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Finite element-type methods on general meshes

A far from exhaustive list

@ Polynomial spaces on the mesh elements

e IP —interior penalty discontinuous Galerkin (BAker'73,
WHEELER'78, ARNOLD’82)
o LDG — local discontinuous Galerkin (CockBURN & SHU’98)

@ Polynomial spaces on the mesh skeleton (edges in 2D, faces in
3D)
e HDG — hybridizable discontinuous Galerkin (CockBURN ET AL’09)
e HHO — Hybrid High-Order (D1 PieTrO ET AL’14)
o VEM - Virtual Elements (BeirAo DA VEIGA ET AL'13)

The number of DOFs needed to achieve the accuracy O(h¥) in the
case of the diffusion problem:

| 2D 3D

IP, LDG ~ %kzNelements ~ %k3Nelements (fOF large k)
HDG, HHO ~ kNedges ~ %kszaces




Outline of the talk

@ A reminder of the static condensation for the continuous FEM

@ scSIP - a symmetric interior penalty DG method with static
condensation for the diffusion problem

| 2D \ 3D
scSIP H (2k + 1) Nefements ‘ k + 1 Nejements
HDG, HHO H ~ kNedges ‘ ~ ’k Nfaces
(AL, PREPRINT ARXIV 2018)

@ A priori error estimates

@ Numerical illustrations
@ Admissible meshes

@ An extension to Stokes



Governing equations and notations

o The diffusion equation in Q C RY, d = 2 or 3 with Dirichlet
bc
—0i(Aj(x)9ju) =finQ), u=gondQ

assuming the summation over j,j =1,..., d
@ The differential operator L is defined by

Lu = —09;(Ajj(x)dju)
@ The bilinear form
a(u,v) == /QAVU Vv, A= (Aj)icij<d
@ Assmptions on the coefficient matrix: 30 <a < 8, M >0
alf? <CTAGIE < BIES VEERT, x€Q

and
IVA;(x)| <M, VxeQ, ij=1..., d



Static condensation for continuous FEM

A reminder

e Assume (for the moment) Q C IR? a polygon, 7}, a regular
triangular mesh on (), and g =0

@ The usual continuous P¥ FE on 7,
Vi ={veH}(Q):vr e PK(t) VT €Ty}
@ The continuous FE solution

up, € V. a(uh, Vh> = /Q fvy, Vv, €V,

o If k > 3, the DOFs attached to interior interpolation nodes
can be locally eliminated

Illustration for
k=4

e Global DOFs
e Local DOFs



Static condensation for continuous FEM

A reformulation in terms of functional spaces

@ Decompose V), into the local and global " features”

Vi = Vi@ v,

Viee ={veV,:vyr=0 YT €T}
Vi={VecV,:a(v,w)=0 Vve Vo

o Decomposition of the FE solution u, = ul°® + u),
\,./

EWe  ewj
@ Local and global problems
uLoc c Wigoc: /oc Ioc / fvloc /oc c Vfgoc
up € W a(up, vh) :/ vy, Vv, eV (1)
QO

@ The size of (1) is ~ k in 2D (~ k2 in 3D) contrary to ~ k2
(~ k3) for the original problem



Static condensation for continuous FEM

A reformulation in terms of orthogonal projections

@ The local problems are solved separately on every triangle:

VT €Ty
uLoc,T = uL"C T e V,:OC’T ={ve lpk(T) :vlpr =0}
satisfies

Avuloc,T . vvloc,T — fvloc,T, VVIOC'T c Vloc,T
T h h o) h h h

o With the orthogonal projection 77 : L2(T) — Vo<

HT,C(ULOC‘T) =nrf, VT €T,

@ The global subspace V} is populated by the solutions to
7TT£(V;7‘T) =0, VTeT,
@ The basis functions of V/

can be associated to the
nodes on the edges



Discontinuous Galerkin FEM

SIP — symmetric interior penalty

@ Let 7, be a general mesh on
Q C RY - a collection of
non-overlapping
subdomains;

o here is an example in 2D

o we tolerate the curved
edges/faces as well

o Let V= {v e L2(Q):v|r € PX(T), VT € Ty}

@ The SIP method:
find up € V} such that ah(uh, Vh) = Lh(vh), Vv, € V), with

an(u,v) = TeTh/ AVu- Vv
v
_ Z /({AVu-n}[v]+{AVv-n}[u])+ 2 hE/E[UHV]

Ee&y, E€&y



Discontinuous Galerkin FEM

SIP — symmetric interior penalty

@ Let 7;, be a general mesh on
Q C RY — a collection of
non-overlapping
subdomains;

o here is an example in 2D
o we tolerate the curved
edges/faces as well

o Let V= {v e L?2(Q):v|r € PK(T), VT € Tp}

@ The SIP method:
find up € V} such that ah(uh, Vh) = Lh(vh), Yv;, € V), with

Y[+ ¥ [e <V—Avv n>

TETh Ee&b




Notations and error estimates

o & — edges/faces of the mesh T

n — the unit normal on an edge E
v]le = vin —vin,
{V}|E =3 (V|T1 + V|T2)

-1
_ 1 1
hE =2 (th T hT2)

o EP C & - the edges/faces on 9Q); On any E € &F:
n is the outward looking, [v] = v, {v} = v, hg = ht

Under mesh regularity, usual assumptions on V), and 7y big enough

‘U— Uh|H1(Th) < Chk‘U’Hk+l(Q)
Adding the usual elliptic regularity assumption,
lu = unll2() < Clulprer oy h*H?




Mesh regularity and assumptions on V/,
cf the book by Cangiani et al (2017)

e We assume that 7}, is shape regular:

For any T € Tj, there exist two balls
B%’-’ C T C By with radiuses rr and Rt
. — such that
( Rt < pirr
with a regularity parameter p; > 1
o Optimal interpolation: there exists I, : H**1(Q) — V,

1
< Y (\vf Ihvﬁ./l('r) + h—2||vf IhVH%Z(T) +h2|v — /hv‘iﬂ(-,—)
T

TET,

1
1 2 % 2k :
+hTva - VIhVHL2 aT) T”V - IhVHLZ(aT) <cC Z hT |V‘Hk+1(T)
T TET,

@ Inverse inequalities: for any v, € Vj, and any T € T,

C C C
[vhll2@ar) < \/T—T”VhHLZ(T)r IVvallzar) < \/T—THVVhHB(T)r Walke(ry < 7‘Vh|H1



Static condensation for discontinuous FEM ?

Not efficient/impossible if one follows the usual recipe of
eliminating the local DOFs

On a triangular mesh, all the standard DOFs
associated to the interpolation nodes become
non-local in the SIP method

@ One can extract a localizable subspace of PX(T), T € T, as
V,:OC'SlP'T ={vePKT):v|gr=n-Vv|yr =0}
but dim(IP*(T) \ VZOC'S/P’T) is rather big

@ It gets worse on a general mesh (mesh elements with many
edges)



Static condensation for discontinuous FEM ?

Yes, if one mimics the reformulation with orthogonal projections

@ Redefine the local polynomial space

loc, T _ mpk—2

Vool =P A(T)
@ Re-introduce the orthogonal projection
Tk L2(T) — Voo T
@ Redefine the local contributions to the solution as u,’,"c €V
7'L'T’k,2£(u;,oc|'r) = 7TT’k,2f, VT € 77,

@ The global subspace V} is populated by the solutions to

7TT'k72£(VI/.,’T> =0, VTeT,

There is no schematic representation for the DOFs in V/}

The basis functions of V/ are no longer associated to some nodes. One can only say
that V/|7 is a subspace of IPX(T). In practice, one should precompute a basis for

!
Vil .




scSIP method (static condensation SIP)

Local and global computations

loc

e Compute u € V}, by solving

[ Lwteirar = [ far. VarePAT).TET,

@ Define the subspace of Vj,
V) = {v,’, cV: / L(vi|7)gr =0, Vqr € PK"3(T), T ¢ Th}
T
e Compute u, € V] such that

an(up, vi) = Ln(vi) = an(up, vi), Vv, € Vj

o Set
up = ufec + uj,



Well posedness and error estimates for scSIP

The cornerstone lemma

Lemma

Provided h < hy, VT € Ty, Vqr € P*~2(T) Jur € PK(T) such
that

1
| ar(cur) = Zllarl

and

jur oy + 5= llorBaar) < CHllar

ho, C depend only on mesh regularity and o, B, M

RENEIS

| A

© One can put hg = +o0 if Ais constant on T

@ This proves that the local problem in scSIP has a solution




Proof of the lemma

@ Let x 1 be the polynomial of degree 2 vanishing on E)Bi}’

xr() = (Dx A ) Ej

o Set Ag- = A;j(x°) and EO:—B,-Ag-Bj and consider the linear
map

Q:P*(T) = P 2(T)
Q) = L2(xrv)
o Ker(Q) = {0}. Indeed, if Q(v) = 0 then x v solves
LO(x7v) =0in Bf,  x7v=0o0n0dBTr = v=0
o Q is thus one-to-one: Vg7 € PX~2(T), Jur := x7Q (q7)

LOur = qr



Proof of the lemma

e By scaling,
1 1 _C |
lut|wes(8y) +E|UT‘W1-°°(BT) +EHUTHL°°(BT) < @HQTHB(B%)

Thus,
ur |y < TV ur|wis(sy) < Chrllar |z

e Similarly, Hu-,—H,_z < Ch7 gt |27y so that

3/2
HUTHL2 a1y < ChY HqTHL2(T)
by the trace inverse inequality.
@ In the case of variable coefficients (for h small enough)

/qrﬁu-,-:/ qT,COUT—i—/ qTa,'(<A,'j—A8~)ajuT)
T T T
C
> a7l — ||qTHL2(T)|Tll/thHVAHL“(T)Td/z larll (g
T

1
> |larllizr) — Chrllarliizery = Sllarllen



Two bilinear forms

@ Recall the bilinear form aj. It is known to be coercive

ah(vh, Vh) >c ||| VhH|2, Vvh € Vh

7 = X (1B + o110

TET
@ Introduce the bilinear form

bh ", V Z h2 /T],tﬁu

TET

and the space
My = {v e 2(Q):v|r e P*2(T), VT € T;}
The previous lemma implies the inf-sup

1 €My voe v, [lnlln [l valll —

with HVHZ = ZTeTh hgl’”.””p T



A saddle point reformulation

Lemma

up given by the scSIP method can also be recovered as a solution
to the saddle point problem:
Find up € Vi, Ay € My, such that

h(uh, Vh) -+ bh()\hy Vh) Lh(vh) Vvh e Vy
bh(yh Uh Z hT/ f]/lh V]/lh e M,
TET

The solution (up, Ap), and thus scSIP’s uy, is unique

Consistency

| \

The exact solution u together with A = 0 satisfy
ah(u, Vh) —+ bh(A, Vh) = Lh(Vh)v Vvh € Vh

-y h%/ fum  Viup € M,
TeT, v




Proof of the saddle point equivalence lemma

e Existence and uniqueness of (up, Ap) follows from the
standard theory of saddle point problems (a, is coercive, by,
satisifies inf-sup)

o Let up = u/°° + u} be given by the scSIP method. Then

Q Forall vy € V)

an(upPe + up, viy) = Ln(vp)

Recalling that V| = {v; € V} : by(pp, vj) = 0 Vup € My},
one can add the Lagrange multiplier A, € M}, above so that it
holds for all v, € V),

@ Recall again bp(pip, uj) = 0 and observe

br(pp upP+up) = Y h2 / fqn,. Vi € Mp
TETh

© Since any uy, given by the scSIP method can be recovered as a
solution to the saddle point problem, scSIP’s uy, is unique



A priori error estimates for scSIP

Under the same assumption as before, the scSIP method produces
the unique solution up € V), which satisfies

\u— uh|H1(Th) < Chk|U’Hk+1(Q)

hk+1

lu = unll iz < Cluleney

Proof by the inf-sup theory and optimal approximation
lun = Inulll + [|Anl[n
<C (Hlu— I (P + Y hel{AV (u— lhu) - n}[[32 g

Ec&),

%
+ ) hElIL(u - MU)H%Z(r))

TET,
S Chk|U‘Hk+1



Notes on implementation of SIP ans scSIP methods

@ Introduce the bases of PX(T;) and P¥=2(T;) on T; € Tj:
I I
{(P,(- )}izl ,,,,, Ny {1IJJ( )}j:1 AAAAA Ni_2

@ Form the matrices AUM) = {ah(¢fl),¢;l)}g for any two neighboring elements T;
and T,

. / /
@ Form the matrices B() = {.[T, 1/),( )ﬁqﬁj(- >},-j
@ Calculate the scSIP local contributions 7%1 and the basis functions o ($) for
V; on every T; € T by
%
Tir+BOTXY =0 g A0 BO)THC g
B(/)ﬁg)c — R0 BO s =g
L = i
with F¢(’) = {fT/ fl[},( )}

@ Put the vectors (%) into the matrix M) on T, € 7}, (after selecting the
linearly independent ones by Gramm-Schmdt)

@ Form the reduced matrices A’U™ = (M) TAUMM(™) of size N x N

@ The global problems for SIP and scSIP methods

AU=F AT =F

problem of size Ny problem of size (Nx—Ng_3)



Numerical results using FreeFEM

Polygonal meshes by agglomeration
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The first test case: Poisson equation

We solve —Au = f on Q) = (0, 1)? with homogeneous Dirichlet
boundary conditions and the exact solution u = sin(7tx) sin(7ty)

, slope 3.05
, slope 3.01
. slope 3.94
, slope 3.94
, slope 4.99
, slope 4.97 — — k=4,slope3.97

1 Lol 1 Lol
0.05 01 015 02025 0.05 01 015 02025

@ The solid lines represent the SIP method
@ The dashed lines represent the scSIP method



The second test case: non-constant coefficients

We solve —div(AVu) = f with A = Lhx Xy on
xy 14y

Q = (0,1)? with non-homogeneous Dirichlet boundary conditions
and the exact solution u = ¥

10?
10*
. 10°
107
10° 10*
S107E 5
5 5"
10? T

=2, slope 3.09
=2, slope 3.00
=3, slope 3.97
=3, slope 3.90
=4, slope 4.95
=4, slope 4.92

2, slope 2.04
2, slope 1.99
3, slope 2.97
3, slope 2.97
4, slope 3.96
4, slope 3.94

|

/LWL

1 1 Lol
0.05 01 015 02025

@ The solid lines represent the SIP method
@ The dashed lines represent the scSIP method



An example of assumptions on the mesh that guarantee
the interpolation and inverse estimates

M1: T is shape regular in the sense: VT € T}, there exist two balls
B} C T C By with radiuses rr and Rt such that

Rr <pirr

with a regularity parameter p; > 1
M2: Ty, is locally quasi-uniform in the following sense: for any two mesh
cells T, T" € Ty, such that By» N Bt # & there holds

if‘lT/ S hT g p2hT/
02

with a parameter p > 1
M3: The cell boundaries are not too wiggly: for all T € T,

0T| < pshg

with a parameter p3 > 0.

This is an alternative to the
assumptions from CANGIANI ET AL
(2017), WHICH ARE BASED ON THE
DECOMPOSITION INTO THE SIMPLEXES




Interpolation estimates

o Local interpolation estimate: for any T € Tp, let

v, € PX(T) be s.t. fBT VhQp = fBT ven Yo, € PK(T)
Under Assumptions M1 and M3, we have for any

v E Hk+1(BT)
1
V= Vhlm(ry + T"V — Vall 2y + h7lv — vhl (1)
1
+Vhr V(v —=vi)ll2em) +\/T—THV— Vil ety < Chl'(l"V’H"H(BT)
@ Proof: by a scaling argument

v = vallio(ey) < CHE 2 V] e g

and use M1 and M3 ...

@ Global interpolation estimate obtained by summing over
T € T since the number of intersecting Bt's is uniformly
bounded (Assumption M2)



Inverse inequalities

@ The needed inverse inequalities follow from
¢ K
lanll oy < WthHB(T) Vaqn € P*(T)
T
@ This in turn follows from
C
lanlli=(8r) < —7zllanll 28
h7
@ Scaling the ball Bt to a ball of radius 1 B; and considering all

the possible positions of the inscribed ball, the last inequality
can be rewritten as

<cC min i
thHLm(Bl) o BinCBy,Bi" a ball of radius ZPl_l th||L2(B£F)

is valid by equivalence of norms.



Extension to Stokes equations

—Au+Vp=Ff onQ
A straighforward SIP method for ¢ divu =10 on ()
u=0 on dQ)

e V), — discontinuous vector valued P¥ FE on 7y,
e Qp — discontinuous P~1 FE on 7,
e Find (up, pn) € Vi X Qp such that

a(up pp; Vh, qn) = /Q f-vh Y(vhqn) € Vi X Qn

with
af,(u,p;v,q) =Y re7, ([ Vu:Vv— [Lpdivy — [ qdivu)
—Xeeg, Je{n-Vu}-[v]—{pn}- [];

ZEes,,fE {n- VV} [u] —{gn} - [u]
+YEes, ho he Jelu] - [v]+ Yece; VphE Jelp]



The local problems

Introduce the differential operator of the Stokes problem
L(u,p) = (—Au+ Vp,divu)

and let (u;f’c, p;,"c) € V), X Qp, solve on every mesh cell T € T,

(L(ul°, oY, (vr, g7) T_/ fovr Wure VoeT greqleeT

where
° VIocT IPk 2(7—)
° QIOC T=P§(T)={qeP*(T): [;q=0}

The map L1, : PX(T) x PA"Y(T) — PA=2(T) x P 1(T)
defined on any T E Th by

(L1 n(u, p), = [7(=Au+Vp) v+ [F(divu)g

for all (v, ) ]Pk 2( ) x PETL(T), is surjective

(proof on the next slide)




The local problems
Surjectivity of the map

@ Let x 1 be the polynomial of degree 2

vanishing on 9B" ‘
) d
xT(x) = (Z;(Xi—xlpf—f%) (@

@ Set the linear map
Q PK2(T)xPEYT) = Pk2(T) x P§?

Q(v.p) = (—A(XTV)—i—Vp, div(xTv) — ﬁdeiv(XTv))
o Ker(Q) = {0}. Indeed, if Q(v,p) = 0 then (xTv, p) solve
~A(x7v)+Vp =0, div(xTv) = const on B, x7v =0 on dB"

In fact, div(xTv) =0sothat v=0,p=0

@ @ is thus one-to-one



The global problem

@ The subspace X} C Xj, := V4 x Qp
X, = {(Vh,qn) : L(vh,qn) =0 on every T € Ty}
e We search for (u}, p;,) € X} s.t.

an(up, Phi vk, Gn) = /Q f vy — an(us, pe<; vi, qn)

@ The structure of X;:

(uh, Ph) € Xy & upy € Vi, pjy = 7tn(uh) + P

where
e V/ is a subspace of V},
o Tp: V) — ]1”671(7') given on every T € T}, by

th(ul) = ph, Vpj, = Aup on every T € Ty,

Pn € Qp — piecewise constant on T,



Rewriting the global problem on X]

On X,

o [; mu(up)divvy, = 0 since div vy = const on T

© an(up, Phi Vi 9h)
o (Y 9 [y paciv vy~ [y @i
— Yeee, JeUn -Vl —mn(up)n} - [vi] = {Bun} - [v;])
— Yeeg, JeUn- Vv — ma(vi)n} - [up] — {@un} - [uh])
+YLEce, % fE[UZ] - (V]
+ Xeee;, vohe Jelrmn(uh) + Bul[7tn(vh) + Gn]

@ Since Vp,=0onevery T € T

- L [ advit ¥ [ (o 1hl =5 T [lown

T€Th E€Ey Eeg),

@ so that finally ...



Coercivity of the global problem on X]

e Forall (up, pp,) € X, ie. up, € V|, pj, = mtp(uy,) + P,
Pn € Qn

(Uh Ph Uh Ph Z / |VUh‘2

T<T,

2 % [0 Vi - mn}- )+ T g [Nl
- % [lpwn] o +E%%WM%HM

Ec&l E Ecéf

with

lacpll? = Y [ 196+ 3 o [l [ 2+ ¥ e [l

TeT, Eeg Eegt



Conclusions and perspectives

@ We have presented an interior penalty DG method with static
condensation for the diffusion problem which can be cheaper
than the methods with skeleton-based DOFs on
polygons/polyhedra with many facets

| 2D \ 3D
scSIP (2k + ]-)Nelements (k + l)zNelements
HDG, HHO ~ kNedges ~ 5k*Naces

@ A lot of things to do and open questions:

o Convergence order with respect to p (= k)

e Static condensation for other DG methods : incomplete or
antisymmetric IP, local DG, ...

o A proper extension for the Stokes problem (cf. the talk by
A. Linke)

o An extension to (nearly) compressible elasticity (asymptotic
preserving in the limit Poisson ratio — %)

o ...



