A primal discontinuous Galerkin method with static condensation on very general meshes

Alexei Lozinski

Laboratoire de Mathématiques de Besançon Université de Franche-Comté

UNIVERSITĕ : FRANCHE-COMTë

POEMS 2019

POlytopal Element Methods in Mathematics and Engineering April 30th, 2019

- Polynomial spaces on the mesh elements
- IP - interior penalty discontinuous Galerkin (Baker'73,

Wheeler'78, Arnold'82)

- LDG - local discontinuous Galerkin (Cockburn \& Shu'98)
- Polynomial spaces on the mesh skeleton (edges in 2D, faces in 3D)
- HDG - hybridizable discontinuous Galerkin (Cockburn et al'09)
- HHO - Hybrid High-Order (Di Pietro et al’14)
- VEM - Virtual Elements (Beirão da Veiga et al'13)

The number of DOFs needed to achieve the accuracy $O\left(h^{k}\right)$ in the case of the diffusion problem:

(for large k)

Outline of the talk

- A reminder of the static condensation for the continuous FEM
- scSIP - a symmetric interior penalty DG method with static condensation for the diffusion problem

	2D	3D
scSIP	$(2 k+1) N_{\text {elements }}$	$(k+1)^{2} N_{\text {elements }}$
HDG, HHO	$\sim k N_{\text {edges }}$	$\sim \frac{1}{2} k^{2} N_{\text {faces }}$

(AL, Preprint arXiv 2018)

- A priori error estimates
- Numerical illustrations
- Admissible meshes
- An extension to Stokes

Governing equations and notations

- The diffusion equation in $\Omega \subset \mathbb{R}^{d}, d=2$ or 3 with Dirichlet bc

$$
-\partial_{i}\left(A_{i j}(x) \partial_{j} u\right)=f \text { in } \Omega, \quad u=g \text { on } \partial \Omega
$$

assuming the summation over $i, j=1, \ldots, d$

- The differential operator \mathcal{L} is defined by

$$
\mathcal{L} u=-\partial_{i}\left(A_{i j}(x) \partial_{j} u\right)
$$

- The bilinear form

$$
a(u, v):=\int_{\Omega} A \nabla u \cdot \nabla v, \quad A=\left(A_{i j}\right)_{1 \leq i, j \leq d}
$$

- Assmptions on the coefficient matrix: $\exists 0<\alpha \leq \beta, M>0$

$$
\alpha|\xi|^{2} \leq \xi^{T} A(x) \xi \leq \beta|\xi|^{2}, \quad \forall \xi \in \mathbb{R}^{d}, x \in \Omega
$$

and

$$
\left|\nabla A_{i j}(x)\right| \leq M, \quad \forall x \in \Omega, \quad i, j=1, \ldots, d
$$

Static condensation for continuous FEM

- Assume (for the moment) $\Omega \subset \mathbb{R}^{2}$ a polygon, \mathcal{T}_{h} a regular triangular mesh on Ω, and $g=0$
- The usual continuous \mathbb{P}^{k} FE on \mathcal{T}_{h}

$$
V_{h}=\left\{v \in H_{0}^{1}(\Omega): v_{T} \in \mathbb{P}^{k}(t) \quad \forall T \in \mathcal{T}_{h}\right\}
$$

- The continuous FE solution

$$
u_{h} \in V_{h}: \quad a\left(u_{h}, v_{h}\right)=\int_{\Omega} f v_{h}, \quad \forall v_{h} \in V_{h}
$$

- If $k \geq 3$, the DOFs attached to interior interpolation nodes can be locally eliminated

Illustration for

$$
k=4
$$

- Global DOFs
- Local DOFs

Static condensation for continuous FEM

- Decompose V_{h} into the local and global "features"

$$
\begin{gathered}
V_{h}=V_{h}^{\text {loc }} \oplus^{\perp_{a}} V_{h}^{\prime} \\
V_{h}^{\text {loc }}=\left\{v \in V_{h}: v_{\partial T}=0 \quad \forall T \in \mathcal{T}_{h}\right\} \\
V_{h}^{\prime}=\left\{v^{\prime} \in V_{h}: a\left(v, v^{\prime}\right)=0 \quad \forall v \in V_{h}^{\text {loc }}\right\}
\end{gathered}
$$

- Decomposition of the FE solution $u_{h}=\underbrace{u_{h}^{\text {loc }}}_{\in W_{h}^{\text {loc }}}+\underbrace{u_{h}^{\prime}}_{\in W_{h}^{\prime}}$
- Local and global problems

$$
\begin{align*}
u_{h}^{\text {loc }} \in W_{h}^{\text {loc }}: & a\left(u_{h}^{\text {loc }}, v_{h}^{\text {loc }}\right)=\int_{\Omega} f v_{h}^{\text {loc }},
\end{align*} \quad \forall v_{h}^{\text {loc }} \in V_{h}^{\text {loc }}, ~ u_{h}^{\prime} \in W_{h}^{\prime}: \quad a\left(u_{h}^{\prime}, v_{h}^{\prime}\right)=\int_{\Omega} f v_{h}^{\prime}, \quad \forall v_{h}^{\prime} \in V_{h}^{\prime}
$$

- The size of (1) is $\sim k$ in 2D $\left(\sim k^{2}\right.$ in 3D) contrary to $\sim k^{2}$ ($\sim k^{3}$) for the original problem

Static condensation for continuous FEM

- The local problems are solved separately on every triangle: $\forall T \in \mathcal{T}_{h}$

$$
u_{h}^{l o c, T}:=\left.u_{h}^{l o c}\right|_{T} \in V_{h}^{l o c, T}:=\left\{v \in \mathbb{P}^{k}(T):\left.v\right|_{\partial T}=0\right\}
$$

satisfies

$$
\int_{T} A \nabla u_{h}^{\mathrm{loc}, T} \cdot \nabla v_{h}^{\mathrm{loc}, T}=\int_{\Omega} f v_{h}^{\mathrm{loc}, T}, \quad \forall v_{h}^{\mathrm{loc}, T} \in V_{h}^{\mathrm{loc}, T}
$$

- With the orthogonal projection $\pi_{T}: L^{2}(T) \rightarrow V_{h}^{\text {loc }, T}$

$$
\pi_{T} \mathcal{L}\left(\left.u_{h}^{\text {loc }}\right|_{T}\right)=\pi_{T} f, \quad \forall T \in \mathcal{T}_{h}
$$

- The global subspace V_{h}^{\prime} is populated by the solutions to

$$
\pi_{T} \mathcal{L}\left(\left.v_{h}^{\prime}\right|_{T}\right)=0, \quad \forall T \in \mathcal{T}_{h}
$$

- The basis functions of V_{h}^{\prime} can be associated to the nodes on the edges

Discontinuous Galerkin FEM

SIP - symmetric interior penalty

- Let \mathcal{T}_{h} be a general mesh on $\Omega \subset \mathbb{R}^{d}$ - a collection of non-overlapping subdomains;
- here is an example in 2D
- we tolerate the curved edges/faces as well

- Let $V_{h}=\left\{v \in L^{2}(\Omega):\left.v\right|_{T} \in \mathbb{P}^{k}(T), \forall T \in \mathcal{T}_{h}\right\}$
- The SIP method:
find $u_{h} \in V_{h}$ such that $a_{h}\left(u_{h}, v_{h}\right)=L_{h}\left(v_{h}\right), \forall v_{h} \in V_{h}$ with

$$
\begin{aligned}
& a_{h}(u, v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} A \nabla u \cdot \nabla v \\
- & \sum_{E \in \mathcal{E}_{h}} \int_{E}(\{A \nabla u \cdot n\}[v]+\{A \nabla v \cdot n\}[u])+\sum_{E \in \mathcal{E}_{h}} \frac{\gamma}{h_{E}} \int_{E}[u][v]
\end{aligned}
$$

Discontinuous Galerkin FEM

- Let \mathcal{T}_{h} be a general mesh on $\Omega \subset \mathbb{R}^{d}$ - a collection of non-overlapping subdomains;
- here is an example in 2D
- we tolerate the curved edges/faces as well

- Let $V_{h}=\left\{v \in L^{2}(\Omega):\left.v\right|_{T} \in \mathbb{P}^{k}(T), \forall T \in \mathcal{T}_{h}\right\}$
- The SIP method:
find $u_{h} \in V_{h}$ such that $a_{h}\left(u_{h}, v_{h}\right)=L_{h}\left(v_{h}\right), \forall v_{h} \in V_{h}$ with

$$
L_{h}(v)=\sum_{T \in \mathcal{T}_{h}} \int_{T} f v+\sum_{E \in \mathcal{E}_{h}^{b}} \int_{E} g\left(\frac{\gamma}{h_{E}} v-A \nabla v \cdot n\right)
$$

Notations and error estimates

- \mathcal{E}_{h} - edges/faces of the mesh \mathcal{T}_{h}

n - the unit normal on an edge E
$\left.[v]\right|_{E}:=\left.v\right|_{T_{1}}-\left.v\right|_{T_{2}}$
$\left.\{v\}\right|_{E}:=\frac{1}{2}\left(\left.v\right|_{T_{1}}+\left.v\right|_{T_{2}}\right)$
$h_{E}=2\left(\frac{1}{h T_{1}}+\frac{1}{h T_{2}}\right)^{-1}$
- $\mathcal{E}_{h}^{b} \subset \mathcal{E}_{h}$ - the edges/faces on $\partial \Omega$; On any $E \in \mathcal{E}_{h}^{b}$: n is the outward looking, $[v]=v,\{v\}=v, h_{E}=h_{T}$

Theorem

Under mesh regularity, usual assumptions on V_{h}, and γ big enough

$$
\left|u-u_{h}\right|_{H^{1}\left(\mathcal{T}_{h}\right)} \leq C h^{k}|u|_{H^{k+1}(\Omega)}
$$

Adding the usual elliptic regularity assumption,

$$
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C|u|_{H^{k+1}(\Omega)} h^{k+1}
$$

Mesh regularity and assumptions on V_{h}

 cf the book by Cangiani et al (2017)- We assume that \mathcal{T}_{h} is shape regular:

For any $T \in \mathcal{T}_{h}$, there exist two balls $B_{T}^{i n} \subset T \subset B_{T}$ with radiuses r_{T} and R_{T} such that

$$
R_{T} \leq \rho_{1} r_{T}
$$

with a regularity parameter $\rho_{1}>1$

- Optimal interpolation: there exists $I_{h}: H^{k+1}(\Omega) \rightarrow V_{h}$

$$
\left(\sum _ { T \in \mathcal { T } _ { h } } \left(\left|v-I_{h} v\right|_{H^{1}(T)}^{2}+\frac{1}{h_{T}^{2}}\left\|v-I_{h} v\right\|_{L^{2}(T)}^{2}+h_{T}^{2}\left|v-I_{h} v\right|_{H^{2}(T)}^{2}\right.\right.
$$

$$
\left.\left.+h_{T}\left\|\nabla v-\nabla I_{h} v\right\|_{L^{2}(\partial T)}^{2}+\frac{1}{h_{T}}\left\|v-I_{h} v\right\|_{L^{2}(\partial T)}^{2}\right)\right)^{\frac{1}{2}} \leq C\left(\sum_{T \in \mathcal{T}_{h}} h_{T}^{2 k}|v|_{H^{k+1}(T)}\right)^{\frac{1}{2}}
$$

- Inverse inequalities: for any $v_{h} \in V_{h}$ and any $T \in \mathcal{T}_{h}$

$$
\left\|v_{h}\right\|_{L^{2}(\partial T)} \leq \frac{C}{\sqrt{h_{T}}}\left\|v_{h}\right\|_{L^{2}(T)}, \quad\left\|\nabla v_{h}\right\|_{L^{2}(\partial T)} \leq \frac{C}{\sqrt{h_{T}}}\left\|\nabla v_{h}\right\|_{L^{2}(T)}, \quad\left|v_{h}\right|_{H^{2}(T)} \leq \frac{C}{h_{T}}\left|v_{h}\right|_{H^{1}(T)}
$$

Static condensation for discontinuous FEM ?

Not efficient/impossible if one follows the usual recipe of eliminating the local DOFs

On a triangular mesh, all the standard DOFs associated to the interpolation nodes become non-local in the SIP method

- One can extract a localizable subspace of $\mathbb{P}^{k}(T), T \in \mathcal{T}_{h}$ as

$$
V_{h}^{l o c, S I P, T}=\left\{v \in \mathbb{P}^{k}(T):\left.v\right|_{\partial T}=\left.n \cdot \nabla v\right|_{\partial T}=0\right\}
$$

but $\operatorname{dim}\left(\mathbb{P}^{k}(T) \backslash V_{h}^{\text {loc,SIP, }}\right)$ is rather big

- It gets worse on a general mesh (mesh elements with many edges)

Static condensation for discontinuous FEM ?

Yes, if one mimics the reformulation with orthogonal projections

- Redefine the local polynomial space

$$
V_{h}^{\text {loc, } T}=\mathbb{P}^{k-2}(T)
$$

- Re-introduce the orthogonal projection

$$
\pi_{T, k-2}: L^{2}(T) \rightarrow V_{h}^{\text {loc }, T}
$$

- Redefine the local contributions to the solution as $u_{h}^{\text {loc }} \in V_{h}$

$$
\pi_{T, k-2} \mathcal{L}\left(\left.u_{h}^{l o c}\right|_{T}\right)=\pi_{T, k-2} f, \quad \forall T \in \mathcal{T}_{h}
$$

- The global subspace V_{h}^{\prime} is populated by the solutions to

$$
\pi_{T, k-2} \mathcal{L}\left(\left.v_{h}^{\prime}\right|_{T}\right)=0, \quad \forall T \in \mathcal{T}_{h}
$$

There is no schematic representation for the DOFs in V_{h}^{\prime}

The basis functions of V_{h}^{\prime} are no longer associated to some nodes. One can only say that $\left.V_{h}^{\prime}\right|_{T}$ is a subspace of $\mathbb{P}^{k}(T)$. In practice, one should precompute a basis for $\left.V_{h}^{\prime}\right|_{T}$.

scSIP method (static condensation SIP)

- Compute $u_{h}^{\text {loc }} \in V_{h}$ by solving

$$
\int_{T} \mathcal{L}\left(\left.u_{h}^{l o c}\right|_{T}\right) q_{T}=\int_{T} f q_{T}, \quad \forall q_{T} \in \mathbb{P}^{k-2}(T), T \in \mathcal{T}_{h}
$$

- Define the subspace of V_{h}

$$
V_{h}^{\prime}=\left\{v_{h}^{\prime} \in V_{h}: \int_{T} \mathcal{L}\left(\left.v_{h}^{\prime}\right|_{T}\right) q_{T}=0, \quad \forall q_{T} \in \mathbb{P}^{k-2}(T), T \in \mathcal{T}_{h}\right\}
$$

- Compute $u_{h}^{\prime} \in V_{h}^{\prime}$ such that

$$
a_{h}\left(u_{h}^{\prime}, v_{h}^{\prime}\right)=L_{h}\left(v_{h}^{\prime}\right)-a_{h}\left(u_{h}^{l o c}, v_{h}^{\prime}\right), \quad \forall v_{h}^{\prime} \in V_{h}^{\prime}
$$

- Set

$$
u_{h}=u_{h}^{l o c}+u_{h}^{\prime}
$$

Well posedness and error estimates for scSIP

Lemma

Provided $h \leq h_{0}, \forall T \in \mathcal{T}_{h}, \forall q_{T} \in \mathbb{P}^{k-2}(T) \exists u_{T} \in \mathbb{P}^{k}(T)$ such that

$$
\int_{T} q_{T}\left(\mathcal{L} u_{T}\right) \geq \frac{1}{2}\left\|q_{T}\right\|_{L^{2}(T)}^{2}
$$

and

$$
\left|u_{T}\right|_{H^{1}(T)}^{2}+\frac{1}{h_{T}}\left\|u_{T}\right\|_{L^{2}(\partial T)}^{2} \leq C h_{T}^{2}\left\|q_{T}\right\|_{L^{2}(T)}^{2}
$$

h_{0}, C depend only on mesh regularity and α, β, M

Remarks

(1) One can put $h_{0}=+\infty$ if A is constant on T
(2) This proves that the local problem in scSIP has a solution

Proof of the lemma

- Let χ_{T} be the polynomial of degree 2 vanishing on $\partial B_{T}^{i n}$

$$
\chi_{T}(x)=\left(\sum_{i=1}^{d}\left(x_{i}-x_{i}^{0}\right)^{2}-r_{T}^{2}\right)
$$

- Set $A_{i j}^{0}=A_{i j}\left(x^{0}\right)$ and $\mathcal{L}^{0}=-\partial_{i} A_{i j}^{0} \partial_{j}$ and consider the linear map

$$
\begin{aligned}
Q & : \mathbb{P}^{k-2}(T) \rightarrow \mathbb{P}^{k-2}(T) \\
Q(v) & =\mathcal{L}^{0}\left(\chi_{T} v\right)
\end{aligned}
$$

- $\operatorname{Ker}(Q)=\{0\}$. Indeed, if $Q(v)=0$ then $\chi_{T} v$ solves

$$
\mathcal{L}^{0}\left(\chi_{T} v\right)=0 \text { in } B_{T}^{i n}, \quad \chi_{T} v=0 \text { on } \partial B_{T}^{i n} \quad \Rightarrow \quad v=0
$$

- Q is thus one-to-one: $\forall q_{T} \in \mathbb{P}^{k-2}(T), \exists u_{T}:=\chi_{T} Q^{-1}\left(q_{T}\right)$

$$
\mathcal{L}^{0} u_{T}=q_{T}
$$

Proof of the lemma

- By scaling,

$$
\left|u_{T}\right|_{W^{2, \infty}\left(B_{T}\right)}+\frac{1}{h_{T}}\left|u_{T}\right|_{W^{1, \infty}\left(B_{T}\right)}+\frac{1}{h_{T}^{2}}\left\|u_{T}\right\|_{L^{\infty}\left(B_{T}\right)} \leq \frac{C}{h_{T}^{d / 2}}\left\|q_{T}\right\|_{L^{2}\left(B_{T}^{i n}\right)}
$$

Thus,

$$
\left|u_{T}\right|_{H^{1}(T)} \leq|T|^{1 / 2}\left|u_{T}\right|_{W^{1, \infty}\left(B_{T}\right)} \leq C h_{T}\left\|q_{T}\right\|_{L^{2}(T)}
$$

- Similarly, $\left\|u_{T}\right\|_{L^{2}(T)} \leq C h_{T}^{2}\left\|q_{T}\right\|_{L^{2}(T)}$ so that

$$
\left\|u_{T}\right\|_{L^{2}(\partial T)} \leq C h_{T}^{3 / 2}\left\|q_{T}\right\|_{L^{2}(T)}
$$

by the trace inverse inequality.

- In the case of variable coefficients (for h small enough)

$$
\begin{aligned}
\int_{T} q_{T} \mathcal{L} u_{T} & =\int_{T} q_{T} \mathcal{L}^{0} u_{T}+\int_{T} q_{T} \partial_{i}\left(\left(A_{i j}-A_{i j}^{0}\right) \partial_{j} u_{T}\right) \\
& \geq\left\|q_{T}\right\|_{L^{2}(T)}^{2}-\left\|q_{T}\right\|_{L^{2}(T)}|T|^{1 / 2} h_{T}\|\nabla A\|_{L^{\infty}(T)} \frac{C}{h_{T}^{d / 2}}\left\|q_{T}\right\|_{L^{2}\left(B_{T}^{i n}\right.} \\
& \geq\left\|q_{T}\right\|_{L^{2}(T)}^{2}-C h_{T}\left\|q_{T}\right\|_{L^{2}(T)}^{2} \geq \frac{1}{2}\left\|q_{T}\right\|_{L^{2}(T)}
\end{aligned}
$$

- Recall the bilinear form a_{h}. It is known to be coercive

$$
\begin{gathered}
a_{h}\left(v_{h}, v_{h}\right) \geq c\| \| v_{h} \|^{2}, \quad \forall v_{h} \in V_{h} \\
\|v v\|^{2}=\sum_{T \in \mathcal{T}_{h}}\left(|v|_{H^{1}(T)}^{2}+\frac{1}{h_{T}}\|[v]\|_{L^{2}(\partial T)}^{2}\right)
\end{gathered}
$$

- Introduce the bilinear form

$$
b_{h}(\mu, v)=\sum_{T \in \mathcal{T}_{h}} h_{T}^{2} \int_{T} \mu \mathcal{L} u
$$

and the space

$$
M_{h}=\left\{v \in L^{2}(\Omega):\left.v\right|_{T} \in \mathbb{P}^{k-2}(T), \forall T \in \mathcal{T}_{h}\right\}
$$

The previous lemma implies the inf-sup

$$
\inf _{\mu_{h} \in M_{h}} \sup _{v_{h} \in V_{h}} \frac{b_{h}\left(\mu_{h}, v_{h}\right)}{\left\|\mu_{h}\right\|_{h}\left\|v_{h}\right\|} \geq \delta
$$

with $\|\mu\|_{h}^{2}=\sum_{T \in \mathcal{T}_{h}} h_{T}^{2}\|\mu\|_{L^{2}(T)}^{2}$

A saddle point reformulation

Lemma

u_{h} given by the scSIP method can also be recovered as a solution to the saddle point problem:
Find $u_{h} \in V_{h}, \lambda_{h} \in M_{h}$ such that

$$
\begin{aligned}
a_{h}\left(u_{h}, v_{h}\right)+b_{h}\left(\lambda_{h}, v_{h}\right) & =L_{h}\left(v_{h}\right), & \forall v_{h} \in V_{h} \\
b_{h}\left(\mu_{h}, u_{h}\right) & =\sum_{T \in \mathcal{T}_{h}} h_{T}^{2} \int_{T} f \mu_{h}, & \forall \mu_{h} \in M_{h}
\end{aligned}
$$

The solution $\left(u_{h}, \lambda_{h}\right)$, and thus scSIP's u_{h} is unique

Consistency

The exact solution u together with $\lambda=0$ satisfy

$$
\begin{array}{rlrl}
a_{h}\left(u, v_{h}\right)+b_{h}\left(\lambda, v_{h}\right) & =L_{h}\left(v_{h}\right), & \forall v_{h} \in V_{h} \\
b_{h}\left(\mu_{h}, u\right) & =\sum_{T \in \mathcal{T}_{h}} h_{T}^{2} \int_{T} f \mu_{h}, & & \forall \mu_{h} \in M_{h}
\end{array}
$$

Proof of the saddle point equivalence lemma

- Existence and uniqueness of $\left(u_{h}, \lambda_{h}\right)$ follows from the standard theory of saddle point problems (a_{h} is coercive, b_{h} satisifies inf-sup)
- Let $u_{h}=u_{h}^{\text {loc }}+u_{h}^{\prime}$ be given by the scSIP method. Then
(1) For all $v_{h}^{\prime} \in V_{h}^{\prime}$

$$
a_{h}\left(u_{h}^{\text {loc }}+u_{h}^{\prime}, v_{h}^{\prime}\right)=L_{h}\left(v_{h}^{\prime}\right)
$$

Recalling that $V_{h}^{\prime}=\left\{v_{h}^{\prime} \in V_{h}: b_{h}\left(\mu_{h}, v_{h}^{\prime}\right)=0 \forall \mu_{h} \in M_{h}\right\}$, one can add the Lagrange multiplier $\lambda_{h} \in M_{h}$ above so that it holds for all $v_{h} \in V_{h}$
(2) Recall again $b_{h}\left(\mu_{h}, u_{h}^{\prime}\right)=0$ and observe

$$
b_{h}\left(\mu_{h}, u_{h}^{l o c}+u_{h}^{\prime}\right)=\sum_{T \in \mathcal{T}_{h}} h_{T}^{2} \int_{T} f q_{h}, \quad \forall \mu_{h} \in M_{h}
$$

(3) Since any u_{h} given by the scSIP method can be recovered as a solution to the saddle point problem, scSIP's u_{h} is unique

A priori error estimates for scSIP

Theorem

Under the same assumption as before, the scSIP method produces the unique solution $u_{h} \in V_{h}$, which satisfies

$$
\begin{gathered}
\left|u-u_{h}\right|_{H^{1}\left(\mathcal{T}_{h}\right)} \leq C h^{k}|u|_{H^{k+1}(\Omega)} \\
\left\|u-u_{h}\right\|_{L^{2}(\Omega)} \leq C|u|_{H^{k+1}(\Omega)} h^{k+1}
\end{gathered}
$$

Proof by the inf-sup theory and optimal approximation $\left\|u_{h}-I_{h} u\right\|\|+\| \lambda_{h} \|_{h}$

$$
\leq C\left(\left\|u-I_{h} u\right\|^{2}+\sum_{E \in \mathcal{E}_{h}} h_{E}\left\|\left\{A \nabla\left(u-I_{h} u\right) \cdot n\right\}\right\|_{L^{2}(E)}^{2}\right.
$$

$$
\left.+\sum_{T \in \mathcal{T}_{h}} h_{T}^{2}\left\|\mathcal{L}\left(u-I_{h} u\right)\right\|_{L^{2}(T)}^{2}\right)^{\frac{1}{2}}
$$

$$
\leq C h^{k}|u|_{H^{k+1}}
$$

Notes on implementation of SIP ans scSIP methods

- Introduce the bases of $\mathbb{P}^{k}\left(T_{l}\right)$ and $\mathbb{P}^{k-2}\left(T_{l}\right)$ on $T_{l} \in \mathcal{T}_{h}$:

$$
\left\{\phi_{i}^{(I)}\right\}_{i=1, \ldots, N_{k}} \quad\left\{\psi_{j}^{(I)}\right\}_{j=1, \ldots, N_{k-2}}
$$

- Form the matrices $A^{(I m)}=\left\{a_{h}\left(\phi_{i}^{(I)}, \phi_{j}^{(I)}\right\}_{i j}\right.$ for any two neighboring elements T_{l} and T_{m}
- Form the matrices $\mathbf{B}^{(I)}=\left\{\int_{T_{l}} \psi_{i}^{(I)} \mathcal{L} \phi_{j}^{(I)}\right\}_{i j}$
- Calculate the scSIP local contributions $\vec{u}_{\text {loc }}^{(I)}$ and the basis functions $\vec{u}^{(1, s)}$ for V_{h}^{\prime} on every $T_{I} \in \mathcal{T}_{h}$ by
$\left\{\begin{aligned} \vec{u}_{\text {loc }}^{(I)}+\left(\mathbf{B}^{(I)}\right)^{T} \vec{\lambda}_{\text {loc }}^{(I)} & =0 \\ \mathbf{B}^{(I)} \vec{u}_{\text {loc }}^{(I)} & =\vec{F}_{\psi}^{(I)}\end{aligned} \quad\right.$ and $\quad\left\{\begin{aligned} \vec{u}^{(I, s)}+\left(\mathbf{B}^{(I)}\right)^{T} \vec{\lambda}^{(1, s)} & =\vec{e}^{s} \\ \mathbf{B}^{(I)} \vec{u}^{(1, s)} & =0\end{aligned}\right.$ with ${\overrightarrow{F_{\psi}}}^{(I)}=\left\{\int_{T_{l}}{ }^{f} \psi_{i}^{(I)}\right\}$
- Put the vectors $\vec{u}^{(I, s)}$ into the matrix $\mathbf{M}^{(I)}$ on $T_{l} \in \mathcal{T}_{h}$ (after selecting the linearly independent ones by Gramm-Schmdt)
- Form the reduced matrices $\mathbf{A}^{\prime(l m)}=\left(\mathbf{M}^{(I)}\right)^{T} \mathbf{A}^{(l m)} \mathbf{M}^{(m)}$ of size $N_{k}^{\prime} \times N_{k}^{\prime}$
- The global problems for SIP and scSIP methods

$$
\underbrace{\mathbf{A} \vec{U}=\vec{F}}_{\text {problem of size } N_{k} \quad} \quad \underbrace{\mathbf{A}^{\prime} \vec{U}^{\prime}=\vec{F}^{\prime}}_{\text {problem of size }\left(N_{k}-N_{k-2}\right)}
$$

Numerical results using FreeFEM

Polygonal meshes by agglomeration

4×4 cells

\Leftarrow
8×8 cells

We solve $-\Delta u=f$ on $\Omega=(0,1)^{2}$ with homogeneous Dirichlet boundary conditions and the exact solution $u=\sin (\pi x) \sin (\pi y)$

- The solid lines represent the SIP method
- The dashed lines represent the scSIP method

The second test case: non-constant coefficients

We solve $-\operatorname{div}(A \nabla u)=f$ with $A=\left(\begin{array}{cc}1+x & x y \\ x y & 1+y\end{array}\right)$ on
$\Omega=(0,1)^{2}$ with non-homogeneous Dirichlet boundary conditions and the exact solution $u=e^{x y}$

- The solid lines represent the SIP method
- The dashed lines represent the scSIP method

An example of assumptions on the mesh that guarantee the interpolation and inverse estimates

M1: \mathcal{T}_{h} is shape regular in the sense: $\forall T \in \mathcal{T}_{h}$ there exist two balls $B_{T}^{i n} \subset T \subset B_{T}$ with radiuses r_{T} and R_{T} such that

$$
R_{T} \leq \rho_{1} r_{T}
$$

with a regularity parameter $\rho_{1}>1$
M 2 : \mathcal{T}_{h} is locally quasi-uniform in the following sense: for any two mesh cells $T, T^{\prime} \in \mathcal{T}_{h}$ such that $B_{T^{\prime}} \cap B_{T} \neq \varnothing$ there holds

$$
\frac{1}{\rho_{2}} h_{T^{\prime}} \leq h_{T} \leq \rho_{2} h_{T^{\prime}}
$$

with a parameter $\rho_{2}>1$
M3: The cell boundaries are not too wiggly: for all $T \in \mathcal{T}_{h}$

$$
|\partial T| \leq \rho_{3} h_{T}^{d-1}
$$

with a parameter $\rho_{3}>0$.

This is an alternative to the assumptions from Cangiani et al (2017), WHICH ARE BASED ON THE DECOMPOSITION INTO THE SIMPLEXES

Interpolation estimates

- Local interpolation estimate: for any $T \in \mathcal{T}_{h}$, let $v_{h} \in \mathbb{P}^{k}(T)$ be s.t. $\int_{B_{T}} v_{h} \varphi_{h}=\int_{B_{T}} v \varphi_{h} \quad \forall \varphi_{h} \in \mathbb{P}^{k}(T)$ Under Assumptions M1 and M3, we have for any $v \in H^{k+1}\left(B_{T}\right)$

$$
\begin{aligned}
& \left|v-v_{h}\right|_{H^{1}(T)}+\frac{1}{h_{T}}\left\|v-v_{h}\right\|_{L^{2}(T)}+h_{T}\left|v-v_{h}\right|_{H^{2}(T)} \\
+ & \sqrt{h_{T}}\left\|\nabla\left(v-v_{h}\right)\right\|_{L^{2}(\partial T)}+\frac{1}{\sqrt{h_{T}}}\left\|v-v_{h}\right\|_{L^{2}(\partial T)} \leq C h_{T}^{k}|v|_{H^{k+1}\left(B_{T}\right)}
\end{aligned}
$$

- Proof: by a scaling argument

$$
\left\|v-v_{h}\right\|_{L^{\infty}\left(B_{T}\right)} \leq C h_{T}^{k+1-d / 2}|v|_{H^{k+1}\left(B_{T}\right)}
$$

and use M1 and M3 ...

- Global interpolation estimate obtained by summing over $T \in \mathcal{T}_{h}$ since the number of intersecting B_{T} 's is uniformly bounded (Assumption M2)
- The needed inverse inequalities follow from

$$
\left\|q_{h}\right\|_{L^{\infty}(T)} \leq \frac{C}{h_{T}^{d / 2}}\left\|q_{h}\right\|_{L^{2}(T)} \quad \forall q_{h} \in \mathbb{P}^{k}(T)
$$

- This in turn follows from

$$
\left\|q_{h}\right\|_{L^{\infty}\left(B_{T}\right)} \leq \frac{C}{h_{T}^{d / 2}}\left\|q_{h}\right\|_{L^{2}\left(B_{T}^{\text {in }}\right)}
$$

- Scaling the ball B_{T} to a ball of radius $1 B_{1}$ and considering all the possible positions of the inscribed ball, the last inequality can be rewritten as

$$
\left\|q_{h}\right\|_{L^{\infty}\left(B_{1}\right)} \leq C_{B^{i n} \subset B_{1}, B^{\text {in }} \text { a ball of radius } \geq \rho_{1}^{-1}}\left\|q_{h}\right\|_{L^{2}\left(B \frac{i i n}{T}\right)}
$$

is valid by equivalence of norms.

Extension to Stokes equations

A straighforward SIP method for $\begin{cases}-\Delta u+\nabla p=f & \text { on } \Omega \\ \operatorname{div} u=0 & \text { on } \Omega \\ u=0 & \text { on } \partial \Omega\end{cases}$

- V_{h} - discontinuous vector valued \mathbb{P}^{k} FE on \mathcal{T}_{h}
- Q_{h} - discontinuous $\mathbb{P}^{k-1} \mathrm{FE}$ on \mathcal{T}_{h}
- Find $\left(u_{h}, p_{h}\right) \in V_{h} \times Q_{h}$ such that

$$
a\left(u_{h}, p_{h} ; v_{h}, q_{h}\right)=\int_{\Omega} f \cdot v_{h}, \quad \forall\left(v_{h}, q_{h}\right) \in V_{h} \times Q_{h}
$$

with

$$
\begin{aligned}
a_{h}(u, p ; v, q) & =\sum_{T \in \mathcal{T}_{h}}\left(\int_{T} \nabla u: \nabla v-\int_{T} p \operatorname{div} v-\int_{T} q \operatorname{div} u\right) \\
& -\sum_{E \in \mathcal{E}_{h}} \int_{E}(\{n \cdot \nabla u\} \cdot[v]-\{p n\} \cdot[v]) \\
& -\sum_{E \in \mathcal{E}_{h}} \int_{E}(\{n \cdot \nabla v\} \cdot[u]-\{q n\} \cdot[u]) \\
& +\sum_{E \in \mathcal{E}_{h}} \frac{\gamma}{h_{E}} \int_{E}[u] \cdot[v]+\sum_{E \in \mathcal{E}_{h}^{i}} \gamma_{p} h_{E} \int_{E}[p][q]
\end{aligned}
$$

The local problems
Introduce the differential operator of the Stokes problem

$$
\mathcal{L}(u, p)=(-\Delta u+\nabla p, \operatorname{div} u)
$$

and let $\left(u_{h}^{\text {loc }}, p_{h}^{\text {loc }}\right) \in V_{h} \times Q_{h}$ solve on every mesh cell $T \in \mathcal{T}_{h}$
$\left(\mathcal{L}\left(u_{h}^{\text {loc }}, p_{h}^{\text {loc }}\right),\left(v_{T}, q_{T}\right)\right)_{T}=\int_{T} f \cdot v_{T} \quad \forall v_{T} \in V_{h}^{\text {loc }, T}, q_{T} \in Q_{h}^{\text {loc }, T}$
where

- $V_{h}^{\text {loc, } T}=\mathbb{P}^{k-2}(T)$
- $Q_{h}^{\text {loc }, T}=\mathbb{P}_{0}^{k-1}(T)=\left\{q \in \mathbb{P}^{k-1}(T): \int_{T} q=0\right\}$

Existence of the local solutions

The map $\mathcal{L}_{T, h}: \mathbb{P}^{k}(T) \times \mathbb{P}^{k-1}(T) \rightarrow \mathbb{P}^{k-2}(T) \times \mathbb{P}_{0}^{k-1}(T)$ defined on any $T \in \mathcal{T}_{h}$ by
$\left(\mathcal{L}_{T, h}(u, p),(v, q)\right)=\int_{T}(-\Delta u+\nabla p) \cdot v+\int_{T}(\operatorname{div} u) q$ for all $(v, q) \in \mathbb{P}^{k-2}(T) \times \mathbb{P}_{0}^{k-1}(T)$, is surjective (proof on the next slide)

- Let χ_{T} be the polynomial of degree 2 vanishing on $\partial B_{T}^{i n}$

$$
\chi_{T}(x)=\left(\sum_{i=1}^{d}\left(x_{i}-x_{i}^{0}\right)^{2}-r_{T}^{2}\right)
$$

- Set the linear map

$$
Q: \mathbb{P}^{k-2}(T) \times \mathbb{P}_{0}^{k-1}(T) \rightarrow \mathbb{P}^{k-2}(T) \times \mathbb{P}_{0}^{k-1}
$$

$$
Q(v, p)=\left(-\Delta\left(\chi_{T} v\right)+\nabla p, \operatorname{div}\left(\chi_{T} v\right)-\frac{1}{|T|} \int_{T} \operatorname{div}\left(\chi_{T} v\right)\right)
$$

- $\operatorname{Ker}(Q)=\{0\}$. Indeed, if $Q(v, p)=0$ then $\left(\chi_{T} v, p\right)$ solve

$$
-\Delta\left(\chi_{T} v\right)+\nabla p=0, \operatorname{div}\left(\chi_{T} v\right)=\text { const on } B_{T}^{i n}, \quad \chi_{T} v=0 \text { on } \partial B_{T}^{i n}
$$

$$
\text { In fact, } \operatorname{div}\left(\chi_{T} v\right)=0 \text { so that } v=0, p=0
$$

- Q is thus one-to-one
- The subspace $X_{h}^{\prime} \subset X_{h}:=V_{h} \times Q_{h}$

$$
X_{h}^{\prime}=\left\{\left(v_{h}, q_{h}\right): \mathcal{L}\left(v_{h}, q_{h}\right)=0 \text { on every } T \in \mathcal{T}_{h}\right\}
$$

- We search for $\left(u_{h}^{\prime}, p_{h}^{\prime}\right) \in X_{h}^{\prime}$ s.t.

$$
a_{h}\left(u_{h}^{\prime}, p_{h}^{\prime} ; v_{h}, q_{h}\right)=\int_{\Omega} f \cdot v_{T}-a_{h}\left(u_{h}^{\text {loc }}, p_{h}^{\text {loc }} ; v_{h}, q_{h}\right)
$$

- The structure of X_{h}^{\prime} :

$$
\left(u_{h}^{\prime}, p_{h}^{\prime}\right) \in X_{h}^{\prime} \Leftrightarrow u_{h}^{\prime} \in V_{h}^{\prime}, p_{h}^{\prime}=\pi_{h}\left(u_{h}^{\prime}\right)+\bar{p}_{h}
$$

where

- V_{h}^{\prime} is a subspace of V_{h}
- $\pi_{h}: V_{h}^{\prime} \rightarrow \mathbb{P}_{0}^{k-1}(T)$ given on every $T \in \mathcal{T}_{h}$ by

$$
\pi_{h}\left(u_{h}^{\prime}\right)=p_{h}^{\prime}, \quad \nabla p_{h}^{\prime}=\Delta u_{h} \text { on every } T \in \mathcal{T}_{h}
$$

$\bar{p}_{h} \in \bar{Q}_{h}$ - piecewise constant on \mathcal{T}_{h}

Rewriting the global problem on X_{h}^{\prime}

On X_{h}^{\prime},

- $\int_{T} \pi_{h}\left(u_{h}^{\prime}\right) \operatorname{div} v_{h}^{\prime}=0$ since $\operatorname{div} v_{h}^{\prime}=$ const on T
- $a_{h}\left(u_{h}^{\prime}, p_{h}^{\prime} ; v_{h}^{\prime}, q_{h}^{\prime}\right)$
$=\sum_{T \in \mathcal{T}_{h}}\left(\int_{T} \nabla u_{h}^{\prime}: \nabla v_{h}^{\prime}-\int_{T} \bar{p}_{h} \operatorname{div} v_{h}^{\prime}-\int_{T} \bar{q}_{h} \operatorname{div} u_{h}^{\prime}\right)$
$-\sum_{E \in \mathcal{E}_{h}} \int_{E}\left(\left\{n \cdot \nabla u_{h}^{\prime}-\pi_{h}\left(u_{h}^{\prime}\right) n\right\} \cdot\left[v_{h}^{\prime}\right]-\left\{\bar{p}_{h} n\right\} \cdot\left[v_{h}^{\prime}\right]\right)$
$-\sum_{E \in \mathcal{E}_{h}} \int_{E}\left(\left\{n \cdot \nabla v_{h}^{\prime}-\pi_{h}\left(v_{h}^{\prime}\right) n\right\} \cdot\left[u_{h}^{\prime}\right]-\left\{\bar{q}_{h} n\right\} \cdot\left[u_{h}^{\prime}\right]\right)$
$+\sum_{E \in \mathcal{E}_{h}} \frac{\gamma}{h_{E}} \int_{E}\left[u_{h}^{\prime}\right] \cdot\left[v_{h}^{\prime}\right]$
$+\sum_{E \in \mathcal{E}_{h}^{i}} \gamma_{p} h_{E} \int_{E}\left[\pi_{h}\left(u_{h}^{\prime}\right)+\bar{p}_{h}\right]\left[\pi_{h}\left(v_{h}^{\prime}\right)+\bar{q}_{h}\right]$
- Since $\nabla \bar{p}_{h}=0$ on every $T \in \mathcal{T}_{h}$

$$
-\sum_{T \in \mathcal{T}_{h}} \int_{T} \bar{p}_{h} \operatorname{div} v_{h}^{\prime}+\sum_{E \in \mathcal{E}_{h}} \int_{E}\left\{\bar{p}_{h} n\right\} \cdot\left[v_{h}^{\prime}\right]=-\frac{1}{2} \sum_{E \in \mathcal{E}_{h}^{i}} \int_{E}\left[\bar{p}_{h} n\right] \cdot\left[v_{h}^{\prime}\right]
$$

- so that finally ...

Coercivity of the global problem on X_{h}^{\prime}

- For all $\left(u_{h}^{\prime}, p_{h}^{\prime}\right) \in X_{h}^{\prime}$, i.e. $u_{h}^{\prime} \in V_{h}^{\prime}, p_{h}^{\prime}=\pi_{h}\left(u_{h}^{\prime}\right)+\bar{p}_{h}$, $\bar{p}_{h} \in \bar{Q}_{h}$

$$
\begin{aligned}
& a_{h}\left(u_{h}^{\prime}, p_{h}^{\prime} ; u_{h}^{\prime}, p_{h}^{\prime}\right)=\sum_{T \in \mathcal{T}_{h}} \int_{T}\left|\nabla u_{h}^{\prime}\right|^{2} \\
& \quad-2 \sum_{E \in \mathcal{E}_{h}} \int_{E}\left\{n \cdot \nabla u_{h}^{\prime}-\pi_{h}\left(u_{h}^{\prime}\right) n\right\} \cdot\left[u_{h}^{\prime}\right]+\sum_{E \in \mathcal{E}_{h}} \frac{\gamma}{h_{E}} \int_{E}\left|\left[u_{h}^{\prime}\right]\right|^{2} \\
& \quad \\
& \quad-\sum_{E \in \mathcal{E}_{h}^{j}} \int_{E}\left[\bar{p}_{h} n\right] \cdot\left[u_{h}^{\prime}\right]+\sum_{E \in \mathcal{E}_{h}^{\prime}} \gamma_{p} h_{E} \int_{E}\left|\left[\pi_{h}\left(u_{h}^{\prime}\right)+\bar{p}_{h}\right]\right|^{2} \\
& \geqslant c\| \| u_{h}^{\prime}, p_{h}^{\prime}\| \|^{2}
\end{aligned}
$$

with

$$
\|u, p\|^{2}=\sum_{T \in \mathcal{T}_{h}} \int_{T}|\nabla u|^{2}+\sum_{E \in \mathcal{E}_{h}} \frac{1}{h_{E}} \int_{E}|[u]|^{2}+\int_{\Omega} p^{2}+\sum_{E \in \mathcal{E}_{h}^{i}} h_{E} \int_{E}|[p]|^{2}
$$

Conclusions and perspectives

- We have presented an interior penalty DG method with static condensation for the diffusion problem which can be cheaper than the methods with skeleton-based DOFs on polygons/polyhedra with many facets

	2D	3D
scSIP	$(2 k+1) N_{\text {elements }}$	$(k+1)^{2} N_{\text {elements }}$
HDG, HHO	$\sim k N_{\text {edges }}$	$\sim \frac{1}{2} k^{2} N_{\text {faces }}$

- A lot of things to do and open questions:
- Convergence order with respect to $p(=k)$
- Static condensation for other DG methods: incomplete or antisymmetric IP, local DG, ...
- A proper extension for the Stokes problem (cf. the talk by A. Linke)
- An extension to (nearly) compressible elasticity (asymptotic preserving in the limit Poisson ratio $\rightarrow \frac{1}{2}$)
- ...

