Impact of robust discretisations on linear solvers

F. Hülsemann¹

¹EDF R&D

CIRM May 2nd 2019

Acknowledgements

Projet ANR Fast4HHO (Contract ANR-17-CE23-0019) Contributeurs:

- \rightarrow J. Bonelle, Y. Fournier (EDF)
- \rightarrow D. Di Pietro, F. Vilar (U. Montpellier),
- \rightarrow D. Ruiz, P. Matalon (INP Toulouse),
- \rightarrow C. Kruse, P. Mycek, U. Rüde (CERFACS)

plus, in addition:

- \rightarrow D. Castanon (U. Montpellier),
- \rightarrow R. Milani (EDF, ENPC),
- \rightarrow G. Kemlin (EDF, ENPC),
- $\rightarrow\,$ N. Tardieu, N. Bereux (EDF), and
- \rightarrow the *Code_Saturne* development team at EDF

Overview

- $\rightarrow\,$ Context: Computational PDEs at EDF
- $\rightarrow\,$ Robust discretizations in $\mathit{Code}_\mathit{Saturne}:\,$ CDO, HHO
- $\rightarrow\,$ Convergence observations
 - (scalar) diffusion
 - Stokes
- \rightarrow Conclusions, outlook

Context: Computational PDEs on complex geometries

- $\rightarrow\,$ Typical steps:
 - Represent the computational domain (generate a mesh)
 - Discretize the differential operators (chose the discretization schemes)
 - Chose the resolution strategy (e.g. linear solvers)
- $\rightarrow\,$ In general: ${\bf Strong}$ influence of the mesh quality on the precision of the computation
- \rightarrow Complex geometries require large meshes (EDF: 10⁹ cells in industrial instationary computations in 2017)
- $\rightarrow\,$ Generation of large, good quality meshes is very time consuming.
- \rightarrow CFD consumes already a significant number of CPU hours. Increasing the computational requirements is not an option.

Context II: CFD at EDF

- $\rightarrow\,$ EDF has more than 30 years' of experience in the development of Computational PDE codes.
- \rightarrow Current examples, both open source:
 - Structural mechanics: code_aster (http://www.code-aster.org)
 - CFD: Code_Saturne (https://www.code-saturne.org)

Code_Saturne in a few lines:

- $\rightarrow\,$ Originally: co-located finite volumes
- ightarrow Operator splitting (for the time being)
- \rightarrow Polyhedral, unstructured meshes
- \rightarrow Mostly single phase flows
- $\rightarrow~$ Mostly implicit in time
- \rightarrow Often incompressible
- $\rightarrow~$ Up to 10^9 cells in industrial cases
- \rightarrow Open source

- $\rightarrow\,$ Now also: CDO, HHO
- $\rightarrow~$ First tests: stationary Stokes

Context III: Robust Discretizations

- → Roughly ten years ago: FVCA benchmark to test the ability of discretization schemes to deal with geometrically or topologically difficult meshes
- \rightarrow Since then: Publication of many new, robust schemes (dG, hdG, ..., CDO, HHO)
- \rightarrow However: There is no free lunch. Existing, fast linear solvers do not work well any more.
- → To the best of our knowledge, this statement still holds, in particular for higher order discretizations.

Robust discretizations in *Code_Saturne*

Motivation: Improve the quality of simulations on polyhedral or multi-elements meshes

Development of new discretization approaches

- → **Compatible Discrete Operator (CDO)** schemes at EDF/Ecole des Ponts
 - Low order schemes
 - Different families according to the location of DoF: CDO-Vb, CDO-VCb, CDO-Fb
- \rightarrow Hybrid High Order (HHO) schemes at U. Montpellier/Ecole des Ponts
 - Arbitrary order
 - CDO-Fb \leftrightarrow HHO k = 0

Linear solvers

For *Code_Saturne*, the aim is the Navier-Stokes operator. But let's start at the beginning with the **scalar diffusion equation**:

```
\nabla \cdot (K \nabla u) = f
```

with a "nice" tensor K (spd, no mean jumps, but not diagonal).

First observations:

M matrix property lost, even on regular meshes! Positive off-diagonal entries too big to be ignored.

Tested solvers

- \rightarrow CG(BoomerAMG) via PETSc
- \rightarrow k-cycle AMG (in-house implementation) IPCG(k)
- $\rightarrow\,$ AGMG v3.2 for comparison

CDO Convergence example

Number of iterations of our in-house k-cycle AMG for the CDO face-based discretization.

FVCA test case TH					
Unknowns	Levels	IPCG(K)	PCG(Jacobi)		
5030	3	22	187		
39184	5	24	366		
309248	7	26	736		
2457088	8	37	1463		

Results courtesy of Gaspard Kemlin.

POEMS 2019

HHO Convergence Examples

In-house k-cycle AMG (differs from AGMG in the treatment of positive off-diagnoals)

FVCA test case Hexa, k=1				
Unknowns	Levels	IPCG(K)	PCG(Jacobi)	
720	2	15	64	
5184	3	21	131	
39168	5	29	260	
304128	6	42	517	
2396160	7	77	1013	

FVCA test case Hexa, k=2				
Unknowns	Levels	IPCG(K)	PCG(Jacobi)	
1440	2	59	207	
10368	4	67	296	
78336	4	67	461	
608256	4	142	830	

Results courtesy of Gaspard Kemlin.

Linear solvers: Lumping

One suggestion in the FE literature to deal with positive off-diagonal entries: Lumping onto the diagonal.

Test with CG preconditioned by *Cholesky factorisation* of the lumped matrix:

FVCA test case Hex			Observation	
Number of CG iterations with lumped PC				
Mesh	CDO	HHO, k=1	HHO, k=2	
H03	5	21	81	
H04	6	25	96	
H08	7	46	135	Lumping:
H16	7	88	214	for HHO: of no interest
H32	7	out of mem.	out of mem.	for CDO: to be tested

Computations run on a 16GB desktop.

Linear solvers: Lumping for CDO

Changing the mesh: from hexahedra to tetrahedra

Number of CG iterations with lumped PC for CDO-fb:

FVCA	test case	Tetra
Mesh	Ndof	#it
T2	8248	49
Т3	16148	50
Τ4	31691	49
T5	62787	62
Т6	124988	63

In all evidence, even for CDO, lumping is not the silver bullet.

$\mathsf{Stokes}/\mathsf{CDO}$

Note: Focus on face based discretization. Other CDO schemes are possible.

The CDO scheme is inf-sup stable \Rightarrow no need for stabilization. The discrete Stokes operator takes hence the form

$$\left(\begin{array}{c|c} A & B^t \\ \hline B & 0 \end{array}\right) \left(\begin{array}{c} u \\ \hline p \end{array}\right) = \left(\begin{array}{c} f_u \\ \hline f_p \end{array}\right)$$

Solvers under investigation (Work in progress!):

- ightarrow Uzawa
- \rightarrow artificial compressibility
- $\rightarrow\,$ Golub-Kahan bi-orthogonalization
- → preconditioned GMRES on the full system (via PETSc)

Saddle point preconditioners

Disclaimer: The literature on this topic is so rich that we do not claim to have tried out every possible method.

PC 1:

$$\begin{pmatrix} \tilde{A}^{-1} & B^t \\ \hline 0 & \tilde{S}^{-1} \end{pmatrix} \quad \text{where} \quad \begin{array}{c} \tilde{A}^{-1}: \text{ solving the } A \text{ system with BoomerAMG} \\ \tilde{S}^{-1} = -B(diagA)^{-1}B^t \\ \end{array}$$

 $\rightarrow\,$ max. 4 GMRES iterations on a number of test cases

ightarrow Robust, but computationally costly

Results courtesy of Jérôme Bonelle.

Saddle point preconditioners

PC 2:

 $\begin{pmatrix} \hat{A}^{-1} & 0 \\ \hline 0 & \text{Id} \end{pmatrix} \quad \text{where} \quad \hat{A}^{-1}: 1 \text{ it. of BoomerAMG on the } A \text{ system}$

Test case	dim p	dim u	# it.
PrG10	484	7464	193
PrG20	1764	26904	283
PrG30	3844	58344	290
PrG40	6724	101784	282
H16_2D	256	3168	55
H32_2D	1024	12480	132
H64_2D	4096	49536	132
H128_2D	16384	197376	143

Results courtesy of Jérôme Bonelle.

Observations:

- \rightarrow more iterations than PC 1
- \rightarrow no h-independence
- \rightarrow but, for these cases, still faster than PC 1

Summary from a multigridder's point of view

Conclusion

Can one solve the CDO or HHO systems? YES! Can one solve these systems quickly? Well ...

 $\rightarrow~$ Loss of M-matrix property for the diffusion operator:

- Any future for point-wise smoothers (Gauß-Seidel, Jacobi)?
- What is a good *strength of connection measure* for these matrices?
- $\rightarrow\,$ None of the tested AMG implementations achieves h-independent convergence.
- $\rightarrow\,$ CDO: Existing multigrid solvers are not more than a stopgap solution (lack of robustness or speed or both).
- \rightarrow HHO: Even for k = 1, fast *algebraic* solvers remain an open question.

Outlook

- → Beyond purely algebraic approaches: p-multigrid for HHO? (still requires a fast solver for k = 0, i.e. CDO)
- \rightarrow AMG for Stokes (internship has just started)
- $\rightarrow\,$ The discretisation schemes are being extended to other differential operators (convection-diffusion, Navier-Stokes). More "surprises" ahead?

POEMS 2019

Summary from a multigridder's point of view II

Keep going! (That keeps LA in business.) Thank you for your attention!