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Finite element-type methods on general meshes
A far from exhaustive list

Polynomial spaces on the mesh elements

IP – interior penalty discontinuous Galerkin (Baker’73,

Wheeler’78, Arnold’82)

LDG – local discontinuous Galerkin (Cockburn & Shu’98)

Polynomial spaces on the mesh skeleton (edges in 2D, faces in
3D)

HDG – hybridizable discontinuous Galerkin (Cockburn et al’09)

HHO – Hybrid High-Order (Di Pietro et al’14)

VEM – Virtual Elements (Beirão da Veiga et al’13)

The number of DOFs needed to achieve the accuracy O(hk) in the
case of the diffusion problem:

2D 3D

IP, LDG ∼ 1
2k

2Nelements ∼ 1
6k

3Nelements

HDG, HHO ∼ kNedges ∼ 1
2k

2Nfaces

(for large k)



Outline of the talk

A reminder of the static condensation for the continuous FEM

scSIP - a symmetric interior penalty DG method with static
condensation for the diffusion problem

2D 3D

scSIP (2k + 1)Nelements (k + 1)2Nelements

HDG, HHO ∼ kNedges ∼ 1
2k

2Nfaces

(AL, preprint arXiv 2018)

A priori error estimates

Numerical illustrations

Admissible meshes

An extension to Stokes



Governing equations and notations

The diffusion equation in Ω ⊂ Rd , d = 2 or 3 with Dirichlet
bc

−∂i (Aij (x)∂ju) = f in Ω, u = g on ∂Ω

assuming the summation over i , j = 1, . . . , d

The differential operator L is defined by

Lu = −∂i (Aij (x)∂ju)

The bilinear form

a(u, v) :=
∫

Ω
A∇u · ∇v , A = (Aij )1≤i ,j≤d

Assmptions on the coefficient matrix: ∃0 < α ≤ β,M > 0

α|ξ|2 ≤ ξTA(x)ξ ≤ β|ξ|2, ∀ξ ∈ Rd , x ∈ Ω

and
|∇Aij (x)| ≤ M, ∀x ∈ Ω, i , j = 1, . . . , d



Static condensation for continuous FEM
A reminder

Assume (for the moment) Ω ⊂ R2 a polygon, Th a regular
triangular mesh on Ω, and g = 0

The usual continuous Pk FE on Th

Vh = {v ∈ H1
0 (Ω) : vT ∈ Pk(t) ∀T ∈ Th}

The continuous FE solution

uh ∈ Vh : a(uh, vh) =
∫

Ω
fvh, ∀vh ∈ Vh

If k ≥ 3, the DOFs attached to interior interpolation nodes
can be locally eliminated

Illustration for
k = 4

• Global DOFs

• Local DOFs



Static condensation for continuous FEM
A reformulation in terms of functional spaces

Decompose Vh into the local and global ”features”

Vh = V loc
h ⊕⊥a V ′h

V loc
h = {v ∈ Vh : v∂T = 0 ∀T ∈ Th}
V ′h = {v ′ ∈ Vh : a(v , v ′) = 0 ∀v ∈ V loc

h }

Decomposition of the FE solution uh = uloch︸︷︷︸
∈W loc

h

+ u′h︸︷︷︸
∈W ′

h

Local and global problems

uloch ∈ W loc
h : a(uloch , v loch ) =

∫
Ω
fv loch , ∀v loch ∈ V loc

h

u′h ∈ W ′
h : a(u′h, v ′h) =

∫
Ω
fv ′h, ∀v ′h ∈ V ′h (1)

The size of (1) is ∼ k in 2D (∼ k2 in 3D) contrary to ∼ k2

(∼ k3) for the original problem



Static condensation for continuous FEM
A reformulation in terms of orthogonal projections

The local problems are solved separately on every triangle:
∀T ∈ Th

uloc,Th := uloch |T ∈ V loc,T
h := {v ∈ Pk(T ) : v |∂T = 0}

satisfies∫
T
A∇uloc,Th · ∇v loc,Th =

∫
Ω
fv loc,Th , ∀v loc,Th ∈ V loc,T

h

With the orthogonal projection πT : L2(T )→ V loc,T
h

πTL(uloch |T ) = πT f , ∀T ∈ Th
The global subspace V ′h is populated by the solutions to

πTL(v ′h|T ) = 0, ∀T ∈ Th

The basis functions of V ′h
can be associated to the
nodes on the edges



Discontinuous Galerkin FEM
SIP – symmetric interior penalty

Let Th be a general mesh on
Ω ⊂ Rd – a collection of
non-overlapping
subdomains;

here is an example in 2D
we tolerate the curved
edges/faces as well

Let Vh = {v ∈ L2(Ω) : v |T ∈ Pk(T ), ∀T ∈ Th}
The SIP method:
find uh ∈ Vh such that ah(uh, vh) = Lh(vh), ∀vh ∈ Vh with

ah(u, v) = ∑
T∈Th

∫
T
A∇u · ∇v

− ∑
E∈Eh

∫
E
({A∇u ·n}[v ]+ {A∇v ·n}[u])+ ∑

E∈Eh

γ

hE

∫
E
[u][v ]



Discontinuous Galerkin FEM
SIP – symmetric interior penalty

Let Th be a general mesh on
Ω ⊂ Rd – a collection of
non-overlapping
subdomains;

here is an example in 2D
we tolerate the curved
edges/faces as well

Let Vh = {v ∈ L2(Ω) : v |T ∈ Pk(T ), ∀T ∈ Th}
The SIP method:
find uh ∈ Vh such that ah(uh, vh) = Lh(vh), ∀vh ∈ Vh with

Lh(v) = ∑
T∈Th

∫
T
fv + ∑

E∈Ebh

∫
E
g

(
γ

hE
v − A∇v · n

)



Notations and error estimates

Eh – edges/faces of the mesh Th
n – the unit normal on an edge E
[v ]|E := v |T1 − v |T2

{v}|E := 1
2 (v |T1 + v |T2)

hE = 2
(

1
hT1

+ 1
hT2

)−1
Ebh ⊂ Eh – the edges/faces on ∂Ω; On any E ∈ Ebh :
n is the outward looking, [v ] = v , {v} = v , hE = hT

Theorem

Under mesh regularity, usual assumptions on Vh, and γ big enough
|u − uh|H1(Th) ≤ Chk |u|Hk+1(Ω)

Adding the usual elliptic regularity assumption,
‖u − uh‖L2(Ω) ≤ C |u|Hk+1(Ω)h

k+1



Mesh regularity and assumptions on Vh
cf the book by Cangiani et al (2017)

We assume that Th is shape regular:
For any T ∈ Th, there exist two balls
B in
T ⊂ T ⊂ BT with radiuses rT and RT

such that
RT ≤ ρ1rT

with a regularity parameter ρ1 > 1

Optimal interpolation: there exists Ih : Hk+1(Ω)→ Vh(
∑

T∈Th

(
|v − Ihv |2H1(T ) +

1

h2T
‖v − Ihv‖2L2(T ) + h2T |v − Ihv |2H2(T )

+hT ‖∇v −∇Ihv‖2L2(∂T ) +
1

hT
‖v − Ihv ||2L2(∂T )

)) 1
2

≤ C

(
∑

T∈Th
h2kT |v |Hk+1(T )

) 1
2

Inverse inequalities: for any vh ∈ Vh and any T ∈ Th

‖vh‖L2(∂T ) ≤
C√
hT
‖vh‖L2(T ), ‖∇vh‖L2(∂T ) ≤

C√
hT
‖∇vh‖L2(T ), |vh |H2(T ) ≤

C

hT
|vh |H1(T )



Static condensation for discontinuous FEM ?

Not efficient/impossible if one follows the usual recipe of
eliminating the local DOFs

On a triangular mesh, all the standard DOFs
associated to the interpolation nodes become
non-local in the SIP method

One can extract a localizable subspace of Pk(T ), T ∈ Th as

V loc,SIP,T
h = {v ∈ Pk(T ) : v |∂T = n · ∇v |∂T = 0}

but dim(Pk(T ) \ V loc,SIP,T
h ) is rather big

It gets worse on a general mesh (mesh elements with many
edges)



Static condensation for discontinuous FEM ?

Yes, if one mimics the reformulation with orthogonal projections

Redefine the local polynomial space

V loc,T
h = Pk−2(T )

Re-introduce the orthogonal projection
πT ,k−2 : L2(T )→ V loc,T

h

Redefine the local contributions to the solution as uloch ∈ Vh

πT ,k−2L(uloch |T ) = πT ,k−2f , ∀T ∈ Th
The global subspace V ′h is populated by the solutions to

πT ,k−2L(v ′h|T ) = 0, ∀T ∈ Th

There is no schematic representation for the DOFs in V ′h
The basis functions of V ′h are no longer associated to some nodes. One can only say

that V ′h |T is a subspace of Pk (T ). In practice, one should precompute a basis for

V ′h |T .



scSIP method (static condensation SIP)
Local and global computations

Compute uloch ∈ Vh by solving∫
T
L(uloch |T )qT =

∫
T
fqT , ∀qT ∈ Pk−2(T ),T ∈ Th

Define the subspace of Vh

V ′h =

{
v ′h ∈ Vh :

∫
T
L(v ′h|T )qT = 0, ∀qT ∈ Pk−2(T ),T ∈ Th

}
Compute u′h ∈ V ′h such that

ah(u
′
h, v ′h) = Lh(v

′
h)− ah(u

loc
h , v ′h), ∀v ′h ∈ V ′h

Set
uh = uloch + u′h



Well posedness and error estimates for scSIP
The cornerstone lemma

Lemma

Provided h ≤ h0, ∀T ∈ Th, ∀qT ∈ Pk−2(T ) ∃uT ∈ Pk(T ) such
that ∫

T
qT (LuT ) ≥

1

2
‖qT‖2L2(T )

and

|uT |2H1(T ) +
1

hT
‖uT‖2L2(∂T ) ≤ Ch2T‖qT‖2L2(T )

h0, C depend only on mesh regularity and α, β,M

Remarks

1 One can put h0 = +∞ if A is constant on T

2 This proves that the local problem in scSIP has a solution



Proof of the lemma

Let χT be the polynomial of degree 2 vanishing on ∂B in
T

χT (x) =

(
d

∑
i=1

(xi − x0i )
2 − r2T

)

Set A0
ij = Aij (x0) and L0=−∂iA

0
ij∂j and consider the linear

map

Q : Pk−2(T )→ Pk−2(T )

Q(v) = L0(χT v)

Ker(Q) = {0}. Indeed, if Q(v) = 0 then χT v solves

L0(χT v) = 0 in B in
T , χT v = 0 on ∂B in

T ⇒ v = 0

Q is thus one-to-one: ∀qT ∈ Pk−2(T ), ∃uT := χTQ
−1(qT )

L0uT = qT

.



Proof of the lemma

By scaling,

|uT |W 2,∞(BT )+
1

hT
|uT |W 1,∞(BT )+

1

h2T
‖uT‖L∞(BT ) ≤

C

hd/2
T

‖qT‖L2(B in
T )

Thus,

|uT |H1(T ) ≤ |T |1/2|uT |W 1,∞(BT ) ≤ ChT‖qT‖L2(T )

Similarly, ‖uT‖L2(T ) ≤ Ch2T‖qT‖L2(T ) so that

‖uT‖L2(∂T ) ≤ Ch3/2
T ‖qT‖L2(T )

by the trace inverse inequality.
In the case of variable coefficients (for h small enough)∫

T
qTLuT =

∫
T
qTL0uT +

∫
T
qT ∂i ((Aij − A0

ij )∂juT )

≥ ‖qT‖2L2(T ) − ‖qT‖L2(T )|T |1/2hT‖∇A‖L∞(T )
C

hd/2
T

‖qT‖L2(B in
T )

≥ ‖qT‖2L2(T ) − ChT‖qT‖2L2(T ) ≥
1

2
‖qT‖L2(T )



Two bilinear forms

Recall the bilinear form ah. It is known to be coercive

ah(vh, vh) ≥ c 9 vh92, ∀vh ∈ Vh

9 v92 = ∑
T∈Th

(
|v |2H1(T ) +

1

hT
‖[v ]‖2L2(∂T )

)
Introduce the bilinear form

bh(µ, v) = ∑
T∈Th

h2T

∫
T

µLu

and the space

Mh = {v ∈ L2(Ω) : v |T ∈ Pk−2(T ), ∀T ∈ Th}

The previous lemma implies the inf-sup

inf
µh∈Mh

sup
vh∈Vh

bh(µh, vh)

‖µh‖h 9 vh9
≥ δ

with ‖µ‖2h = ∑T∈Th h
2
T‖µ‖2L2(T )



A saddle point reformulation

Lemma

uh given by the scSIP method can also be recovered as a solution
to the saddle point problem:
Find uh ∈ Vh, λh ∈ Mh such that

ah(uh, vh) + bh(λh, vh) = Lh(vh), ∀vh ∈ Vh

bh(µh, uh) = ∑
T∈Th

h2T

∫
T
f µh, ∀µh ∈ Mh

The solution (uh, λh), and thus scSIP’s uh is unique

Consistency

The exact solution u together with λ = 0 satisfy

ah(u, vh) + bh(λ, vh) = Lh(vh), ∀vh ∈ Vh

bh(µh, u) = ∑
T∈Th

h2T

∫
T
f µh, ∀µh ∈ Mh



Proof of the saddle point equivalence lemma

Existence and uniqueness of (uh, λh) follows from the
standard theory of saddle point problems (ah is coercive, bh
satisifies inf-sup)

Let uh = uloch + u′h be given by the scSIP method. Then
1 For all v ′h ∈ V ′h

ah(u
loc
h + u′h, v ′h) = Lh(v

′
h)

Recalling that V ′h = {v ′h ∈ Vh : bh(µh, v ′h) = 0 ∀µh ∈ Mh},
one can add the Lagrange multiplier λh ∈ Mh above so that it
holds for all vh ∈ Vh

2 Recall again bh(µh, u′h) = 0 and observe

bh(µh, uloch + u′h) = ∑
T∈Th

h2T

∫
T
fqh, ∀µh ∈ Mh

3 Since any uh given by the scSIP method can be recovered as a
solution to the saddle point problem, scSIP’s uh is unique



A priori error estimates for scSIP
Theorem

Under the same assumption as before, the scSIP method produces
the unique solution uh ∈ Vh, which satisfies

|u − uh|H1(Th) ≤ Chk |u|Hk+1(Ω)

‖u − uh‖L2(Ω) ≤ C |u|Hk+1(Ω)h
k+1

Proof by the inf-sup theory and optimal approximation

9uh − Ihu9+ ‖λh‖h

≤ C

(
9u − Ihu 92 + ∑

E∈Eh
hE‖{A∇(u − Ihu) · n}‖2L2(E )

+ ∑
T∈Th

h2T‖L(u − Ihu)‖2L2(T )

) 1
2

≤ Chk |u|Hk+1



Notes on implementation of SIP ans scSIP methods

Introduce the bases of Pk (Tl ) and Pk−2(Tl ) on Tl ∈ Th:
{φ(l)

i }i=1,...,Nk
{ψ(l)

j }j=1,...,Nk−2

Form the matrices A(lm) = {ah(φ
(l)
i , φ

(l)
j }ij for any two neighboring elements Tl

and Tm

Form the matrices B(l) = {
∫
Tl

ψ
(l)
i Lφ

(l)
j }ij

Calculate the scSIP local contributions −→u (l)
loc and the basis functions −→u (l ,s) for

V ′h on every Tl ∈ Th by{ −→u (l)
loc + (B(l))T

−→
λ

(l)
loc = 0

B(l)−→u (l)
loc =

−→
Fψ

(l)
and

{
−→u (l ,s) + (B(l))T

−→
λ (l ,s) = −→e s

B(l)−→u (l ,s) = 0

with
−→
Fψ

(l) = {
∫
Tl

f ψ
(l)
i }

Put the vectors −→u (l ,s) into the matrix M(l) on Tl ∈ Th (after selecting the
linearly independent ones by Gramm-Schmdt)

Form the reduced matrices A′(lm) = (M(l))TA(lm)M(m) of size N ′k ×N ′k
The global problems for SIP and scSIP methods

A
−→
U =

−→
F︸ ︷︷ ︸

problem of size Nk

A′
−→
U ′ =

−→
F ′︸ ︷︷ ︸

problem of size (Nk−Nk−2)



Numerical results using FreeFEM
Polygonal meshes by agglomeration

4× 4 cells

⇐

8× 8 cells

⇐



The first test case: Poisson equation

We solve −∆u = f on Ω = (0, 1)2 with homogeneous Dirichlet
boundary conditions and the exact solution u = sin(πx) sin(πy)

The solid lines represent the SIP method

The dashed lines represent the scSIP method



The second test case: non-constant coefficients

We solve − div(A∇u) = f with A =

(
1 + x xy
xy 1 + y

)
on

Ω = (0, 1)2 with non-homogeneous Dirichlet boundary conditions
and the exact solution u = exy

The solid lines represent the SIP method

The dashed lines represent the scSIP method



An example of assumptions on the mesh that guarantee
the interpolation and inverse estimates

M1: Th is shape regular in the sense: ∀T ∈ Th there exist two balls
B in
T ⊂ T ⊂ BT with radiuses rT and RT such that

RT ≤ ρ1rT

with a regularity parameter ρ1 > 1

M2: Th is locally quasi-uniform in the following sense: for any two mesh
cells T ,T ′ ∈ Th such that BT ′ ∩BT 6= ∅ there holds

1

ρ2
hT ′ ≤ hT ≤ ρ2hT ′

with a parameter ρ2 > 1

M3: The cell boundaries are not too wiggly: for all T ∈ Th

|∂T | ≤ ρ3h
d−1
T

with a parameter ρ3 > 0.

This is an alternative to the
assumptions from Cangiani et al
(2017), which are based on the
decomposition into the simplexes



Interpolation estimates

Local interpolation estimate: for any T ∈ Th, let
vh ∈ Pk(T ) be s.t.

∫
BT

vhϕh =
∫
BT

vϕh ∀ϕh ∈ Pk(T )
Under Assumptions M1 and M3, we have for any
v ∈ Hk+1(BT )

|v − vh|H1(T ) +
1

hT
‖v − vh‖L2(T ) + hT |v − vh|H2(T )

+
√

hT‖∇(v − vh)‖L2(∂T )+
1√
hT
‖v − vh‖L2(∂T ) ≤ ChkT |v |Hk+1(BT )

Proof: by a scaling argument

‖v − vh‖L∞(BT ) ≤ Chk+1−d/2
T |v |Hk+1(BT )

and use M1 and M3 ...

Global interpolation estimate obtained by summing over
T ∈ Th since the number of intersecting BT ’s is uniformly
bounded (Assumption M2)



Inverse inequalities

The needed inverse inequalities follow from

‖qh‖L∞(T ) ≤
C

hd/2
T

‖qh‖L2(T ) ∀qh ∈ Pk(T )

This in turn follows from

‖qh‖L∞(BT ) ≤
C

hd/2
T

‖qh‖L2(B in
T )

Scaling the ball BT to a ball of radius 1 B1 and considering all
the possible positions of the inscribed ball, the last inequality
can be rewritten as

‖qh‖L∞(B1) ≤ C min
B in⊂B1,B in a ball of radius ≥ρ−11

‖qh‖L2(B in
T )

is valid by equivalence of norms.



Extension to Stokes equations

A straighforward SIP method for


−∆u +∇p = f on Ω
div u = 0 on Ω
u = 0 on ∂Ω

Vh – discontinuous vector valued Pk FE on Th
Qh – discontinuous Pk−1 FE on Th
Find (uh, ph) ∈ Vh ×Qh such that

a(uh,ph; vh, qh) =
∫

Ω
f · vh, ∀(vh, qh) ∈ Vh ×Qh

with
ah(u, p; v , q) = ∑T∈Th

(∫
T ∇u : ∇v −

∫
T p div v −

∫
T q div u

)
−∑E∈Eh

∫
E ({n · ∇u} · [v ]− {pn} · [v ])

−∑E∈Eh
∫
E ({n · ∇v} · [u]− {qn} · [u])

+∑E∈Eh
γ
hE

∫
E [u] · [v ] + ∑E∈E ih

γphE
∫
E [p][q]



The local problems

Introduce the differential operator of the Stokes problem

L(u, p) = (−∆u +∇p, div u)

and let (uloch , ploch ) ∈ Vh ×Qh solve on every mesh cell T ∈ Th

(L(uloch , ploch ), (vT , qT ))T =
∫
T
f · vT ∀vT ∈ V loc,T

h , qT ∈ Q loc,T
h

where

V loc,T
h = Pk−2 (T )

Q loc,T
h = Pk−1

0 (T ) =
{
q∈Pk−1 (T ) :

∫
T q = 0

}
Existence of the local solutions

The map LT ,h : Pk(T )×Pk−1(T )→ Pk−2(T )×Pk−1
0 (T )

defined on any T ∈ Th by

(LT ,h(u, p), (v , q)) =
∫
T (−∆u +∇p) · v +

∫
T (div u)q

for all (v , q) ∈ Pk−2(T )×Pk−1
0 (T ), is surjective

(proof on the next slide)



The local problems
Surjectivity of the map

Let χT be the polynomial of degree 2

vanishing on ∂B in
T

χT (x) =

(
d

∑
i=1

(xi − x0i )
2 − r2T

)

Set the linear map
Q : Pk−2(T )×Pk−1

0 (T )→ Pk−2(T )×Pk−1
0

Q(v , p) =
(
−∆(χT v) +∇p, div(χT v)− 1

|T |
∫
T div(χT v)

)
Ker(Q) = {0}. Indeed, if Q(v , p) = 0 then (χT v , p) solve

−∆(χT v)+∇p = 0, div(χT v) = const on B in
T , χT v = 0 on ∂B in

T

In fact, div(χT v) = 0 so that v = 0, p = 0

Q is thus one-to-one



The global problem

The subspace X ′h ⊂ Xh := Vh ×Qh

X ′h = {(vh, qh) : L(vh, qh) = 0 on every T ∈ Th}

We search for (u′h, p′h) ∈ X ′h s.t.

ah(u
′
h, p′h; vh, qh) =

∫
Ω
f · vT − ah(u

loc
h , ploch ; vh, qh)

The structure of X ′h:

(u′h, p′h) ∈ X ′h ⇔ u′h ∈ V ′h, p′h = πh(u
′
h) + p̄h

where
V ′h is a subspace of Vh

πh : V ′h → Pk−1
0 (T ) given on every T ∈ Th by

πh(u
′
h) = p′h, ∇p′h = ∆uh on every T ∈ Th

p̄h ∈ Qh – piecewise constant on Th



Rewriting the global problem on X ′h

On X ′h,∫
T πh(u

′
h) div v ′h = 0 since div v ′h = const on T

ah(u
′
h, p′h; v ′h, q′h)
= ∑T∈Th

(∫
T ∇u

′
h : ∇v ′h −

∫
T p̄h div v ′h −

∫
T qh div u′h

)
−∑E∈Eh

∫
E ({n · ∇u

′
h − πh(u

′
h)n} · [v ′h]− {p̄hn} · [v ′h])

−∑E∈Eh
∫
E ({n · ∇v

′
h − πh(v

′
h)n} · [u′h]− {qhn} · [u′h])

+∑E∈Eh
γ
hE

∫
E [u
′
h] · [v ′h]

+∑E∈E ih
γphE

∫
E [πh(u

′
h) + p̄h][πh(v

′
h) + q̄h]

Since ∇p̄h = 0 on every T ∈ Th

− ∑
T∈Th

∫
T
p̄h div v ′h+ ∑

E∈Eh

∫
E
{p̄hn} · [v ′h] = −

1

2 ∑
E∈E ih

∫
E
[p̄hn] · [v ′h]

so that finally ...



Coercivity of the global problem on X ′h

For all (u′h, p′h) ∈ X ′h, i.e. u′h ∈ V ′h, p′h = πh(u
′
h) + p̄h,

p̄h ∈ Q̄h

ah(u
′
h,p′h; u′h, p′h) = ∑

T∈Th

∫
T
|∇u′h|2

− 2 ∑
E∈Eh

∫
E
{n · ∇u′h − πh(u

′
h)n} · [u′h] + ∑

E∈Eh

γ

hE

∫
E
|[u′h]|2

− ∑
E∈E ih

∫
E
[p̄hn] · [u′h] + ∑

E∈E ih

γphE

∫
E
|[πh(u

′
h) + p̄h]|2

>c 9 u′h, p′h9
2

with

9u, p92 = ∑
T∈Th

∫
T
|∇u|2+ ∑

E∈Eh

1

hE

∫
E
|[u]|2+

∫
Ω
p2+ ∑

E∈E ih

hE

∫
E
|[p]|2



Conclusions and perspectives

We have presented an interior penalty DG method with static
condensation for the diffusion problem which can be cheaper
than the methods with skeleton-based DOFs on
polygons/polyhedra with many facets

2D 3D

scSIP (2k + 1)Nelements (k + 1)2Nelements

HDG, HHO ∼ kNedges ∼ 1
2k

2Nfaces

A lot of things to do and open questions:

Convergence order with respect to p (= k)
Static condensation for other DG methods : incomplete or
antisymmetric IP, local DG, ...
A proper extension for the Stokes problem (cf. the talk by
A. Linke)
An extension to (nearly) compressible elasticity (asymptotic
preserving in the limit Poisson ratio → 1

2 )
...


