DDFV method for Navier-Stokes problem with outflow
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1. The problem

We consider a computational domain €2 that is strictly smaller than the
physical domain:

computational domain

physical domain

We propose a DDFV (DISCRETE DUALITY FINITE VOLUME) scheme
for the following incompressible Navier Stokes problem on €2:

(Ou+ (u-V)u—div(e(u,p)) =0 in Qp=Qx[0,7],
diviu) =0  in Qp,
< u=g; onlyx(0T), (P)
outflow boundary conditions  on I'g x (0,7,
u(0) = wjpg in

\

e () is a polygonal bounded open set of R2, 9Q = I'; U T
o T >0, ujn € (L(N))? and i the outer normal
1
o g1 € (H2(0Q))
2 1
e o(u,p) = R—Du — pld and Du = §(Vu + V).
¢
where we suppose that the velocity is prescribed upstream and we impose the
following artificial boundary condition, introduced in |[BF94| and studied in
'BE'12] on the non-physical part of the boundary I's:

R _
J(u,p)-n+§(u-n) (u_ufref) = Opef - 11

1

with w..r € (HY(Q))%, 0pep - B € (H 2(Q))%

Those conditions are derived from a weak formulation of the Navier Stokes
equations that ensures an energy estimate. If W is a test function in the

space V = {1 € (H(Q))?, Y|r, =0, div(y)) = 0}, we get:

2 1 1
/Qﬁtu-\Ier% QD(u).D(\D)+1§/§2(u-V)u-\IJ—§/Q(u-V)\If-u

:_§A2(u.ﬁ)(u.m)+ﬁ20(u,p).ﬁ.qf

that thanks to the boundary conditions becomes:

2 1 1
/Qﬁtu-\llerRe QD(u).D(\D)%—i/ﬂ(u-V)u-\If—i/Q(u-V)\If-u

QAZ(u.ﬁ)+(u.W)+%/(u.ﬁ)—(umf.\p)Jr/ Ufref°ﬁ°\lf-

Properties:

e [ixistence and uniqueness of
u € L(10,T[, V) N L*(J0, T, V'),
p € Weo(l0, T, (%)), Goal
weak solution of (P) — | Reproduce the results
at a discrete level.

e Inf-sup condition, Korn’s inequality;,
Trace theorem

e [nergy inequality

The inf-sup stability condition reads:

int ( Sup fﬂp (divu) ) > ()
ue(

peL() \ ue(mi())? lullglpllL:

2. DDFV discretization

e Previous works on 2D DDFYV for Navier-Stokes problem

in the case of variable viscosity and Dirichlet boundary conditions: [K11]

¢ The DDFV meshes |[DO05
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e Zoom on the diamond cells
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e The discrete unknowns:
()
p P D ) -
u® = ((ue)ecomugom » (W) ecomuoom:) € (RY)

e The discrete gradient: V7 constant on each diamond cell
VDH‘Z . (ZEL - .TK> — uL — .l.lK7
vDu‘Z . (xL* — ,I’K*> — Up* — uK*)
1 . .
VDU‘Z — % [m0<uL - 11K> ® HJK _|_ m0*<uL* — uK*> ® HG*K*] , \V/D E @
D
e The discrete strain rate tensor: D® constant on each diamond cell

DDu‘I B vDu‘I + t(vDu&')
— ; .

e The discrete divergences: div* constant on each primal and dual cell.
For €2 € (M(R))®:

1
VkeM divke? = — § MG E gy
Ty
o C Ok

Vi € M*, divk'e?
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and div® constant on each diamond cell
divPu® = Tr(VPu?)
e Trace operators:
— On the boundary of the domain ’y‘zz Yo(u®) = uK*+22L+uL* Yo € O,

—On the boundary diamond mesh 4® : 42 (®?) = (®P)pcons0.

e Inner products:

Hu‘:v V‘ZHT — %( Z My Ug * Vg + Z

mK* UK* * VK*>

KeM K*eM*UoNt*
(D°,v¥) o = Z m, PP - v,
DU’U*E@H(?Q
(€0 :00)p =) mp(&: D),
DISKY)

to which we can associate norms, e.g.
1

Ju¥[l = [[u%, u¥)Z, 120 = (€2 : €9)

[divie®, ulg = —(6° : VPu®)p + (v°(€P)f, 7 (u%)) g0

e Convection term: b*(u*, v*) constant on each primal and dual cell.
For instance, on the primal mesh we define VK € 9:

myby(u*, v¥) = Z Fyo(u*)vgr + Z Fyo(u®)y7 (v¥)
o COK, oCOK,
o0 ) o€

Ug + Ugx
- § Mg 5 " Ngp
EEDO’U*HK

if o ¢ 02

where [}, (u®) =

m,y° (u*) - g if o € 052
vy it Fy , > 0
v, otherwise

and v + = {

3. The scheme

Let N € N*. We note 6t = % We look for (a1, p”*1) by knowing the solu-
tion at the previous time step (u'*, p”). We can rewrite the weak formulation
(WF) in the DDFV framework as:

_un 2 n 1 n ..n
I 5 ,‘PSHEJr%(D@u 1 DP9 4 +§[[b‘(u u ), U
n mn 1 n 0) n 0)
b, v%) u g = = 3 (B, (u") 7 (" )y (0F)
De®DNIy
7 (Fo ™) 7 (W p 7 (F5) + Ym0y fig) 77 (07,
DE@HFQ DE@HFQ
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where 0¥ € (]RQ)‘z is a test function in the discrete space that satisfies:
Ur=0 only, div®(U%) =0
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Theorem. (Discrete Green'’s formula) For all €2 € (M3(R))®, u® € (RQ)S:

Theorem. (Well posedness)
Let ‘T be a mesh that satisfies inf-sup stability condition. Then the scheme

admits a unique solution (u", p"), g N1 € ((RQ)(Z) NHL (RDYV+L

Remark: We require inf-sup condition because we need it in order to prove
Korn’s inequality and, then, the energy estimate. We could overcome this
difficulty by adding a stabilization term and we would obtain existence and
uniqueness for general meshes.

4. Discrete energy estimate

In order to prove the discrete energy estimate, it is necessary to prove:

Theorem. (Korn’s inequality)
Let T be a mesh that satisfies inf-sup stability condition. Then there exists
C' > 0 such that :

Vu® € Ko

IVPu®|, < C|IDPut|

Theorem. (Trace theorem)
Let T be a DDFV mesh associated to €). For all p > 1, there exists a constant
C' > 0, such that Vu*® € E and for all s > 1:

Iy (][5 o0 < Cllu?]

—1
u® | 2(5—1)
p—1

1,p|

We then obtain:

Theorem. (Energy estimate) Let ¥ be a DDFV mesh associated to 2
that satisfies inf-sup stability condition.

Let (u",p"), n > 1, be the solution of the DDFV scheme and u” = vitu,,r.
For N > 1, there exists a constant C' > 0 such that:

N—1
1 112 N2
YoV =< VY3 <C
=0
N-1 | .
st—||IDPvITH2 < . st—|IDPvYV |2 < C
Re” Vv HQ >~ U, Re” Vv Hz ~ G,

5. Numerical results

» Flow around an obstacle: The bigger computational domain is
Q) =10,2.2] x [0,0.41], the smaller one is ' = [0,0.6] x [0, 0.41].

The viscosity is n = 10_3, T = 5s, 0t = 1.46 X 1073,

The reference flow on I'9 is a Poiseuille flow:

1
——6y(0.41 —
ufref(xaw =1 0.412 v Y)
0
0
5 1720m(0. y)

We have on 'y that g1 = u,..r and the initial data w;p;; = u,.r.

Vorticity lines at Re = 100.

We observe the efficiency of the condition: at the cut it does
not introduce perturbations to the flow.
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