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Overview

→ Context: Computational PDEs at EDF
→ Robust discretizations in Code_Saturne: CDO, HHO
→ Convergence observations

(scalar) diffusion
Stokes

→ Conclusions, outlook
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Context: Computational PDEs on complex geometries

→ Typical steps:
Represent the computational domain (generate a mesh)
Discretize the differential operators (chose the discretization schemes)
Chose the resolution strategy (e.g. linear solvers)

→ In general: Strong influence of the mesh quality on the precision of
the computation

→ Complex geometries require large meshes (EDF: 109 cells in industrial
instationary computations in 2017)

→ Generation of large, good quality meshes is very time consuming.
→ CFD consumes already a significant number of CPU hours. Increasing

the computational requirements is not an option.
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Context II: CFD at EDF

→ EDF has more than 30 years’ of experience in the development of
Computational PDE codes.

→ Current examples, both open source:
Structural mechanics: code_aster (http://www.code-aster.org)
CFD: Code_Saturne (https://www.code-saturne.org)

Code_Saturne in a few lines:
→ Originally: co-located finite volumes
→ Operator splitting (for the time being)
→ Polyhedral, unstructured meshes
→ Mostly single phase flows
→ Mostly implicit in time
→ Often incompressible
→ Up to 109 cells in industrial cases
→ Open source

→ Now also: CDO, HHO
→ First tests: stationary Stokes
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Context III: Robust Discretizations

→ Roughly ten years ago: FVCA benchmark to
test the ability of discretization schemes to deal
with geometrically or topologically difficult
meshes

→ Since then: Publication of many new, robust
schemes (dG, hdG, . . . , CDO, HHO)

→ However: There is no free lunch. Existing, fast
linear solvers do not work well any more.

→ To the best of our knowledge, this statement
still holds, in particular for higher order
discretizations.
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Robust discretizations in Code_Saturne

Motivation: Improve the quality of simulations on polyhedral or
multi-elements meshes

Development of new discretization approaches
→ Compatible Discrete Operator (CDO) schemes at EDF/Ecole des

Ponts
Low order schemes
Different families according to the location of DoF: CDO-Vb,
CDO-VCb, CDO-Fb

→ Hybrid High Order (HHO) schemes at U. Montpellier/Ecole des
Ponts

Arbitrary order
CDO-Fb ↔ HHO k = 0
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Linear solvers

For Code_Saturne, the aim is the Navier-Stokes operator. But let’s start at
the beginning with the scalar diffusion equation:

∇ · (K∇u) = f

with a “nice” tensor K (spd, no mean jumps, but not diagonal).

First observations:
M matrix property lost, even on regular meshes!
Positive off-diagonal entries too big to be ignored.

Tested solvers
→ CG(BoomerAMG) via PETSc
→ k-cycle AMG (in-house implementation) – IPCG(k)
→ AGMG v3.2 for comparison
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CDO Convergence example

Number of iterations of our in-house k-cycle AMG for the CDO face-based
discretization.

FVCA test case TH
Unknowns Levels IPCG(K) PCG(Jacobi)

5030 3 22 187
39184 5 24 366

309248 7 26 736
2457088 8 37 1463

Results courtesy of Gaspard Kemlin.
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HHO Convergence Examples

In-house k-cycle AMG (differs from AGMG in the treatment of positive off-diagnoals)

FVCA test case Hexa, k=1
Unknowns Levels IPCG(K) PCG(Jacobi)

720 2 15 64
5184 3 21 131
39168 5 29 260

304128 6 42 517
2396160 7 77 1013

FVCA test case Hexa, k=2
Unknowns Levels IPCG(K) PCG(Jacobi)

1440 2 59 207
10368 4 67 296
78336 4 67 461

608256 4 142 830

Results courtesy of Gaspard Kemlin.
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Linear solvers: Lumping

One suggestion in the FE literature to deal with positive off-diagonal
entries: Lumping onto the diagonal.
Test with CG preconditioned by Cholesky factorisation of the lumped
matrix:

FVCA test case Hex Observation
Number of CG iterations with lumped PC
Mesh CDO HHO, k=1 HHO, k=2
H03 5 21 81
H04 6 25 96
H08 7 46 135 Lumping:
H16 7 88 214 for HHO: of no interest
H32 7 out of mem. out of mem. for CDO: to be tested

Computations run on a 16GB desktop.
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Linear solvers: Lumping for CDO

Changing the mesh: from hexahedra to tetrahedra

Number of CG iterations with lumped PC for CDO-fb:

FVCA test case Tetra
Mesh Ndof #it

T2 8248 49
T3 16148 50
T4 31691 49
T5 62787 62
T6 124988 63

In all evidence, even for CDO, lumping is not the silver bullet.
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Stokes/CDO

Note: Focus on face based discretization. Other CDO schemes are possible.

The CDO scheme is inf-sup stable ⇒ no need for stabilization. The
discrete Stokes operator takes hence the form(

A Bt

B 0

)(
u
p

)
=
(

fu
fp

)

Solvers under investigation (Work in progress!):
→ Uzawa
→ artificial compressibility
→ Golub-Kahan bi-orthogonalization
→ preconditioned GMRES on the full system (via PETSc)
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Saddle point preconditioners

Disclaimer: The literature on this topic is so rich that we do not claim to have
tried out every possible method.

PC 1: Ã−1 Bt

0 S̃−1

 where
Ã−1: solving the A system with BoomerAMG
S̃−1 = −B(diagA)−1Bt

→ max. 4 GMRES iterations on a number of test cases
→ Robust, but computationally costly

Results courtesy of Jérôme Bonelle.
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Saddle point preconditioners

PC 2: Â−1 0

0 Id

 where Â−1: 1 it. of BoomerAMG on the A system

Test case dim p dim u # it.
PrG10 484 7464 193
PrG20 1764 26904 283
PrG30 3844 58344 290
PrG40 6724 101784 282

H16_2D 256 3168 55
H32_2D 1024 12480 132
H64_2D 4096 49536 132

H128_2D 16384 197376 143

Observations:

→ more iterations than PC 1
→ no h-independence
→ but, for these cases, still faster

than PC 1

Results courtesy of Jérôme Bonelle.
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Summary from a multigridder’s point of view
Conclusion
Can one solve the CDO or HHO systems? YES!
Can one solve these systems quickly? Well . . .

→ Loss of M-matrix property for the diffusion operator:

Any future for point-wise smoothers (Gauß-Seidel, Jacobi)?
What is a good strength of connection measure for these matrices?

→ None of the tested AMG implementations achieves h-independent convergence.
→ CDO: Existing multigrid solvers are not more than a stopgap solution (lack of

robustness or speed or both).
→ HHO: Even for k = 1, fast algebraic solvers remain an open question.

Outlook
→ Beyond purely algebraic approaches: p-multigrid for HHO?

(still requires a fast solver for k = 0, i.e. CDO)
→ AMG for Stokes (internship has just started)
→ The discretisation schemes are being extended to other differential operators

(convection-diffusion, Navier-Stokes). More "surprises" ahead?
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Summary from a multigridder’s point of view II

Keep going! (That keeps LA in business.)

Thank you for your attention!
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