Non standard virtual element methods for the Helmholtz problem

Ilaria Perugia Faculty of Mathematics, University of Vienna, Austria

Joint work with Lorenzo Mascotto and Alexander Pichler (University of Vienna)

POEMS Workshop Luminy, April 29 - May 3, 2019

Trefftz finite element methods are FEM whose basis functions are solutions to the *homogeneous* PDE in each element of a mesh T_h .

same accuracy with less d.o.f., as compared to standard polynomial FEM

A Trefftz finite element method is defined by the choice of

- a family of (operator dependent) discrete Trefftz spaces
- a variational framework that allows to approximate interface and boundary conditions (e.g., least squares, Lagrange multipliers, discontinuous Galerkin)

Trefftz basis functions for Helmholtz

• plane waves $exp(ik\mathbf{d}_{\ell} \cdot (\mathbf{x} - \mathbf{x}_0)), \ \ell = 1, \dots, p$

 $k = 20, \ \mathbf{d} = [\cos(\pi/6), \sin(\pi/6)]$

 $k = 20, \ \mathbf{d} = [cos(\pi/3), sin(\pi/3)]$

• Fourier-Bessel functions $J_{\ell}(k|\mathbf{x} - \mathbf{x}_0|)exp(i\ell\vartheta), \ \ell = -q, \dots, q$

• fundamental solutions $H_0^{(1)}(k|\mathbf{x} - \mathbf{x}_\ell|), \ \ell = 1, \dots, p$ multipoles $H_\ell^{(1)}(k|\mathbf{x} - \mathbf{x}_0|)exp(i\ell\vartheta), \ \ell = -q, \dots, q$

Basis functions for special situations

• near a corner of angle $\pi \alpha$: corner waves

 $J_{\ell/lpha}(k|\mathbf{x}-\mathbf{x}_0|)\cos(\ellartheta/lpha)$

 $k = 20, \ \alpha = 1/2$

 $k = 20, \ \alpha = 3/2$

• for interface problems: evanescent waves

 $\exp(ik\mathbf{d}_{\ell} \cdot (\mathbf{x} - \mathbf{x}_0))$ with complex unit vectors \mathbf{d}_{ℓ}

$$k = 16, \ \mathbf{d} = [\sqrt{1.1}, 0] + i[0, \sqrt{0.1}]$$

[Stojeck, 1998]

- least squares^[1]
- \bullet ultra weak variational formulation $^{[2]},$ discontinuous Galerkin $^{[3,4]}$
- Lagrange multipliers^[5,6]
- variational theory of complex rays^[7]
- wave-based method^[8]
- BEM-based FEM^[9]
- partition of unity^[10], virtual partition of unity^[11]

[1] Monk, Wang 1999	[7] Ladevèze, 1996-
[2] Cessenat, Després, 1998-	[8] Desmet, 1998-
[3] Buffa, Monk, 2008	[9] Copeland, Langer, Pusch, 2009
[4] Gittelson, Hiptmair, Moiola, Perugia, 2009-	[10] Melenk, Babuška, 1995-
[5] Babuška, Ihlenburg, 1997	[11] Perugia, Pietra, Russo, 2016
[6] Farhat, Harari, Hetmaniuk, 2003-	Survey: Hiptmair, Moiola, Perugia, 2016

A numerical experiment

• Helmholtz BVP with exact solution

$$u(\mathbf{x}) = H_0^{(1)}(k|\mathbf{x} - \mathbf{x}_0|)$$

$$\mathbf{x}_0 = (-0.25, 0), \ \Omega := (0, 1)^2$$

plane wave basis functions

- k = 20, angle $\pi/6$ k = 20, angle $\pi/3$
- *p*-version results obtained with PW-DG and with a *new* <u>PW virtual element method</u>

[Mascotto, Perugia, Pichler, 2019]

p-version, Cartesian mesh made of 16 elements, L^2 -error

Virtual element method (VEM) [Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, Russo, 2013]

- generalization of FEM to polytopal meshes
- the local basis functions are known explicitly on the boundary but *not in the interior* of each element
- the degrees of freedom are chosen so that H^1 conformity can be imposed
- the local VEM spaces contain subspaces that are known in closed form and possess good approximation properties

Virtual element method (VEM) [Beirão da Veiga, Brezzi, Cangiani, Manzini, Marini, Russo, 2013]

- generalization of FEM to polytopal meshes
- the local basis functions are known explicitly on the boundary but *not in the interior* of each element
- the degrees of freedom are chosen so that H^1 conformity can be imposed
- the local VEM spaces contain subspaces that are known in closed form and possess good approximation properties

Nonconforming VEM (à la Crouzeix-Raviart) [Ayuso, Lipnikov, Manzini, 2016], [Cangiani, Manzini, Sutton, 2016]

• nonconforming Trefftz VEM for the Laplacian [Mascotto, Perugia, Pichler, 2018]

Helmholtz problem with impedance boundary condition

$$\begin{cases} -\Delta u - k^2 u = 0 & \text{ in } \Omega \\ \nabla u \cdot \mathbf{n}_{\Omega} + \mathrm{i} k u = g & \text{ on } \partial \Omega, \end{cases}$$

where $\Omega \subset \mathbb{R}^2$ is a bounded convex polygon, k > 0 is the wave number.

variational formulation

Find
$$u \in H^{1}(\Omega)$$
:
 $a(u, v) + ik \int_{\partial \Omega} u\overline{v} \, ds = \int_{\partial \Omega} g\overline{v} \, ds \quad \forall v \in H^{1}(\Omega),$
where

$$a(u,v) = \int_{\Omega} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x - k^2 \int_{\Omega} u \overline{v} \, \mathrm{d}x.$$

Bulk and edge plane wave spaces

 $\mathcal{T}_n := \{K\}$ mesh of polygons; $\{\mathbf{d}_\ell\}_{\ell=1}^{p=2q+1}$ directions; \mathcal{E}_n edges plane waves: $w_\ell(\mathbf{x}) := e^{ikd_\ell \cdot \mathbf{x}}, \quad \ell = 1, \dots, p$

• $\mathbb{PW}_p(K) := \operatorname{span}\{w_{\ell|_K}\}_{\ell=1}^p$, $\dim(\mathbb{PW}_p(K)) = p$, $K \in \mathcal{T}_n$

• $\mathbb{PW}_p(e) := \operatorname{span}\{w_{\ell|e}\}_{\ell=1}^p$, $\dim(\mathbb{PW}_p(e)) \leq p$, $e \in \mathcal{E}_n$

 \rightsquigarrow remove redundant directions & include constants $\rightarrow \mathbb{PW}_{p}^{c}(e)$

• local **Trefftz**-VE space (for any $K \in T_n$)

$$V_h(K) := \left\{ v_h \in H^1(K) \mid \Delta v_h + k^2 v_h = 0 \text{ in } K, \\ (\nabla v_h \cdot \mathbf{n}_K + ikv_h)_{|_e} \in \mathbb{PW}_p^c(e) \quad \forall e \in \mathcal{E}^K \right\}$$

- $\mathbb{PW}(K) \subset V_h(K)$
- functions $v_h \in V_h(K)$ are known <u>neither</u> inside K <u>nor</u> on ∂K

• local **Trefftz**-VE space (for any $K \in T_n$)

$$V_h(K) := \left\{ v_h \in H^1(K) \mid \Delta v_h + k^2 v_h = 0 \text{ in } K, \\ (\nabla v_h \cdot \mathbf{n}_K + ikv_h)_{|_e} \in \mathbb{PW}_p^c(e) \quad \forall e \in \mathcal{E}^K \right\}$$

- $\mathbb{PW}(K) \subset V_h(K)$
- functions $v_h \in V_h(K)$ are known <u>neither</u> inside K <u>nor</u> on ∂K
- degrees of freedom (on any $e_r \in \mathcal{E}^K$)

$$dof_{r,j}(v_h) := \frac{1}{h_{e_r}} \int_{e_r} v_h \overline{w_j^{e_r}} \, ds \quad \forall w_j^{e_r} \in \mathbb{PW}_p^c(e_r)$$
K

• local **Trefftz**-VE space (for any $K \in T_n$)

$$V_h(K) := \left\{ v_h \in H^1(K) \mid \Delta v_h + k^2 v_h = 0 \text{ in } K, \\ (\nabla v_h \cdot \mathbf{n}_K + ikv_h)_{|_e} \in \mathbb{PW}_p^c(e) \quad \forall e \in \mathcal{E}^K \right\}$$

- $\mathbb{PW}(K) \subset V_h(K)$
- functions $v_h \in V_h(K)$ are known <u>neither</u> inside K <u>nor</u> on ∂K
- degrees of freedom (on any $e_r \in \mathcal{E}^K$)

$$\mathsf{dof}_{r,j}(v_h) := rac{1}{h_{e_r}} \int_{e_r} v_h \overline{w_j^{e_r}} \, \mathsf{d}s \quad orall w_j^{e_r} \in \mathbb{PW}_p^c(e_r)$$

local basis functions

$$\mathsf{dof}_{r,j}(\varphi_{s,\ell}) = \delta_{r,s}\delta_{j,\ell}$$

Provided that k^2 is not a Dirichlet-Laplace eigenvalue on K, the set of d.o.f. is unisolvent. In fact, assume that $v_h \in V_h(K)$ and all its d.o.f. are zero. Then,

$$\begin{aligned} |v_{h}|_{1,K}^{2} - k^{2} \|v_{h}\|_{0,K}^{2} - ik \|v_{h}\|_{0,\partial K}^{2} \\ &= \int_{K} \nabla v_{h} \cdot \overline{\nabla v_{h}} \, \mathrm{d}x - k^{2} \int_{K} v_{h} \overline{v_{h}} \, \mathrm{d}x - ik \int_{\partial K} v_{h} \overline{v_{h}} \, \mathrm{d}s \\ &= \int_{K} v_{h} \overline{(-\Delta v_{h} - k^{2} v_{h})}_{=0} \, \mathrm{d}x + \int_{\partial K} v_{h} \overline{(\nabla v_{h} \cdot \mathbf{n}_{K} + ik v_{h})} \, \mathrm{d}s \\ &= \sum_{e \in \mathcal{E}^{K}} \int_{e} v_{h} \overline{(\nabla v_{h} \cdot \mathbf{n}_{K} + ik v_{h})}_{e} \, \mathrm{d}s = 0 \end{aligned}$$

- imaginary part $\rightarrow v_h = 0$ on ∂K
- since $\Delta v_h + k^2 v_h = 0$, we conclude

Dirichlet/Neumann boundary conditions

• modification of local VE spaces on Dirichlet/Neumann boundary edges

$$\begin{split} V_h(\mathcal{K}) &:= \left\{ v_h \in H^1(\mathcal{K}) \mid \Delta v_h + k^2 v_h = 0 \text{ in } \mathcal{K}, \\ (\nabla v_h \cdot \mathbf{n}_{\mathcal{K}} + \mathrm{i} k v_h)_{|_e} \in \mathbb{PW}_p^c(e) \quad \forall e \in \mathcal{E}^{\mathcal{K}} \setminus (\Gamma_D \cup \Gamma_N) \\ v_{h|_e} \in \mathbb{PW}_p^c(e) \quad \forall e \in \mathcal{E}^{\mathcal{K}} \cap (\Gamma_D \cup \Gamma_N) \right\} \end{split}$$

• d.o.f. on Dirichlet/Neumann boundary edges: as for all the other edges

piecewise constant wave numbers

• combination of plane waves and evanescent waves

[Mascotto, Pichler, 2019]

Nonconforming Trefftz-VEM: global spaces

• global nonconforming Sobolev space

$$H^{1,nc}(\mathcal{T}_n) := \left\{ v \in \prod_{K \in \mathcal{T}_n} H^1(K) : \int_e (v_{|_{K^+}} - v_{|_{K^-}}) \,\overline{w^e} \, \mathrm{d}s = 0 \\ \forall w^e \in \mathbb{PW}_p^c(e), \, \forall e \in \mathcal{E}'_n \right\}$$

• global nonconforming Trefftz-VE space

$$V_h := \{v_h \in H^{1,nc}(\mathcal{T}_n) : v_{h|_K} \in V_h(K) \quad \forall K \in \mathcal{T}_n\}$$

• local sesquilinear form

$$a^{K}(u,v) := \int_{K} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x - k^{2} \int_{K} u \overline{v} \, \mathrm{d}x$$

discrete variational formulation

Find
$$u_h \in V_h$$
:

$$\sum_{K \in \mathcal{T}_n} a^K(u_h, v_h) + ik \int_{\partial \Omega} u_h \overline{v_h} \, \mathrm{d}s = \int_{\partial \Omega} g \overline{v_h} \, \mathrm{d}s \quad \forall v_h \in V_h.$$

• local sesquilinear form

$$a^{K}(u,v) := \int_{K} \nabla u \cdot \overline{\nabla v} \, \mathrm{d}x - k^{2} \int_{K} u \overline{v} \, \mathrm{d}x$$

discrete variational formulation Find $u_h \in V_h$: $\sum_{K \in \mathcal{T}_n} a^K(u_h, v_h) + ik \int_{\partial \Omega} u_h \overline{v_h} ds = \int_{\partial \Omega} g \overline{v_h} ds \quad \forall v_h \in V_h.$

Problem: none of these terms is computable

• bulk projector

$$\Pi_{p}^{K}: V_{h}(K) \to \mathbb{PW}_{p}(K)$$
$$a^{K}(\Pi_{p}^{K}u_{h}, w^{K}) = a^{K}(u_{h}, w^{K}) \quad \forall w^{K} \in \mathbb{PW}_{p}(K)$$

•
$$L^2$$
 (boundary) edge projector $(e \in \mathcal{E}_n^B)$

$$\Pi_p^{0,e}: V_h(\mathcal{K})_{|_e} \to \mathbb{PW}_p^c(e)$$

$$\int_e (\Pi_p^{0,e} u_h) \overline{w^e} \, \mathrm{d}s = \int_e u_h \overline{w^e} \, \mathrm{d}s \quad \forall w^e \in \mathbb{PW}_p^c(e)$$

 Π_{p}^{K} and $\Pi_{p}^{0,e}$ are computable in terms of the d.o.f. (obvious for $\Pi_{p}^{0,e}$, by integration by parts for Π_{p}^{K})

for $u_h \in V_h(K)$ and $w^K \in \mathbb{PW}_p(K)$, integration by part and $\Delta w^K + k^2 w^K = 0$ give

$$a^{K}(u_{h}, w^{K}) = \int_{K} \nabla u_{h} \cdot \overline{\nabla w^{K}} \, \mathrm{d}x - k^{2} \int_{K} u_{h} \overline{w^{K}} \, \mathrm{d}x$$
$$= \sum_{e \in \mathcal{E}^{K}} \int_{e} u_{h} \underbrace{\overline{(\nabla w^{K} \cdot \mathbf{n}_{K})}}_{\in \mathbb{PW}_{p}^{c}(e)} \, \mathrm{d}s$$

Replace each term of the variational formulation with something computable

$$\sum_{K \in \mathcal{T}_n} \underbrace{a^K(u_h, v_h)}_{=:(I)} + \underbrace{\mathsf{i} k \int_{\partial \Omega} u_h \overline{v_h} \, \mathsf{d} s}_{=:(II)} = \underbrace{\int_{\partial \Omega} g \, \overline{v_h} \, \mathsf{d} s}_{=:(III)} \quad \forall v_h \in V_h$$

(II), (III):
$$v_h \mapsto \prod_p^{0,\partial\Omega} v_h$$

(I): $a^K(u_h, v_h) = \underbrace{a^K(\prod_p^K u_h, \prod_p^K v_h)}_{computable} + \underbrace{a^K((I - \prod_p^K)u_h, (I - \prod_p^K)v_h)}_{\approx S^K((I - \prod_p^K)u_h, (I - \prod_p^K)v_h)}$
 $S^K(u_h, v_h) = \sum_{e \in \mathcal{E}^K} \sum_{\ell=1}^{\dim(\mathbb{PW}_p^c(e))} a^K(\prod_p^K \varphi_{e,\ell}, \prod_p^K \varphi_{e,\ell}) \operatorname{dof}_{e,\ell}(u_h) \operatorname{dof}_{e,\ell}(v_h)$
(diagonal recipe, [Beirão da Veiga, Dassi, Russo, 2017])

nonconforming Trefftz-VEM

Find $u_h \in V_h$:

$$\mathbf{a}_h(u_h, v_h) + \mathrm{i} k \int_{\partial \Omega} u_h \overline{(\boldsymbol{\Pi}_p^{0, \partial \Omega} v_h)} \, \mathrm{d} s = \int_{\partial \Omega} g \overline{(\boldsymbol{\Pi}_p^{0, \partial \Omega} v_h)} \, \mathrm{d} s \qquad \forall v_h \in V_h,$$

where

$$a_h(u_h,v_h) = \sum_{K\in\mathcal{T}_n} \left[a^K(\Pi_p^K u_h,\Pi_p^K v_h) + S^K((I-\Pi_p^K)u_h,(I-\Pi_p^K)v_h)\right].$$

 \rightsquigarrow well-posedness and *h*-convergence; pollution \sim PWDG

General remark on interpolation error in nonconforming spaces: next slide

[Mascotto, Perugia, Pichler, 2018]

- Poisson problem, homogeneous Dirichlet boundary conditions
- $H^{1,\mathrm{nc}}_p(\mathcal{T}_h) = \{ v \in H^1(\mathcal{T}_h) : \int_e \llbracket v \rrbracket q_{p-1} = 0 \quad \forall q_{p-1} \in \mathbb{P}_{p-1}(e), \forall e \in \mathcal{E}_h \}$
- nc-VEM space

$$V(K) = \{ v \in H^{1}(K) : \Delta v \in \mathbb{P}_{p-2}(K), \ (\partial_{n_{K}}v)_{|_{e}} \in \mathbb{P}_{p-1}(e) \ \forall e \subset \partial K \}$$
$$V_{p}^{nc}(\mathcal{T}_{h}) = \{ v \in H_{p}^{1,nc}(\mathcal{T}_{h}) : \ v_{|_{K}} \in V(K) \quad \forall K \in \mathcal{T}_{h} \}$$

• $\psi \in H^1_0(\Omega)$, nc-VEM interpolant $\psi^I \in V^{\mathrm{nc}}_p(\mathcal{T}_h)$: for all $K \in \mathcal{T}_h$,

$$\begin{aligned} &\frac{1}{h_e} \int_e (\psi' - \psi) \, q_{p-1}^e = 0 \qquad \forall q_{p-1}^e \in \mathbb{P}_{p-1}(e), \ \forall e \subset \partial K \\ &\frac{1}{|K|} \int_K (\psi' - \psi) \, q_{p-2} = 0 \qquad \forall q_{p-2} \in \mathbb{P}_{p-2}(K) \end{aligned}$$

for all
$$q_p \in \mathbb{P}_p(K)$$
,
 $|\psi - \psi'|^2_{1,\kappa} = \int_{\kappa} \nabla(\psi - \psi') \cdot \nabla(\psi - \psi')$
 $= \int_{\kappa} \nabla(\psi - \psi') \cdot \nabla(\psi - q_p) + \int_{\kappa} \nabla(\psi - \psi') \cdot \nabla(q_p - \psi')$
 $= \int_{\kappa} \nabla(\psi - \psi') \cdot \nabla(\psi - q_p) - \underbrace{\int_{\kappa} (\psi - \psi') \Delta(q_p - \psi')}_{=0} + \underbrace{\int_{\partial \kappa} (\psi - \psi') \partial_{n_{\kappa}}(q_p - \psi')}_{=0}$
 $= \int_{\kappa} \nabla(\psi - \psi') \cdot \nabla(\psi - q_p) \leq |\psi - \psi'|_{1,\kappa} |\psi - q_p|_{1,\kappa}$

interpolation error in $V_p^{nc}(\mathcal{T}_h) \leq \text{best approximation in } \mathbb{P}_p^{\text{disc}}(\mathcal{T}_h)$

Numerical experiment

- $\Omega := (0,1)^2$
- Voronoi meshes
- exact solution: $u(\mathbf{x}) = H_0^{(1)}(k|\mathbf{x} \mathbf{x}_0|), \quad \mathbf{x}_0 = (-0.25, 0),$

no convergence!

• primary source: almost singularity of local plane wave mass matrices on boundary edges (in spite of the applied filtering), which need to be inverted for the computation of

• primary source: almost singularity of local plane wave mass matrices on boundary edges (in spite of the applied filtering), which need to be inverted for the computation of

• primary source: almost singularity of local plane wave mass matrices on boundary edges (in spite of the applied filtering), which need to be inverted for the computation of

• primary source: almost singularity of local plane wave mass matrices on boundary edges (in spite of the applied filtering), which need to be inverted for the computation of

$$\mathsf{i} k \int_{\partial \Omega} u_h \, \overline{(\Pi_p^{0, \partial \Omega} v_h)} \, \mathsf{d} s \qquad \mathsf{and} \qquad \int_{\partial \Omega} g \, \overline{(\Pi_p^{0, \partial \Omega} v_h)} \, \mathsf{d} s$$

• secondary source: ill-conditioning of the (bulk) plane wave basis

Idea: act directly on the edge mass matrices (and for all the edges)

Algorithm: Orthogonalization-and-filtering

Let $\sigma > 0$ be a given tolerance. For *any edge* $e \in \mathcal{E}_n$:

- 1. assemble the matrix \boldsymbol{G}_0^e with entries $(\boldsymbol{G}_0^e)_{j,\ell} = (w_\ell^e, w_l^e)_{0,e}$.
- 2. compute the eigendecomposition: $\boldsymbol{G}_{0}^{e}\boldsymbol{Q}^{e} = \boldsymbol{Q}^{e}\boldsymbol{\Lambda}^{e}$.
- 3. remove the columns of \pmb{Q}^e corresponding to the eigenvalues smaller than σ
- 4. define the new orthonormal edge functions in terms of the old ones

 $(\sigma = 10^{-13} \text{ in our experiments})$

Remark: On structured meshes, the local orthonormal bases can be computed once for all in the elements of the reference patch.

h-version (revisited)

 \rightarrow algebraic convergence (reduction of #dofs: up to almost 70%)

Voronoi meshes

•
$$k = 20, q = 7$$

it.	L ² -error	# dofs (practice)	<pre># dofs (theory)</pre>	reduct. (%)
0	5.75e-01	131	174	24.7
1	1.00e-01	224	340	34.1
2	4.42e-03	394	672	41.4
3	2.28e-04	695	1392	50.1
4	8.99e-06	1243	2783	55.3
5	8.73e-07	2206	5635	60.1
6	4.33e-08	4002	11353	64.7
7	5.16e-09	7282	22810	68.1

p-version (error vs. effective degree)

$$u(x,y) := H_0^{(1)}(k|\mathbf{x} - \mathbf{x}_0|), \quad \mathbf{x}_0 = (-0.25,0), \quad \Omega = (0,1)^2$$

Ilaria Perugia (University of Vienna)

p-version (error vs. number of dofs)

$$u(x,y) := H_0^{(1)}(k|\mathbf{x} - \mathbf{x}_0|), \quad \mathbf{x}_0 = (-0.25,0), \quad \Omega = (0,1)^2$$

Ilaria Perugia (University of Vienna)

- $\Omega := (0,1)^2$
- singular solution: $v(x,y) := J_{\xi}(kr) \cos{(\xi\theta)}, \ \xi = \frac{2}{3}$
- $v \in H^{\frac{5}{3}-\epsilon}(\Omega)$, for all $\epsilon > 0$ arbitrarily small
- *h*-version: convergence rate $\frac{5}{3}$ in L^2 ; *p*-version: algebraic conv.
- hp-graded meshes ($\mu = 1/3$) \rightsquigarrow exponential convergence

- $\Omega := (0,1)^2$
- singular solution: $v(x,y) := J_{\xi}(kr) \cos{(\xi\theta)}, \ \xi = \frac{2}{3}$
- $v \in H^{\frac{5}{3}-\epsilon}(\Omega)$, for all $\epsilon > 0$ arbitrarily small
- *h*-version: convergence rate $\frac{5}{3}$ in L^2 ; *p*-version: algebraic conv.
- hp-graded meshes ($\mu = 1/3$) \rightsquigarrow exponential convergence

	2	2
ν	1	2
	2	2

- $\Omega := (0,1)^2$
- singular solution: $v(x,y) := J_{\xi}(kr) \cos{(\xi\theta)}, \ \xi = \frac{2}{3}$
- $v \in H^{\frac{5}{3}-\epsilon}(\Omega)$, for all $\epsilon > 0$ arbitrarily small
- *h*-version: convergence rate $\frac{5}{3}$ in L^2 ; *p*-version: algebraic conv.
- hp-graded meshes ($\mu = 1/3$) \rightsquigarrow exponential convergence

	3		3
ν	2 1 2	2 2 2	3
		3	3

• \mathcal{T}_n mesh with n+1 layers of elements near the singularity $oldsymbol{
u}$

•
$$h_{K} = \mu^{n}$$
 if K is in the 0-th layer
 $h_{K} = \frac{1-\mu}{\mu} \operatorname{dist}(K, \nu)$ otherwise

•
$$p_K = 2q_K + 1$$
, with $q_K = \ell + 1$, if K is in the ℓ -th layer

• hierarchical sets of directions obtained by suitable removal from a set of $2q_{max} + 1$ evenly spaced directions

• nc Trefftz-VEM combines the Trefftz framework with the nc-VE technology

- general polygonal meshes
- basis functions are not known in closed form but satisfy the homogeneous Helmholtz equation
- for stability reasons, we applied *edgewise* an orthogonalization-and-filtering procedure, which turned out to have positive effects in terms of
 - accuracy vs. number of d.o.f.
 - maximal achievable accuracy
- extension to the 3D case (with Marco Manzini)

• nc Trefftz-VEM combines the Trefftz framework with the nc-VE technology

- general polygonal meshes
- basis functions are not known in closed form but satisfy the homogeneous Helmholtz equation
- for stability reasons, we applied *edgewise* an orthogonalization-and-filtering procedure, which turned out to have positive effects in terms of
 - accuracy vs. number of d.o.f.
 - maximal achievable accuracy
- extension to the 3D case (with Marco Manzini)

Thank you for your attention!