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1. The problem

We consider a computational domain Ω that is strictly smaller than the
physical domain:

physical domain

computational domain

Γ1 Γ2

We propose a DDFV (Discrete Duality Finite Volume) scheme
for the following incompressible Navier Stokes problem on Ω:



























∂tu + (u · ∇)u− div(σ(u, p)) = 0 in ΩT = Ω× [0, T ],

div(u) = 0 in ΩT ,

u = g1 on Γ1 × (0, T ),

outflow boundary conditions on Γ2 × (0, T ),

u(0) = uinit in Ω

(P)

• Ω is a polygonal bounded open set of R2, ∂Ω = Γ1 ∪ Γ2
• T > 0, uinit ∈ (L∞(Ω))2 and ~n the outer normal

• g1 ∈ (H
1
2(∂Ω))2

• σ(u, p) =
2

Re
Du− pId and Du =

1

2
(∇u + t∇u).

where we suppose that the velocity is prescribed upstream and we impose the
following artificial boundary condition, introduced in [BF94] and studied in
[BF12] on the non-physical part of the boundary Γ2:

σ(u, p) ·~n +
1

2
(u ·~n)−(u− uref ) = σref · ~n

with uref ∈ (H1(Ω))2, σref ·~n ∈ (H−1
2(Ω))2.

Those conditions are derived from a weak formulation of the Navier Stokes
equations that ensures an energy estimate. If Ψ is a test function in the
space V = {ψ ∈ (H1(Ω))2, ψ|Γ1

= 0, div(ψ) = 0}, we get:

∫

Ω
∂tu · Ψ +

2

Re

∫

Ω
D(u) : D(Ψ) +

1

2

∫

Ω
(u · ∇)u · Ψ−

1

2

∫

Ω
(u · ∇)Ψ · u

= −
1

2

∫

Γ2

(u · ~n) (u · Ψ) +

∫

Γ2

σ(u, p) · ~n · Ψ

that thanks to the boundary conditions becomes:

∫

Ω
∂tu · Ψ +

2

Re

∫

Ω
D(u) : D(Ψ) +

1

2

∫

Ω
(u · ∇)u · Ψ−

1

2

∫

Ω
(u · ∇)Ψ · u

= −
1

2

∫

Γ2

(u · ~n)+(u · Ψ) +
1

2

∫

Γ2

(u · ~n)−(uref · Ψ) +

∫

Γ2

σref · ~n · Ψ.

(WF)
Properties:

• Existence and uniqueness of
u ∈ L∞(]0, T [, V ) ∩ L2(]0, T [, V ),
p ∈ W−1,∞(]0, T [, L2(Ω)),
weak solution of (P)

• Inf-sup condition, Korn’s inequality,
Trace theorem

• Energy inequality

Goal:
Reproduce the results
at a discrete level.

The inf-sup stability condition reads:

inf
p∈L2

0(Ω)

(

sup
u∈(H1

0(Ω))
2

∫

Ω p (divu)

‖u‖H1‖p‖L2

)

> 0.

2. DDFV discretization

•Previous works on 2D DDFV for Navier-Stokes problem

in the case of variable viscosity and Dirichlet boundary conditions: [K11]

•The DDFV meshes [DO05]
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Diamond mesh D

and T = M ∪ ∂M ∪M∗ ∪ ∂M∗.

•Zoom on the diamond cells
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Vertices of the primal mesh
Centers of the primal mesh
σ = K|L, edge of the primal mesh
σ∗ = K

∗|L∗, edge of the dual mesh
Diamond Dσ,σ∗

s = [xK, xK
∗]

•The discrete unknowns:

pD =
(

pD
)

D∈D
∈ R

D,

uT =
(

(uK)K∈M∪∂M , (uK
∗)

K
∗∈M∗∪∂M∗

)

∈ (R2)T

•The discrete gradient: ∇D constant on each diamond cell

∇DuT · (xL − xK) = uL − uK,

∇DuT · (xL
∗ − xK

∗) = uL
∗ − uK

∗,

∇DuT =
1

2mD

[mσ(uL − uK)⊗~nσK +mσ∗(uL
∗ − uK

∗)⊗~nσ
∗
K
∗] , ∀D ∈ D.

•The discrete strain rate tensor: DD constant on each diamond cell

DDuT =
∇DuT + t(∇DuT)

2
.

•The discrete divergences: divT constant on each primal and dual cell.
For ξD ∈ (M2(R))

D:

∀ K ∈ M, divKξD =
1

mK

∑

σ⊂∂K

mσξ
D
~nσK

∀K∗ ∈ M∗, divK
∗
ξD =

1

mK
∗

∑

σ∗⊂∂K∗

mσ∗ξ
D
~nσ∗K∗

and divD constant on each diamond cell

divDuT = Tr(∇DuT)

•Trace operators:

–On the boundary of the domain γT: γσ(u
T) =

u
K
∗+2uL+uL

∗

4 ∀σ ∈ ∂M,

–On the boundary diamond mesh γD : γD(ΦD) = (ΦD)D∈D∩∂Ω.

• Inner products:

[[uT,vT]]T =
1

2

(

∑

K∈M

mKuK · vK +
∑

K
∗∈M∗∪∂M∗

mK
∗ uK

∗ · vK
∗

)

(ΦD,vT)∂Ω =
∑

Dσ,σ∗∈D∩∂Ω

mσΦ
D · vσ

(ξD : ΦD)D =
∑

D∈D

mD

(

ξD : ΦD
)

,

to which we can associate norms, e.g.

‖uT‖2 = [[uT,uT]]
1
2

T
, |||ξD|||2 = (ξD : ξD)

1
2

D

Theorem. (Discrete Green’s formula) For all ξD ∈ (M2(R))
D,uT ∈

(

R
2
)

T

:

[[divTξD,uT]]T = −(ξD : ∇DuT)D + (γD(ξD)~n, γT(uT))∂Ω.

•Convection term: bT(uT,vT) constant on each primal and dual cell.
For instance, on the primal mesh we define ∀K ∈ M:

mKbK(u
T,vT) =

∑

σ⊂∂K,
σ /∈∂Ω

FK,σ(u
T)vσ+ +

∑

σ⊂∂K,
σ∈∂Ω

FK,σ(u
T)γσ(vT)

where FK,σ(u
T) =















−
∑

s∈Dσ,σ∗∩K

ms

uK + uK
∗

2
· ~nsD if σ /∈ ∂Ω

mσγ
σ(uT) ·~nσK if σ ∈ ∂Ω

and vσ+ =

{

vK if FK,σ ≥ 0
vL otherwise

.

3. The scheme

LetN ∈ N
∗. We note δt = T

N . We look for (un+1, pn+1) by knowing the solu-
tion at the previous time step (un, pn). We can rewrite the weak formulation
(WF) in the DDFV framework as:

[[
un+1 − un

δt
,ΨT]]T +

2

Re
(DDun+1,DDΨT)D +

1

2
[[bT(un,un+1),ΨT]]T

−
1

2
[[bT(un,ΨT),un+1]]T = −

1

2

∑

D∈D∩Γ2

(FK,σ(u
n))+ γσ(un+1)γσ(ΨT)

+
1

2

∑

D∈D∩Γ2

(FK,σ(u
n))−γσ(uref )γ

σ(ΨT) +
∑

D∈D∩Γ2

mσ(σ
D
ref ·~nσK) · γ

σ(ΨT),

where ΨT ∈ (R2)T is a test function in the discrete space that satisfies:

ΨT = 0 on Γ1, divD(ΨT) = 0.

Theorem. (Well posedness)
Let T be a mesh that satisfies inf-sup stability condition. Then the scheme

admits a unique solution (un, pn)n∈{0,...N} ∈
(

(R2)T
)N+1

× (RD)N+1.

Remark: We require inf-sup condition because we need it in order to prove
Korn’s inequality and, then, the energy estimate. We could overcome this
difficulty by adding a stabilization term and we would obtain existence and
uniqueness for general meshes.

4. Discrete energy estimate

In order to prove the discrete energy estimate, it is necessary to prove:

Theorem. (Korn’s inequality)
Let T be a mesh that satisfies inf-sup stability condition. Then there exists
C > 0 such that :

‖∇DuT‖2 ≤ C‖DDuT‖2 ∀uT ∈ E0

Theorem. (Trace theorem)
Let T be a DDFV mesh associated to Ω. For all p > 1, there exists a constant
C > 0, such that ∀uT ∈ E0 and for all s ≥ 1:

‖γ(uT)‖ss,∂Ω ≤ C‖uT‖1,p‖u
T‖s−1

p(s−1)
p−1

We then obtain:

Theorem. (Energy estimate) Let T be a DDFV mesh associated to Ω
that satisfies inf-sup stability condition.
Let (un, pn), n ≥ 1, be the solution of the DDFV scheme and un = vn+uref .
For N > 1, there exists a constant C > 0 such that:

N−1
∑

j=0

‖vj+1 − vj‖22 ≤ C, ‖vN‖22 ≤ C,

N−1
∑

j=0

δt
1

Re
‖DDvj+1‖22 ≤ C, δt

1

Re
‖DDvN‖22 ≤ C,

N−1
∑

j=0

δt
∑

D∈D∩Γ2

(FK,σ(v
j + uTref ))

+(γσ(vj+1))2 ≤ C.

5. Numerical results

◮ Flow around an obstacle: The bigger computational domain is
Ω = [0, 2.2]× [0, 0.41], the smaller one is Ω′ = [0, 0.6]× [0, 0.41].
The viscosity is η = 10−3, T = 5s, δt = 1.46× 10−3.
The reference flow on Γ2 is a Poiseuille flow:

uref (x, y) =





1

0.412
6y(0.41− y)

0





σref (u, p) ·~n =





0
1

0.412
6η(0.41− 2y)





We have on Γ1 that g1 = uref and the initial data uinit = uref .

Streamlines at Re = 100.

Vorticity lines at Re = 100.

We observe the efficiency of the condition: at the cut it does
not introduce perturbations to the flow.
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