Combining cut element methods and hybridization

Erik Burman
University College London

POEMS 2019, CIRM, April 2019
Joint work with:
G. Delay, D. Elfversson, A. Ern, P. Hansbo, M. Larson, K. Larsson

IVC.

Outline

1. cutFEM, levelset geometries
2. cutFEM with hybridization, polygonal grains
3. A Hybridized High Order (HHO) method with cut cells

Figure: SEM image of sandstone, width ≈ 1 mm. [Baud et al. J. of Struct. Geo. 2004].

Solving PDEs on meshes that are not fitted to the domain

Figure: Can we solve PDEs on embedded domains (left) or embedded surfaces (right)

- Imposition of boundary conditions: [Nitsche 1971], [Babuska 1973].
- Fictitious domain methods: [Girault, Glowinski 1995], [Angot 1998], [Bertoluzza et al. 2005], [Haslinger, Renard 2009]
- Unfitted FEM: [Barrett, Elliott 1987], [Hansbo, Hansbo 2002]
- Trace finite elements: [Olshanskii et al. 2009]

CutFEM - model problem

Consider Poisson's equation: $u: \Omega \rightarrow \mathbb{R}$ such that

$$
\begin{aligned}
-\Delta u & =f & & \text { in } \Omega \\
u & =g_{D} & & \text { on } \Gamma_{D} \\
\nu \cdot \nabla u & =g_{N} & & \text { on } \Gamma_{N}
\end{aligned}
$$

where ν is the outward pointing normal of Γ

CutFEM

CutFEM

CutFEM

Mesh and Finite Element Spaces.

Let

- U_{Ω} be a polygonal domain such that $\Omega \subset U_{\Omega}$
- $\mathcal{T}_{h, 0}$ be a family of meshes on U_{Ω} with mesh parameter $h \in\left(0, h_{0}\right.$]
- $\mathcal{T}_{h}=\left\{T \in \mathcal{T}_{h, 0}: \bar{\Omega} \cap \bar{T} \neq \emptyset\right\}$
- \mathcal{T}_{Γ} set of elements in \mathcal{T}_{h}, that intersect the boundary Γ
- \mathcal{F}_{h} set of interior faces of elements in \mathcal{T}_{Γ}
- $V_{U, h} \in H^{1}\left(U_{\Omega}\right)$ be a finite element space of order p on $\mathcal{T}_{h, 0}$ and $V_{h}=\left.V_{U, h}\right|_{\mathcal{T}_{h}}$

Assume that

- 「 is smooth (or a polygon with curved boundaries)- 「 "well resolved" by the mesh: any cut cell is divided in two parts, both including a part of the triangle boundary

CutFEM I

Method. Find $u_{h} \in V_{h}$ such that

$$
A_{h}\left(u_{h}, v_{h}\right)=L_{h}\left(v_{h}\right) \quad \forall v_{h} \in V_{h}
$$

where

$$
A_{h}\left(u_{h}, v_{h}\right)=a_{h}\left(u_{h}, v_{h}\right)+s_{h}\left(u_{h}, v_{h}\right)
$$

- $a_{h}(u, v)$ and $L_{h}(v)$: weak forms over Ω, with weak boundary conditions
- Nitsche's method:

$$
a_{h}(u, v):=\int_{\Omega} \nabla u \cdot \nabla v \mathrm{~d} x-\int_{\Gamma_{D}}(\underbrace{\nu \cdot \nabla u v}_{\text {consistency }}+\underbrace{\nu \cdot \nabla v u}_{\text {symmetry }}-\underbrace{\frac{\gamma}{h} u v}_{\text {coercivity }}) \mathrm{d} s
$$

- Right hand side:

$$
L_{h}(v)=(f, v)_{\Omega}+\left(g_{N}, v\right)_{\Gamma_{N}}-\left(g_{D}, \nu \cdot \nabla v\right)_{\Gamma_{D}}+\beta h^{-1}\left(g_{D}, v\right)_{\Gamma_{D}}
$$

CutFEM II

- $s_{h}(u, v)$: stabilization added to make A_{h} coercive, independently of the cut ${ }^{1}$

$$
\left\|u_{h}\right\|_{H^{1}\left(\mathcal{T}_{h}\right)}^{2} \lesssim\left\|u_{h}\right\|_{H^{1}(\Omega)}^{2}+s_{h}\left(u_{h}, u_{h}\right) \lesssim \underbrace{a_{h}\left(u_{h}, u_{h}\right)}_{\text {only control of } H^{1}(\Omega)}+s_{h}\left(u_{h}, u_{h}\right)
$$

- s_{h} must also have some weak consistency

$$
s\left(i_{h} u-u, i_{h} u-u\right)^{\frac{1}{2}} \lesssim h^{p}
$$

- Example: penalty on derivative jumps:

$$
s_{h}\left(u_{h}, v_{h}\right):=\gamma_{g} \sum_{F \in \mathcal{F}_{h}} \sum_{l=1}^{p} h^{2 l-1} \int_{F}\left[D_{n_{F}}^{\prime} u_{h}\right]\left[D_{n_{F}}^{\prime} v_{h}\right] \mathrm{d} s
$$

Here $D_{n_{F}}^{\prime} v$ denotes the /th partial derivative in the normal direction, $\left.[x]\right|_{F}$ the jump of the quantity x over the face F.

- There is now a zoo of different ghost penalty terms, both for cutFEM and TraceFEM. [Lehrenfeld 2018], [Larson et al. 2018]

[^0]
CutFEM: Main Results (no geometry approximation)

 Let the energy norm be defined by$$
\left\|\|v\|^{2}=\right\| v\left\|_{H^{1}(\Omega)}^{2}+\right\| v\left\|_{s_{h}}^{2}+h^{-1}\right\| v\left\|_{\Gamma_{D}}^{2}+h\right\| n \cdot \nabla v \|_{\Gamma_{D}}^{2}
$$

- Coercivity

$$
\|\|v\|\|^{2} \lesssim A_{h}(v, v) \quad v \in V_{h}
$$

- Continuity

$$
A_{h}(v, w) \lesssim\| \| v\| \|\|w\| \quad v, w \in H^{p+1}\left(\mathcal{T}_{h}\right)+V_{h}
$$

- Interpolation estimate
- $u^{e} \in H^{p+1}\left(\mathcal{T}_{h}\right)$ stable extension of $u \in H^{p+1}\left(\mathcal{T}_{h}\right)$ (Stein)
- $\pi_{h}: H^{p+1}\left(\mathcal{T}_{h}\right) \rightarrow V_{h}$ optimal interpolation operator

$$
\left\|u^{e}-\pi_{h} u^{e}\right\|\left\|\lesssim h^{\rho}\right\| u \|_{p+1}
$$

- A priori error estimates (Modified argument for $H^{1+\epsilon}(\Omega), \epsilon>0$)

$$
\left\|u-u_{h}\right\|_{H^{1}(\Omega)} \lesssim\| \| u^{e}-u_{h}\| \| \lesssim h^{p}\|u\|_{p+1}, \quad\left\|u-u_{h}\right\|_{\Omega} \lesssim h^{p+1}\|u\|_{p+1}
$$

- Estimate of the stiffness matrix condition number: $\kappa(\mathcal{A}) \lesssim h^{-2}$

Applications, two-phase flows shape optimization ${ }^{2} 34$

[^1]
Combining cutFEM and hybridization

cutFEM using hybridization

- Polyhedral boundaries (possibly curved faces)
- Introduce skeleton unknowns
- Motivation
- Strongly varying diffusion between cells
- Strongly varying diffusion within a cell
- Inclusions
- Coupled PDEs on bulk and surfaces
- Hybridization allows elimination of bulk dofs through static condensation
- The Ω_{i} and $\Omega_{0, k}$ discretized on bulk mesh
- No requirement for the meshes to match

Bulk and skeleton discretization $(i=3, k=2)$

Figure: $U_{\Omega_{i}}$

Figure: $U_{\Omega_{0, k}}$

$\mathcal{T}_{h}\left(U_{\Omega_{i}}\right)$

$\mathcal{T}_{h}\left(U_{\Omega_{0, k}}\right)$

$\mathcal{T}_{h, \Omega_{i}}=\mathcal{T}_{h, i}$

$\mathcal{T}_{h, \Omega_{0, k}}=\mathcal{T}_{h, 0, k}$

Finite element spaces I

- For $O \in\left\{\Omega_{i}\right\}_{i=1}^{N}$ let $V_{h, O}$ be a finite dimensional space consisting of continuous piecewise polynomial functions defined on $\mathcal{T}_{h, O}$
- we also use the simplified notation

$$
\begin{equation*}
V_{h, i}=V_{h, \Omega_{i}}, \quad \mathcal{T}_{h, i}=\mathcal{T}_{h, \Omega_{i}} \tag{1}
\end{equation*}
$$

and for $O \in\left\{\Omega_{0, k}\right\}_{k=1}^{N_{0}}$,

$$
\begin{equation*}
V_{h, 0, k}=V_{h, \Omega_{0, k}}, \quad \mathcal{T}_{h, 0, k}=\mathcal{T}_{h, \Omega_{0, k}}, \quad \mathcal{T}_{h, 0}=\sqcup_{k=1}^{N_{0}} \mathcal{T}_{h, 0, k} \tag{2}
\end{equation*}
$$

- Define the finite element spaces

$$
\begin{equation*}
V_{h, 0}=\bigoplus_{k=1}^{N_{0}} V_{h, 0, k}, \quad V_{h, 1, N}=\bigoplus_{i=1}^{N} V_{h, i} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
W_{h}=V_{h, 0} \oplus V_{h, 1, N} \tag{4}
\end{equation*}
$$

The Poisson interface problem

We consider the following hybridized formulation of the Poisson problem: find $u_{0}: \Omega_{0} \rightarrow \mathbb{R}$ and for $i=1, \ldots, N, u_{i}: \Omega_{i} \rightarrow \mathbb{R}$ such that

$$
\begin{align*}
-\nabla \cdot a_{i} \nabla u_{i} & =f_{i} & & \text { in } \Omega_{i} \tag{5}\\
\llbracket \nu \cdot a \nabla u \rrbracket & =0 & & \text { on } \Omega_{0} \tag{6}\\
{[u]_{i} } & =0 & & \text { on } \partial \Omega_{i} \cap \Omega_{0} \tag{7}\\
u_{i} & =0 & & \text { on } \partial \Omega_{i} \cap \partial \Omega \tag{8}
\end{align*}
$$

Here $a_{i}, i=1, \ldots, N$, are positive constants and the jumps operators are defined by

$$
\begin{equation*}
\left.[u]\right|_{\partial \Omega_{i} \cap \Omega_{0}}=u_{i}-u_{0},\left.\quad \llbracket \nu \cdot a \nabla u \rrbracket\right|_{\partial \Omega_{i} \cap \partial \Omega_{j}}=\nu_{i} \cdot a_{i} \nabla u_{i}+\nu_{j} \cdot a_{j} \nabla u_{j} \tag{9}
\end{equation*}
$$

where ν_{i} is the exterior unit normal to Ω_{i}.

The hybridized cutFEM method

- Find $u_{h} \in W_{h}$ such that

$$
\begin{equation*}
A_{h}\left(u_{h}, v\right)=I_{h}(v), \quad \forall v \in W_{h} \tag{10}
\end{equation*}
$$

where W_{h} is defined in (4) and

$$
\begin{aligned}
A_{h}(v, w) & =s_{h, 0}\left(v_{0}, w_{0}\right)+\sum_{i=1}^{N}\left(\left(a_{i} \nabla v_{i}, \nabla w_{i}\right)_{\Omega_{i}}+s_{h, i}\left(v_{i}, w_{i}\right)\right. \\
& \left.+\left(\beta h_{i}^{-1} a_{i}[v]_{i},[w]_{i}\right)_{\partial \Omega_{i}}-\left(\nu_{i} \cdot a_{i} \nabla v_{i},[w]_{i}\right)_{\partial \Omega_{i}}-\left([v]_{i}, \nu_{i} \cdot a_{i} \nabla w_{i}\right)_{\partial \Omega_{i}}\right) \\
I_{h}(v) & =\sum_{i=1}^{N}\left(f_{i}, v_{i}\right)_{\Omega_{i}}
\end{aligned}
$$

- To ensure coercivity: stabilization both for the bulk and the skeleton variable.
- In each subdomain discretization equivalent to the fictitious domain case.
- In the fitted case this coincides with the hybridized Nitsche method proposed in [Egger 2009].

Stabilization forms - bulk and surface ghost penalty

- Define set of faces in the interface zones, $\mathcal{F}_{h, i}$ and $\mathcal{F}_{h, 0, k}$
- For each subdomain $\Omega_{i}, 1 \leq i \leq N$

$$
\begin{equation*}
s_{h, i}(v, w)=\sum_{\ell=1}^{p} c_{d, \ell} h^{2 \ell-1}\left(\left[D_{n_{F}}^{\ell} v\right],\left[D_{n_{F}}^{\ell} w\right]\right)_{\mathcal{F}_{h, i}} \tag{11}
\end{equation*}
$$

- For each skeleton subdomain $\Omega_{0, k}, 1 \leq k \leq N_{0}$ [Larson and Zahedi 2017]

$$
\begin{equation*}
s_{h, 0, k}(v, w)=\sum_{\ell=1}^{p} c_{d-1, \ell} h^{2 \ell}(\underbrace{\left(D_{\nu}^{\ell} v, D_{\nu}^{\ell} w\right)_{\Omega_{0, k}}}_{\text {normal stabilization }}+\underbrace{\left(\left[D_{n_{F}}^{\ell} v\right],\left[D_{n_{F}}^{\ell} w\right]\right)_{\mathcal{F}_{h, 0, k}}}_{\text {jump stabilization }}) \tag{12}
\end{equation*}
$$

Main results, error estimates

- energy norm (norm thanks to a Poincaré inequality):

$$
\left\|\left.\|v\|\right|_{h} ^{2}=\right\| v_{0}\left\|_{s_{h, 0}}^{2}+\sum_{i=1}^{N}\right\| \nabla v_{i}\left\|_{\Omega_{i}, a_{i}}^{2}+h\right\| \nabla v_{i}\left\|_{\partial \Omega_{i}, a_{i}}^{2}+h^{-1}\right\|[v]_{i}\left\|_{\partial \Omega_{i}, a_{i}}^{2}+\right\| v_{i} \|_{s_{h, i}}^{2}
$$

- The following error estimates hold:

$$
\left\|\left\|u-u_{h}\right\|\right\|_{h}^{2} \lesssim h^{2 p}\left\|u_{0}\right\|_{H^{p+1 / 2}\left(\Omega_{0}\right)}^{2}+\sum_{i=1}^{N} h^{2 p}\left\|u_{i}\right\|_{H^{p+1}\left(\Omega_{i}\right)}^{2}
$$

- Also L^{2}-norm error estimates.
- Analysis: fictitious domain argument in each subdomain + Poincaré
- Let \hat{S} denote the stiffness matrix associated with the Schur complement, then

$$
\begin{equation*}
\text { condition number: } \kappa(\widehat{S}) \lesssim h^{-1}\left(\min _{1 \leq i \leq N} d_{\Omega_{i}}\right)^{-1} \tag{13}
\end{equation*}
$$

where h is the (uniform) mesh size and $d_{\Omega_{i}}$ is the diameter of domain Ω_{i}.

Computional experiments cutFEM and hybridization

Example 1: Three Subdomains. I

- Three subdomains
- $a_{i}=i, i=1,2,3$.
- Global Background Grid. All meshes are extracted from the same background grid of Q_{2} elements
- Single Element Interfaces.

The mesh on each subdomain is constructed independently, some as quadrilateral meshes and some as triangular, and we equip all subdomain meshes with Q_{2} / P_{2}
 elements. On each skeleton subdomain we use a single Q_{4} element.

Example 1: Three Subdomains. II

Example 1: Three Subdomains. III

Example 2: Convergence study. I

Figure: Domain

Solution

Gradient magnitude

Problem with known exact solution used in convergence studies.

- The domain is the unit square $[0,1]^{2}$ partitioned into two subdomains
- material coefficients $a_{1}=1$ and $a_{2}=2 \pi-1$.

Example 2: Convergence study. II

Figure: Convergence studies using meshes all from the same background grid. In all meshes the same elements are used $\left(Q_{1}-Q_{3}\right)$. Left: energy norm. Right: L^{2}-norm.

Example 2: Convergence study. III

Figure: Convergence studies using non-matching meshes for the subdomains and a single polynomial for each skeleton subdomain. On the subdomains Q_{2} elements are used and on the skeleton subdomains $Q_{2}-Q_{6}$ polynomials are used. Left: energy norm. Right: L^{2}-norm.

Example 3: Voronoi Diagram. I

Figure: Subdivisions of the unit square $[0,1]^{2}$ generated from Voronoi diagrams featuring varying material coefficients. Left: Domain with a randomly oriented mesh in each subdomain and a material coefficient a which alternates between 1 and 1000 row-wise in the mesh. Right: Domain with material coefficient $a \in[0.01,1]$ which is constant within each subdomain and chosen using a uniformly distributed random variable.

Example 3: Voronoi Diagram. II

Figure: Numerical solution u_{h} and gradient magnitude $\left|\nabla u_{h}\right|$ on a Voronoi diagram subdivision with a fine scale material coefficient pattern. On each subdomain a mesh fitted the row-wise alternating material coefficient is set-up. The numerical solution is approximated using Q_{2} elements in the bulk. On each skeleton subdomain is approximated by a single Q_{4} element.

Example 3: Voronoi Diagram. III

Figure: Numerical solution u_{h} and gradient magnitude $\left|\nabla u_{h}\right|$ on a Voronoi diagram subdivision with subdomain-wise constant material coefficient. Left: Q_{2} elements on meshes generated from one fine grid. Middle: Q_{2} elements on meshes generated from one coarse grid with a mesh size in the same order as the subdomain sizes. Right: A single Q_{2} element on each subdomain and skeleton subdomain.

Hybrid High Order method and cut cells

Hybrid High-Order methods on unfitted meshes

- Introduced in [Di Pietro, Ern 15]
- k polynomial degree

- in the case of unfitted meshes, we consider k on the faces and $\mathbf{k}+\mathbf{1}$ on the cells

- The discrete problem is assembled cell-wise

Interest of unfitted meshes

- Enables the use of simpler meshes to mesh intricate geometries
- Fitted HHO is not adapted to treat curvilinear boundaries
- Moving interfaces and boundaries handled without mesh modification
- A first work on elliptic interface problems [B., Ern 18]
- Keypoint: robustness with respect to bad cuts by agglomeration of cells [Johansson, Larson 13] (using polyhedral meshes)
- Other works on discontinuous Galerkin with unfitted interfaces [Bastian, Engwer 09], [Massjung 12], [Gürkan, Massing 18] also related [Cangiani, Georgoulis, Sabawi 2018]
- Hybridized dG and unfitted interfaces [Cockburn, Qiu, Solano 14], [Gürkan et al. 16]

Model problem and its HHO discretization

Model problem

- domain $\Omega \subset \mathbb{R}^{d}$
- interface 「
- subdomains $\Omega_{1}, \Omega_{2} \subset \Omega$
- define the jump:

$$
\llbracket y \rrbracket_{\ulcorner }=y_{\mid \Omega_{1}}-y_{\mid \Omega_{2}}
$$

$$
\begin{aligned}
\kappa_{1} \Delta u & =f \text { in } \Omega_{1} \\
\kappa_{2} \Delta u & =f \text { in } \Omega_{2} \\
\llbracket u \rrbracket_{\Gamma} & =g_{D} \text { on } \Gamma, \\
\llbracket \kappa \nabla u \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma} & =g_{N} \text { on } \Gamma, \\
u & =0 \text { on } \partial \Omega,
\end{aligned}
$$

The local discretization: uncut cells $(1 / 3)$

- Let T a cell of \mathcal{T}_{h}

- \mathbf{n}_{T} outward normal to T
- The local unknowns are $u_{T} \in \mathbb{P}^{k+1}(T)$ on the cell T and the polynomials $u_{F} \in \mathbb{P}^{k}(F)$ on every face F composing the boundary of T
- $\hat{u}_{T}=\left(u_{T}, u_{\partial T}\right)$ with $u_{\partial T}=\left(u_{F}\right)_{F \in \mathcal{F}_{T}}$

The local discretization: uncut cells $(2 / 3)$

Two important elements:

- A gradient reconstruction operator $\mathbf{G}_{T}^{k}\left(\hat{u}_{T}\right) \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)$ such that for every $\mathbf{q} \in \mathbb{P}^{k}\left(T ; \mathbb{R}^{d}\right)$,

$$
\left(\mathbf{G}_{T}^{k}\left(\hat{u}_{T}\right), \mathbf{q}\right)_{T}=-\left(u_{T}, \operatorname{div} \mathbf{q}\right)_{T}+\left(u_{\partial T}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{\partial T}
$$

- A stabilization operator

$$
s_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)=h_{T}^{-1} \sum_{F \in \mathcal{F}_{T}}\left(\Pi_{F}^{k}\left(u_{F}-u_{T}\right), v_{F}-v_{T}\right)_{F}
$$

(if cell unknowns in $\mathbb{P}^{k+1}(T)$)
Goal: to enforce matching of cells and faces unknowns

The local discretization: uncut cells (3/3)

- The local operator

$$
a_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)=\kappa\left(\mathbf{G}_{T}^{k}\left(\hat{u}_{T}\right), \mathbf{G}_{T}^{k}\left(\hat{v}_{T}\right)\right)_{T}+\kappa s_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)
$$

- The local right-hand side

$$
\ell_{T}\left(\hat{v}_{T}\right)=\left(f, v_{T}\right)_{T}
$$

The local discretization: cut cells $(1 / 4)$

- Decomposition of the cut cells

$$
\bar{T}=\overline{T_{1}} \cup \overline{T_{2}}
$$

- Decomposition of the cut faces

$$
\partial\left(T_{1}\right)=(\partial T)^{1} \cup T\left\ulcorner\quad \partial\left(T_{2}\right)=(\partial T)^{2} \cup T\ulcorner\right.
$$

The local discretization: cut cells $(2 / 4)$

- We double the unknowns on cut cells/faces in the spirit of [Hansbo, Hansbo 02] for cut FEM
- $u_{T_{1}} \in \mathbb{P}^{k+1}\left(T_{1}\right), u_{T_{2}} \in \mathbb{P}^{k+1}\left(T_{2}\right)$
- $u_{(\partial T)^{1}} \in \mathbb{P}^{k}\left((\partial T)^{1}\right), u_{(\partial T)^{2}} \in \mathbb{P}^{k}\left((\partial T)^{2}\right)$
- $\hat{u}_{T}=\left(u_{T_{1}}, u_{(\partial T)^{1}}, u_{T_{2}}, u_{(\partial T)^{2}}\right)$
- No dof on T 「

The local discretization: cut cells $(3 / 4)$

- For $i=1,2$, a gradient reconstruction operator $\mathbf{G}_{T_{i}}^{k}\left(\hat{u}_{T}\right) \in \mathbb{P}^{k}\left(T_{i} ; \mathbb{R}^{d}\right)$ such that for every $\mathbf{q} \in \mathbb{P}^{k}\left(T_{i} ; \mathbb{R}^{d}\right)$,

$$
\begin{array}{r}
\left(\mathbf{G}_{T_{i}}^{k}\left(\hat{u}_{T}\right), \mathbf{q}\right)_{T_{i}}=-\left(u_{T_{i}}, \operatorname{div} \mathbf{q}\right)_{T_{i}}+\left(u_{(\partial T)^{i}}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{(\partial T)^{i}} \\
+\left(u_{T_{i}}, \mathbf{q} \cdot \mathbf{n}_{T}\right)_{T^{r}}
\end{array}
$$

Can also use Nitsche's method on the interface [B., Ern 18]

- Lehrenfeld-Schöberl stabilization operator

$$
s_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)=h_{T}^{-1} \sum_{i \in\{1,2\}} \kappa_{i} \sum_{F_{i} \in \mathcal{F}_{T_{i}}}\left(\Pi_{F_{i}}^{k}\left(u_{F_{i}}-u_{T_{i}}\right), v_{F_{i}}-v_{T_{i}}\right)_{F_{i}}
$$

The local discretization: cut cells (4/4)

- Assumption : $\kappa_{1} \geq \kappa_{2}$
- The local operator

$$
\begin{aligned}
a_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)= & \sum_{i \in\{1,2\}} \kappa_{i}\left(\mathbf{G}_{T_{i}}^{k}\left(\hat{u}_{T}\right), \mathbf{G}_{T_{i}}^{k}\left(\hat{v}_{T}\right)\right)_{T_{i}}+\left(\kappa_{2} \nabla u_{T_{2}} \cdot \mathbf{n}_{\Gamma}, \llbracket v_{T} \rrbracket_{\ulcorner }\right)_{T\ulcorner } \\
& +\eta \kappa_{2} h_{T}^{-1}\left(\llbracket u_{T} \rrbracket_{\Gamma}, \llbracket v_{T} \rrbracket_{\Gamma}\right)_{T\ulcorner }+\kappa_{2}\left(\llbracket u_{T} \rrbracket_{\Gamma}, \nabla v_{T_{2}} \cdot \mathbf{n}_{\Gamma}\right)_{T\ulcorner } \\
& +s_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)
\end{aligned}
$$

- The local right-hand side

$$
\begin{aligned}
\ell_{T}\left(\hat{v}_{T}\right) & =\sum_{i \in\{1,2\}}\left(f, v_{T_{i}}\right)_{T_{i}}+\left(g_{N}, v_{T_{2}}\right)_{T\ulcorner } \\
& +\eta \kappa_{2} h_{T}^{-1}\left(g_{D}, \llbracket v_{T} \rrbracket_{\ulcorner }\right)_{T\ulcorner }+\kappa_{2}\left(g_{D}, \nabla v_{T_{2}} \cdot n_{\Gamma}\right)_{T\ulcorner }
\end{aligned}
$$

- Several variants are possible by modifying the reconstruction.

The global discretized problem

- $\hat{u}_{h}=\left\{\hat{u}_{T}\right\}_{T \in \mathcal{T}_{h}}$: the global set of dofs.
- The problem is assembled cell-wise
- find \hat{u}_{h} such that

$$
a_{h}\left(\hat{u}_{h}, \hat{v}_{h}\right)=\ell_{h}\left(\hat{v}_{h}\right) \text { for every } \hat{v}_{h}
$$

- with $a_{h}\left(\hat{u}_{h}, \hat{v}_{h}\right)=\sum_{T \in \mathcal{T}_{h}} a_{T}\left(\hat{u}_{T}, \hat{v}_{T}\right)$ and $\ell_{h}\left(\hat{v}_{h}\right)=\sum_{T \in \mathcal{T}_{h}} \ell_{T}\left(\hat{v}_{T}\right)$

Numerical analysis, unfitted HHO method

Stability

- Two assumptions:
- interface well resolved
- no bad cuts of volume cells thanks to agglomeration

- Energy norm (local/cut cells):
$\left\|\hat{v}_{h}\right\|_{*}^{2}:=\sum_{i=1}^{2}\left(\kappa_{i}\left\|\nabla v_{T_{i}}\right\|_{T_{i}}^{2}+\kappa_{i} h_{T}^{-1}\left\|\Pi_{(\partial T)^{i}}^{k}\left(v_{T_{i}}-v_{(\partial T)^{i}}\right)\right\|_{(\partial T)^{i}}^{2}\right)+\kappa_{2} \eta h_{T}^{-1}\left\|\llbracket v_{T} \rrbracket_{\Gamma}\right\|_{T^{\Gamma}}^{2}$

Lemma

"Cut-robust" trace inequality implies coercivity, i.e. for η large enough, for every \hat{v}_{h}, we have $\left\|\hat{v}_{h}\right\|_{*}^{2} \lesssim a_{h}\left(\hat{v}_{h}, \hat{v}_{h}\right)$

Approximation

- Consider $E_{i}: \Omega_{i} \rightarrow \mathbb{R}^{d}$ stable extension operator
- If the mesh is fine enough, for every T, there exists $T^{\dagger} \subset \mathbb{R}^{d}$, with $T \in T^{\dagger}$ such that the L^{2}-projections, $\left.\Pi_{T_{\dagger}}^{k+1} E_{1}(u)\right)_{\mid T_{1}}$, and $\Pi_{T^{\dagger}}^{k+1} E_{2}(u)_{\mid T_{2}}$ is an optimal approximation [Burman, Ern 18]
- In the analysis, face approximation $\Pi_{(\partial T)^{1}}^{k} u$ and $\Pi_{(\partial T)^{2}}^{k} u$, handled through orthogonality/stability
- define $\hat{I}_{T}^{k}(u)=\left(\left(\Pi_{T^{\dagger}}^{k+1} E_{1}(u)\right)_{T_{1}}, \Pi_{(\partial T)^{1}}^{k} u,\left(\Pi_{T^{\dagger}}^{k+1} E_{2}(u)\right)_{\mid T_{2}}, \Pi_{(\partial T)^{2}}^{k} u\right)$

Lemma

For every $v \in H^{k+2}(\Omega)$, we have

$$
\left\|\mathbf{G}_{T_{i}}^{k}\left(\hat{I}_{T}^{k}(v)\right)-\nabla v\right\|_{T_{i}} \lesssim h^{k+1}\left|E_{i}(v)\right|_{H^{k+2}\left(T^{\dagger}\right)}
$$

Consistency

- Consider the discrete error $\hat{e}_{h}=\hat{\imath}_{h}^{k}(u)-\hat{u}_{h}$, with $\hat{I}_{h}^{k}(u)$ defined through the local approximation operator $\hat{l}_{T}^{k}(u)$.

Lemma

For $\hat{e}_{h}=\hat{I}_{h}^{k}(u)-\hat{u}_{h}$, we define

$$
\mathcal{F}\left(\hat{v}_{h}\right)=a_{h}\left(\hat{e}_{h}, \hat{v}_{h}\right)
$$

and we have

$$
\left|\mathcal{F}\left(\hat{v}_{h}\right)\right| \lesssim\left(\sum_{T \in \mathcal{T}_{h}}\left\|\nabla u-\mathbf{G}_{T}^{k}\left(\hat{l}_{T}^{k}(u)\right)\right\|_{T}^{2}+\ldots\right)^{1 / 2}\left\|\hat{v}_{h}\right\|_{*}
$$

Error estimate

Theorem
We have

$$
\left\|u-\hat{u}_{h}\right\|_{*} \leq\left\|u-\hat{I}_{h}^{k}(u)\right\|_{*}+\left(\sum_{T \in \mathcal{T}_{h}}\left\|\nabla u-\mathbf{G}_{T}^{k}\left(\hat{I}_{h}^{k}(u)\right)\right\|_{T}^{2}+\ldots\right)^{1 / 2}
$$

Then when $u \in H^{k+2}(\Omega)$, we have

$$
\left\|u-\hat{u}_{h}\right\|_{*} \lesssim h^{k+1}\|u\|_{H^{k+2}(\Omega)}
$$

- $\|\cdot\|_{*}$ energy norm
- proof:

$$
\begin{aligned}
\left\|\hat{e}_{h}\right\|_{*}^{2} & \lesssim a_{h}\left(\hat{e}_{h}, \hat{e}_{h}\right) \\
& \lesssim\left(\sum_{T \in \mathcal{T}_{h}}\left\|\nabla u-\mathbf{G}_{T}^{k}\left(\hat{I}_{T}^{k}(u)\right)\right\|_{T}^{2}+\ldots\right)^{1 / 2}\left\|\hat{e}_{h}\right\|_{*}
\end{aligned}
$$

and triangular inequality

Computational experiments HHO with cut cells

Geometry

- Developments in the DiSk++ library (available on github)
- $\Omega=(0,1)^{2}$
- 「 circle, radius $R=0.33$
- Homogeneous cartesian mesh

A contrast problem

- From [Burman, Guzmán, Sánchez, Sarkis 16]
- $\kappa_{1}=1, \kappa_{2}=10^{4}, g_{D}=g_{N}=0$
- Exact solution

$$
\begin{array}{r}
u(\mathbf{x})=\frac{r^{2}}{\kappa_{1}} \text { in } \Omega_{1} \\
u(\mathbf{x})=\frac{r^{2}}{\kappa_{2}}+R^{2}\left(\frac{1}{\kappa_{1}}-\frac{1}{\kappa_{2}}\right) \text { in } \Omega_{2}
\end{array}
$$

- $r^{2}=\left(x_{1}-0.5\right)^{2}+\left(x_{2}-0.5\right)^{2}$

A problem with a jump in the solution

- From [Huynh, Nguyen, Peraire, Khoo 13]
- Exact solution

$$
\begin{array}{r}
u(\mathbf{x})=\sin \left(\pi x_{1}\right) \sin \left(\pi x_{2}\right) \text { in } \Omega_{1} \\
u(\mathbf{x})=e^{x_{1}} \cos \left(x_{2}\right) \text { in } \Omega_{2}
\end{array}
$$

- $\kappa_{1}=\kappa_{2}=1$

Concluding remarks

- Hybridized cutFEM
- an unfitted hybridized method for polytopal geometries
- requires stabilization in the interface zone
- mesh resolve local cell small scale features + static condensation
- a flexible tool for the coupling of pdes on the bulk and on surfaces (see figure).
- HHO method with cut elements
- allows for (relatively) straightforward discretization of curved boundaries
- interface coupling - cell model

- requires cell agglomeration for stability
- extension to Stokes' problem under way

Main results, error estimates

- energy norm:

$$
\left\|\|v\|_{h}^{2}=\right\| v_{0}\left\|_{s_{h, 0}}^{2}+\sum_{i=1}^{N}\right\| \nabla v_{i}\left\|_{\Omega_{i}, a_{i}}^{2}+h\right\| \nabla v_{i}\left\|_{\partial \Omega_{i}, a_{i}}^{2}+h^{-1}\right\|[v]_{i}\left\|_{\partial \Omega_{i}, a_{i}}^{2}+\right\| v_{i} \|_{s_{h, i}}^{2}
$$

- $\|\|\cdot\|\|_{h}$ is a norm thanks to a Poincaré inequality
- The following error estimates hold (assuming regularity)

$$
\left\|\left\|u-u_{h}\right\|\right\|_{h}^{2} \lesssim h^{2 p}\left\|u_{0}\right\|_{H^{p+1 / 2}\left(\Omega_{0}\right)}^{2}+\sum_{i=1}^{N} h^{2 p}\left\|u_{i}\right\|_{H^{p+1}\left(\Omega_{i}\right)}^{2}
$$

and, with $s \in[1,2]$ depending on the regularity of the dual problem,

$$
\sum_{i=1}^{N}\left\|u_{i}-u_{h, i}\right\|_{\Omega_{i}}^{2} \lesssim h^{2 p+2(s-1)}\left\|u_{0}\right\|_{H^{p+1 / 2}\left(\Omega_{0}\right)}^{2}+\sum_{i=1}^{N} h^{2 p+2(s-1)}\left\|u_{i}\right\|_{H^{p+1}\left(\Omega_{i}\right)}^{2}
$$

- Analysis: fictitious domain argument in each subdomain + Poincaré

Main results, the Schur complement I

- Define the operator $T_{h}: V_{h, 0} \rightarrow V_{h, 1, N}=\bigoplus_{i=1}^{N} V_{h, i}$ such that

$$
\begin{equation*}
A_{h}\left(v_{0}+T_{h} v_{0}, 0 \oplus w\right)=0, \quad \forall w \in V_{h, 1, N} \tag{14}
\end{equation*}
$$

where the notation $0 \oplus w$ indicates that the component in $V_{h, 0}$ is zero.

- Define the Schur complement form on $V_{h, 0}$ by

$$
\begin{equation*}
S_{h}\left(v_{0}, w_{0}\right)=A_{h}\left(v_{0}+T_{h} v_{0}, w_{0}+T_{h} w_{0}\right), \quad v_{0}, w_{0} \in V_{h, 0} \tag{15}
\end{equation*}
$$

- Solution using the Schur complement: we have the A_{h}-orthogonal splitting $W_{h}=\left(I+T_{h}\right) V_{h, 0} \perp\left(\{0\} \oplus V_{h, 1, N}\right)$. Thus $u_{h}=\left(I+T_{h}\right) u_{h, 0}+\left(0 \oplus u_{h, 1, N}\right)$ where $u_{h, 0} \in V_{h, 0}$ is the solution to

$$
\begin{equation*}
S_{h}\left(u_{h, 0}, w_{0}\right)=I_{h}\left(\left(I+T_{h}\right) w_{0}\right), \quad \forall w_{0} \in V_{h, 0} \tag{16}
\end{equation*}
$$

and $u_{h, 1, N}$ is the solution to

$$
\begin{equation*}
A_{h}\left(0 \oplus u_{h, 1, N}, 0 \oplus w\right)=I_{h}(w), \quad \forall w \in V_{h, 1, N} \tag{17}
\end{equation*}
$$

We note that (17) decouples and can be solved subdomain wise.

Main results, the Schur complement II

- Let $\left\{\varphi_{i}\right\}_{i=1}^{D}$ be the basis in $V_{h, 0}$ and denote the expansion by

$$
\begin{equation*}
v=\sum_{i=1}^{D} \widehat{v}_{i} \varphi_{i} \tag{18}
\end{equation*}
$$

- The stiffness matrix associated with the Schur complement is defined by

$$
\begin{equation*}
(\widehat{S} \widehat{v}, \widehat{w})_{\mathbb{R}^{D}}=S_{h}(v, w) \tag{19}
\end{equation*}
$$

Theorem (Condition Number Estimate)
The condition number $\kappa(\widehat{S})$ satisfies the estimate

$$
\begin{equation*}
\kappa(\widehat{S}) \lesssim h^{-1}\left(\min _{1 \leq i \leq N} d_{\Omega_{i}}\right)^{-1} \tag{20}
\end{equation*}
$$

where h is the (uniform) mesh size and $d_{\Omega_{i}}$ is the diameter of domain Ω_{i}.

Local Schur complement

- Close to the Hybrid Discontinuous Galerkin (HDG) method
- Polyhedral method
- Primal point of view
- The dof attached to the cells can be eliminated by a local Schur complement

- The global problem to solve comprises only the dof attached to the faces
- We recover the polynomials of the cells using post-processing

[^0]: ${ }^{1}$ EB. Ghost penalty, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1217-1220.

[^1]: ${ }^{2}$ EB, S. Claus, A. Massing, A Stabilized Cut Finite Element Method for the Three Field Stokes Problem, SISC, vol 37 (7), 2015.
 ${ }^{3}$ S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, arXiv:1806.10156
 ${ }^{4}$ EB, D. Elfverson, P. Hansbo, M. Larson, K. Larsson, Shape optimization using the cut finite element method. CMAME (2018).

