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Introduction

Discrete Problem

Let  C R? denote an open, bounded, simply connected polyhedral domain with Lipschitz boundary 052 The HHO discretization of problem (1) then reads: Find (uy,, p;,) € U ]fL 0 X Pf]f such that
Let » > 0 be a real number representing the kinematic viscosity of the fluid, and let f € L?(Q)° be a |
given vector field representing a body force. Setting U := H}(Q)? and P := {q € L*(Q) : [,q =0}, we vap(Wp, vp) + th(Wp, wp, vp) + op(Op, pp) = G(f,0p) Yo € Uy, (Ta)
consider the steady incompressible Navier—Stokes problem: Find (u,p) € U x P such that —by,(uy,, qp) =0 Vg, € PH(Ty,). (7b)
va(u,v) +t(u, u,v) + b(v,p) = ((f,v) VweU. (1a)
—b(u,q) =0 Vg € L*(Q), (1b) Recalling the decomposition (3) of f, we assume that it holds, for some « € (0, 1),
with bilinear forms a : U x U — R, b : U X LQ(Q) — R, and ¢ : LQ(Q)d x U — R defined by HgHL2<Q)3 < Cav’. (8)
a(w, v) = / Vw : Vv, blv,q) = _/<v v)g, U(f,v) = / f-v Let (u,p) € H} ()7 x L3(92) be a solution to the Navier-Stokes equations (1), and (uy,, py) € QlfoPf]f
Q 9 2 be a solution to the HHO scheme (7). Then, it holds:
and trilinear form ¢ : U X U x U — R such that
h —1 h
tw,v,2) = [ (Vxw) 02 ) Ju, — Lullyp + v~ o — 2l 200, )
kE+1 —1 —1
Above, V- and V x denote, respectively, the divergence and curl operators, while X is the cross product of < Ch (1 —a) (|u|H (T3 TV Hu”W174(9)3|u’Wk+1’4(771)3)

two vectors. The convective term in (2) is expressed in rotational form, so p is here the so-called Bernoulli
pressure, which is related to the kinematic pressure py;, by the equation p = pyi, + %\u|2
The domain {2 being simply connected, we have the following Hodge decomposition of the body force:

Observe that the right hand side of the inequality (9) is independent of A and p. For more details see
f=g+A\Ve, 3) 2]

where g € Hg(curl; (2) := {v e L*(Q)? . v,v=0o0n 8&2} with .- denoting the tangent trace operator
on 09, 1) € H(Q) is such that ||V¢||L2(Q)3 =1,and A € R,

Numerical test: 2D lid-driven cavity flow

Objective

To design an HHO discretization method for problem (1) such that the velocity error estimates are

uniform in A and independent of the pressure. The domain is the unit square €2 = (0, 1)2 and we set f = 0. Homogeneous (wall) boundary conditions

are enforced at all but the top horizontal wall (at xo = 1), where we enforce a unit tangential velocity
u = (1,0). In Figure 1, we report the horizontal component u; of the velocity along the vertical centerline
T = % and the vertical component uy of the velocity along the horizontal centerline o = % for the two
The HHO Sp ace dimensional flow at global Reynolds numbers Re := % References solutions from the literature [4, 3]
are also included for the sake of comparison. To check the robustness of the method we run the same
test case but with f = AV, where ¢ = %(CBS + °). In Figure 2 we report the results. As expected, the

Let a polynomial degree £ > 0 be fixed. We define the following global space of discrete velocity un- velocity profiles are not affected by the value of A\. The same plot also contains the results obtained with
knowns: the original HHO formulation of [1].
k. . k(3 u
Uj =1, = (v1)reT, (VF)FeF,) v € PHT)" VI €T, -1 -0.8 -0.6 —0.4 —0.2 0l 02 04 06 08 1
and vFGIP’k(F)3 VE € Fp}. i eaxes . [/ 1! .
) . k=516x16 T~ {08
We define the global interpolation operator on a smooth function over {2 by I : H 1 (Q)3 — U such that, o Ghiaetal. —_
0.8 + Erturk et al. 1 0.6
k... k k L3
Iyv = ((7pvp)reT;, (Fpvip)rer,) Yo e H (), — | 0.4
where 71']12, and 71']]% are the L2—0rth0g0nal projectors over cells and faces, respectively. We furnish U ]fi 0.6 |- [ 0.2

with the discrete H!-like seminorm such that, for all v;, € Qk,

X2

2 . 2 0.4 |-
||QhH1,h = Z v 1,7
TeTy,
where, for all T' € Ty, 02—
2 . 2 —1 2
||QT| 1,7 — HV’UTHL2<T>3><3 T Z hF ”vF _ UT”LQ(F)S-
| | o | |
Ferr Y0 0.2 0.4 0.6 0.8
The global spaces of discrete unknowns for the velocity and the pressure, respectively accounting for the X1
wall boundary condition and the zero-average condition, are , , o o ,
Fig. 1. Comparison for two-dimensional lid-driven cavity flow for Re = 1,000.
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Velocity Reconstruction
‘“H““‘ __,: + 0.4
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Let an element 7' € T, be fixed, and denote by RTN"(T") := P*¥(T)3 4 xP"(T) the local Raviart-Thomas— N N
Nédélec space of degree k. We define the local velocity reconstruction operator R% : Q’jﬂ — RTN k(T) - ™ oS
such that, for all v € U¥, 04 J ™ 0.2
, ”'f,-l 1 -0.4
Rivyp - w= [ vp-w Vw e PPH(T)? (4a) Wi
e . T W, ) 02| = I | -06
R]%QT "NTE =Vp - NTE VI € Fp. (4b) A‘n** + -0.8

S— 0 I | | | -1
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It holds for all € [1,6] and all v;, € Qlfi,o’ )

- Fig. 2: 2D lid-driven cavity flow with irrotational force f = AV. Comparison between the present method [2] and the original HHO formulation
|Rwpl 1 < Cllwall g (5) -

To discretize ¢ in (1) we introduce ¢, : L*(Q)3 x Q];; — R such that, forany f € L?(Q)3 and any v;, € U,

lh(f,vp) = /Qf - Rivy,. (6)
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