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Introduction

Let Ω ⊂ R3 denote an open, bounded, simply connected polyhedral domain with Lipschitz boundary ∂Ω.
Let ν > 0 be a real number representing the kinematic viscosity of the fluid, and let f ∈ L2(Ω)3 be a
given vector field representing a body force. Setting U := H1

0(Ω)3 and P :=
{
q ∈ L2(Ω) :

∫
Ω q = 0

}
, we

consider the steady incompressible Navier–Stokes problem: Find (u, p) ∈ U × P such that

νa(u,v) + t(u,u,v) + b(v, p) = `(f ,v) ∀v ∈ U , (1a)

−b(u, q) = 0 ∀q ∈ L2(Ω), (1b)

with bilinear forms a : U ×U → R, b : U × L2(Ω)→ R, and ` : L2(Ω)d ×U → R defined by

a(w,v) :=

∫
Ω
∇w : ∇v, b(v, q) := −

∫
Ω

(∇ · v)q, `(f ,v) :=

∫
Ω
f · v,

and trilinear form t : U ×U ×U → R such that

t(w,v, z) :=

∫
Ω

(∇×w)× v · z. (2)

Above,∇· and∇× denote, respectively, the divergence and curl operators, while× is the cross product of
two vectors. The convective term in (2) is expressed in rotational form, so p is here the so-called Bernoulli
pressure, which is related to the kinematic pressure pkin by the equation p = pkin + 1

2|u|
2.

The domain Ω being simply connected, we have the following Hodge decomposition of the body force:

f = g + λ∇ψ, (3)

where g ∈H0(curl; Ω) :=
{
v ∈ L2(Ω)3 : γτv = 0 on ∂Ω

}
with γτ denoting the tangent trace operator

on ∂Ω, ψ ∈ H1(Ω) is such that ‖∇ψ‖L2(Ω)3 = 1, and λ ∈ R+.

Objective
To design an HHO discretization method for problem (1) such that the velocity error estimates are
uniform in λ and independent of the pressure.

The HHO Space

Let a polynomial degree k ≥ 0 be fixed. We define the following global space of discrete velocity un-
knowns:

Uk
h := {vh = ((vT )T∈Th, (vF )F∈Fh) : vT ∈ Pk(T )3 ∀T ∈ Th,

and vF ∈ Pk(F )3 ∀F ∈ Fh}.

We define the global interpolation operator on a smooth function over Ω by Ikh : H1(Ω)3→ Uk
h such that,

Ikhv := ((πkTv|T )T∈Th, (π
k
Fv|F )F∈Fh) ∀v ∈ H1(Ω)3,

where πkT , and π
k
F are the L2-orthogonal projectors over cells and faces, respectively. We furnish Uk

h
with the discrete H1-like seminorm such that, for all vh ∈ Uk

h,

‖vh‖21,h :=
∑
T∈Th

‖vT‖21,T ,

where, for all T ∈ Th,

‖vT‖21,T := ‖∇vT‖2L2(T )3×3 +
∑
F∈FT

h−1
F ‖vF − vT‖

2
L2(F )3.

The global spaces of discrete unknowns for the velocity and the pressure, respectively accounting for the
wall boundary condition and the zero-average condition, are

Uk
h,0 :=

{
vh = ((vT )T∈Th, (vF )F∈Fh) ∈ Uk

h : vF = 0 ∀F ∈ Fb
h

}
, P kh := Pk(Th) ∩ P.

Velocity Reconstruction

Let an element T ∈ Th be fixed, and denote byRTNk(T ) := Pk(T )3+xPk(T ) the local Raviart–Thomas–
Nédélec space of degree k. We define the local velocity reconstruction operator Rk

T : Uk
T → RTNk(T )

such that, for all vT ∈ Uk
T ,∫

T
Rk
TvT ·w =

∫
T
vT ·w, ∀w ∈ Pk−1(T )3, (4a)

Rk
TvT · nTF = vF · nTF ∀F ∈ FT . (4b)

Proposition
It holds for all r ∈ [1, 6] and all vh ∈ Uk

h,0,

‖Rk
hvh‖Lr(Ω)3 ≤ C‖vh‖1,h. (5)

To discretize ` in (1) we introduce `h : L2(Ω)3×Uk
h→ R such that, for any f ∈ L2(Ω)3 and any vh ∈ Uk

h,

`h(f ,vh) :=

∫
Ω
f ·Rk

hvh. (6)

To discretize t in (1) we introduce the global trilinear form th on Uk
h ×U

k
h ×U

k
h→ R such that

th(wh,vh, zh) :=
∑
T∈Th

[∫
T
∇wTR

k
TvT ·R

k
TzT −

∫
T
∇wTR

k
TzT ·R

k
TvT

]
+
∑
T∈Th

∑
F∈FT

∫
F

(wF −wT ) ·Rk
TzT

(
Rk
TvT · nTF

)
−
∑
T∈Th

∑
F∈FT

∫
F

(wF −wT ) ·Rk
TvT

(
Rk
TzT · nTF

)
.

Discrete Problem

The HHO discretization of problem (1) then reads: Find (uh, ph) ∈ Uk
h,0 × P

k
h such that

νah(uh,vh) + th(uh,uh,vh) + bh(vh, ph) = `h(f ,vh) ∀vh ∈ Uh,0, (7a)

−bh(uh, qh) = 0 ∀qh ∈ Pk(Th). (7b)

Theorem
Recalling the decomposition (3) of f , we assume that it holds, for some α ∈ (0, 1),

‖g‖L2(Ω)3 ≤ Cαν2. (8)

Let (u, p) ∈ H1
0(Ω)3×L2

0(Ω) be a solution to theNavier–Stokes equations (1), and (uh, ph) ∈ Uk
h×P

k
h

be a solution to the HHO scheme (7). Then, it holds:

‖uh − Ihku‖1,h + ν−1‖ph − Ihkp‖L2(Ω)

≤ Chk+1(1− α)−1
(
|u|Hk+2(Th)3 + ν−1‖u‖W 1,4(Ω)3|u|W k+1,4(Th)3

) (9)

Remark
Observe that the right hand side of the inequality (9) is independent of λ and p. For more details see
[2].

Numerical test: 2D lid-driven cavity flow

The domain is the unit square Ω = (0, 1)2 and we set f = 0. Homogeneous (wall) boundary conditions
are enforced at all but the top horizontal wall (at x2 = 1), where we enforce a unit tangential velocity
u = (1, 0). In Figure 1, we report the horizontal component u1 of the velocity along the vertical centerline
x1 = 1

2 and the vertical component u2 of the velocity along the horizontal centerline x2 = 1
2 for the two

dimensional flow at global Reynolds numbers Re := 1
ν . References solutions from the literature [4, 3]

are also included for the sake of comparison. To check the robustness of the method we run the same
test case but with f = λ∇ψ, where ψ = 1

3(x3 + y3). In Figure 2 we report the results. As expected, the
velocity profiles are not affected by the value of λ. The same plot also contains the results obtained with
the original HHO formulation of [1].

Fig. 1: Comparison for two-dimensional lid-driven cavity flow for Re = 1,000.

Fig. 2: 2D lid-driven cavity flow with irrotational force f = λ∇ψ. Comparison between the present method [2] and the original HHO formulation

of [1].
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