DDFV method for Navier-Stokes problem with outflow boundary conditions

Thierry Goudon, Stella Krell, Giulia Lissoni

1. The problem

We consider a computational domain Ω that is strictly smaller than the physical domain:

UNIVERSITÉ CÔTE D'AZUR

We propose a DDFV (DISCRETE DUALITY FINITE VOLUME) scheme for the following incompressible Navier Stokes problem on Ω :

• Zoom on the diamond cells

• The discrete unknowns:

$$p^{\mathfrak{D}} = \left(p^{\mathsf{D}}\right)_{\mathsf{D}\in\mathfrak{D}} \in \mathbb{R}^{\mathfrak{D}},$$
$$\mathbf{u}^{\mathfrak{T}} = \left(\left(\mathbf{u}_{\mathsf{K}}\right)_{\mathsf{K}\in\mathfrak{M}\cup\partial\mathfrak{M}}, \left(\mathbf{u}_{\mathsf{K}^*}\right)_{\mathsf{K}^*\in\mathfrak{M}^*\cup\partial\mathfrak{M}^*}\right) \in (\mathbb{R}^2)^{\mathfrak{T}}$$

• The discrete gradient: $\nabla^{\mathfrak{D}}$ constant on each diamond cell

Theorem. (Well posedness)

Let \mathfrak{T} be a mesh that satisfies inf-sup stability condition. Then the scheme admits a **unique** solution $(\mathbf{u}^n, \mathbf{p}^n)_{n \in \{0,...,N\}} \in ((\mathbb{R}^2)^{\mathfrak{T}})^{N+1} \times (\mathbb{R}^{\mathbb{D}})^{N+1}$.

Remark: We require *inf-sup* condition because we need it in order to prove Korn's inequality and, then, the energy estimate. We could overcome this difficulty by adding a stabilization term and we would obtain existence and uniqueness for general meshes.

4. Discrete energy estimate

In order to prove the discrete energy estimate, it is necessary to prove:

Theorem. (Korn's inequality)

Let \mathfrak{T} be a mesh that satisfies inf-sup stability condition. Then there exists C > 0 such that :

$$\begin{cases} \partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla) \mathbf{u} - \operatorname{div}(\sigma(\mathbf{u}, \mathbf{p})) = 0 & \text{in } \Omega_T = \Omega \times [0, T], \\ \operatorname{div}(\mathbf{u}) = 0 & \text{in } \Omega_T, \\ \mathbf{u} = \mathbf{g}_1 & \text{on } \Gamma_1 \times (0, T), \\ \text{outflow boundary conditions} & \text{on } \Gamma_2 \times (0, T), \\ \mathbf{u}(0) = \mathbf{u}_{init} & \text{in } \Omega \end{cases}$$

• Ω is a polygonal bounded open set of \mathbb{R}^2 , $\partial \Omega = \Gamma_1 \cup \Gamma_2$ • T > 0, $\mathbf{u}_{init} \in (L^{\infty}(\Omega))^2$ and $\mathbf{\vec{n}}$ the outer normal • $\mathbf{g}_1 \in (H^{\frac{1}{2}}(\partial \Omega))^2$

• $\sigma(\mathbf{u}, \mathbf{p}) = \frac{2}{\mathbf{B}\mathbf{e}} \mathbf{D}\mathbf{u} - \mathbf{p}\mathbf{Id} \text{ and } \mathbf{D}\mathbf{u} = \frac{1}{2}(\nabla\mathbf{u} + {}^t\nabla\mathbf{u}).$

where we suppose that the velocity is prescribed upstream and we impose the following artificial boundary condition, introduced in [BF94] and studied in [BF12] on the non-physical part of the boundary Γ_2 :

 $\sigma(\mathbf{u}, \mathbf{p}) \cdot \vec{\mathbf{n}} + \frac{1}{2} (\mathbf{u} \cdot \vec{\mathbf{n}})^{-} (\mathbf{u} - \mathbf{u}_{ref}) = \sigma_{ref} \cdot \vec{\mathbf{n}}$

with $\mathbf{u}_{ref} \in (H^1(\Omega))^2$, $\sigma_{ref} \cdot \mathbf{\vec{n}} \in (H^{-\frac{1}{2}}(\Omega))^2$.

Those conditions are derived from a weak formulation of the Navier Stokes equations that ensures an **energy estimate**. If Ψ is a test function in the space $V = \{ \psi \in (H^1(\Omega))^2, \ \psi|_{\Gamma_1} = 0, \ \operatorname{div}(\psi) = 0 \}$, we get:

$$\int_{\Omega} \partial_t \mathbf{u} \cdot \Psi + \frac{2}{\text{Re}} \int_{\Omega} D(\mathbf{u}) : D(\Psi) + \frac{1}{2} \int_{\Omega} (\mathbf{u} \cdot \nabla) \mathbf{u} \cdot \Psi - \frac{1}{2} \int_{\Omega} (\mathbf{u} \cdot \nabla) \Psi \cdot \mathbf{u}$$
$$= -\frac{1}{2} \int_{\Gamma_2} (\mathbf{u} \cdot \vec{\mathbf{n}}) (\mathbf{u} \cdot \Psi) + \int_{\Gamma_2} \sigma(\mathbf{u}, p) \cdot \vec{\mathbf{n}} \cdot \Psi$$

$$\nabla^{\mathsf{D}}\mathbf{u}^{\mathfrak{T}} \cdot (x_{\mathsf{L}} - x_{\mathsf{K}}) = \mathbf{u}_{\mathsf{L}} - \mathbf{u}_{\mathsf{K}},$$
$$\nabla^{\mathsf{D}}\mathbf{u}^{\mathfrak{T}} \cdot (x_{\mathsf{L}^{*}} - x_{\mathsf{K}^{*}}) = \mathbf{u}_{\mathsf{L}^{*}} - \mathbf{u}_{\mathsf{K}^{*}},$$
$$\nabla^{\mathsf{D}}\mathbf{u}^{\mathfrak{T}} = \frac{1}{2m_{\mathsf{D}}} \left[m_{\sigma}(\mathbf{u}_{\mathsf{L}} - \mathbf{u}_{\mathsf{K}}) \otimes \vec{\mathbf{n}}_{\sigma\mathsf{K}} + m_{\sigma^{*}}(\mathbf{u}_{\mathsf{L}^{*}} - \mathbf{u}_{\mathsf{K}^{*}}) \otimes \vec{\mathbf{n}}_{\sigma^{*}\mathsf{K}^{*}} \right], \quad \forall \mathsf{D} \in \mathfrak{D}.$$

• The discrete strain rate tensor: $\mathsf{D}^{\mathfrak{D}}$ constant on each diamond cell
$$\mathsf{D}^{\mathsf{D}}\mathbf{u}^{\mathfrak{T}} = \frac{\nabla^{\mathsf{D}}\mathbf{u}^{\mathfrak{T}} + {}^{t}(\nabla^{\mathsf{D}}\mathbf{u}^{\mathfrak{T}})}{2}.$$

• The discrete divergences: $div^{\mathfrak{T}}$ constant on each primal and dual cell. For $\xi^{\mathfrak{D}} \in (\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}}$:

$$\forall \mathbf{K} \in \mathfrak{M}, \quad \operatorname{div}^{\mathbf{K}} \xi^{\mathfrak{D}} = \frac{1}{m_{\mathbf{K}}} \sum_{\sigma \subset \partial_{\mathbf{K}}} m_{\sigma} \xi^{\mathsf{D}} \vec{\mathbf{n}}_{\sigma^{\mathbf{K}}}$$
$$\forall \mathbf{K}^{*} \in \mathfrak{M}^{*}, \ \operatorname{div}^{\mathbf{K}^{*}} \xi^{\mathfrak{D}} = \frac{1}{m_{\mathbf{K}^{*}}} \sum_{\sigma^{*} \subset \partial_{\mathbf{K}^{*}}} m_{\sigma^{*}} \xi^{\mathsf{D}} \vec{\mathbf{n}}_{\sigma^{*}\mathbf{K}^{*}}$$

and $\operatorname{div}^{\mathfrak{D}}$ constant on each diamond cell

 $\operatorname{div}^{\mathfrak{D}}\mathbf{u}^{\mathfrak{T}} = \operatorname{Tr}(\nabla^{\mathfrak{D}}\mathbf{u}^{\mathfrak{T}})$

- Trace operators: - On the boundary of the domain $\gamma^{\mathfrak{T}}$: $\gamma_{\sigma}(\mathbf{u}^{\mathfrak{T}}) = \frac{\mathbf{u}_{\mathsf{K}^*} + 2\mathbf{u}_{\mathsf{L}} + \mathbf{u}_{\mathsf{L}^*}}{4} \quad \forall \sigma \in \partial \mathfrak{M},$
- On the boundary diamond mesh $\gamma^{\mathfrak{D}}$: $\gamma^{\mathfrak{D}}(\Phi^{\mathfrak{D}}) = (\Phi^{\mathsf{D}})_{\mathsf{D} \in \mathfrak{D} \cap \partial \Omega}$.

• Inner products:

$$\begin{split} & [[\mathbf{u}^{\mathfrak{T}}, \mathbf{v}^{\mathfrak{T}}]]_{\mathfrak{T}} = \frac{1}{2} \left(\sum_{\mathsf{K} \in \mathfrak{M}} m_{\mathsf{K}} \, \mathbf{u}_{\mathsf{K}} \cdot \mathbf{v}_{\mathsf{K}} + \sum_{\mathsf{K}^{*} \in \mathfrak{M}^{*} \cup \partial \mathfrak{M}^{*}} m_{\mathsf{K}^{*}} \, \mathbf{u}_{\mathsf{K}^{*}} \cdot \mathbf{v}_{\mathsf{K}^{*}} \right) \\ & (\Phi^{\mathfrak{D}}, \mathbf{v}^{\mathfrak{T}})_{\partial \Omega} = \sum_{\mathsf{D}_{\sigma, \sigma^{*}} \in \mathfrak{D} \cap \partial \Omega} m_{\sigma} \Phi^{\mathsf{D}} \cdot \mathbf{v}_{\sigma} \end{split}$$

$\|\nabla^{\mathfrak{D}}\mathbf{u}^{\mathfrak{T}}\|_{2} \leq C \|\mathbf{D}^{\mathfrak{D}}\mathbf{u}^{\mathfrak{T}}\|_{2} \qquad \forall \mathbf{u}^{\mathfrak{T}} \in \mathbb{E}_{0}$

Theorem. (Trace theorem) Let \mathfrak{T} be a DDFV mesh associated to Ω . For all p > 1, there exists a constant C > 0, such that $\forall \mathbf{u}^{\mathfrak{T}} \in \mathbb{E}_0$ and for all $s \geq 1$:

 $\|\gamma(\mathbf{u}^{\mathfrak{T}})\|_{s,\partial\Omega}^{s} \leq C \|\mathbf{u}^{\mathfrak{T}}\|_{1,p} \|\mathbf{u}^{\mathfrak{T}}\|_{\frac{p(s-1)}{1}}^{s-1}$

We then obtain:

Theorem. (Energy estimate) Let \mathfrak{T} be a DDFV mesh associated to Ω that satisfies inf-sup stability condition. Let $(\mathbf{u}^n, \mathbf{p}^n)$, $n \ge 1$, be the solution of the DDFV scheme and $\mathbf{u}^n = \mathbf{v}^n + \mathbf{u}_{ref}$. For N > 1, there exists a constant C > 0 such that:

$$\begin{split} \sum_{j=0}^{N-1} \|\mathbf{v}^{j+1} - \mathbf{v}^{j}\|_{2}^{2} &\leq C, \quad \|\mathbf{v}^{N}\|_{2}^{2} \leq C, \\ \sum_{j=0}^{N-1} \delta t \frac{1}{\operatorname{Re}} \|\mathbf{D}^{\mathfrak{D}} \mathbf{v}^{j+1}\|_{2}^{2} \leq C, \quad \delta t \frac{1}{\operatorname{Re}} \|\mathbf{D}^{\mathfrak{D}} \mathbf{v}^{N}\|_{2}^{2} \leq C, \\ \sum_{j=0}^{N-1} \delta t \sum_{\mathsf{D} \in \mathfrak{D} \cap \Gamma_{2}} (F_{\mathsf{K},\sigma}(\mathbf{v}^{j} + \mathbf{u}_{ref}^{\mathfrak{T}}))^{+} (\gamma^{\sigma}(\mathbf{v}^{j+1}))^{2} \leq C. \end{split}$$

that thanks to the boundary conditions becomes:

The inf-sup stability condition reads:

$$\inf_{p \in L^2_0(\Omega)} \left(\sup_{\mathbf{u} \in (H^1_0(\Omega))^2} \frac{\int_{\Omega} p\left(\operatorname{div} \mathbf{u}\right)}{\|\mathbf{u}\|_{H^1} \|p\|_{L^2}} \right) > 0.$$

2. DDFV discretization

- Previous works on 2D DDFV for Navier-Stokes problem in the case of variable viscosity and Dirichlet boundary conditions: [K11] • The DDFV meshes [DO05]
- $(\xi^{\mathfrak{D}}:\Phi^{\mathfrak{D}})_{\mathfrak{D}}=\sum m_{\mathsf{D}}(\xi^{\mathsf{D}}:\Phi^{\mathsf{D}}),$ to which we can associate norms, e.g. $\|\mathbf{u}^{\mathfrak{T}}\|_{2} = [[\mathbf{u}^{\mathfrak{T}}, \mathbf{u}^{\mathfrak{T}}]]_{\mathfrak{T}}^{\frac{1}{2}}, \quad \|\boldsymbol{\xi}^{\mathfrak{D}}\|_{2} = (\boldsymbol{\xi}^{\mathfrak{D}} : \boldsymbol{\xi}^{\mathfrak{D}})_{\mathfrak{D}}^{\frac{1}{2}}$ <u>**Theorem.**</u> (Discrete Green's formula) For all $\xi^{\mathfrak{D}} \in (\mathcal{M}_2(\mathbb{R}))^{\mathfrak{D}}, \mathbf{u}^{\mathfrak{T}} \in (\mathbb{R}^2)^{\mathfrak{T}}$: $[[\operatorname{\mathbf{div}}^{\mathfrak{T}}\xi^{\mathfrak{D}}, \mathbf{u}^{\mathfrak{T}}]]_{\mathfrak{T}} = -(\xi^{\mathfrak{D}}: \nabla^{\mathfrak{D}}\mathbf{u}^{\mathfrak{T}})_{\mathfrak{D}} + (\gamma^{\mathfrak{D}}(\xi^{\mathfrak{D}})\vec{\mathbf{n}}, \gamma^{\mathfrak{T}}(\mathbf{u}^{\mathfrak{T}}))_{\partial\Omega}.$ • Convection term: $\mathbf{b}^{\mathfrak{T}}(\mathbf{u}^{\mathfrak{T}}, \mathbf{v}^{\mathfrak{T}})$ constant on each primal and dual cell. For instance, on the primal mesh we define $\forall \kappa \in \mathfrak{M}$: $m_{\mathsf{K}}\mathbf{b}_{\mathsf{K}}(\mathbf{u}^{\mathfrak{T}},\mathbf{v}^{\mathfrak{T}}) = \sum F_{\mathsf{K},\sigma}(\mathbf{u}^{\mathfrak{T}})\mathbf{v}_{\sigma^{+}} + \sum F_{\mathsf{K},\sigma}(\mathbf{u}^{\mathfrak{T}})\gamma^{\sigma}(\mathbf{v}^{\mathfrak{T}})$ $\begin{array}{ll} \sigma \overline{\subset \partial} \mathbf{K}, & \sigma \overline{\subset \partial} \mathbf{K}, \\ \sigma \notin \partial \Omega & \sigma \in \partial \Omega \end{array}$ where $F_{\mathsf{K},\sigma}(\mathbf{u}^{\mathfrak{T}}) = \begin{cases} -\sum_{\mathfrak{s}\in\mathsf{D}_{\sigma,\sigma^*}\cap\mathsf{K}} m_{\mathfrak{s}} \frac{\mathbf{u}_{\mathsf{K}} + \mathbf{u}_{\mathsf{K}^*}}{2} \cdot \vec{\mathbf{n}}_{\mathfrak{s}\mathsf{D}} & \text{if } \sigma \notin \partial\Omega \\ m_{\sigma}\gamma^{\sigma}(\mathbf{u}^{\mathfrak{T}}) \cdot \vec{\mathbf{n}}_{\sigma\mathsf{K}} & \text{if } \sigma \in \partial\Omega \end{cases}$ and $\mathbf{v}_{\sigma^+} = \begin{cases} \mathbf{v}_{\kappa} \text{ if } F_{\kappa,\sigma} \geq 0 \\ \mathbf{v}_{L} \text{ otherwise} \end{cases}$. 3. The scheme Let $N \in \mathbb{N}^*$. We note $\delta t = \frac{T}{N}$. We look for $(\mathbf{u}^{n+1}, \mathbf{p}^{n+1})$ by knowing the solu-

5. Numerical results

► Flow around an obstacle: The bigger computational domain is $\Omega = [0, 2.2] \times [0, 0.41]$, the smaller one is $\Omega' = [0, 0.6] \times [0, 0.41]$. The viscosity is $\eta = 10^{-3}$, T = 5s, $\delta t = 1.46 \times 10^{-3}$. The reference flow on Γ_2 is a Poiseuille flow:

We have on Γ_1 that $\mathbf{g}_1 = \mathbf{u}_{ref}$ and the initial data $\mathbf{u}_{init} = \mathbf{u}_{ref}$.

 (\mathcal{WF}) in the DDFV framework as:
$$\begin{split} & [[\frac{\mathbf{u}^{n+1}-\mathbf{u}^{n}}{\delta t},\Psi^{\mathfrak{T}}]]_{\mathfrak{T}} + \frac{2}{\mathrm{Re}}(\mathrm{D}^{\mathfrak{D}}\mathbf{u}^{n+1},\mathrm{D}^{\mathfrak{D}}\Psi^{\mathfrak{T}})_{\mathfrak{D}} + \frac{1}{2}[[\mathbf{b}^{\mathfrak{T}}(\mathbf{u}^{n},\mathbf{u}^{n+1}),\Psi^{\mathfrak{T}}]]_{\mathfrak{T}} \\ & -\frac{1}{2}[[\mathbf{b}^{\mathfrak{T}}(\mathbf{u}^{n},\Psi^{\mathfrak{T}}),\mathbf{u}^{n+1}]]_{\mathfrak{T}} = -\frac{1}{2}\sum_{\mathsf{D}\in\mathfrak{D}\cap\Gamma_{2}}(F_{\mathsf{K},\sigma}(\mathbf{u}^{n}))^{+}\gamma^{\sigma}(\mathbf{u}^{n+1})\gamma^{\sigma}(\Psi^{\mathfrak{T}}) \\ & +\frac{1}{2}\sum_{\mathsf{D}\in\mathfrak{D}\cap\Gamma_{2}}(F_{\mathsf{K},\sigma}(\mathbf{u}^{n}))^{-}\gamma^{\sigma}(\mathbf{u}_{ref})\gamma^{\sigma}(\Psi^{\mathfrak{T}}) + \sum_{\mathsf{D}\in\mathfrak{D}\cap\Gamma_{2}}m_{\sigma}(\sigma_{\mathrm{ref}}^{\mathfrak{D}}\cdot\vec{\mathbf{n}}_{\sigma\mathsf{K}})\cdot\gamma^{\sigma}(\Psi^{\mathfrak{T}}), \end{split}$$
where $\Psi^{\mathfrak{T}} \in (\mathbb{R}^2)^{\mathfrak{T}}$ is a test function in the discrete space that satisfies:

tion at the previous time step $(\mathbf{u}^n, \mathbf{p}^n)$. We can rewrite the weak formulation

 $\Psi^{\mathfrak{T}} = 0 \quad \text{on } \Gamma_1, \qquad \operatorname{div}^{\mathfrak{D}}(\Psi^{\mathfrak{T}}) = 0.$

We observe the efficiency of the condition: at the cut it does not introduce perturbations to the flow.

Bibliography

[BF12] F. Boyer, P. Fabrie. Mathematical tools for the study of the incompressible Navier Stokes equations and related models, Applied Mathematical Sciences, Springer New York, 2012. [BF94] C.-H. Bruneau, P. Fabrie Effective downstream boundary conditions for incompressible Navier Stokes equations, International Journal for Numerical Methods in Fluids, no.8, pp 693–705, 1994. [DO05] K. Domelevo and P. Omnès. A finite volume method for the Laplace equation on almost arbitrary two-dimensional grids, M^2AN , 39(6), pp. 1203-1249, 2005. [K11] S. Krell Stabilized DDFV schemes for the incompressible Navier-Stokes equations, Proceedings of the 6th international symposium on Finite Volumes for Complex Applications, pp 605–612, 2011.