}|\nabla v(x)|^{2} d x-\int_{\Omega} f(x) v(x) d x \tag{41}
\end{equation*}
$$

for some M.

Uniform Bound on the Error

- When using numerical quadrature, we require the dictionary \mathbb{D} to satisfy

$$
\begin{equation*}
|\mathbb{D}|_{W^{k}, \infty(\Omega)}:=\sup _{d \in \mathbb{D}}\|d\|_{W^{k}, \infty(\Omega)} \leq C<\infty . \tag{42}
\end{equation*}
$$

This means that $\|u\|_{W^{k, \infty}(\Omega)} \leq C\|u\|_{\mathcal{K}_{1}(\mathbb{D})}$.

[^19]
Uniform Bound on the Error

- When using numerical quadrature, we require the dictionary \mathbb{D} to satisfy

$$
\begin{equation*}
|\mathbb{D}|_{W^{k}, \infty(\Omega)}:=\sup _{d \in \mathbb{D}}\|d\|_{W^{k}, \infty(\Omega)} \leq C<\infty . \tag{42}
\end{equation*}
$$

This means that $\|u\|_{W^{k, \infty}(\Omega)} \leq C\|u\|_{\mathcal{K}_{1}(\mathbb{D})}$.

- So if we use r-th order quadrature, we will get ${ }^{14}$

$$
\begin{equation*}
\left|J_{N}(u)-J(u)\right| \lesssim N^{-\frac{r+1}{d}} \tag{43}
\end{equation*}
$$

uniformly on $\left\{u:\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M\right\}$.

[^20]
Uniform Bound on the Error (cont.)

- The Rademacher complexity of a class of function \mathcal{F} on Ω is given by

$$
\begin{equation*}
R_{N}(F)=\mathbb{E}_{x_{1}, \ldots, x_{N}} \mathbb{E}_{\xi_{1}, \ldots, \xi_{N}}\left(\sup _{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \xi_{i} f\left(x_{i}\right)\right) \tag{44}
\end{equation*}
$$

where x_{i} are drawn uniformly at random from Ω and ξ_{i} are uniformly random signs.

[^21]
Uniform Bound on the Error (cont.)

- The Rademacher complexity of a class of function \mathcal{F} on Ω is given by

$$
\begin{equation*}
R_{N}(F)=\mathbb{E}_{x_{1}, \ldots, x_{N}} \mathbb{E}_{\xi_{1}, \ldots, \xi_{N}}\left(\sup _{f \in \mathcal{F}} \frac{1}{N} \sum_{i=1}^{N} \xi_{i} f\left(x_{i}\right)\right) \tag{44}
\end{equation*}
$$

where x_{i} are drawn uniformly at random from Ω and ξ_{i} are uniformly random signs.

- For Monte Carlo error analysis, we need to assume that

$$
\begin{equation*}
R_{N}(\mathbb{D}), R_{N}(\nabla \mathbb{D}) \lesssim N^{-\frac{1}{2}} \tag{45}
\end{equation*}
$$

- Then we get ${ }^{15}$

$$
\begin{equation*}
\mathbb{E}\left(\sup _{\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M}\left|J_{N}(u)-J(u)\right|\right) \lesssim M N^{-\frac{1}{2}} \tag{46}
\end{equation*}
$$

[^22]
Orthogonal Greedy Algorithm

The orthogonal greedy algorithm is given by:

- Orthogonal greedy algorithm ${ }^{16}$:

$$
\begin{equation*}
f_{0}=0, g_{k}=\arg \max _{g \in \mathbb{D}}\left\langle f-f_{k-1}, g\right\rangle, f_{k}=P_{k} f, \tag{47}
\end{equation*}
$$

where P_{k} denotes the orthogonal projection onto the space spanned by g_{1}, \ldots, g_{k}.

[^23]
Orthogonal Greedy Algorithm

The orthogonal greedy algorithm is given by:

- Orthogonal greedy algorithm ${ }^{16}$:

$$
\begin{equation*}
f_{0}=0, g_{k}=\arg \max _{g \in \mathbb{D}}\left\langle f-f_{k-1}, g\right\rangle, f_{k}=P_{k} f, \tag{47}
\end{equation*}
$$

where P_{k} denotes the orthogonal projection onto the space spanned by g_{1}, \ldots, g_{k}.

- There are also the pure greedy and relaxed greedy algorithms

[^24]
Convergence Rates of the Orthogonal Greedy Algorithm

The convergence rates of the orthogonal greedy algorithm is:

[^25]
Convergence Rates of the Orthogonal Greedy Algorithm

The convergence rates of the orthogonal greedy algorithm is:

- Orthogonal greedy algorithm ${ }^{17}: O\left(n^{-\frac{1}{2}}\right)$

[^26]
Convergence Rates of the Orthogonal Greedy Algorithm

The convergence rates of the orthogonal greedy algorithm is:

- Orthogonal greedy algorithm ${ }^{17}: O\left(n^{-\frac{1}{2}}\right)$
- Similar convergence rates for the pure and relaxed greedy algorithms

[^27]
Convergence Rates of the Orthogonal Greedy Algorithm

The convergence rates of the orthogonal greedy algorithm is:

- Orthogonal greedy algorithm ${ }^{17}: O\left(n^{-\frac{1}{2}}\right)$
- Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries \mathbb{P}_{k}^{d} or \mathbb{F}_{s}^{d} ?

[^28]
Convergence Rates of the Orthogonal Greedy Algorithm

The convergence rates of the orthogonal greedy algorithm is:

- Orthogonal greedy algorithm ${ }^{17}: O\left(n^{-\frac{1}{2}}\right)$
- Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries \mathbb{P}_{k}^{d} or \mathbb{F}_{s}^{d} ?

- Higher order approximation rates are possible!

[^29]
Convergence Rates of the Orthogonal Greedy Algorithm

The convergence rates of the orthogonal greedy algorithm is:

- Orthogonal greedy algorithm ${ }^{17}: O\left(n^{-\frac{1}{2}}\right)$
- Similar convergence rates for the pure and relaxed greedy algorithms

Can any of these rates be improved for the dictionaries \mathbb{P}_{k}^{d} or \mathbb{F}_{s}^{d} ?

- Higher order approximation rates are possible!
- Can the orthogonal greedy algorithms attain them?

[^30]
Convergence Rate of the Orthogonal Greedy Algorithm ${ }^{18}$

Theorem

Let the iterates f_{n} be given by the orthogonal greedy algorithm, where $f \in \mathcal{K}_{1}\left(\mathbb{P}_{k}^{d}\right)$. Then we have

$$
\begin{equation*}
\left\|f_{n}-f\right\| \lesssim n^{-\frac{1}{2}-\frac{2 \kappa+1}{2 d}} \tag{48}
\end{equation*}
$$

- The orthogonal greedy algorithm can train optimal neural networks!

[^31]
Optimization of the Discrete Energy: Greedy Algorithm

We solve the optimization problem

$$
\begin{equation*}
\min _{\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M} J_{N}(u) \tag{49}
\end{equation*}
$$

using the following greedy algorithm:

$$
\begin{align*}
& u_{0}=0 \\
& g_{k}=\arg \max _{g \in \mathbb{D}}\left\langle\nabla J_{N}\left(u_{k-1}\right), g\right\rangle \tag{50}\\
& u_{k}=\left(1-s_{k}\right) u_{k-1}-M s_{k} g .
\end{align*}
$$

Optimization of the Discrete Energy: Greedy Algorithm

We solve the optimization problem

$$
\begin{equation*}
\min _{\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M} J_{N}(u) \tag{49}
\end{equation*}
$$

using the following greedy algorithm:

$$
\begin{align*}
& u_{0}=0 \\
& g_{k}=\arg \max _{g \in \mathbb{D}}\left\langle\nabla J_{N}\left(u_{k-1}\right), g\right\rangle \tag{50}\\
& u_{k}=\left(1-s_{k}\right) u_{k-1}-M s_{k} g .
\end{align*}
$$

Theorem

$\left\|u_{n}\right\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$ for all k and

$$
\begin{equation*}
J_{N}\left(u_{n}\right)-\min _{\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M} J_{N}(u) \lesssim \frac{1}{n} . \tag{51}
\end{equation*}
$$

Main Theorem ${ }^{19}$

Theorem

Suppose that the dictionary \mathbb{D} satisfies $\sup _{d \in \mathbb{D}}\|d\|_{W^{1, \infty(\Omega)}}<\infty$ and the Rademacher complexity bound

$$
\begin{equation*}
R_{N}(\nabla \mathbb{D}), R_{N}(\mathbb{D}) \lesssim N^{-\frac{1}{2}} \tag{52}
\end{equation*}
$$

Assume that the true solution $u \in \mathcal{K}_{1}(\mathbb{D})$ satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$ and let the numerical solution $u_{n, M, N} \in \Sigma_{n, M}(\mathbb{D})$ be obtained by the greedy algorithm for n steps. Then we have

$$
\begin{equation*}
\mathbb{E}_{x_{1}, \ldots, x_{N}}\left(J\left(u_{n, M, N}\right)-J(u)\right) \leq M\left[C_{1}\left(1+\|f\|_{L \infty(\Omega)}\right) N^{-\frac{1}{2}}+C_{2} M n^{-1}\right] \tag{53}
\end{equation*}
$$

[^32]
Summary of the Method

- Need to know M such that the true solution u satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$

[^33]
Summary of the Method

- Need to know M such that the true solution u satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$
- Choose number of sample points $N=\Theta\left(M^{2} \epsilon^{-1}\right)$ and number of iterations $n=\Theta\left(M^{2} \epsilon^{-1}\right)$

[^34]
Summary of the Method

- Need to know M such that the true solution u satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$
- Choose number of sample points $N=\Theta\left(M^{2} \epsilon^{-1}\right)$ and number of iterations $n=\Theta\left(M^{2} \epsilon^{-1}\right)$
- Form the discrete energy J_{N} by randomly sampling points x_{i} :

$$
\begin{equation*}
J_{N}(u)=\sum_{i=1}^{N}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right) \tag{54}
\end{equation*}
$$

[^35]
Summary of the Method

- Need to know M such that the true solution u satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$
- Choose number of sample points $N=\Theta\left(M^{2} \epsilon^{-1}\right)$ and number of iterations $n=\Theta\left(M^{2} \epsilon^{-1}\right)$
- Form the discrete energy J_{N} by randomly sampling points x_{i} :

$$
\begin{equation*}
J_{N}(u)=\sum_{i=1}^{N}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right) \tag{54}
\end{equation*}
$$

- Optimize J_{N} using the relaxed greedy algorithm for n steps
${ }^{20}$ Wenrui Hao et al. "An efficient training algorithm for neural networks and applications in PDEs". In: In preparation (2021).

Summary of the Method

- Need to know M such that the true solution u satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$
- Choose number of sample points $N=\Theta\left(M^{2} \epsilon^{-1}\right)$ and number of iterations $n=\Theta\left(M^{2} \epsilon^{-1}\right)$
- Form the discrete energy J_{N} by randomly sampling points x_{i} :

$$
\begin{equation*}
J_{N}(u)=\sum_{i=1}^{N}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right) \tag{54}
\end{equation*}
$$

- Optimize J_{N} using the relaxed greedy algorithm for n steps
- Error will be $O(\epsilon)$

[^36]
Summary of the Method

- Need to know M such that the true solution u satisfies $\|u\|_{\mathcal{K}_{1}(\mathbb{D})} \leq M$
- Choose number of sample points $N=\Theta\left(M^{2} \epsilon^{-1}\right)$ and number of iterations $n=\Theta\left(M^{2} \epsilon^{-1}\right)$
- Form the discrete energy J_{N} by randomly sampling points x_{i} :

$$
\begin{equation*}
J_{N}(u)=\sum_{i=1}^{N}\left|\nabla u\left(x_{i}\right)\right|^{2}-f\left(x_{i}\right) u\left(x_{i}\right) \tag{54}
\end{equation*}
$$

- Optimize J_{N} using the relaxed greedy algorithm for n steps
- Error will be $O(\epsilon)$
- Next we will present some numerical experiments ${ }^{20}$

[^37]2) Approximation properties
(3) Application to elliptic boundary value problems
(4) Numerical experiments

Numerical experiments

Example (2D approximation, OGA)

We consider approximating the following 2D function

$$
f(x, y)=\cos (2 \pi x) \cos (2 \pi y),(x, y) \in(0,1)^{2}
$$

By fixing $\|w\|=1$ and $b \in[-2,2]$, the convergence order of OGA is shown in Table below for ReLU ${ }^{k}$ neural networks. Theoretical order is shown in parenthesis.

N	$k=1\left(O\left(n^{-1.25}\right)\right)$		$k=2\left(O\left(n^{-1.75}\right)\right)$		$k=3\left(O\left(n^{-2.25}\right)\right)$	
	L^{2}-error	order	L^{2}-error	order	L^{2}-error	order
2	$4.969 \mathrm{e}-01$	-	$4.998 \mathrm{e}-01$	-	$4.976 \mathrm{e}-01$	-
4	$4.883 \mathrm{e}-01$	0.025	$4.992 \mathrm{e}-01$	0.002	$4.957 \mathrm{e}-01$	0.006
8	$2.423 \mathrm{e}-01$	1.011	$3.233 \mathrm{e}-01$	0.627	$4.193 \mathrm{e}-01$	0.242
16	$6.632 \mathrm{e}-02$	1.869	$4.911 \mathrm{e}-02$	2.719	$1.099 \mathrm{e}-01$	1.932
32	$2.206 \mathrm{e}-02$	1.588	$1.688 \mathrm{e}-02$	1.541	$8.075 \mathrm{e}-03$	3.767
64	$1.060 \mathrm{e}-02$	1.058	$4.156 \mathrm{e}-03$	2.022	$1.149 \mathrm{e}-03$	2.813
128	$4.284 \mathrm{e}-03$	1.306	$9.773 \mathrm{e}-04$	2.088	$2.185 \mathrm{e}-04$	2.395
256	$1.703 \mathrm{e}-03$	1.331	$2.622 \mathrm{e}-04$	1.898	$4.718 \mathrm{e}-05$	2.211

Table: Convergence order of OGA with ReLU ${ }^{k}$ activation function

Numerical experiments

Example (1D elliptic equation, OGA)

We solve a 1D elliptic equation with the source term $f=\left(1+\pi^{2}\right) \cos (\pi x)$ on $[-1,1]$ then the analytical solution is $u(x)=\cos (\pi x), x \in(-1,1)$. The activation function is ReLU^{2}.

N	$\left\\|u-u_{N}\right\\|_{L^{2}}$	$\operatorname{order}\left(n^{-3}\right)$	$\left\\|u-u_{N}\right\\|_{H^{1}}$	$\operatorname{order}\left(n^{-2}\right)$
2	$1.312179 \mathrm{e}+00$	-	$3.123769 \mathrm{e}+00$	-
4	$3.809296 \mathrm{e}-01$	1.78	$1.795590 \mathrm{e}+00$	0.80
8	$7.900097 \mathrm{e}-03$	5.59	$1.239320 \mathrm{e}-01$	3.86
16	$6.253874 \mathrm{e}-04$	3.66	$2.431156 \mathrm{e}-02$	2.35
32	$7.539756 \mathrm{e}-05$	3.05	$5.645258 \mathrm{e}-03$	2.11
64	$8.098691 \mathrm{e}-06$	3.22	$1.351523 \mathrm{e}-03$	2.06
128	$9.655067 \mathrm{e}-07$	3.07	$3.200813 \mathrm{e}-04$	2.08
256	$1.209074 \mathrm{e}-07$	3.00	$7.899931 \mathrm{e}-05$	2.02

Table: L^{2} and H^{1} numerical error of the numerical solution, u_{N}, where N denotes the number of basis functions.

Numerical experiments

Example (Mesh adaptivity in 1D, OGA)

Let $\Omega=(-1,1)$ and $K=0.01$. The solution for 1D elliptic equation is taken with three peaks:
$u(x)=(1+x)^{2}\left(1-x^{2}\right)\left(0.5 \exp \left(-\frac{(x+0.5)^{2}}{K}\right)+\exp \left(-\frac{x^{2}}{K}\right)+0.5 \exp \left(-\frac{(x-0.5)^{2}}{K}\right)\right)$.
We illustrate the adaptivity by defining the grid points $x=\left(x_{1}, \cdots, x_{N}\right)^{T}$ such that $w_{1} x+b_{1}=0$.

Figure: Grid points of a 1-hidden layer neural network solution with $N=128$

Numerical experiments

Example (2D 4th order problem, OGA)

Consider the $\|\cdot\|_{a}$ and $\|\cdot\|_{0}$ error. We solve this forth-order equation numerically by using the ReLU ${ }^{3}$ dictionary

$$
\mathbb{D}=\left\{\operatorname{ReLU}^{3}(w \cdot x+b) \mid\|w\|=1, b \in[-2,2]\right\}
$$

The exact solution is $\left(x^{2}-1\right)^{4}\left(y^{2}-1\right)^{4},(x, y) \in \Omega=(-1,1)^{2}$.

N	$\left\\|u-u_{N}\right\\|_{L^{2}}$	order	$\left\\|u-u_{N}\right\\|_{a}$	order $\left(n^{-1.25}\right)$
2	$6.527642 \mathrm{e}-01$	-	$7.926637 \mathrm{e}+00$	-
4	$7.859126 \mathrm{e}-01$	-0.27	$7.592753 \mathrm{e}+00$	0.06
8	$9.906278 \mathrm{e}-01$	-0.33	$6.295085 \mathrm{e}+00$	0.27
16	$8.215047 \mathrm{e}-01$	0.27	$4.002859 \mathrm{e}+00$	0.65
32	$1.512860 \mathrm{e}-01$	2.44	$1.446132 \mathrm{e}+00$	1.47
64	$7.206241 \mathrm{e}-02$	1.07	$4.746744 \mathrm{e}-01$	1.61
128	$2.258788 \mathrm{e}-02$	1.67	$1.808527 \mathrm{e}-01$	1.39
256	$4.696294 \mathrm{e}-03$	2.27	$6.970084 \mathrm{e}-02$	1.38

Table: The $\|\cdot\|_{a}$ and $\|\cdot\|_{0}$ error of the numerical solution

Numerical experiments

Example (A nonlinear 2D example, RGA)

Consider the 2D nonlinear PDE $-\Delta u+u^{3}+u=f$ on $(0,1)^{2}$ with $\partial u / \partial n=0$ on the boundary. The analytical solution is $u=\cos (2 \pi x) \cos (2 \pi y)$ and the dictionary is taken as

$$
\mathbb{D}=\left\{\sigma\left(w_{1} x+w_{2} y+b\right) \mid\left(w_{1}, w_{2}, b\right) \in[-20,20]^{3}\right\}
$$

where $\sigma(x)$ is the sigmoid function. The convergence is considered on the approximating space $B_{M}(\mathbb{D})$ where $M=15$.

N	$\left\\|u-u_{N}\right\\|_{2}$	order	$\left\\|D u-D u_{N}\right\\|_{2}$	order	$J\left(u_{N}\right)-J(u)$	order $\left(n^{-1}\right)$
16	$7.847118 \mathrm{e}-01$	-	$4.645084 \mathrm{e}+00$	-	$1.804723 \mathrm{e}+04$	-
32	$6.678914 \mathrm{e}-01$	0.23	$2.954645 \mathrm{e}+00$	0.65	$7.563223 \mathrm{e}+03$	1.25
64	$2.370456 \mathrm{e}-01$	1.49	$1.675239 \mathrm{e}+00$	0.82	$2.327894 \mathrm{e}+03$	1.70
128	$1.216064 \mathrm{e}-01$	0.96	$1.087479 \mathrm{e}+00$	0.62	$9.679782 \mathrm{e}+02$	1.27
256	$6.183769 \mathrm{e}-02$	0.98	$5.204851 \mathrm{e}-01$	1.06	$2.222200 \mathrm{e}+02$	2.12
512	$3.796748 \mathrm{e}-02$	0.70	$3.610805 \mathrm{e}-01$	0.53	$1.066532 \mathrm{e}+02$	1.06
1024	$2.687126 \mathrm{e}-02$	0.50	$2.110172 \mathrm{e}-01$	0.77	$3.661551 \mathrm{e}+01$	1.54
2048	$1.072196 \mathrm{e}-02$	1.33	$1.431628 \mathrm{e}-01$	0.56	$1.663444 \mathrm{e}+01$	1.14

Table: Convergence order of RGA

A new generation of numerical methods?

- Advantages:
- Highly flexible
- Works for high-dimensional problems
- Highly adaptive and parallelizable
- Rigorous convergence possible using greedy algorithms!
\star For the first time, rigorous results are possible!

A new generation of numerical methods?

- Advantages:
- Highly flexible
- Works for high-dimensional problems
- Highly adaptive and parallelizable
- Rigorous convergence possible using greedy algorithms!
\star For the first time, rigorous results are possible!
- Disadvantages:
- Greedy algorithms are currently expensive
- Much research must still be done!

2 Approximation properties

(3) Application to elliptic boundary value problems

4 Numerical experiments
(5) Summary and Further Research

Summary

- Deep ReLU neural networks contain finite element spaces

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation
- Optimal approximation rates for ReLU ${ }^{k}$ neural networks $O\left(n^{-\frac{1}{2}-\frac{2 k+1}{2 d}}\right)$

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation
- Optimal approximation rates for ReLU ${ }^{k}$ neural networks $O\left(n^{-\frac{1}{2}-\frac{2 k+1}{2 d}}\right)$
- Higher order approximation rates for ReLUk networks on highly smooth functions (without ℓ^{1} coefficient bound)

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation
- Optimal approximation rates for ReLU ${ }^{k}$ neural networks $O\left(n^{-\frac{1}{2}-\frac{2 k+1}{2 d}}\right)$
- Higher order approximation rates for ReLUk networks on highly smooth functions (without ℓ^{1} coefficient bound)
- Using neural network to solve $2 m$-th order PDEs:

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation
- Optimal approximation rates for ReLU ${ }^{k}$ neural networks $O\left(n^{-\frac{1}{2}-\frac{2 k+1}{2 d}}\right)$
- Higher order approximation rates for ReLUk networks on highly smooth functions (without ℓ^{1} coefficient bound)
- Using neural network to solve $2 m$-th order PDEs:
- Bernstein inequality does not work for the neural network space

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation
- Optimal approximation rates for ReLU ${ }^{k}$ neural networks $O\left(n^{-\frac{1}{2}-\frac{2 k+1}{2 d}}\right)$
- Higher order approximation rates for ReLUk networks on highly smooth functions (without ℓ^{1} coefficient bound)
- Using neural network to solve $2 m$-th order PDEs:
- Bernstein inequality does not work for the neural network space
- Convergence analysis for numerical quadrature and Monte Carlo quadrature

Summary

- Deep ReLU neural networks contain finite element spaces
- Approximation property of shallow neural networks:
- $\mathcal{K}_{1}(\mathbb{D})$ is the largest space for stable approximation
- Optimal approximation rates for ReLUk neural networks $O\left(n^{-\frac{1}{2}-\frac{2 k+1}{2 d}}\right)$
- Higher order approximation rates for ReLU ${ }^{k}$ networks on highly smooth functions (without ℓ^{1} coefficient bound)
- Using neural network to solve $2 m$-th order PDEs:
- Bernstein inequality does not work for the neural network space
- Convergence analysis for numerical quadrature and Monte Carlo quadrature
- Use greedy algorithms to solve discrete energy optimization
- Numerical experiments

References

- J. Xu, The Finite Neuron Method and Convergence Analysis, Commun. Comput. Phys., 28, pp. 1707-1745, (2020).
- J. W. Siegel and J. Xu, "High-Order Approximation Rates for Neural Networks with ReLU ${ }^{k}$ Activation Functions." arXiv preprint arXiv:2012.07205 (2020).
- J. W. Siegel and J. Xu, "Approximation rates for neural networks with general activation functions." Neural Networks (2020).
- J. W. Siegel and J. Xu, "Optimal Approximation Rates and Metric Entropy of ReLU k and Cosine Networks" arXiv preprint arXiv:2101.12365 (2021)
- Q. Hong J. W. Siegel and J. Xu "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs" arXiv preprint arXiv:2104.02903 (2021)

Thank you!

[^0]: ${ }^{1}$ Juncai He et al. "ReLU Deep Neural Networks and Linear Finite Elements". In: Journal of Computational Mathematics 38.3 (2020), pp. 502-527, Raman Arora et al. "Understanding deep neural networks with rectified linear units". In: arXiv preprint arXiv:1611.01491 (2016).

[^1]: ${ }^{1}$ Juncai He et al. "ReLU Deep Neural Networks and Linear Finite Elements". In: Journal of Computational Mathematics 38.3 (2020), pp. 502-527, Raman Arora et al. "Understanding deep neural networks with rectified linear units". In: arXiv preprint arXiv:1611.01491 (2016).

[^2]: ${ }^{1}$ Juncai He et al. "ReLU Deep Neural Networks and Linear Finite Elements". In: Journal of Computational Mathematics 38.3 (2020), pp. 502-527, Raman Arora et al. "Understanding deep neural networks with rectified linear units". In: arXiv preprint arXiv:1611.01491 (2016).

[^3]: ${ }^{2}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.

[^4]: ${ }^{2}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.

[^5]: ${ }^{2}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

[^6]: ${ }^{2}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

[^7]: ${ }^{4}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.
 ${ }^{5}$ W. E, Chao Ma, and Lei Wu. "Barron spaces and the compositional function spaces for neural network models". In: arXiv preprint arXiv:1906.08039 (2019).
 ${ }^{6}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.

[^8]: ${ }^{4}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.
 ${ }^{5}$ W. E, Chao Ma, and Lei Wu. "Barron spaces and the compositional function spaces for neural network models". In: arXiv preprint arXiv:1906.08039 (2019).
 ${ }^{6}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.

[^9]: ${ }^{4}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.
 ${ }^{5}$ W. E, Chao Ma, and Lei Wu. "Barron spaces and the compositional function spaces for neural network models". In: arXiv preprint arXiv:1906.08039 (2019).
 ${ }^{6}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.

[^10]: ${ }^{4}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.
 ${ }^{5}$ W. E, Chao Ma, and Lei Wu. "Barron spaces and the compositional function spaces for neural network models". In: arXiv preprint arXiv:1906.08039 (2019).
 ${ }^{6}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.

[^11]: ${ }^{7}$ Yuly Makovoz. "Random approximants and neural networks". In: Journal of Approximation Theory 85.1 (1996), pp. 98-109.
 ${ }^{8}$ Jason M Klusowski and Andrew R Barron. "Approximation by Combinations of ReLU and Squared ReLU Ridge Functions With ℓ^{1} and ℓ^{0} Controls". In: IEEE Transactions on Information Theory 64.12 (2018), pp. 7649-7656.
 ${ }^{9}$ Jinchao Xu. "Finite Neuron Method and Convergence Analysis". In: Communications in Computational Physics 28.5 (2020), pp. 1707-1745.

[^12]: ${ }^{7}$ Yuly Makovoz. "Random approximants and neural networks". In: Journal of Approximation Theory 85.1 (1996), pp. 98-109.
 ${ }^{8}$ Jason M Klusowski and Andrew R Barron. "Approximation by Combinations of ReLU and Squared ReLU Ridge Functions With ℓ^{1} and ℓ^{0} Controls". In: IEEE Transactions on Information Theory 64.12 (2018), pp. 7649-7656.
 ${ }^{9}$ Jinchao Xu. "Finite Neuron Method and Convergence Analysis". In: Communications in Computational Physics 28.5 (2020), pp. 1707-1745.

[^13]: ${ }^{10}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.

[^14]: ${ }^{10}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLUk and Cosine Networks. 2021.

[^15]: ${ }^{11}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.
 ${ }^{12}$ Jonathan W Siegel and Jinchao Xu. "High-Order Approximation Rates for Neural Networks with ReLU ${ }^{k}$ Activation Functions". In: arXiv preprint arXiv:2012.07205 (2020).

[^16]: ${ }^{11}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.
 ${ }^{12}$ Jonathan W Siegel and Jinchao Xu. "High-Order Approximation Rates for Neural Networks with ReLUk Activation Functions". In: arXiv preprint arXiv:2012.07205 (2020).

[^17]: ${ }^{11}$ Andrew R Barron. "Universal approximation bounds for superpositions of a sigmoidal function". In: IEEE Transactions on Information theory 39.3 (1993), pp. 930-945.
 ${ }^{12}$ Jonathan W Siegel and Jinchao Xu. "High-Order Approximation Rates for Neural Networks with ReLU ${ }^{k}$ Activation Functions". In: arXiv preprint arXiv:2012.07205 (2020).

[^18]: ${ }^{13}$ Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs". In: arXiv preprint arXiv:2104.02903 (2021).

[^19]: ${ }^{14}$ Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs". In: arXiv preprint arXiv:2104.02903 (2021).

[^20]: ${ }^{14}$ Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs". In: arXiv preprint arXiv:2104.02903 (2021).

[^21]: ${ }^{15}$ Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs". In: arXiv preprint arXiv:2104.02903 (2021).

[^22]: ${ }^{15}$ Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs". In: arXiv preprint arXiv:2104.02903 (2021).

[^23]: ${ }^{16}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^24]: ${ }^{16}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^25]: ${ }^{17}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^26]: ${ }^{17}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^27]: ${ }^{17}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^28]: ${ }^{17}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^29]: ${ }^{17}$ Ronald A DeVore and Vladimir N Temlyakov, "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^30]: ${ }^{17}$ Ronald A DeVore and Vladimir N Temlyakov. "Some remarks on greedy algorithms". In: Advances in computational Mathematics 5.1 (1996), pp. 173-187.

[^31]: ${ }^{18}$ Jonathan W. Siegel and Jinchao Xu. Optimal Approximation Rates and Metric Entropy of ReLU ${ }^{k}$ and Cosine Networks. 2021.

[^32]: ${ }^{19}$ Qingguo Hong, Jonathan W Siegel, and Jinchao Xu. "A Priori Analysis of Stable Neural Network Solutions to Numerical PDEs". In: arXiv preprint arXiv:2104.02903 (2021).

[^33]: ${ }^{20}$ Wenrui Hao et al. "An efficient training algorithm for neural networks and applications in PDEs". In: In preparation (2021).

[^34]: ${ }^{20}$ Wenrui Hao et al. "An efficient training algorithm for neural networks and applications in PDEs". In: In preparation (2021).

[^35]: ${ }^{20}$ Wenrui Hao et al. "An efficient training algorithm for neural networks and applications in PDEs". In: In preparation (2021).

[^36]: ${ }^{20}$ Wenrui Hao et al. "An efficient training algorithm for neural networks and applications in PDEs". In: In preparation (2021).

[^37]: ${ }^{20}$ Wenrui Hao et al. "An efficient training algorithm for neural networks and applications in PDEs". In: In preparation (2021).

