Combining cut element methods and hybridization

Erik Burman University College London

POEMS 2019, CIRM, April 2019

Joint work with: G. Delay, D. Elfversson, A. Ern, P. Hansbo, M. Larson, K. Larsson

Engineering and Physical Sciences Research Council

Outline

- 1. cutFEM, levelset geometries
- 2. cutFEM with hybridization, polygonal grains
- 3. A Hybridized High Order (HHO) method with cut cells

Figure: SEM image of sandstone, width ≈ 1 mm. [Baud et al. J. of Struct. Geo. 2004].

Solving PDEs on meshes that are not fitted to the domain

Figure: Can we solve PDEs on embedded domains (left) or embedded surfaces (right)

- ▶ Imposition of boundary conditions: [Nitsche 1971], [Babuska 1973].
- Fictitious domain methods: [Girault, Glowinski 1995], [Angot 1998], [Bertoluzza et al. 2005], [Haslinger, Renard 2009]
- ▶ Unfitted FEM: [Barrett, Elliott 1987], [Hansbo, Hansbo 2002]
- ► Trace finite elements: [Olshanskii et al. 2009]

CutFEM - model problem

Consider Poisson's equation: $u:\Omega \to \mathbb{R}$ such that

$$\begin{aligned} -\Delta u &= f & \text{in } \Omega \\ u &= g_D & \text{on } \Gamma_D \\ \nu \cdot \nabla u &= g_N & \text{on } \Gamma_N \end{aligned}$$

where ν is the outward pointing normal of Γ

CutFEM

CutFEM

CutFEM

Mesh and Finite Element Spaces.

Let

- U_Ω be a polygonal domain such that $\Omega \subset U_\Omega$
- ▶ $\mathcal{T}_{h,0}$ be a family of meshes on U_Ω with mesh parameter $h \in (0, h_0]$

$$\bullet \ \mathcal{T}_h = \{ T \in \mathcal{T}_{h,0} : \overline{\Omega} \cap \overline{T} \neq \emptyset \}$$

- \mathcal{T}_{Γ} set of elements in \mathcal{T}_h , that intersect the boundary Γ
- \mathcal{F}_h set of interior faces of elements in \mathcal{T}_{Γ}

• $V_{U,h} \in H^1(U_\Omega)$ be a finite element space of order p on $\mathcal{T}_{h,0}$ and $V_h = V_{U,h}|_{\mathcal{T}_h}$ Assume that

- Γ is smooth (or a polygon with curved boundaries)
- Γ "well resolved" by the mesh: any cut cell is divided in two parts, both including a part of the triangle boundary

CutFEM I

Method. Find $u_h \in V_h$ such that

$$A_h(u_h, v_h) = L_h(v_h) \qquad \forall v_h \in V_h$$

where

$$A_h(u_h, v_h) = a_h(u_h, v_h) + s_h(u_h, v_h)$$

a_h(u, v) and L_h(v): weak forms over Ω, with weak boundary conditions
 Nitsche's method:

$$a_{h}(u,v) := \int_{\Omega} \nabla u \cdot \nabla v \, dx - \int_{\Gamma_{D}} \left(\underbrace{\nu \cdot \nabla uv}_{consistency} + \underbrace{\nu \cdot \nabla vu}_{symmetry} - \underbrace{\frac{\gamma}{h}uv}_{coercivity} \right) \, ds$$

Right hand side:

$$L_h(v) = (f, v)_{\Omega} + (g_N, v)_{\Gamma_N} - (g_D, v \cdot \nabla v)_{\Gamma_D} + \beta h^{-1}(g_D, v)_{\Gamma_D}$$

CutFEM II

▶ $s_h(u, v)$: stabilization added to make A_h coercive, independently of the cut¹

$$\|u_h\|_{H^1(\mathcal{T}_h)}^2 \lesssim \|u_h\|_{H^1(\Omega)}^2 + s_h(u_h, u_h) \lesssim \underbrace{a_h(u_h, u_h)}_{\text{only control of } H^1(\Omega)} + s_h(u_h, u_h)$$

s_h must also have some weak consistency

$$s(i_hu-u,i_hu-u)^{\frac{1}{2}}\lesssim h^p$$

Example: penalty on derivative jumps:

$$s_h(u_h, v_h) := \gamma_g \sum_{F \in \mathcal{F}_h} \sum_{l=1}^p h^{2l-1} \int_F [D_{n_F}^l u_h] [D_{n_F}^l v_h] \, \mathrm{d}s$$

Here $D'_{n_F}v$ denotes the *I*th partial derivative in the normal direction, $[x]|_F$ the jump of the quantity x over the face F.

 There is now a zoo of different ghost penalty terms, both for cutFEM and TraceFEM. [Lehrenfeld 2018], [Larson et al. 2018]

¹EB. Ghost penalty, C. R. Math. Acad. Sci. Paris 348 (2010), no. 21-22, 1217-1220.

CutFEM: Main Results (no geometry approximation) Let the energy norm be defined by

$$|||v|||^{2} = ||v||^{2}_{H^{1}(\Omega)} + ||v||^{2}_{s_{h}} + h^{-1}||v||^{2}_{\Gamma_{D}} + h||n \cdot \nabla v||^{2}_{\Gamma_{D}}$$

Coercivity

$$|||v|||^2 \lesssim A_h(v,v) \qquad v \in V_h$$

Continuity

$$A_h(v,w) \lesssim |||v||| \, |||w||| \qquad v,w \in H^{p+1}(\mathcal{T}_h) + V_h$$

- Interpolation estimate
 - $u^e \in H^{p+1}(\mathcal{T}_h)$ stable extension of $u \in H^{p+1}(\mathcal{T}_h)$ (Stein)
 - $\pi_h: H^{p+1}(\mathcal{T}_h) \to V_h$ optimal interpolation operator

$$|||u^e - \pi_h u^e||| \lesssim h^p ||u||_{p+1}$$

• A priori error estimates (Modified argument for $H^{1+\epsilon}(\Omega)$, $\epsilon > 0$)

$$\|u - u_h\|_{H^1(\Omega)} \lesssim |||u^e - u_h||| \lesssim h^p \|u\|_{p+1}, \qquad \|u - u_h\|_{\Omega} \lesssim h^{p+1} \|u\|_{p+1}$$

Estimate of the stiffness matrix condition number:

$$\kappa(\mathcal{A}) \lesssim h^{-2}$$

Applications, two-phase flows shape optimization^{2 3 4}

³S. Claus, P. Kerfriden, A CutFEM method for two-phase flow problems, arXiv:1806.10156

⁴EB, D. Elfverson, P. Hansbo, M. Larson, K. Larsson, *Shape optimization using the cut finite element method*. CMAME (2018).

²EB, S. Claus, A. Massing, A Stabilized Cut Finite Element Method for the Three Field Stokes Problem, SISC, vol 37 (7), 2015.

Combining cutFEM and hybridization

cutFEM using hybridization

- Polyhedral boundaries (possibly curved faces)
- Introduce skeleton unknowns
- Motivation
 - Strongly varying diffusion between cells
 - Strongly varying diffusion within a cell
 - Inclusions
 - Coupled PDEs on bulk and surfaces
- Hybridization allows elimination of bulk dofs through static condensation
- The Ω_i and $\Omega_{0,k}$ discretized on bulk mesh
- No requirement for the meshes to match

Bulk and skeleton discretization (i = 3, k = 2)

Figure: U_{Ω_i}

 $\mathcal{T}_{h,\Omega_i} = \mathcal{T}_{h,i}$

 $\Omega_{0,k}$

Figure: $U_{\Omega_{0,k}}$

 $\mathcal{T}_h(U_{\Omega_{0,k}})$

 $\mathcal{T}_{h,\Omega_{0,k}} = \mathcal{T}_{h,0,k}$

Finite element spaces I

- For O ∈ {Ω_i}^N_{i=1} let V_{h,O} be a finite dimensional space consisting of continuous piecewise polynomial functions defined on T_{h,O}
- we also use the simplified notation

$$V_{h,i} = V_{h,\Omega_i}, \qquad \mathcal{T}_{h,i} = \mathcal{T}_{h,\Omega_i}$$
 (1)

and for $O \in {\{\Omega_{0,k}\}}_{k=1}^{N_0}$,

$$V_{h,0,k} = V_{h,\Omega_{0,k}}, \qquad \mathcal{T}_{h,0,k} = \mathcal{T}_{h,\Omega_{0,k}}, \qquad \mathcal{T}_{h,0} = \sqcup_{k=1}^{N_0} \mathcal{T}_{h,0,k}$$
(2)

Define the finite element spaces

$$V_{h,0} = \bigoplus_{k=1}^{N_0} V_{h,0,k}, \qquad V_{h,1,N} = \bigoplus_{i=1}^N V_{h,i}$$
 (3)

and

$$W_h = V_{h,0} \oplus V_{h,1,N} \tag{4}$$

The Poisson interface problem

We consider the following hybridized formulation of the Poisson problem: find $u_0: \Omega_0 \to \mathbb{R}$ and for i = 1, ..., N, $u_i: \Omega_i \to \mathbb{R}$ such that

$$\begin{aligned}
-\nabla \cdot a_i \nabla u_i &= f_i & \text{ in } \Omega_i & (5) \\
\llbracket \nu \cdot a \nabla u \rrbracket &= 0 & \text{ on } \Omega_0 & (6) \\
\llbracket u \rrbracket_i &= 0 & \text{ on } \partial \Omega_i \cap \Omega_0 & (7) \\
u_i &= 0 & \text{ on } \partial \Omega_i \cap \partial \Omega & (8)
\end{aligned}$$

Here a_i , i = 1, ..., N, are positive constants and the jumps operators are defined by

$$[u]|_{\partial\Omega_i\cap\Omega_0} = u_i - u_0, \qquad [\![\nu \cdot a\nabla u]\!]|_{\partial\Omega_i\cap\partial\Omega_j} = \nu_i \cdot a_i\nabla u_i + \nu_j \cdot a_j\nabla u_j \qquad (9)$$

where ν_i is the exterior unit normal to Ω_i .

The hybridized cutFEM method

Find $u_h \in W_h$ such that

$$A_h(u_h, v) = I_h(v), \qquad \forall v \in W_h \tag{10}$$

where W_h is defined in (4) and

$$\begin{split} \mathcal{A}_{h}(\boldsymbol{v},\boldsymbol{w}) &= s_{h,0}(\boldsymbol{v}_{0},\boldsymbol{w}_{0}) + \sum_{i=1}^{N} \Big((a_{i}\nabla\boldsymbol{v}_{i},\nabla\boldsymbol{w}_{i})_{\Omega_{i}} + s_{h,i}(\boldsymbol{v}_{i},\boldsymbol{w}_{i}) \\ &+ (\beta h_{i}^{-1}a_{i}[\boldsymbol{v}]_{i},[\boldsymbol{w}]_{i})_{\partial\Omega_{i}} - (\nu_{i}\cdot a_{i}\nabla\boldsymbol{v}_{i},[\boldsymbol{w}]_{i})_{\partial\Omega_{i}} - ([\boldsymbol{v}]_{i},\nu_{i}\cdot a_{i}\nabla\boldsymbol{w}_{i})_{\partial\Omega_{i}} \Big) \\ &I_{h}(\boldsymbol{v}) = \sum_{i=1}^{N} (f_{i},\boldsymbol{v}_{i})_{\Omega_{i}} \end{split}$$

- To ensure coercivity: stabilization both for the bulk and the skeleton variable.
- In each subdomain discretization equivalent to the fictitious domain case.
- In the fitted case this coincides with the hybridized Nitsche method proposed in [Egger 2009].

Stabilization forms - bulk and surface ghost penalty

- ▶ Define set of faces in the interface zones, $\mathcal{F}_{h,i}$ and $\mathcal{F}_{h,0,k}$
- For each subdomain Ω_i , $1 \le i \le N$

$$s_{h,i}(v,w) = \sum_{\ell=1}^{p} c_{d,\ell} h^{2\ell-1}([D_{n_F}^{\ell}v], [D_{n_F}^{\ell}w])_{\mathcal{F}_{h,i}}$$
(11)

► For each skeleton subdomain $\Omega_{0,k}$, $1 \le k \le N_0$ [Larson and Zahedi 2017]

$$s_{h,0,k}(v,w) = \sum_{\ell=1}^{p} c_{d-1,\ell} h^{2\ell} \left(\underbrace{(D_{\nu}^{\ell}v, D_{\nu}^{\ell}w)_{\Omega_{0,k}}}_{\text{normal stabilization}} + \underbrace{([D_{n_{F}}^{\ell}v], [D_{n_{F}}^{\ell}w])_{\mathcal{F}_{h,0,k}}}_{\text{jump stabilization}} \right)_{(12)}$$

Main results, error estimates

energy norm (norm thanks to a Poincaré inequality):

$$|||v|||_{h}^{2} = ||v_{0}||_{s_{h,0}}^{2} + \sum_{i=1}^{N} ||\nabla v_{i}||_{\Omega_{i},a_{i}}^{2} + h||\nabla v_{i}||_{\partial\Omega_{i},a_{i}}^{2} + h^{-1}||[v]_{i}||_{\partial\Omega_{i},a_{i}}^{2} + ||v_{i}||_{s_{h,i}}^{2}$$

The following error estimates hold:

$$|||u - u_h|||_h^2 \lesssim h^{2p} ||u_0||_{H^{p+1/2}(\Omega_0)}^2 + \sum_{i=1}^N h^{2p} ||u_i||_{H^{p+1}(\Omega_i)}^2$$

- Also L²-norm error estimates.
- ► Analysis: fictitious domain argument in each subdomain + Poincaré
- Let \hat{S} denote the stiffness matrix associated with the Schur complement, then

condition number:
$$\kappa(\widehat{S}) \lesssim h^{-1} \Big(\min_{1 \leq i \leq N} d_{\Omega_i}\Big)^{-1}$$

(13)

where h is the (uniform) mesh size and d_{Ω_i} is the diameter of domain Ω_i .

Computional experiments cutFEM and hybridization

Example 1: Three Subdomains. I

- Three subdomains
- ▶ $a_i = i, i = 1, 2, 3.$
- Global Background Grid.
 All meshes are extracted from the same background grid of Q₂ elements
- ► Single Element Interfaces.

The mesh on each subdomain is constructed independently, some as quadrilateral meshes and some as triangular, and we equip all subdomain meshes with Q_2/P_2 elements. On each skeleton subdomain we use a single Q_4 element.

Example 1: Three Subdomains. II

Example 1: Three Subdomains. III

Example 2: Convergence study. I

Problem with known exact solution used in convergence studies.

- The domain is the unit square $[0,1]^2$ partitioned into two subdomains
- material coefficients $a_1 = 1$ and $a_2 = 2\pi 1$.

Example 2: Convergence study. II

Figure: Convergence studies using meshes all from the same background grid. In all meshes the same elements are used (Q_1-Q_3) . Left: energy norm. Right: L^2 -norm.

Example 2: Convergence study. III

Figure: Convergence studies using non-matching meshes for the subdomains and a single polynomial for each skeleton subdomain. On the subdomains Q_2 elements are used and on the skeleton subdomains Q_2-Q_6 polynomials are used. Left: energy norm. Right: L^2 -norm.

Example 3: Voronoi Diagram. I

Figure: Subdivisions of the unit square $[0, 1]^2$ generated from Voronoi diagrams featuring varying material coefficients. Left: Domain with a randomly oriented mesh in each subdomain and a material coefficient *a* which alternates between 1 and 1000 row-wise in the mesh. Right: Domain with material coefficient $a \in [0.01, 1]$ which is constant within each subdomain and chosen using a uniformly distributed random variable.

Example 3: Voronoi Diagram. II

Figure: Numerical solution u_h and gradient magnitude $|\nabla u_h|$ on a Voronoi diagram subdivision with a fine scale material coefficient pattern. On each subdomain a mesh fitted the row-wise alternating material coefficient is set-up. The numerical solution is approximated using Q_2 elements in the bulk. On each skeleton subdomain is approximated by a single Q_4 element.

Example 3: Voronoi Diagram. III

Figure: Numerical solution u_h and gradient magnitude $|\nabla u_h|$ on a Voronoi diagram subdivision with subdomain-wise constant material coefficient. Left: Q_2 elements on meshes generated from one fine grid. Middle: Q_2 elements on meshes generated from one coarse grid with a mesh size in the same order as the subdomain sizes. Right: A single Q_2 element on each subdomain and skeleton subdomain.

Hybrid High Order method and cut cells

Hybrid High-Order methods on unfitted meshes

- ▶ Introduced in [Di Pietro, Ern 15]
- k polynomial degree

• in the case of **unfitted meshes**, we consider k on the faces and k + 1 on the

► The discrete problem is assembled cell-wise

Interest of unfitted meshes

- Enables the use of simpler meshes to mesh intricate geometries
- Fitted HHO is not adapted to treat curvilinear boundaries
- Moving interfaces and boundaries handled without mesh modification
- ▶ A first work on elliptic interface problems [B., Ern 18]
- Keypoint: robustness with respect to bad cuts by agglomeration of cells
 [Johansson, Larson 13] (using polyhedral meshes)
- Other works on discontinuous Galerkin with unfitted interfaces [Bastian, Engwer 09], [Massjung 12], [Gürkan, Massing 18] also related [Cangiani, Georgoulis, Sabawi 2018]
- Hybridized dG and unfitted interfaces [Cockburn, Qiu, Solano 14], [Gürkan et al. 16]

Model problem and its HHO discretization

Model problem

- domain $\Omega \subset {\rm I\!R}^d$
- interface Γ
- subdomains Ω_1 , $\Omega_2 \subset \Omega$
- define the jump: $\llbracket y \rrbracket_{\Gamma} = y_{|\Omega_1} - y_{|\Omega_2}$

$$\begin{split} \kappa_1 \Delta u &= f \text{ in } \Omega_1 \\ \kappa_2 \Delta u &= f \text{ in } \Omega_2 \\ \llbracket u \rrbracket_{\Gamma} &= g_D \text{ on } \Gamma, \\ \llbracket \kappa \nabla u \rrbracket_{\Gamma} \cdot \mathbf{n}_{\Gamma} &= g_N \text{ on } \Gamma, \\ u &= 0 \text{ on } \partial \Omega, \end{split}$$

The local discretization: uncut cells (1/3)

• Let T a cell of \mathcal{T}_h

- \mathbf{n}_T outward normal to T
- ▶ The local unknowns are $u_T \in \mathbb{P}^{k+1}(T)$ on the cell T and the polynomials $u_F \in \mathbb{P}^k(F)$ on every face F composing the boundary of T
- $\hat{u}_T = (u_T, u_{\partial T})$ with $u_{\partial T} = (u_F)_{F \in \mathcal{F}_T}$

The local discretization: uncut cells (2/3)

Two important elements:

A gradient reconstruction operator $\mathbf{G}_{T}^{k}(\hat{u}_{T}) \in \mathbb{P}^{k}(T; \mathbb{R}^{d})$ such that for every $\mathbf{q} \in \mathbb{P}^{k}(T; \mathbb{R}^{d})$,

$$(\mathbf{G}_{\mathcal{T}}^{k}(\hat{u}_{\mathcal{T}}),\mathbf{q})_{\mathcal{T}} = -(\underline{u}_{\mathcal{T}},\operatorname{div}\mathbf{q})_{\mathcal{T}} + (\underline{u}_{\partial\mathcal{T}},\mathbf{q}\cdot\mathbf{n}_{\mathcal{T}})_{\partial\mathcal{T}}$$

A stabilization operator

$$s_T(\hat{u}_T, \hat{v}_T) = h_T^{-1} \sum_{F \in \mathcal{F}_T} (\Pi_F^k(u_F - u_T), v_F - v_T)_F$$

(if cell unknowns in $\mathbb{P}^{k+1}(T)$)

Goal: to enforce matching of cells and faces unknowns

The local discretization: uncut cells (3/3)

The local operator

$$a_T(\hat{u}_T, \hat{v}_T) = \kappa(\mathbf{G}_T^k(\hat{u}_T), \mathbf{G}_T^k(\hat{v}_T))_T + \kappa s_T(\hat{u}_T, \hat{v}_T)$$

The local right-hand side

$$\ell_T(\hat{v}_T) = (f, v_T)_T$$

The local discretization: cut cells (1/4)

Decomposition of the cut cells

$$\overline{T} = \overline{T_1} \cup \overline{T_2}$$

Decomposition of the cut faces

 $\partial(T_1) = (\partial T)^1 \cup T^{\Gamma} \qquad \partial(T_2) = (\partial T)^2 \cup T^{\Gamma}$

The local discretization: cut cells (2/4)

- We double the unknowns on cut cells/faces in the spirit of [Hansbo, Hansbo 02] for cut FEM
- $u_{T_1} \in \mathbb{P}^{k+1}(T_1), u_{T_2} \in \mathbb{P}^{k+1}(T_2)$
- ► $u_{(\partial T)^1} \in \mathbb{P}^k((\partial T)^1), \ u_{(\partial T)^2} \in \mathbb{P}^k((\partial T)^2)$
- $\hat{\boldsymbol{u}}_{T} = \left(\boldsymbol{u}_{T_1}, \boldsymbol{u}_{(\partial T)^1}, \boldsymbol{u}_{T_2}, \boldsymbol{u}_{(\partial T)^2}\right)$
- No dof on T^r

The local discretization: cut cells (3/4)

For i = 1, 2, a gradient reconstruction operator G^k_{T_i}(û_T) ∈ P^k(T_i; ℝ^d) such that for every q ∈ P^k(T_i; ℝ^d),

$$(\mathbf{G}_{\mathcal{T}_{i}}^{k}(\hat{u}_{\mathcal{T}}),\mathbf{q})_{\mathcal{T}_{i}} = -(u_{\mathcal{T}_{i}},\operatorname{div}\mathbf{q})_{\mathcal{T}_{i}} + (u_{(\partial\mathcal{T})^{i}},\mathbf{q}\cdot\mathbf{n}_{\mathcal{T}})_{(\partial\mathcal{T})^{i}} + (u_{\mathcal{T}_{i}},\mathbf{q}\cdot\mathbf{n}_{\mathcal{T}})_{\mathcal{T}^{\Gamma}}$$

Can also use Nitsche's method on the interface [B., Ern 18]

Lehrenfeld-Schöberl stabilization operator

$$s_T(\hat{u}_T, \hat{v}_T) = h_T^{-1} \sum_{i \in \{1,2\}} \kappa_i \sum_{F_i \in \mathcal{F}_{T_i}} (\Pi_{F_i}^k(u_{F_i} - u_{T_i}), v_{F_i} - v_{T_i})_{F_i}$$

The local discretization: cut cells (4/4)

- Assumption : $\kappa_1 \geq \kappa_2$
- The local operator

$$\begin{aligned} \mathsf{a}_{T}(\hat{u}_{T},\hat{v}_{T}) &= \sum_{i \in \{1,2\}} \kappa_{i}(\mathbf{G}_{T_{i}}^{k}(\hat{u}_{T}),\mathbf{G}_{T_{i}}^{k}(\hat{v}_{T}))_{T_{i}} + (\kappa_{2}\nabla u_{T_{2}} \cdot \mathbf{n}_{\Gamma}, \llbracket v_{T} \rrbracket_{\Gamma})_{T} \Gamma \\ &+ \eta\kappa_{2}h_{T}^{-1}(\llbracket u_{T} \rrbracket_{\Gamma}, \llbracket v_{T} \rrbracket_{\Gamma})_{T}\Gamma + \kappa_{2}(\llbracket u_{T} \rrbracket_{\Gamma}, \nabla v_{T_{2}} \cdot \mathbf{n}_{\Gamma})_{T}\Gamma \\ &+ s_{T}(\hat{u}_{T}, \hat{v}_{T}) \end{aligned}$$

The local right-hand side

$$\ell_{T}(\hat{\mathbf{v}}_{T}) = \sum_{i \in \{1,2\}} (f, \mathbf{v}_{T_{i}})_{T_{i}} + (g_{N}, \mathbf{v}_{T_{2}})_{T^{\Gamma}} + \eta \kappa_{2} h_{T}^{-1} (g_{D}, \llbracket \mathbf{v}_{T} \rrbracket_{\Gamma})_{T^{\Gamma}} + \kappa_{2} (g_{D}, \nabla \mathbf{v}_{T_{2}} \cdot \mathbf{n}_{\Gamma})_{T^{\Gamma}}$$

Several variants are possible by modifying the reconstruction.

The global discretized problem

- $\hat{u}_h = {\hat{u}_T}_{T \in \mathcal{T}_h}$: the global set of dofs.
- The problem is assembled cell-wise
- find û_h such that

$$a_h(\hat{u}_h, \hat{v}_h) = \ell_h(\hat{v}_h)$$
 for every \hat{v}_h

• with $a_h(\hat{u}_h, \hat{v}_h) = \sum_{T \in \mathcal{T}_h} a_T(\hat{u}_T, \hat{v}_T)$ and $\ell_h(\hat{v}_h) = \sum_{T \in \mathcal{T}_h} \ell_T(\hat{v}_T)$

Numerical analysis, unfitted HHO method

Stability

- Two assumptions :
 - interface well resolved
 - no bad cuts of volume cells thanks to agglomeration

Energy norm (local/cut cells):

$$\|\hat{\mathbf{v}}_{h}\|_{*}^{2} := \sum_{i=1}^{2} \left(\kappa_{i} \|\nabla \mathbf{v}_{\mathcal{T}_{i}}\|_{\mathcal{T}_{i}}^{2} + \kappa_{i} h_{\mathcal{T}}^{-1} \|\Pi_{(\partial \mathcal{T})^{i}}^{k} (\mathbf{v}_{\mathcal{T}_{i}} - \mathbf{v}_{(\partial \mathcal{T})^{i}})\|_{(\partial \mathcal{T})^{i}}^{2} \right) + \kappa_{2} \eta h_{\mathcal{T}}^{-1} \|[\mathbf{v}_{\mathcal{T}}]]_{\Gamma} \|_{\mathcal{T}^{\Gamma}}^{2}$$

Lemma

"Cut-robust" trace inequality implies coercivity, i.e. for η large enough, for every \hat{v}_h , we have $\|\hat{v}_h\|_*^2 \lesssim a_h(\hat{v}_h, \hat{v}_h)$

Approximation

- Consider $E_i : \Omega_i \to {\rm I\!R}^d$ stable extension operator
- ▶ If the mesh is fine enough, for every *T*, there exists $T^{\dagger} \subset \mathbb{R}^{d}$, with $T \in T^{\dagger}$ such that the L^{2} -projections, $\Pi_{T^{\dagger}}^{k+1}E_{1}(u))_{|T_{1}}$, and $\Pi_{T^{\dagger}}^{k+1}E_{2}(u)_{|T_{2}}$ is an optimal approximation [Burman, Ern 18]
- In the analysis, face approximation Π^k_{(∂T)¹}u and Π^k_{(∂T)²}u, handled through orthogonality/stability

► define
$$\hat{l}_T^k(u) = ((\Pi_{T^{\dagger}}^{k+1}E_1(u))_{|T_1}, \Pi_{(\partial T)^1}^k u, (\Pi_{T^{\dagger}}^{k+1}E_2(u))_{|T_2}, \Pi_{(\partial T)^2}^k u)$$

Lemma

For every $v \in H^{k+2}(\Omega)$, we have

$$\|\mathbf{G}_{\mathcal{T}_i}^k(\hat{I}_T^k(\mathbf{v})) -
abla \mathbf{v}\|_{\mathcal{T}_i} \lesssim h^{k+1} |E_i(\mathbf{v})|_{H^{k+2}(\mathcal{T}^\dagger)}$$

Consistency

► Consider the discrete error $\hat{e}_h = \hat{I}_h^k(u) - \hat{u}_h$, with $\hat{I}_h^k(u)$ defined through the local approximation operator $\hat{I}_T^k(u)$.

Lemma

For $\hat{e}_h = \hat{l}_h^k(u) - \hat{u}_h$, we define

$$\mathcal{F}(\hat{v}_h) = a_h(\hat{e}_h, \hat{v}_h)$$

and we have

$$\left||\mathcal{F}(\hat{v}_h)| \lesssim \left(\sum_{T \in \mathcal{T}_h} \|\nabla u - \mathbf{G}_T^k(\hat{l}_T^k(u))\|_T^2 + ...\right)^{1/2} \|\hat{v}_h\|_*$$

Error estimate Theorem We have

$$\|u - \hat{u}_h\|_* \leq \|u - \hat{l}_h^k(u)\|_* + \left(\sum_{T \in \mathcal{T}_h} \|\nabla u - \mathbf{G}_T^k(\hat{l}_h^k(u))\|_T^2 + ...\right)^{1/2}$$

Then when $u \in H^{k+2}(\Omega)$, we have

$$\|u - \hat{u}_h\|_* \lesssim h^{k+1} \|u\|_{H^{k+2}(\Omega)}$$

 $\blacktriangleright \|\cdot\|_*$ energy norm

▶ proof :

$$egin{aligned} &|\hat{e}_h\|_*^2 \lesssim a_h(\hat{e}_h, \hat{e}_h) \ &\lesssim \Big(\sum_{T\in\mathcal{T}_h} \|
abla u - \mathbf{G}_T^k(\hat{l}_T^k(u))\|_T^2 + ...\Big)^{1/2} \|\hat{e}_h\|_* \end{aligned}$$

and triangular inequality

Computational experiments HHO with cut cells

Geometry

- Developments in the DiSk++ library (available on github)
- ► $\Omega = (0, 1)^2$
- Γ circle, radius R = 0.33
- Homogeneous cartesian mesh

A contrast problem

From [Burman, Guzmán, Sánchez, Sarkis 16]

•
$$\kappa_1 = 1$$
, $\kappa_2 = 10^4$, $g_D = g_N = 0$

Exact solution

A problem with a jump in the solution

- From [Huynh, Nguyen, Peraire, Khoo 13]
- Exact solution

$$u(\mathbf{x}) = \sin(\pi x_1) \sin(\pi x_2) \text{ in } \Omega_1$$
$$u(\mathbf{x}) = e^{x_1} \cos(x_2) \text{ in } \Omega_2$$

Concluding remarks

- Hybridized cutFEM
 - an unfitted hybridized method for polytopal geometries
 - requires stabilization in the interface zone
 - mesh resolve local cell small scale features
 + static condensation
 - a flexible tool for the coupling of pdes on the bulk and on surfaces (see figure).
- HHO method with cut elements
 - allows for (relatively) straightforward discretization of curved boundaries
 - interface coupling cell model
 - requires cell agglomeration for stability
 - extension to Stokes' problem under way

Main results, error estimates

energy norm:

$$|||\mathbf{v}|||_{h}^{2} = \|\mathbf{v}_{0}\|_{s_{h,0}}^{2} + \sum_{i=1}^{N} \|\nabla \mathbf{v}_{i}\|_{\Omega_{i},\mathbf{a}_{i}}^{2} + h\|\nabla \mathbf{v}_{i}\|_{\partial\Omega_{i},\mathbf{a}_{i}}^{2} + h^{-1}\|[\mathbf{v}]_{i}\|_{\partial\Omega_{i},\mathbf{a}_{i}}^{2} + \|\mathbf{v}_{i}\|_{s_{h,i}}^{2}$$

- $||| \cdot |||_h$ is a norm thanks to a Poincaré inequality
- The following error estimates hold (assuming regularity)

$$|||u - u_h|||_h^2 \lesssim h^{2p} ||u_0||_{H^{p+1/2}(\Omega_0)}^2 + \sum_{i=1}^N h^{2p} ||u_i||_{H^{p+1}(\Omega_i)}^2$$

and, with $s \in [1,2]$ depending on the regularity of the dual problem,

$$\sum_{i=1}^{N} \|u_{i} - u_{h,i}\|_{\Omega_{i}}^{2} \lesssim h^{2p+2(s-1)} \|u_{0}\|_{H^{p+1/2}(\Omega_{0})}^{2} + \sum_{i=1}^{N} h^{2p+2(s-1)} \|u_{i}\|_{H^{p+1}(\Omega_{i})}^{2}$$

Analysis: fictitious domain argument in each subdomain + Poincaré

Main results, the Schur complement I

▶ Define the operator $T_h: V_{h,0} \to V_{h,1,N} = \bigoplus_{i=1}^N V_{h,i}$ such that

$$A_h(v_0 + T_h v_0, 0 \oplus w) = 0, \qquad \forall w \in V_{h,1,N}$$
(14)

where the notation $0 \oplus w$ indicates that the component in $V_{h,0}$ is zero.

• Define the Schur complement form on $V_{h,0}$ by

$$S_h(v_0, w_0) = A_h(v_0 + T_h v_0, w_0 + T_h w_0), \qquad v_0, w_0 \in V_{h,0}$$
(15)

Solution using the Schur complement:

we have the A_h -orthogonal splitting $W_h = (I + T_h)V_{h,0} \perp (\{0\} \oplus V_{h,1,N})$. Thus $u_h = (I + T_h)u_{h,0} + (0 \oplus u_{h,1,N})$ where $u_{h,0} \in V_{h,0}$ is the solution to

$$S_h(u_{h,0}, w_0) = I_h((I + T_h)w_0), \qquad \forall w_0 \in V_{h,0}$$
(16)

and $u_{h,1,N}$ is the solution to

$$A_h(0 \oplus u_{h,1,N}, 0 \oplus w) = I_h(w), \qquad \forall w \in V_{h,1,N}$$
(17)

We note that (17) decouples and can be solved subdomain wise.

Main results, the Schur complement II

• Let $\{\varphi_i\}_{i=1}^D$ be the basis in $V_{h,0}$ and denote the expansion by

$$\mathbf{v} = \sum_{i=1}^{D} \widehat{\mathbf{v}}_i \varphi_i \tag{18}$$

The stiffness matrix associated with the Schur complement is defined by

$$(\widehat{S}\widehat{v},\widehat{w})_{\mathbb{R}^D} = S_h(v,w) \tag{19}$$

Theorem (Condition Number Estimate)

The condition number $\kappa(\widehat{S})$ satisfies the estimate

$$\kappa(\widehat{S}) \lesssim h^{-1} \Big(\min_{1 \le i \le N} d_{\Omega_i} \Big)^{-1}$$
(20)

where h is the (uniform) mesh size and d_{Ω_i} is the diameter of domain Ω_i .

Local Schur complement

- Close to the Hybrid Discontinuous Galerkin (HDG) method
 - Polyhedral method
 - Primal point of view
- The dof attached to the cells can be eliminated by a local Schur complement

- The global problem to solve comprises only the dof attached to the faces
- ► We recover the polynomials of the cells using post-processing