An Introduction to the theory of M-decompositions

Bernardo Cockburn

School of Mathematics University of Minnesota

POEMS 2019 Marseille, Apr. 29 - May 3, 2019

Bernardo Cockburn (U. of Minnesota, USA) The theory of M-decompositions

Outline:

- The HDG methods (2005 & 2009):
 - Jay Gopalakrishnan, Portland State University.
 - Raytcho Lazarov, Texas A&M University.
- O The first superconvergent HDG method (2008):
 - Bo Dong, University of Massachusetts Dartmouth.
 - Johnny Guzmán, Brown University.
- Sufficient conditions for superconvergence (2012-13):
 - Weifeng Qiu, City University of Hong Kong.
 - Ke Shi, Old Dominion University.
- Theory of M-decompositions (2016-17):
 - Guosheng Fu, Brown University.
 - Francisco-Javier Sayas, University of Delaware.
- Ongoing work and references

The HDG methods.(B.C., J.Gopalakrishnan and R.Lazarov, SINUM, 2009.)

The model problem.

We want to numerically approximate the solutions of the following second-order elliptic model problem:

$$c \mathbf{q} + \nabla u = 0 \quad \text{in } \Omega,$$
$$\nabla \cdot \mathbf{q} = f \quad \text{in } \Omega,$$
$$\widehat{\mathbf{u}} = u_D \quad \text{on } \partial\Omega.$$

Here c is a matrix-valued function which is symmetric and uniformly positive definite on $\boldsymbol{\Omega}.$

The HDG methods.

The local solvers: A weak formulation on each element.

On the element $K \in \Omega_h$, given \hat{u} on ∂K and f, we have that (q, u) satisfies the equations

$$(c \mathbf{q}, \mathbf{v})_{\mathcal{K}} - (u, \nabla \cdot \mathbf{v})_{\mathcal{K}} + \langle \widehat{u}, \mathbf{v} \cdot \mathbf{n} \rangle_{\partial \mathcal{K}} = 0, \ -(\mathbf{q}, \nabla w)_{\mathcal{K}} + \langle \widehat{\mathbf{q}} \cdot \mathbf{n}, w \rangle_{\partial \mathcal{K}} = (f, w)_{\mathcal{K}},$$

for all $(\boldsymbol{v}, w) \in \boldsymbol{V}(K) imes W(K)$, where

$$\widehat{\boldsymbol{q}} \cdot \boldsymbol{n} = \boldsymbol{q} \cdot \boldsymbol{n}$$
 on ∂K .

The HDG methods

The local solvers: Definition.

On the element $K \in \Omega_h$, we define $(\boldsymbol{q}_h, \boldsymbol{u}_h)$ terms of $(\widehat{\boldsymbol{u}}_h, f)$ as the element of $\boldsymbol{V}(K) \times W(K)$ such that

$$(c \boldsymbol{q}_h, \boldsymbol{v})_K - (\boldsymbol{u}_h, \nabla \cdot \boldsymbol{v})_K + \langle \widehat{\boldsymbol{u}}_h, \boldsymbol{v} \cdot \boldsymbol{n} \rangle_{\partial K} = 0, - (\boldsymbol{q}_h, \nabla w)_K + \langle \widehat{\boldsymbol{q}}_h \cdot \boldsymbol{n}, w \rangle_{\partial K} = (f, w)_K$$

for all $(\mathbf{v}, w) \in \mathbf{V}(K) \times W(K)$, where (for the LDG-H method)

$$\widehat{\boldsymbol{q}}_{\boldsymbol{h}} \cdot \boldsymbol{n} = \boldsymbol{q}_{\boldsymbol{h}} \cdot \boldsymbol{n} + \tau (\boldsymbol{u}_{\boldsymbol{h}} - \widehat{\boldsymbol{u}}_{\boldsymbol{h}}) \quad \text{on } \partial K.$$

The HDG methods

The global problem: The weak formulation for \hat{u}_h .

For each face $F \in \mathcal{E}_h^o$, we take $\widehat{u}_h|_F$ in the space M(F). We determine \widehat{u}_h by requiring that,

$$\langle \mu, \llbracket \widehat{\boldsymbol{q}}_h \rrbracket \rangle_F = 0 \quad \forall \ \mu \in M(F) \quad \text{if } F \in \mathcal{E}_h^o, \\ \widehat{\boldsymbol{u}}_h = u_D \quad \text{if } F \in \mathcal{E}_h^\partial.$$

The HDG methods are generated by choosing the local spaces V(K), W(K), M(F) and the stabilization function τ .

The HDG methods.

The LDG-H method.

The numerical traces of the LDG-H method are:

$$\widehat{\boldsymbol{u}}_{h} = \frac{\tau^{+}\boldsymbol{u}_{h}^{+} + \tau^{-}\boldsymbol{u}_{h}^{-}}{\tau^{+} + \tau^{-}} + \frac{1}{\tau^{+} + \tau^{-}} \left[\!\!\left[\boldsymbol{q}_{h}\right]\!\!\right],$$

$$\widehat{\boldsymbol{q}}_{h} = \frac{\tau^{-}\boldsymbol{q}_{h}^{+} + \tau^{+}\boldsymbol{q}_{h}^{-}}{\tau^{+} + \tau^{-}} + \frac{\tau^{+}\tau^{-}}{\tau^{+} + \tau^{-}} \left[\!\left[\boldsymbol{u}_{h}\right]\!\!\right],$$

for $V(K) := \mathcal{P}_k(K)$, $W(K) := \mathcal{P}_k(K)$ and $M(F) := \mathcal{P}_k(F)$. So, the LDG-H method is a subset of the old DG methods (B.C and C.-W. Shu, SINUM, 98).

On general polyhedral elements, the LDG-H method

- For τ of order one, *q_h* converges with order *k* + 1/2 and *u_h* with order *k* + 1, for any *k* ≥ 0.
- For τ of order 1/h, q_h converges with order k and u_h with order k + 1, for any k ≥ 0. True for V(K) := P_{k-1}(K).

(P.Castillo, B.C., I.Perugia and D.Shötzau, SINUM, 2000.)

Bernardo Cockburn (U. of Minnesota, USA) The theory of M-decompositions

The HDG methods.

Sufficient conditions for well possedness.

Theorem

The LDG-H approximation is well defined if, for each $K \in \Omega_h$,

- $\tau > 0$ on ∂K ,
- $\nabla W(K) \subset V(K)$.

Theorem

The hybridized mixed method ($\tau \equiv 0$) approximation is well defined if, for each $K \in \Omega_h$,

- $\{\mu \in M(\partial K) : \langle \mu, 1 \rangle_{\partial K} = 0\} = \{ \mathbf{v} \cdot \mathbf{n} |_{\partial K} : \mathbf{v} \in \mathbf{V}(K), \nabla \cdot \mathbf{v} = 0 \},\$
- $W(K) = \{ \nabla \cdot \boldsymbol{V}(K) : \boldsymbol{v} \in \boldsymbol{V}(K), \boldsymbol{v} \cdot \boldsymbol{n}|_{\partial K} \in \mathbb{R} \}.$

First superconvergent HDG methods.

The local postprocessing. (Nochetto and Gastaldi 88; Stenberg 88,91; B.C., Dong and Guzman, 08)

We seek HDG methods for which part of the error $u - u_h$, converge faster than the errors $u - u_h$ and $q - q_h$.

If this property holds, we introduce a new approximation u_h^* . On each element K it lies in the space $W^*(K) \supset W(K)$ and defined by

$$\begin{split} (\nabla u_h^{\,\star}, \nabla w)_K &= -\, (\mathrm{c} \, \boldsymbol{q}_h, \nabla w)_K \qquad \text{ for all } w \in W^{\star}(K)^{\perp}, \\ (u_h^{\,\star}, \omega)_K &= & (u_h, \omega)_K \qquad \text{ for all } w \in \widetilde{W}(K) \subset W(K). \end{split}$$

Then $u - u_h^*$ will converge faster than $u - u_h$. This does happen for mixed methods!

Method	V (K)	W(K)	M(F)
RT	$ \begin{array}{c} \boldsymbol{\mathcal{P}}_{k}(\boldsymbol{\mathcal{K}}) + \boldsymbol{x} \widetilde{\boldsymbol{\mathcal{P}}}_{k}(\boldsymbol{\mathcal{K}}) \\ \boldsymbol{\mathcal{P}}_{k}(\boldsymbol{\mathcal{K}}) \\ \boldsymbol{\mathcal{P}}_{k}(\boldsymbol{\mathcal{K}}) \end{array} $	$\mathcal{P}_k(K)$	$\mathcal{P}_k(F)$
LDG-H		$\mathcal{P}_k(K)$	$\mathcal{P}_k(F)$
BDM		$\mathcal{P}_{k-1}(K)$	$\mathcal{P}_k(F)$

Bernardo Cockburn (U. of Minnesota, USA) The theory

First superconvergent HDG methods. (B.C, B.Dong and J.Guzman, 08; B.C.,

J.Gopalakrishnan and F.-J. Sayas, 10)

The first superconvergent HDG method: the SFH method

Method	au	q _h	u _h	\overline{u}_h	k
RT	0	k+1	k+1	<i>k</i> + 2	≥ 0
SFH	> 0	k+1	k+1	<i>k</i> + 2	≥ 1
LDG-H	O(1)	k+1	k+1	<i>k</i> + 2	≥ 1
BDM	0	k+1	k	<i>k</i> + 2	≥ 2

Bernardo Cockburn (U. of Minnesota, USA) The theory

First superconvergent HDG method.

Illustration of the postprocessing. An HDG method for linear elasticity.(S.-C. Soon, B.C. and H. Stolarski, 2008.)

./figures/comparison between the approximate solution (left) and the post-processed solution (right) for linear polynomial approximations.

Bernardo Cockburn (U. of Minnesota, USA)

The theory of M-decompositions

Marseille, 2019 12 / 37

First superconvergent HDG method.

Illustration of the postprocessing. An HDG method for linear elasticity.(S.-C. Soon, B.C. and H. Stolarski, 2008.)

./figures/comparison between the approximate solution (left) and the post-processed solution (right) for quadratic polynomial approximations.

Bernardo Cockburn (U. of Minnesota, USA)

First superconvergent method.

Illustration of the postprocessing. An HDG method for linear elasticity. (S.-C. Soon, B.C. and H.

Stolarski, 2008.)

./figures/comparison between the approximate solution (left) and the post-processed solution (right) for cubic polynomial approximations.

Bernardo Cockburn (U. of Minnesota, USA)

The theory of M-decompositions

Marseille, 2019 14 / 37

The conditions on the local spaces. (B.C., W.Qiu and K.Shi, Math. Comp., 2012 + SINUM, 2012.)

Theorem

Suppose that the local spaces are such that

Then there is a stabilization function τ such that the HDG method superconverges.

Methods for which $M(F) = Q^k(F)$, $k \ge 1$, and K is a square. (B.C., W.Qiu and K.Shi, Math. Comp., 2012 + SINUM, 2012.)

method	V (K)	W(K)
RT _[k]	$P^{k+1,k}(K) onumber \ imes P^{k,k+1}(K)$	$Q^k(K)$
$TNT_{[k]}$	$\boldsymbol{Q}^{k}(K)\oplus \boldsymbol{H}_{3}^{k}(K)$	$Q^k(K)$
$HDG^Q_{[k]}$	$oldsymbol{Q}^k(K)\oplusoldsymbol{H}_2^k(K)$	$Q^k(K)$

Bernardo Cockburn (U. of Minnesota, USA) The theory of M-decompositions

Methods for which $M(F) = Q^k(F), k \geq 1$, and K is a cube. (B.C., W.Qiu and K.Shi, Math.

Comp.,2012 + SINUM, 2012.)

method	V (K)	W(K)
RT _[k]	$P^{k+1,k,k}(K) \ imes P^{k,k+1,k}(K) \ imes P^{k,k+1,k}(K) \ imes P^{k,k,k+1}(K)$	Q ^k (K)
$TNT_{[k]}$ $HDG_{[k]}^Q$	$oldsymbol{Q}^k(K)\oplusoldsymbol{H}^k_7(K)\ oldsymbol{Q}^k(K)\oplusoldsymbol{H}^k_6(K)$	$Q^k(K)$ $Q^k(K)$

Methods for which $M(F) = Q^k(F)$, $k \ge 1$, and K is a square or a cube. (B.C., W.Qiu and K.Shi, Math. Comp., 2012 + SINUM, 2012.)

method	au	$\ \boldsymbol{q} - \boldsymbol{q}_h \ _{\Omega}$	$\ \Pi_W u - u_h\ _2$	$\Omega \ u-u_h^\star\ _{\Omega}$
	0	k+1	k+2	k+2
$HDG_{[k]}^{Q}$	$\mathbb{O}(1) > 0$	k+1 k+1	k+2 k+2	k+2 k+2

TNT in 3D: The space $H_7^k(K)$.

Bernardo Cockburn (U. of Minnesota, USA)

TNT in 3D: The space $H_7^k(K)$.

Bernardo Cockburn (U. of Minnesota, USA)

TNT in 3D: The space $H_7^k(K)$.

Bernardo Cockburn (U. of Minnesota, USA)

(B.C., G.Fu, F.-J. Sayas, Math. Comp., t2017; B.C. and G.Fu, 2D+3D, M²AN, 2017)

Definition (The *M*-decomposition)

We say that $\boldsymbol{V} \times W$ admits an *M*-decomposition when

(a)
$$\operatorname{tr}(\boldsymbol{V} \times \boldsymbol{W}) \subset \boldsymbol{M}$$
,

and there exists a subspace $\widetilde{\boldsymbol{V}} \times \widetilde{W}$ of $\boldsymbol{V} \times W$ satisfying

(b)
$$\nabla W \times \nabla \cdot \boldsymbol{V} \subset \widetilde{\boldsymbol{V}} \times \widetilde{W},$$

(c)
$$\operatorname{tr}: \mathbf{V}^{\perp} \times \mathbf{W}^{\perp} \to M$$
 is an isomorphism.

Here $\widetilde{\mathbf{V}}^{\perp}$ and \widetilde{W}^{\perp} are the $L^2(K)$ -orthogonal complements of $\widetilde{\mathbf{V}}$ in \mathbf{V} , and of \widetilde{W} in W, respectively.

A characterization of M-decompositions. (B.C., G.Fu, F.-J. Sayas, Math. Comp., 2017)

$$I_{M}(\boldsymbol{V} \times W) := \dim M - \dim \{ \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial K} : \boldsymbol{v} \in \boldsymbol{V}, \nabla \cdot \boldsymbol{v} = 0 \} \\ - \dim \{ w |_{\partial K} : w \in W, \nabla w = 0 \}.$$

Theorem

For a given space of traces M, the space $\bm{V}\times W$ admits an M-decomposition if and only if

(a)
$$\operatorname{tr}(\boldsymbol{V} \times W) \subset M$$
,
(b) $\nabla W \times \nabla \cdot \boldsymbol{V} \subset \boldsymbol{V} \times W$
(c) $I_M(\boldsymbol{V} \times W) = 0$.

In this case, we have

$$M = \{ \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial K} : \, \boldsymbol{v} \in \boldsymbol{V}, \nabla \cdot \boldsymbol{v} = 0 \} \oplus \{ w |_{\partial K} : \, w \in W, \nabla w = 0 \},$$

where the sum is orthogonal.

Construction of M-decompositions. (B.C., G.Fu, F.-J. Sayas, Math. Comp., 2017)

Table: Construction of spaces $\mathbf{V} \times W$ admitting an *M*-decomposition, where the space of traces $M(\partial K)$ includes the constants. The given space $\mathbf{V}_g \times W_g$ satisfies the inclusion properties (a) and (b).

	V	W	$ abla \cdot oldsymbol{V}$
	$oldsymbol{V}_{oldsymbol{g}} \oplus \delta oldsymbol{V}_{ ext{fillM}} \oplus \delta oldsymbol{V}_{ ext{fillW}}$	W_g (if $\supset \mathcal{P}_0(K)$)	$= W_g$
	$oldsymbol{V}_{oldsymbol{g}} \oplus \delta oldsymbol{V}_{ ext{fillM}}$	W_g (if $\supset \mathcal{P}_0(K)$)	$\subset W_g$
	$oldsymbol{V}_{oldsymbol{g}} \oplus \delta oldsymbol{V}_{ ext{fillM}}$	$\nabla \cdot \boldsymbol{V}_{g} \text{ (if } \supset \mathcal{P}_{0}(K) \text{)}$	$= abla \cdot V_{g}$
δV	$ abla \cdot \delta oldsymbol{V}$	$\gamma \delta oldsymbol{V}$	$\dim \delta \textit{\textbf{V}}$
5 V _{fillM}	{0 }	$\subset M, \cap \gamma V_{g_s} = \{0\}$	$I_M(V_g imes W_g)$
$\delta m{v}_{ m fillW}$	$\subset W_g$, $\cap \nabla \cdot V_g = \{0\}$	$\subset \widetilde{M}$	$I_S(V_g \times W_g)$

A flowchart to construct M-decompositions

¹such that properties (a) and (b) of an *M*-decomposition are not violated and the M-index is decreased.

Theorem

Let $V_g \times W_g$ satisfy properties (a) and (b) of an M-decomposition. Assume that $\delta V_{\rm fillM}$ satisfies the following hypotheses:

(a)
$$\nabla \cdot \delta \boldsymbol{V}_{\text{fillM}} = \{0\},\$$

(b)
$$\delta \boldsymbol{V}_{\text{fillM}} \cdot \boldsymbol{n}|_{\partial K} \subset M$$
,

(c) $\delta \mathbf{V}_{\text{fillM}} \cdot \mathbf{n}|_{\partial K}$ and $\{\mathbf{v} \cdot \mathbf{n}|_{\partial K} : \mathbf{v} \in \mathbf{V}, \nabla \cdot \mathbf{v} = 0\}$ are linearly independent,

(d) dim $\delta \boldsymbol{V}_{\text{fillM}}$ = dim $\delta \boldsymbol{V}_{\text{fillM}} \cdot \boldsymbol{n}|_{\partial K} = I_{\mathcal{M}}(\boldsymbol{V}_{g} \times W_{g})$

Then, $(V_g \oplus \delta V_{\text{fillM}}) \times W_g$ admits an M-decomposition.

A three-step procedure to construct the filling space $\delta \textit{V}_{\mathrm{fillM}}$

(1) Characterize the trace space $\{ \boldsymbol{v} \cdot \boldsymbol{n} | \partial K : \boldsymbol{v} \in \boldsymbol{V}, \nabla \cdot \boldsymbol{v} = 0 \}$

(2) Find a trace space $C_M \subset M(\partial K)$ such that

 $C_{M} \oplus \{ \boldsymbol{v} \cdot \boldsymbol{n} |_{\partial K} : \boldsymbol{v} \in \boldsymbol{V}, \nabla \cdot \boldsymbol{v} = 0 \} = \{ \mu \in M : \langle \mu, 1 \rangle_{\partial K} = 0 \}$

note that the dimension of the space C_M is equal to $I_M(\mathbf{V} \times W)$

(3) Set $\delta V_{\text{fillM}} := \{ v_{\mu} : \mu \in C_M \}$, where v_{μ} is divergence-free function such that $v_{\mu} \cdot n |_{\partial K} = \mu$

The M-indexes for different elements

$\boldsymbol{V} imes \boldsymbol{W} imes \boldsymbol{M} := \boldsymbol{\mathcal{P}}_k(\boldsymbol{K}) imes \boldsymbol{\mathcal{P}}_k(\boldsymbol{\partial}\boldsymbol{K})$

2D element	$\mathit{I_M}(\boldsymbol{V}\times \mathcal{W})$	3D element	$I_M(oldsymbol{V} imes W)$
triangle	0 (k≥0)	tetrahedron	0 (k≥0)
quadrilateral	$1 \atop (k=0) \atop (k\geq 1)$	pyramid	${1\atop (k=0)}{3\atop (k\geq 1)}$
pentagon	$245 (k=0) (k=1) (k\geq 2)$	prism ²	$1 \atop (k=0) \atop (k\geq 1)$
hexagon	$\begin{array}{cccc} 3 & 6 & 8 & 9 \\ (k=0) & (k=1) & (k=2) & (k\geq 3) \end{array}$	hexahedron ²	$2 6 9 \ (k=0) \ (k=1) \ (k\geq 2)$

²no parallel faces

An example of $\delta \mathbf{V}_{\mathrm{fillM}}$ on a quadrilateral

$$oldsymbol{V} imes W imes M := oldsymbol{\mathcal{P}}_k(K) imes oldsymbol{\mathbb{P}}_k(K) imes oldsymbol{\mathbb{P}}_k(\partial K),$$

 $\delta oldsymbol{V}_{ ext{fillM}} := ext{span}\{
abla imes (\xi_4 \lambda_4^k),
abla imes (\xi_4 \lambda_3^k) \}.$

- λ_i is a linear function that vanishes on edge e_i .
- ξ₄ ∈ H¹(K) is a function such that its trace on each edge is linear and vanishes at the vertices v₁, v₂, and v₃.

An example of $\delta V_{\rm fillM}$ on the reference pyramid

$$\begin{split} \mathcal{K} &:= \{ (x, y, z) : 0 < x, 0 < y, 0 < z, x + z < 1, y + z < 1 \} \\ \mathbf{V} \times \mathcal{W} \times \mathcal{M} &:= \mathcal{P}_k(\mathcal{K}) \times \mathcal{P}_k(\mathcal{K}) \times \mathcal{P}_k(\partial \mathcal{K}) \\ \\ &\text{IM} := \begin{cases} \text{span}\{\nabla \times (\frac{xy}{1-z} \nabla z)\} & \text{if } k = 0 \\ \text{span}\{\nabla \times (\frac{xy^{k+1}}{1-z} \nabla z), \nabla \times (\frac{yx^{k+1}}{1-z} \nabla z), \nabla \times (\frac{xy}{1-z} \nabla x) \} & \text{if } k \ge 1 \end{cases} \end{split}$$

 $\delta V_{\rm fil}$

From M-decompositions to hybridized mixed methods

Theorem

Let the space $\mathbf{V} \times W$ admit an M-decomposition and assume that $\nabla \cdot \mathbf{V}_{g} \subsetneq W$. Then,

 $\boldsymbol{V} \times \nabla \cdot \boldsymbol{V}$ admits an M-decomposition.

Moreover, let $\delta V_{\rm fillW}$ satisfy the following hypotheses:

(a)
$$\delta \boldsymbol{V}_{\text{fillW}} \cdot \boldsymbol{n}|_{\partial K} \subset M$$
,

(b)
$$\nabla \cdot \delta \boldsymbol{V}_{\text{fillW}} \oplus \nabla \cdot \boldsymbol{V} = W_{g}$$
,

(c) dim $\delta \mathbf{V}_{\text{fillW}} = \dim \nabla \cdot \delta \mathbf{V}_{\text{fillW}}$,

Then $(\mathbf{V} \oplus \delta \mathbf{V}_{\text{fillW}}) \times W$ admits an M-decomposition.

For the above choices of spaces, we can set stabilization operator $\tau = 0$ in and obtain hybridized mixed methods.

Spaces for hybridized mixed methods on a quadrilateral

 $oldsymbol{V}^{hdg} imes W^{hdg} imes M := oldsymbol{\mathcal{P}}_k(\mathcal{K}) \oplus \delta oldsymbol{V}_{ ext{fillM}} imes \mathbb{P}_k(\mathcal{K}) imes \mathbb{P}_k(\partial \mathcal{K}),$ $\delta oldsymbol{V}_{ ext{fillM}} := ext{span} \{
abla imes (\xi_4 \lambda_4^k),
abla imes (\xi_4 \lambda_3^k) \}.$ $\delta oldsymbol{V}_{ ext{fillW}} := oldsymbol{x} \widetilde{\mathbb{P}}_k(\mathcal{K}).$

	V	W	М	au
UMX	$oldsymbol{V}^{hdg} \oplus \delta oldsymbol{V}_{ ext{fillW}}$	$\mathcal{P}_k(K)$	$\mathcal{P}_k(\partial K)$	0
HDG	$oldsymbol{V}^{hdg}$	$\mathcal{P}_k(K)$	$\mathcal{P}_k(\partial K)$	> 0
LMX	$oldsymbol{V}^{hdg}$	$\mathcal{P}_{k-1}(K)$	$\mathcal{P}_k(\partial K)$	0

Spaces for hybridized mixed method on a pyramid

 $oldsymbol{V}^{ ext{hdg}} imes oldsymbol{W}^{ ext{hdg}} imes oldsymbol{M}:= oldsymbol{\mathcal{P}}_k(oldsymbol{\mathcal{K}})\oplus \deltaoldsymbol{V}_{ ext{fillM}} imes oldsymbol{\mathbb{P}}_k(oldsymbol{\mathcal{K}}), \ k\geq 1$

$$\delta \mathbf{V}_{\text{fillM}} := \operatorname{span}\{
abla imes (rac{x \ y^{k+1}}{1-z}
abla z), \
abla imes (rac{y \ x^{k+1}}{1-z}
abla z), \
abla imes (rac{x \ y}{1-z}
abla x) \}.$$

 $\delta \mathbf{V}_{\text{fillW}} := \mathbf{x} \ \widetilde{\mathcal{P}}_k(\mathcal{K}).$

	V	W	М	au
UMX	$oldsymbol{V}^{hdg} \oplus \delta oldsymbol{V}_{ ext{fillW}}$	$\mathcal{P}_k(K)$	$\mathcal{P}_k(\partial K)$	0
HDG	$oldsymbol{V}^{hdg}$	$\mathcal{P}_k(K)$	$\mathcal{P}_k(\partial K)$	> 0
LMX	$oldsymbol{V}^{hdg}$	$\mathcal{P}_{k-1}(K)$	$\mathcal{P}_k(\partial K)$	0

Numerical experiments.

History of convergence of LDG-H with k = 1

Numerical experiments.

History of convergence of *M*-decompositions with k = 1

Provides:

- A systematic way of constructing superconvergent HDG and hybridized mixed methods for elements of arbitrary shapes.
- A systematic approach to satisfying elementwise inf-sup conditions, stabilized (HDG) or not (mixed methods).
- A systematic way of constructing finite element commuting diagrams.

References and ongoing work.

Work (with Guosheng Fu).

- Superconvergence by M-decompositions. Part I: general theory for HDG methods for diffusion. With F.-J. Sayas. Math. Comp., 2017.
- Superconvergence by M-decompositions. Part II: Construction of two-dimensional finite elements. M2AN, 2017.
- Superconvergence by M-decompositions. Part III: Construction of three-dimensional finite elements. M2AN, 2017.
- A note on the devising of superconvergent HDG methods for the Stokes flow by M-decompositions. With W. Qui. IMA, 2017.
- Devising superconvergent HDG methods with symmetric approximate stresses for linear elasticity. IMA, 2018.
- A systematic construction of finite element commuting exact sequences. SINUM, 2017.

References and ongoing work.

Ongoing work.

- Automatic generation of the local spaces.
- Incompressible Navier-Stokes.
- 3D elasticity with symmetric stresses.
- Maxwell equations.
- The biharmonic, plates.