Virtual Elements for magneto-static PROBLEMS

Donatella Marini

Dipartimento di Matematica, Università di Pavia, Italy

IMATI- C.N.R., Pavia, Italy
coauthors: L. Beirão da Veiga, F. Brezzi, F. Dassi and A. Russo

POEMS
CIRM, Marseille
April 29th-May 3rd 2019

Outline

(1) The problem and the variational formulation
(2) Lowest-order element (Nédélec-first kind)
(3) VEM spaces and degrees of freedom
(4) The discrete problem and error estimates
(5) Numerical results
(6) Hints on a family of Nédélec-second kind

The continuous problem

$\Omega \subset \mathbb{R}^{3}$ (simply connected) computational domain given $\mathbf{j} \in\left(L^{2}(\Omega)\right)^{3}($ with $\operatorname{div} \mathbf{j}=0)$, and $\mu=\mu(x) \geq \mu_{0}>0$

$$
\left\{\begin{array}{l}
\text { find } \mathbf{H} \in H(\operatorname{curl} ; \Omega) \text { and } \mathbf{B} \in H(\operatorname{div} ; \Omega) \text { such that: } \\
\text { curl } \mathbf{H}=\mathbf{j} \text { and div } \mathbf{B}=0 \text {, with } \mathbf{B}=\mu \mathbf{H} \text {, in } \Omega \\
\text { with the boundary conditions } \mathbf{H} \wedge \mathbf{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

The continuous problem

$\Omega \subset \mathbb{R}^{3}$ (simply connected) computational domain given $\mathbf{j} \in\left(L^{2}(\Omega)\right)^{3}($ with $\operatorname{div} \mathbf{j}=0)$, and $\mu=\mu(x) \geq \mu_{0}>0$

$$
\left\{\begin{array}{l}
\text { find } \mathbf{H} \in H(\text { curl } ; \Omega) \text { and } \mathbf{B} \in H(\operatorname{div} ; \Omega) \text { such that: } \\
\text { curl } \mathbf{H}=\mathbf{j} \text { and } \operatorname{div} \mathbf{B}=0 \text {, with } \mathbf{B}=\mu \mathbf{H} \text {, in } \Omega \\
\text { with the boundary conditions } \mathbf{H} \wedge \mathbf{n}=0 \text { on } \partial \Omega
\end{array}\right.
$$

Among the various formulations we chose (see Kikuchi 89)
(find $\mathbf{H} \in H_{0}(\operatorname{curl} ; \Omega)$ and $p \in H_{0}^{1}(\Omega)$ such that:
$\left\{\begin{array}{l}\int_{\Omega} \operatorname{curl} \mathbf{H} \cdot \boldsymbol{c u r l} \mathbf{v} \mathrm{d} \Omega+\int_{\Omega} \nabla p \cdot \mu \mathbf{v} \mathrm{~d} \Omega=\int_{\Omega} \mathbf{j} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega \quad \forall \mathbf{v} \in H_{0}(\mathbf{c u r l} ; \Omega) \\ \int_{\Omega} \nabla q \cdot \mu \mathbf{H} \mathrm{~d} \Omega=0 \quad \forall q \in H_{0}^{1}(\Omega) .\end{array}\right.$

The continuous problem

find $\mathbf{H} \in H_{0}($ curl; $\Omega)$ and $p \in H_{0}^{1}(\Omega)$ such that:
$\left\{\begin{array}{l}\int_{\Omega} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega+\int_{\Omega} \nabla p \cdot \mu \mathbf{v} \mathrm{~d} \Omega=\int_{\Omega} \mathbf{j} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega \quad \forall \mathbf{v} \in H_{0}(\text { curl; } \Omega) \\ \int_{\Omega} \nabla q \cdot \mu \mathbf{H} \mathrm{~d} \Omega=0 \quad \forall q \in H_{0}^{1}(\Omega) .\end{array}\right.$

The continuous problem

find $\mathbf{H} \in H_{0}(\mathbf{c u r l} ; \Omega)$ and $p \in H_{0}^{1}(\Omega)$ such that:
$\left\{\begin{array}{l}\int_{\Omega} \operatorname{curl} \mathbf{H} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega+\int_{\Omega} \nabla p \cdot \mu \mathbf{v} \mathrm{~d} \Omega=\int_{\Omega} \mathbf{j} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega \quad \forall \mathbf{v} \in H_{0}(\text { curl; } \Omega) \\ \int_{\Omega} \nabla q \cdot \mu \mathbf{H} \mathrm{~d} \Omega=0 \quad \forall q \in H_{0}^{1}(\Omega) .\end{array}\right.$
For existence and uniqueness we need:
Inf-Sup $\quad \forall q \in H_{0}^{1}(\Omega) \exists \mathbf{v} \in H_{0}($ curl; $\Omega): \frac{\int_{\Omega} \nabla q \cdot \mathbf{v}}{\|\mathbf{v}\|_{H_{0}}(\text { curl } ; \Omega)} \geq \beta\|\nabla q\|_{L^{2}(\Omega)}$
Ell-Ker $\int_{\Omega} \mid$ curlv $\left.\right|^{2} \geq \alpha\|\mathbf{v}\|_{H_{0}(\text { curl } ; \Omega)}^{2} \quad \forall \mathbf{v}$ with divv $=0$

The continuous problem

find $\mathbf{H} \in H_{0}($ curl $; \Omega)$ and $p \in H_{0}^{1}(\Omega)$ such that:
$\left\{\int_{\Omega} \boldsymbol{\operatorname { c u r l }} \mathbf{H} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega+\int_{\Omega} \nabla p \cdot \mu \mathbf{v} \mathrm{~d} \Omega=\int_{\Omega} \mathbf{j} \cdot \operatorname{curl} \mathbf{v} \mathrm{d} \Omega \quad \forall \mathbf{v} \in H_{0}(\right.$ curl; $\Omega)$
$\int_{\Omega} \nabla q \cdot \mu \mathbf{H} \mathrm{~d} \Omega=0 \quad \forall q \in H_{0}^{1}(\Omega)$.
For existence and uniqueness we need:
Inf-Sup $\quad \forall q \in H_{0}^{1}(\Omega) \exists \mathbf{v} \in H_{0}($ curl; $; \Omega): \frac{\int_{\Omega} \nabla q \cdot \mathbf{v}}{\|\mathbf{v}\|_{H_{0}}(\text { curl } ; \Omega)} \geq \beta\|\nabla q\|_{L^{2}(\Omega)}$
Ell-Ker $\int_{\Omega} \mid$ curlv $\left.\right|^{2} \geq \alpha\|\mathbf{v}\|_{H_{0}(\text { curl; } ; \Omega)}^{2} \quad \forall \mathbf{v}$ with divv $=0$
They both hold true since the following sequence is exact:

$$
\mathbb{R}^{\mathrm{i}} H^{1}(\Omega) \xrightarrow{\text { grad }} H(\text { curl; } \Omega) \xrightarrow{\text { curl }} H(\text { div; } \Omega) \xrightarrow{\text { div }} L^{2}(\Omega) \xrightarrow{\circ} 0
$$

Unique solution (\mathbf{H}, p) with $p \equiv 0, \operatorname{curl} \mathbf{H}=\mathbf{j}, \operatorname{div} \mu \mathbf{H}=0$,

Towards the discrete problem

Given a decomposition \mathcal{T}_{h} of Ω into polyhedra P , we need to define spaces
$V^{\text {node }} \subset H_{0}^{1}(\Omega), V^{\text {edge }} \subset H_{0}(\mathbf{c u r l} ; \Omega), V^{\text {face }} \subset H(\operatorname{div} ; \Omega)$, and $V^{\text {vol }} \subset L^{2}(\Omega)$
such that:

- they form an exact sequence

$$
\mathbb{R} \xrightarrow{\text { i }} V^{\text {node }}(\Omega) \xrightarrow{\text { grad }} V^{\text {edge }}(\Omega) \xrightarrow{\text { curl }} V^{\text {face }}(\Omega) \xrightarrow{\text { div }} V^{\text {vol }}(\Omega) \xrightarrow{\text { o }} 0
$$

- They have good approximation properties

Towards the discrete problem

Given a decomposition \mathcal{T}_{h} of Ω into polyhedra P , we need to define spaces
$V^{\text {node }} \subset H_{0}^{1}(\Omega), V^{\text {edge }} \subset H_{0}($ curl $; \Omega), V^{\text {face }} \subset H(\operatorname{div} ; \Omega)$, and $V^{\text {vol }} \subset L^{2}(\Omega)$
such that:

- they form an exact sequence

$$
\mathbb{R} \xrightarrow{\text { i }} V^{\text {node }}(\Omega) \xrightarrow{\text { grad }} V^{\text {edge }}(\Omega) \xrightarrow{\text { curl }} V^{\text {face }}(\Omega) \xrightarrow{\text { div }} V^{\text {vol }}(\Omega) \xrightarrow{\text { o }} 0
$$

- They have good approximation properties

1) the discrete spaces will be defined element-wise on each polyhedron P, and then glued as in the standard Finite Element procedure.
2) we will start by defining the traces of these spaces on the faces of each polyhedron, that is, on a generic polygon.

A 2 D SpACE $\widetilde{V}^{\text {node }}(F) \subset H^{1}(F)$
Let F be a polygon. We define the nodal space as:

$$
\widetilde{V}^{\mathrm{node}}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q=0\right\} .
$$

A 2D SPACE $\widetilde{V}^{\text {node }}(F) \subset H^{1}(F)$
Let F be a polygon. We define the nodal space as:

$$
\widetilde{V}^{\mathrm{node}}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q=0\right\}
$$

Degrees of freedom

- : values at the vertices (imply global continuity when gluing spaces on adjacent polygons)
(easy to check unisovence of the d.o.f.s)

A 2 D Space $\widetilde{V}^{\text {node }}(F) \subset H^{1}(F)$
Let F be a polygon. We define the nodal space as:

$$
\widetilde{V}^{\text {node }}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q=0\right\} .
$$

Degrees of freedom

- : values at the vertices (imply global continuity when gluing spaces on adjacent polygons)
(easy to check unisovence of the d.o.f.s)
- the functions in $\widetilde{V}^{\text {node }}(F)$ are known on ∂F but not inside
- $\mathbb{P}_{1}(F) \subset \widetilde{V}^{\text {node }}(F)$ (good for approximation)

What can we compute in $\widetilde{V}^{\text {node }}(F)$?

The functions in $\widetilde{V}^{\text {node }}(F)$ are not known inside F. How can we compute relevant quantities needed in the approximation?

We can compute the average of ∇q :

$$
\int_{F} \nabla q \mathrm{~d} F=\int_{\partial F} q \mathbf{n} \mathrm{~d} s \quad \forall q \in \widetilde{V}^{\mathrm{node}}(F)
$$

What about the average of q ?

$$
\int_{F} q \mathrm{~d} x=? ?
$$

$$
\frac{1}{2} \int_{F} q \operatorname{div} \mathbf{x}_{F} \mathrm{~d} F=\frac{1}{2}\left(-\int_{F} \nabla q \cdot \mathbf{x}_{F} \mathrm{~d} F+\int_{\partial F} q \mathbf{x}_{\mathbf{F}} \cdot \mathbf{n} \mathrm{d} s\right)
$$

where $\mathbf{x}_{\mathbf{F}}=\mathbf{x}-\mathbf{b}_{F}$, with $\mathbf{b}_{F}=$ barycenter of F.

A NEW 2D SPACE $V^{\text {node }}(F) \subset H^{1}(F)$

$$
\begin{aligned}
& V^{\operatorname{node}}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q \in \mathbb{P}_{0},\right. \\
&\text { and } \left.\int_{F} \nabla q \cdot \mathrm{x}_{F} \mathrm{~d} F=0\right\} .
\end{aligned}
$$

A NEW 2D SPACE $V^{\text {node }}(F) \subset H^{1}(F)$

$$
\begin{aligned}
& V^{\text {node }}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q \in \mathbb{P}_{0},\right. \\
&\text { and } \left.\int_{F} \nabla q \cdot x_{F} \mathrm{~d} F=0\right\} .
\end{aligned}
$$

Degrees of freedom

- : values at the vertices

Note that still $\mathbb{P}_{1}(F) \subset V^{\text {node }}(F)$!
(easy to check unisovence of the d.o.f.s)

A NEW 2D SPACE $V^{\text {node }}(F) \subset H^{1}(F)$

$$
\begin{aligned}
& V^{\text {node }}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q \in \mathbb{P}_{0},\right. \\
&\text { and } \left.\int_{F} \nabla q \cdot x_{F} \mathrm{~d} F=0\right\} .
\end{aligned}
$$

Degrees of freedom

- : values at the vertices

Note that still $\mathbb{P}_{1}(F) \subset V^{\text {node }}(F)$!
(easy to check unisovence of the d.o.f.s)

$$
\frac{1}{2} \int_{F} q \operatorname{div} \mathbf{x}_{F} \mathrm{~d} F=\frac{1}{2}\left(\int_{F} \nabla q \cdot \mathbf{x}_{F} \mathrm{~d} F+\int_{\partial F} q \mathbf{x}_{\mathbf{F}} \cdot \mathbf{n} \mathrm{d} s\right)
$$

A 2 D space $\widetilde{V}^{\text {edge }}(F) \subset H(\operatorname{rot}, F)$

$$
\widetilde{v}^{\text {edge }}(F):=\left\{\mathbf{v} \mid \operatorname{div} \mathbf{v}=0, \operatorname{rotv} \in \mathbb{P}_{0}(F), \mathbf{v}_{\mid e} \cdot \mathbf{t}_{e} \in \mathbb{P}_{0}(e) \forall e \in \partial F\right\} .
$$

Degrees of freedom

\rightarrow : value of the tangential component (imply global continuity of the tangential component when gluing spaces on adjacent polygons)
(easy to check unisolvence)

- the tangential components are known
- $\left[\mathbb{P}_{0}(F)\right]^{2} \subseteq \widetilde{V}^{\text {edge }}(F) \quad$ and also $N_{0}^{1 s t}(F) \subseteq \widetilde{V}^{\text {edge }}(F)$

Recall: $N_{0}^{1 \text { st }}(F)=\operatorname{span}\{(1,0),(0,1),(y,-x)\}$
NOTE: for $\mathbf{v} \in N_{0}^{1 s t}(F)$ we have $\int_{F} \mathbf{v} \cdot \mathbf{x}_{F} \mathrm{~d} F=0$

A NEW 2D SPACE $V^{\text {edge }}(F) \subset H(\operatorname{rot}, F)$

$$
\begin{aligned}
V^{\operatorname{edge}}(F):= & \left\{\mathbf{v} \mid \operatorname{divv} \in \mathbb{P}_{0}(F), \operatorname{rot} \mathbf{v} \in \mathbb{P}_{0}(F), \mathbf{v}_{\mid e} \cdot \mathbf{t}_{e} \in \mathbb{P}_{0}(e) \forall e \in \partial F,\right. \\
& \left.\int_{F} \mathbf{v} \cdot \mathbf{x}_{F} \mathrm{~d} F=0\right\} .
\end{aligned}
$$

Degrees of freedom
\rightarrow : value of the tangengial component

$$
\text { still } N_{0}^{1 s t}(F) \subset V^{\text {edge }}(F)
$$

Integrals against linear polynomials

$V^{\text {edge }}(F):=\left\{\mathbf{v} \mid \operatorname{div} \mathbf{v} \in \mathbb{P}_{0}(F), \operatorname{rot} \mathbf{v} \in \mathbb{P}_{0}(F), \mathbf{v}_{\mid e} \cdot \mathbf{t}_{e} \in \mathbb{P}_{0}(e) \forall e \in \partial F\right.$,

$$
\left.\int_{F} v \cdot x_{F} d F=0\right\}
$$

Observe that any $\mathbf{p}_{1} \in\left[\mathbb{P}_{1}(F)\right]^{2}$ can be written as

$$
\mathbf{p}_{1}=\operatorname{rot} p_{2}+p_{0} \mathbf{x}_{\mathbf{F}}
$$

Hence, $\forall \mathbf{v} \in V^{\text {edge }}(F)$ we can compute

$$
\begin{aligned}
\int_{F} \mathbf{v} \cdot \mathbf{p}_{1} & =\int_{F} \mathbf{v} \cdot\left(\operatorname{rot} p_{2}+p_{0} \mathbf{x}_{\mathbf{F}}\right) \\
& \underbrace{\int_{F} \operatorname{rot} \mathbf{v} p_{2}}_{\text {computable }}+\underbrace{\int_{\partial F}(\mathbf{v} \cdot \mathbf{t}) p_{2}}_{\text {computable }}+\underbrace{p_{0}}_{0} \underbrace{\int_{F} \mathbf{v} \cdot \mathbf{x}_{\mathbf{F}}}_{F}
\end{aligned}
$$

The 2D exact sequence

Exact sequence $\quad \mathbb{R} \xrightarrow{\text { i }} V^{\text {node }}(F) \xrightarrow{\text { grad }} V^{\text {edge }}(F) \xrightarrow{\text { rot }} \mathbb{P}_{0}(F) \xrightarrow{\text { o }} 0$

$$
\begin{gathered}
V^{\text {node }}(F):=\left\{q \in C^{0}(\bar{F}): q_{\mid e} \in \mathbb{P}_{1}(e) \forall e \in \partial F, \Delta q \in \mathbb{P}_{0},\right. \\
\text { and } \left.\int_{F} \nabla q \cdot \mathbf{x}_{\mathbf{F}} \mathrm{d} F=0\right\} .
\end{gathered}
$$

D.O.F: Vertex values (uniquely identify q on ∂F)

$$
\begin{aligned}
V^{\text {edge }}(F):= & \left\{\mathbf{v} \mid \operatorname{div} \mathbf{v} \in \mathbb{P}_{0}(F), \operatorname{rot} \mathbf{v} \in \mathbb{P}_{0}(F), \mathbf{v}_{\mid e} \cdot \mathbf{t}_{e} \in \mathbb{P}_{0}(e) \forall e \in \partial F,\right. \\
& \left.\int_{F} \mathbf{v} \cdot \mathbf{x}_{\mathbf{F}} \mathrm{d} F=0\right\} .
\end{aligned}
$$

D.O.F: Midpoint tangent values (uniquely identify $\mathbf{v} \cdot \mathbf{t}$ on ∂F)

The 3D space $V^{\text {node }}(\mathrm{P}) \subset \mathrm{H}^{1}(\mathrm{P})$

Let P be a generic polyhedron of the decomposition of Ω.
The nodal space is:

$$
V^{\text {node }}(\mathrm{P}):=\left\{\mathrm{q} \in \mathrm{C}^{0}(\overline{\mathrm{P}}): \mathrm{q}_{\mid \mathrm{F}} \in \mathrm{~V}^{\mathrm{node}}(\mathrm{~F}) \forall \mathrm{F} \in \partial \mathrm{P}, \Delta \mathrm{q}=0\right\}
$$

- clearly $\mathbb{P}_{1}(\mathrm{P}) \subseteq \mathrm{V}^{\text {node }}(\mathrm{P})$

Degrees of freedom

- : value at the vertices
global space $V_{h}^{\text {node }}(\Omega) \subset H^{1}(\Omega)$

The 3D space $V^{\text {edge }}(\mathrm{P}) \subset \mathrm{H}($ curl; P$)$

The edge space is:

$$
V^{\text {edge }}(\mathrm{P}):=\left\{\mathbf{v} \in H(\mathbf{c u r l} ; \mathrm{P}):\left(\mathbf{v}_{\mid \mathrm{F}}\right)_{\text {tang }} \in \mathrm{V}^{\text {edge }}(\mathrm{F}) \forall \mathrm{F} \in \partial \mathrm{P}\right.
$$

$\mathbf{v} \cdot \mathbf{t}$ continuous on each edge $e \in \partial \mathrm{P}$

$$
\begin{aligned}
& \operatorname{divv}=0, \text { curl }(\text { curlv }) \in\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3} \\
& \left.\int_{\mathrm{P}}(\text { curlv }) \cdot\left(\mathbf{x}_{\mathrm{P}} \wedge \mathbf{p}_{0}\right)=0 \forall \mathbf{p}_{0} \in\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3}\right\}
\end{aligned}
$$

- clearly $\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3} \subseteq \mathrm{~V}^{\text {edge }}(\mathrm{P})$, and $N_{0}^{1 \text { st }}(\mathrm{P}) \equiv \mathbf{p}_{0}+\mathbf{x}_{\mathrm{P}} \wedge \mathbf{q}_{0} \subset \mathrm{~V}^{\text {edge }}(\mathrm{P})$

Degrees of freedom
value of the tangential component (constant) on each edge
global space $V_{h}^{\text {edge }}(\Omega) \subset H($ curl; $\Omega)$

A local projection on constant vector fields

Out of the above d.o.f. we can compute the $\left(L^{2}(\mathrm{P})\right)^{3}$-orthogonal projection Π_{0} from $V^{\text {edge }}(\mathrm{P})$ to $\left(\mathbb{P}_{0}(\mathrm{P})\right)^{3}$.

A Local projection on constant vector fields

Out of the above d.o.f. we can compute the $\left(L^{2}(\mathrm{P})\right)^{3}$-orthogonal projection Π_{0} from $V^{\text {edge }}(\mathrm{P})$ to $\left(\mathbb{P}_{0}(\mathrm{P})\right)^{3}$. Indeed, since $\mathbf{p}_{0}=\operatorname{curl}\left(\mathrm{x}_{\mathrm{P}} \wedge \boldsymbol{q}_{0}\right)$ with $\boldsymbol{q}_{0}=-\frac{1}{2} \boldsymbol{p}_{0}$,

$$
\begin{aligned}
\int_{\mathrm{P}} \Pi_{0} \mathbf{v} \cdot \mathbf{p}_{0} \mathrm{dP} & :=\int_{\mathrm{P}} \mathbf{v} \cdot \mathbf{p}_{0} \mathrm{dP}=\int_{\mathrm{P}} \mathbf{v} \cdot \boldsymbol{c u r l}\left(\mathbf{x}_{\mathrm{P}} \wedge \boldsymbol{q}_{0}\right) \mathrm{dP} \\
& =\int_{\mathrm{P}} \mathbf{c u r l v} \cdot\left(\mathbf{x}_{\mathrm{P}} \wedge \boldsymbol{q}_{0}\right) \mathrm{dP}+\int_{\partial \mathrm{P}}(\mathbf{v} \wedge \mathbf{n}) \cdot\left(\mathbf{x}_{\mathrm{P}} \wedge \boldsymbol{q}_{0}\right) \mathrm{d} S \\
& =\quad+\int_{\partial \mathrm{P}}\left(\mathbf{n} \wedge\left(\mathbf{x}_{P} \wedge \boldsymbol{q}_{0}\right)\right) \cdot \mathbf{v} \mathrm{d} S \\
& =\sum_{F} \int_{F}\left(\mathbf{n} \wedge\left(\mathbf{x}_{\mathrm{P}} \wedge \boldsymbol{q}_{0}\right)\right)^{\tau} \cdot \mathbf{v}^{\tau} \mathrm{d} F
\end{aligned}
$$

The 3D space $V^{\text {face }}(\mathrm{P}) \subset \mathrm{H}($ div; P$)$

The face space is:

$$
\begin{aligned}
& V^{\text {face }}(\mathrm{P}):=\left\{\mathbf{w} \in H(\operatorname{div} ; \mathrm{P}):\left(\mathbf{w}_{\mathrm{F}} \cdot \mathbf{n}_{\mathrm{F}}\right) \in \mathbb{P}_{0}(\mathrm{~F}) \forall \mathrm{F} \in \partial \mathrm{P},\right. \\
& \quad \operatorname{divw} \in \mathbb{P}_{0}(\mathrm{P}), \text { curlw } \in\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3}, \\
& \left.\int_{\mathrm{P}} \mathbf{w} \cdot\left(\mathbf{x}_{\mathrm{P}} \wedge \mathbf{p}_{0}\right)=0 \forall \mathbf{p}_{0} \in\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3}\right\}
\end{aligned}
$$

- clearly $\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3} \subseteq \mathrm{~V}^{\text {face }}(\mathrm{P})$, and $R T_{0}(\mathrm{P}) \equiv \mathbf{p}_{0}+\mathbf{x}_{\mathrm{P}} \mathrm{q}_{0} \subseteq \mathrm{~V}^{\text {face }}(\mathrm{P})$

Degrees of freedom
value of the normal component (constant) on each face global space $V_{h}^{\text {face }}(\Omega) \subset H(\operatorname{div} ; \Omega)$

The global spaces

- $\mathcal{T}_{h}=$ decomposition of Ω into polyhedra P, μ constant on each P The global spaces are defined as in FEM:

The global spaces

- $\mathcal{T}_{h}=$ decomposition of Ω into polyhedra P, μ constant on each P The global spaces are defined as in FEM:

$$
\begin{aligned}
& V_{h}^{\text {node }}:=\left\{q \in H_{0}^{1}(\Omega): q_{\mid \mathrm{P}} \in V^{\text {node }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\} \\
& V_{h}^{\text {edge }}:=\left\{\mathbf{v} \in H_{0}(\mathbf{c u r l} ; \Omega): \mathbf{v}_{\mid \mathrm{P}} \in V^{\text {edge }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\} \\
& V_{h}^{\text {face }}:=\left\{\mathbf{w} \in H(\text { div; } \Omega): \mathbf{w}_{\mid \mathrm{P}} \in V^{\text {face }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\} \\
& V_{h}^{\text {vol }}:=\left\{\varphi \in L^{2}(\Omega): \varphi_{\mid \mathrm{P}} \in \mathbb{P}_{0}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\}
\end{aligned}
$$

The global spaces

- $\mathcal{T}_{h}=$ decomposition of Ω into polyhedra P, μ constant on each P The global spaces are defined as in FEM:

$$
\begin{aligned}
& V_{h}^{\text {node }}:=\left\{q \in H_{0}^{1}(\Omega): q_{\mid \mathrm{P}} \in V^{\text {node }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\} \\
& V_{h}^{\text {edge }}:=\left\{\mathbf{v} \in H_{0}(\mathbf{c u r l} ; \Omega): \mathbf{v}_{\mid \mathrm{P}} \in V^{\text {edge }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\} \\
& V_{h}^{\text {face }}:=\left\{\mathbf{w} \in H(\operatorname{div} ; \Omega): \mathbf{w}_{\mid \mathrm{P}} \in V^{\text {face }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\} \\
& V_{h}^{\text {vol }}:=\left\{\varphi \in L^{2}(\Omega): \varphi_{\mid \mathrm{P}} \in \mathbb{P}_{0}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\}
\end{aligned}
$$

One can prove [Beirão da Veiga, Brezzi, Dassi, M, Russo, CMAME 2018]

EXACT SEQUENCE

The sequence

$$
\mathbb{R} \xrightarrow{\text { i }} V_{h}^{\text {node }} \xrightarrow{\text { grad }} V_{h}^{\text {edge }} \xrightarrow{\text { curl }} V_{h}^{\text {face }} \xrightarrow{\text { div }} V_{h}^{\text {vol }} \xrightarrow{\text { o }} 0
$$

is exact

Discrete problem. We would like to write:

(given $\mathbf{j} \in H(\operatorname{div} ; \Omega) \quad($ with $\operatorname{divj}=0$ in $\Omega), \quad$ and $\mu=\mu(\mathbf{x}) \geq \mu_{0}>0$, find $\mathbf{H}_{h} \in V_{h}^{\text {edge }}$ and $p_{h} \in V_{h}^{\text {node }}$ such that:
$\int_{\Omega} \mathbf{c u r l H}_{h} \cdot \mathbf{c u r l v} \mathrm{~d} \Omega+\int_{\Omega} \nabla p_{h} \cdot \mu \mathbf{v} \mathrm{~d} \Omega=\int_{\Omega} \mathbf{j} \cdot \mathbf{c u r l v} \mathrm{d} \Omega \quad \forall \mathbf{v} \in V_{h}^{\text {edge }}$ $\nabla q \cdot \mu \mathbf{H}_{h} \mathrm{~d} \Omega=0 \quad \forall q \in V_{h}^{\text {node }}$.

Discrete problem. We would like to write:

(given $\mathbf{j} \in H(\operatorname{div} ; \Omega) \quad($ with $\operatorname{divj}=0$ in $\Omega), \quad$ and $\mu=\mu(\mathbf{x}) \geq \mu_{0}>0$, find $\mathbf{H}_{h} \in V_{h}^{\text {edge }}$ and $p_{h} \in V_{h}^{\text {node }}$ such that:
$\left\{\int_{\Omega} \operatorname{curlH}_{h} \cdot \mathbf{c u r l v} \mathrm{~d} \Omega+\int_{\Omega} \nabla p_{h} \cdot \mu \mathbf{v} \mathrm{~d} \Omega=\int_{\Omega} \mathbf{j} \cdot \operatorname{curlv} \mathrm{d} \Omega \quad \forall \mathbf{v} \in V_{h}^{\text {edge }}\right.$ $\int_{\Omega} \nabla q \cdot \mu \mathbf{H}_{h} \mathrm{~d} \Omega=0 \quad \forall q \in V_{h}^{\text {node }}$.

Instead we will write

$$
\left\{\begin{array}{l}
\text { find } \mathbf{H}_{h} \in V_{h}^{\text {edge }} \text { and } p_{h} \in V_{h}^{\text {node }} \text { such that: } \\
{\left[\mathbf{c u r r} \mathbf{H}_{h}, \mathbf{c u r l v}\right]_{\text {face }}+\left[\nabla p_{h}, \mu \mathbf{v}\right]_{\text {edge }}=[\mathbf{j}, \text { curlv }]_{\text {face }} \quad \forall \mathbf{v} \in V_{h}^{\text {edge }}} \\
{\left[\nabla q, \mu \mathbf{H}_{h}\right]_{\text {edge }}=0 \quad \forall q \in V_{h}^{\text {node }} .}
\end{array}\right.
$$

after defining a suitable $\mathbf{j}_{/} \in V_{h}^{\text {face }}$ and approximate L^{2}-scalar products.

SCALAR PRODUCT in $V_{h}^{\text {edge }}$

We saw that in each element P we can project onto constants.
Then we can define an edge scalar product $[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }} \simeq \int_{\mathrm{P}} \mathbf{v} \cdot \mathbf{w d P}$:

$$
[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }}:=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \Pi^{0} \mathbf{w} \mathrm{dP}+
$$

Scalar product in $V_{h}^{\text {edge }}$

We saw that in each element P we can project onto constants.
Then we can define an edge scalar product $[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }} \simeq \int_{\mathrm{P}} \mathbf{v} \cdot \mathbf{w d P}$:

$$
[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }}:=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \Pi^{0} \mathbf{w} d \mathrm{P}+\mathrm{s}_{\mathrm{P}}\left(\mathbf{v}-\Pi^{0} \mathbf{v}, \mathbf{w}-\Pi^{0} \mathbf{w}\right)
$$

Scalar product in $V_{h}^{\text {edge }}$

We saw that in each element P we can project onto constants.
Then we can define an edge scalar product $[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }} \simeq \int_{\mathrm{P}} \mathbf{v} \cdot \mathbf{w d P}$:

$$
[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }}:=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \Pi^{0} \mathbf{w} \mathrm{dP}+\mathrm{s}_{\mathrm{P}}\left(\mathbf{v}-\Pi^{0} \mathbf{v}, \mathbf{w}-\Pi^{0} \mathbf{w}\right)
$$

where $s_{\mathrm{P}}(\mathbf{v}, \mathbf{w})$ is a symmetric and positive definite bilinear form.
For instance:

$$
s_{\mathrm{P}}(\mathbf{v}, \mathbf{w})=|\mathrm{P}| \sum_{\mathrm{i}=1}^{\# \text { edges }} \operatorname{DOF}_{\mathrm{i}}(\mathbf{v}) \operatorname{DOF}_{\mathrm{i}}(\mathbf{w})
$$

Scalar product in $V_{h}^{\text {edge }}$

We saw that in each element P we can project onto constants.
Then we can define an edge scalar product $[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }} \simeq \int_{\mathrm{P}} \mathbf{v} \cdot \mathbf{w d P}$:

$$
[\mathbf{v}, \mathbf{w}]_{\mathrm{P}}^{\text {edge }}:=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \Pi^{0} \mathbf{w} \mathrm{dP}+\mathrm{s}_{\mathrm{P}}\left(\mathbf{v}-\Pi^{0} \mathbf{v}, \mathbf{w}-\Pi^{0} \mathbf{w}\right)
$$

where $s_{\mathrm{P}}(\mathbf{v}, \mathbf{w})$ is a symmetric and positive definite bilinear form.
For instance:

$$
s_{\mathrm{P}}(\mathbf{v}, \mathbf{w})=|\mathrm{P}| \sum_{\mathrm{i}=1}^{\# \text { edges }} \operatorname{DOF}_{\mathrm{i}}(\mathbf{v}) \operatorname{DOF}_{\mathrm{i}}(\mathbf{w})
$$

(Note: the face scalar product is handled analogously)

Consistency and Stability

CONSISTENCY: For all P , and for all $\mathbf{v} \in V^{\text {edge }}(\mathrm{P})$ and $\mathbf{p}_{0} \in\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3}$

$$
\begin{gathered}
{\left[\mathbf{v}, \mathbf{p}_{0}\right]_{\mathrm{P}}^{\text {edge }}=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \Pi^{0} \mathbf{p}_{0} \mathrm{dP}+\mathrm{s}_{\mathrm{P}}\left(\mathbf{v}-\Pi^{0} \mathbf{v}, \mathbf{p}_{0}-\Pi^{0} \mathbf{p}_{0}\right)} \\
\quad=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \cdot \mathbf{p}_{0} \mathrm{dP}=\left(\mathbf{v}, \mathbf{p}_{0}\right)_{0, \mathrm{P}}
\end{gathered}
$$

Consistency and Stability

CONSISTENCY: For all P , and for all $\mathbf{v} \in V^{\text {edge }}(\mathrm{P})$ and $\mathbf{p}_{0} \in\left[\mathbb{P}_{0}(\mathrm{P})\right]^{3}$

$$
\begin{gathered}
{\left[\mathbf{v}, \mathbf{p}_{0}\right]_{P}^{\text {edge }}=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \Pi^{0} \mathbf{p}_{0} \mathrm{dP}+\mathrm{sp}_{\mathrm{P}}\left(\mathbf{v}-\Pi^{0} \mathbf{v}, \mathbf{p}_{0}-\Pi^{0} \mathbf{p}_{0}\right)} \\
=\int_{\mathrm{P}} \Pi^{0} \mathbf{v} \cdot \mathbf{p}_{0} \mathrm{dP}=\left(\mathbf{v}, \mathbf{p}_{0}\right)_{0, \mathrm{P}}
\end{gathered}
$$

STABILITY: under suitable mesh assumptions

$$
c_{*}\|\mathbf{v}\|_{0, \mathrm{P}}^{2} \leq s_{\mathrm{P}}(\mathbf{v}, \mathbf{v}) \leq c^{*}\|\mathbf{v}\|_{0, \mathrm{P}}^{2} \quad \forall \mathbf{v} \in V^{\text {edge }}(\mathrm{P})
$$

for some constants $c^{*} \geq c_{*}>0$ independent of h_{P}. Thus,

$$
c_{*}\|\boldsymbol{v}\|_{0, \mathrm{P}}^{2} \leq\left[\mathbf{v},\left.\mathbf{v}\right|_{\mathrm{P}} ^{\text {edge }} \leq c^{*}\|\mathbf{v}\|_{0, \mathrm{P}}^{2} \quad \forall \mathbf{v} \in V^{\text {edge }}(\mathrm{P})\right.
$$

The discrete problem

Given a decomposition \mathcal{T}_{h} of Ω into polyhedra, the final discrete problem is

$$
\left\{\begin{array}{l}
\text { find } \mathbf{H}_{h} \in V_{h}^{\text {edge }} \text { and } p_{h} \in V_{h}^{\text {node }} \text { such that: } \\
{\left[\mathbf{c u r l} \mathbf{H}_{h}, \mathbf{c u r l v}\right]_{\text {face }}+\left[\nabla p_{h}, \mu \mathbf{v}\right]_{\text {edge }}=[\mathbf{j} /, \text { curlv}]_{\text {face }} \quad \forall \mathbf{v} \in V_{h}^{\text {edge }}} \\
{\left[\nabla q, \mu \mathbf{H}_{h}\right]_{\text {edge }}=0 \quad \forall q \in V_{h}^{\text {node }}}
\end{array}\right.
$$

where

- the face and edge scalar products are built as shown above
- \mathbf{j} / is the standard DOF-interpolant of \mathbf{j} in $V_{h}^{\text {face }}$

The exact sequence property guarantees existence-uniqueness of the solution $\left(\mathbf{H}_{h}, p_{h}\right)$ with $p_{h}=0$.

Convergence Results

Let:

$$
\|\mathbf{v}\|_{0, \Omega}^{2}:=\int_{\Omega} \mu|\mathbf{v}|^{2} \quad \forall \mathbf{v} \in\left[L^{2}(\Omega)\right]^{2}
$$

and assume that

- all the elements are (uniformly) star-shaped with respect to a ball of radius $\geq \gamma h_{\mathrm{P}}$, for some positive γ
- every face is star-shaped with respect to a ball of radius $\geq \gamma h_{\mathrm{P}}$, and every edge has length $\geq \gamma h_{P}$

Theorem

The following estimate holds:

$$
\left\|\mathbf{H}-\mathbf{H}_{h}\right\|_{0, \Omega}+\left\|\operatorname{curl}\left(\mathbf{H}-\mathbf{H}_{h}\right)\right\|_{0, \Omega} \leq C h\left(\sum_{\mathrm{P}}|\mathbf{H}|_{1, \mathrm{P}}^{2}+|\mathbf{j}|_{1, \mathrm{P}}^{2}\right)^{1 / 2}
$$

Numerical Results $(\mu=1)$

PROBLEM 1 The domain is a truncated octahedron, and the exact solution is

$$
\mathbf{H}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=\frac{\mathbf{1}}{\pi}\left(\begin{array}{c}
\sin (\pi y)-\sin (\pi z) \\
\sin (\pi z)-\sin (\pi x) \\
\sin (\pi x)-\sin (\pi y)
\end{array}\right)
$$

The data \mathbf{j} and $\mathbf{H} \wedge \mathbf{n}$ are set accordingly.

Numerical results $(\mu=1)$

PROBLEM 1 The domain is a truncated octahedron, and the exact solution is

$$
\mathbf{H}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=\frac{\mathbf{1}}{\pi}\left(\begin{array}{c}
\sin (\pi y)-\sin (\pi z) \\
\sin (\pi z)-\sin (\pi x) \\
\sin (\pi x)-\sin (\pi y)
\end{array}\right)
$$

The data \mathbf{j} and $\mathbf{H} \wedge \mathbf{n}$ are set accordingly.
PROBLEM $2 \Omega=[0,1]^{3}$, and the solution is

$$
\mathbf{H}(\mathbf{x}, \mathbf{y}, \mathbf{z}):=\mathbf{c u r l}(\zeta(\mathbf{x}, \mathbf{y}, \mathbf{z}), \zeta(\mathbf{x}, \mathbf{y}, \mathbf{z}), \zeta(\mathbf{x}, \mathbf{y}, \mathbf{z}))
$$

where

$$
\zeta(x, y, z):=\left(x^{2}-x\right)\left(y^{2}-y\right)\left(z^{2}-z\right)
$$

The data \mathbf{j} is set in accordance to the solution. The boundary conditions are "of Neumann type" $\mu \mathbf{H} \cdot \mathbf{n}=0$ on $\partial \Omega$.

Voronoi mesh families

Structured: structured seed distribution

Centroidal: each element seed corresponds to the element barycenter

Random: random seed distribution

Convergence graphs

We compute the L^{2}-relative error on \mathbf{H} as

$$
\frac{\left\|\mathbf{H}-\Pi_{0} \mathbf{H}_{h}\right\|_{0, \Omega}}{\|\mathbf{H}\|_{0, \Omega}}
$$

PROBLEM 1
L^{2} error

PROBLEM 2

The multiplier p_{h} vanishes up to machine precision

A simple benchmark (With known solution)

- constant electric current (of same intensity) in the two conductors
- permeability:

$$
\mu=\left\{\begin{array}{l}
\mu_{0} \text { in } \Omega_{\jmath}^{1} \cup \Omega_{\jmath}^{2} \\
10^{4} \mu_{0} \text { in } \Omega_{M}
\end{array}\right.
$$

- boundary conditions $\mu \mathrm{H} \cdot \mathbf{n}=0$
[C. T. A. Jhonk, 88]

A simple benchmark problem (kNown solution)

A family of Nédélec second kind VEM

Local spaces on the faces of polyhedra
Let $k \geq 1$. For each face f of P , the edge space on f is defined as
$V_{k}^{\text {edge }}(f):=\left\{\mathbf{v} \in\left[L^{2}(f)\right]^{2}: \operatorname{div} \mathbf{v} \in \mathbb{P}_{k}(f), \operatorname{rot} \mathbf{v} \in \mathbb{P}_{k-1}(f), \mathbf{v} \cdot \mathbf{t}_{e} \in \mathbb{P}_{k}(e) \forall e \subset \partial f\right\}$
with the degrees of freedom

- on each $e \subset \partial f$, the moments $\int_{e}\left(\mathbf{v} \cdot \mathbf{t}_{e}\right) p_{k} \mathrm{ds} \quad \forall p_{k} \in \mathbb{P}_{k}(e)$,
- the moments $\int_{f} \boldsymbol{v} \cdot \boldsymbol{x}_{f} p_{k} \mathrm{~d} f \quad \forall p_{k} \in \mathbb{P}_{k}(f)$,
- $\int_{f} \operatorname{rotv} p_{k-1}^{0} \mathrm{df} \quad \forall p_{k-1}^{0} \in \mathbb{P}_{k-1}^{0}(f) \quad$ (only for $k>1$)),
where $\boldsymbol{x}_{f}=\mathbf{x}-\mathbf{b}_{f}$, with $\mathbf{b}_{f}=$ barycenter of f.
- Note: with the serendipity version the d.o.f. $\int_{f} \mathbf{v} \cdot \boldsymbol{x}_{f} p_{k} \mathrm{~d} f$ can be reduced
- Note: $N_{k}^{2 \text { nd }}(f) \subset V_{k}^{\text {edge }}(f)$

EXAMPLE OF D.O.F. FOR $k=1$

Original VEM

Degrees of freedom
\rightarrow : value of the tangential component

$$
o=\int_{f} \mathbf{v} \cdot \boldsymbol{x}_{f} p_{1} \mathrm{~d} f
$$

EXAMPLE OF D.O.F. FOR $k=1$

Original VEM

Degrees of freedom
\rightarrow : value of the tangential component

$$
o=\int_{f} \mathbf{v} \cdot \boldsymbol{x}_{f} p_{1} \mathrm{~d} f
$$

Serendipity VEM

Degrees of freedom

\rightarrow : value of the tangential component

$$
N_{1}^{2 n d}(f) \subset V_{1}^{\text {edge }}(f)
$$

A family of Nédélec second kind VEM

For each face f of P , the nodal space of order $k+1$ is defined as

$$
V_{k+1}^{\text {node }}(f):=\left\{q \in H^{1}(f): q_{\mid e} \in \mathbb{P}_{k+1}(e) \forall e \subset \partial f, \Delta q \in \mathbb{P}_{k}(f)\right\}
$$

with the degrees of freedom

- for each vertex ν the value $q(\nu)$,
- for each edge e the moments $\int_{e} q p_{k-1}$ ds $\forall p_{k-1} \in \mathbb{P}_{k-1}(e)$,
- $\int_{f}\left(\nabla q \cdot \boldsymbol{x}_{f}\right) p_{k} \mathrm{~d} f \quad \forall p_{k} \in \mathbb{P}_{k}(f)$.
- Note: with the serendipity version the d.o.f. $\int_{f}\left(\nabla q \cdot \boldsymbol{x}_{f}\right) p_{k} \mathrm{~d} f$ can be reduced
- Note: $\mathbb{P}_{k+1}(f) \subset V_{k+1}^{\text {node }}(f)$

EXAMPLE OF D.O.F. FOR $k=1$

Original VEM

Degrees of freedom

- : values at vertices and midpoints

$$
o=\int_{f}\left(\nabla q \cdot x_{f}\right) p_{1}
$$

Serendipity VEM

Degrees of freedom

- : values at vertices and midpoints

$$
\mathbb{P}_{2}(f) \subset V_{2}^{\text {node }}(f)
$$

Local spaces on polyhedra

Let P be a polyhedron, simply connected with all its faces simply connected and convex.

$$
\begin{gathered}
V_{k}^{\text {edge }}(\mathrm{P}):=\left\{\mathbf{v} \in\left[\mathrm{L}^{2}(\mathrm{P})\right]^{3}: \operatorname{divv} \in \mathbb{P}_{\mathrm{k}-1}(\mathrm{P}), \text { curl }(\text { curlv })\right) \in\left[\mathbb{P}_{\mathrm{k}}(\mathrm{P})\right]^{3}, \\
\left.\mathbf{v}_{\mid f}^{\tau} \in V_{k}^{\text {edge }}(\mathrm{f}) \forall \text { face } \mathrm{f} \subset \partial \mathrm{P}, \mathbf{v} \cdot \mathbf{t}_{\mathrm{e}} \text { continuous on each edge e } \subset \partial \mathrm{P}\right\}, \\
V_{k+1}^{\text {node }}(\mathrm{P}):=\left\{\mathrm{q} \in \mathrm{C}^{0}(\mathrm{P}): \mathrm{q}_{\mid \mathrm{f}} \in \mathrm{~V}_{\mathrm{k}+1}^{\text {node }}(\mathrm{f}) \quad \forall \text { face } \mathrm{f} \subset \partial \mathrm{P}, \Delta \mathrm{q} \in \mathbb{P}_{\mathrm{k}-1}(\mathrm{P})\right\}, \\
V_{k-1}^{\text {face }}(\mathrm{P}):=\left\{\mathbf{w} \in\left[\mathrm{L}^{2}(\mathrm{P})\right]^{3}: \operatorname{divw} \in \mathbb{P}_{\mathrm{k}-1}, \text { curl } \mathbf{w} \in\left[\mathbb{P}_{\mathrm{k}}\right]^{3}, \mathbf{w} \cdot \mathbf{n}_{\mathrm{f}} \in \mathbb{P}_{\mathrm{k}-1}(\mathrm{f}) \forall \mathrm{f}\right\} .
\end{gathered}
$$

Internal d.o.f. in $V_{k}^{\text {edge }}(\mathrm{P})$:

- $\int_{\mathrm{P}}\left(\mathbf{v} \cdot \mathbf{x}_{\mathrm{P}}\right) p_{k-1} \mathrm{dP} \quad \forall \mathrm{p}_{\mathrm{k}-1} \in \mathbb{P}_{\mathrm{k}-1}(\mathrm{P})$,
- $\int_{\mathrm{P}}($ curlv $) \cdot\left(\mathbf{x}_{\mathrm{P}} \wedge \mathbf{p}_{k}\right) \mathrm{dP} \quad \forall \mathbf{p}_{\mathrm{k}} \in\left[\mathbb{P}_{\mathrm{k}}(\mathrm{P})\right]^{3}$.

We can compute the $\left[L^{2}(\mathrm{P})\right]^{3}$-projection Π_{k}^{0} from $V_{k}^{\text {edge }}(\mathrm{P})$ to $\left[\mathbb{P}_{k}(\mathrm{P})\right]^{3}$. Hence we define a μ-dependent scalar product

$$
\left.[\mathbf{v}, \mathbf{w}]_{\text {edge }}=\left(\mu \Pi_{k}^{0} \mathbf{v}, \Pi_{k}^{0} \mathbf{w}\right)_{0, \mathrm{P}}+h_{\mathrm{P}} \mu_{0} \sum_{i}\left(d o f_{i}\left(I-\Pi_{k}^{0}\right) \mathbf{v}\right), \operatorname{dof}_{i}\left(I-\Pi_{k}^{0}\right) \mathbf{w}\right),
$$

Stability there exist two positive constants α_{*}, α^{*} independent of h_{P} :

$$
\alpha_{*} \mu_{0}\|\mathbf{v}\|_{0, \mathrm{P}}^{2} \leq\|\mathbf{v}\|_{e d g e}^{2} \leq \alpha^{*} \mu_{1}\|\mathbf{v}\|_{0, \mathrm{P}} \quad \forall \mathbf{v} \in V_{k}^{\mathrm{e}}(\mathrm{P})
$$

Consistency:

$$
\left[\mathbf{v}, \mathbf{p}_{k}\right]_{\text {edge }}=\int_{\mathrm{P}} \mu \Pi_{k}^{0} \mathbf{v} \cdot \mathbf{p}_{k} \mathrm{~d} F \quad \forall \mathbf{v} \in V_{k}^{\text {edge }}(\mathrm{P}), \forall \mathbf{p}_{\mathrm{k}} \in\left[\mathbb{P}_{\mathrm{k}}(\mathrm{P})\right]^{3} .
$$

Internal d.o.f. in $V_{k+1}^{\text {node }}(\mathrm{P})$:

- the moments $\int_{\mathrm{P}} \nabla q \cdot \mathbf{x}_{\mathrm{P}} p_{\mathrm{k}-1} \mathrm{dP} \quad \forall \mathrm{p}_{\mathrm{k}-1} \in \mathbb{P}_{\mathrm{k}-1}(\mathrm{P})$.

These, together with the d.o.f. on the faces, allow to compute $L^{2}(\mathrm{P})$-projection from $V_{k+1}^{\text {node }}(\mathrm{P})$ to $\mathbb{P}_{k-1}(\mathrm{P})$.

For $V_{k-1}^{\text {face }}(\mathrm{P})$ we have the degrees of freedom

- \forall face $f: \int_{f}\left(\mathbf{w} \cdot \mathbf{n}_{f}\right) p_{k-1} \mathrm{~d} f \quad \forall p_{k-1} \in \mathbb{P}_{k-1}(f)$,
- $\int_{\mathrm{P}} \mathbf{w} \cdot\left(\operatorname{grad} p_{k-1}\right) \mathrm{dP} \quad \forall \mathrm{p}_{\mathrm{k}-1} \in \mathbb{P}_{\mathrm{k}-1}(\mathrm{P})$, for $\mathrm{k}>1$
- $\int_{\mathrm{P}} \mathbf{w} \cdot\left(\mathbf{x}_{\mathrm{P}} \wedge \mathbf{p}_{k}\right) \mathrm{dP} \quad \forall \mathbf{p}_{\mathrm{k}} \in\left[\mathbb{P}_{\mathrm{k}}(\mathrm{P})\right]^{3}$.

From the above d.o.f we can compute the $\left[L^{2}(\mathrm{P})\right]^{3}$-projection Π_{s}^{0} from $V_{k-1}^{\text {face }}(\mathrm{P})$ to $\left[\mathbb{P}_{s}(\mathrm{P})\right]^{3}$ with $s \leq k+1$.

$$
\|\mathbf{v}\|_{f a c e}^{2}:=\left\|\Pi_{k-1}^{0} \mathbf{v}\right\|_{0, \mathrm{P}}^{2}+h_{\mathrm{P}} \sum_{f}\left\|\left(I-\Pi_{k-1}^{0}\right) \mathbf{v} \cdot \mathbf{n}_{f}\right\|_{0, f}^{2} \simeq\|\mathbf{v}\|_{0}^{2}
$$

The global spaces

$$
V_{k+1}^{\text {node }} \equiv V_{k+1}^{\text {node }}(\Omega):=\left\{q \in H_{0}^{1}(\Omega) \text { such that } q_{\mid \mathrm{P}} \in V_{k+1}^{\text {node }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\},
$$

$V_{k}^{\text {edge }} \equiv V_{k}^{\text {edge }}(\Omega):=\left\{\mathbf{v} \in H_{0}(\mathbf{c u r l} ; \Omega)\right.$ such that $\left.\mathbf{v}_{\mid \mathrm{P}} \in V_{k}^{\text {edge }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\}$, $V_{k-1}^{\text {face }} \equiv V_{k-1}^{\mathrm{f}}(\Omega):=\left\{\mathbf{w} \in H_{0}(\operatorname{div} ; \Omega)\right.$ such that $\left.\mathbf{w}_{\mid \mathrm{P}} \in V_{k-1}^{\text {face }}(\mathrm{P}) \forall \mathrm{P} \in \mathcal{T}_{\mathrm{h}}\right\}$,

Exact sequence

The sequence

$$
\mathbb{R} \xrightarrow{\text { i }} V_{k+1}^{\text {node }} \xrightarrow{\text { grad }} V_{k}^{\text {edge }} \xrightarrow{\text { curl }} V_{k-1}^{\text {face }} \xrightarrow{\text { div }} V_{k-1}^{\text {vol }} \xrightarrow{\text { o }} 0
$$

is exact

The discrete problem

$$
\left\{\begin{array}{l}
\text { find } \mathbf{H}_{h} \in V_{k}^{\text {edge }} \text { and } p_{h} \in V_{k+1}^{\text {node }} \text { such that: } \\
{\left[\mathbf{c u r l} \mathbf{H}_{h}, \mathbf{c u r l v}\right]_{V_{k-1}^{\text {face }}}+\left[\nabla p_{h}, \mathbf{v}\right]_{e \mu}=[\mathbf{j},, \text { curlv }]_{V_{k-1}^{\text {face }}}} \\
{\left[\nabla q, \mathbf{H}_{h} \in V_{k}^{\text {edge }}\right.} \\
{\left[\nabla, \mathbf{H}_{e, \mu}=0 \quad \forall q \in V_{k+1}^{\text {node }} .\right.}
\end{array}\right.
$$

Theorem

The discrete problem has a unique solution, and we have

$$
\left\|\mathbf{H}-\mathbf{H}_{h}\right\|_{0, \Omega} \leq C\left(\left\|\mathbf{H}-\mathbf{H}_{l}\right\|_{0, \Omega}+\left\|\Pi_{k}^{0} \mathbf{H}-\mathbf{H}\right\|_{0, \Omega}+\left\|\mu \mathbf{H}-\Pi_{k}^{0}(\mu \mathbf{H})\right\|_{0, \Omega}\right),
$$ with C a constant depending on μ but independent of the mesh size. Moreover,

$$
\left\|\operatorname{curl}\left(\mathbf{H}-\mathbf{H}_{h}\right)\right\|_{0, \Omega}=\left\|\mathbf{j}-\mathbf{j}_{/}\right\|_{0, \Omega} .
$$

$\Omega=[0,1]^{3}$. Example of meshes

Cube

Random

Numerical Results

Problem 1: $\Omega=[0,1]^{3}, \mu=1$. Exact solution

$$
\mathbf{H}(x, y, z):=\frac{1}{\pi}\left(\begin{array}{c}
\sin (\pi y)-\sin (\pi z) \\
\sin (\pi z)-\sin (\pi x) \\
\sin (\pi x)-\sin (\pi y)
\end{array}\right)
$$

We compute the error

$$
\frac{\left\|\mathbf{H}-\Pi_{k}^{0} \mathbf{H}_{h}\right\|_{0, \Omega}}{\|\mathbf{H}\|_{0, \Omega}}
$$

Convergence curves

L^{2}-error for standard and serendipity approach: case $k=1$ and $k=2$.

Numerical Results

Problem 2: $\Omega=[0,1]^{3}, \mu(x, y, z):=1+x+y+z$. Exact solution

$$
\mathbf{H}(x, y, z):=\frac{1}{(1+x+y+z)}\left(\begin{array}{c}
\sin (\pi y) \\
\sin (\pi z) \\
\sin (\pi x)
\end{array}\right)
$$

We compute the error

$$
\frac{\left\|\mathbf{H}-\Pi_{k}^{0} \mathbf{H}_{h}\right\|_{0, \Omega}}{\|\mathbf{H}\|_{0, \Omega}}
$$

Convegence curves

L^{2}-error for standard and serendipity approach: case $k=1$ and $k=2$

Conclusions

- We presented a lowest-order Virtual Element for magnetostatic problems which can be seen as the extension to polyhedral decompositions of the lowest-order Nédélec element of first type
- The element proved robust to element distortions
- A whole family of elements of the Nédélec second type has been constructed ([Beirão da Veiga, Brezzi, Dassi, M., Russo, SINUM 2018])

