POEMS-2019

Marseille, France

April 29 - May 3, 2019

A high-order discontinuous Galerkin approach to the elasto-acoustic problem

Ilario Mazzieri
POLITECNICO di MILANO (Italy)
Department of Mathematics
MOX Laboratory for Modeling and Scientific Computing
Joint work with:
P.F. Antonietti (PoliMi), F. Bonaldi (PoliMi).

Motivations

Coupled elasto-acoustic wave propagation arises in several scientific and engineering contexts

Radar and sonar detection

Motivations

Coupled elasto-acoustic wave propagation arises in several scientific and engineering contexts

Radar and sonar detection

Geophysical exploration

Motivations

Coupled elasto-acoustic wave propagation arises in several scientific and engineering contexts

Radar and sonar detection

Medical diagnostic

Geophysical exploration

Motivations

Coupled elasto-acoustic wave propagation arises in several scientific and engineering contexts

Radar and sonar detection

Geophysical exploration

Medical diagnostic

Sound engineering

Motivations

Features of the physical model

- Nonlinear coupled problem
- Thin structures and highly heterogeneous media
- Scattered fields at high-frequency/small-wavelength

Motivations

Features of the physical model

- Nonlinear coupled problem
- Thin structures and highly heterogeneous media
- Scattered fields at high-frequency/small-wavelength

Requirements on the numerical scheme

- Mesh flexibility for considering any scatterer shape
- High-order accuracy for a reliable approximation of high-frequency waves
- Suited to high performance computing

Motivations

Features of the physical model

- Nonlinear coupled problem
- Thin structures and highly heterogeneous media
- Scattered fields at high-frequency/small-wavelength

Requirements on the numerical scheme

- Mesh flexibility for considering any scatterer shape
- High-order accuracy for a reliable approximation of high-frequency waves
- Suited to high performance computing

Objective

Development and analysis of a high-order discontinuous Galerkin method on polytopal grids for the coupled elastic-acoustic wave propagation problem.

State of the art

Minimal bibliography

- [Komatitsch et al., 2000]: Spectral Elements
- [Fischer and Gaul, 2005]: FEM-BEM coupling, Lagrange multipliers
- [Flemisch et al., 2006]: classical FEM on two independent meshes
- [Brunner et al., 2009]: FEM-BEM comparison
- [Ghattas et al., 2010]: dG, velocity-strain formulation
- [Barucq et al., 2014]: Fréchet differentiability of the elasto-acoustic field
- [Barucq et al., 2014]: dG on simplices, curved edges on interface
- [Péron, 2014]: asymptotic study, equivalent boundary conditions
- [De Basabe and Sen, 2015]: Spectral Elements and Finite Differences
- [Mönköla, 2016]: Spectral Elements, different formulations

State of the art

Minimal bibliography

- [Komatitsch et al., 2000]: Spectral Elements
- [Fischer and Gaul, 2005]: FEM-BEM coupling, Lagrange multipliers
- [Flemisch et al., 2006]: classical FEM on two independent meshes
- [Brunner et al., 2009]: FEM-BEM comparison
- [Ghattas et al., 2010]: dG, velocity-strain formulation
- [Barucq et al., 2014]: Fréchet differentiability of the elasto-acoustic field
- [Barucq et al., 2014]: dG on simplices, curved edges on interface
- [Péron, 2014]: asymptotic study, equivalent boundary conditions
- [De Basabe and Sen, 2015]: Spectral Elements and Finite Differences
- [Mönköla, 2016]: Spectral Elements, different formulations

Our contribution

- Well-posedness of the coupled problem in the continuous setting
- Detailed analysis of a dG scheme on general polytopal meshes

Elasto-acoustic coupling: governing equations

$$
\begin{cases}\rho_{e} \ddot{\mathbf{u}}-\operatorname{div}(\mathbb{C} \varepsilon(\mathbf{u}))=\mathbf{f}_{e} & \text { in } \Omega_{e} \times(0, T] \\ \mathbb{C} \varepsilon(\mathbf{u}) \mathbf{n}_{e}=\rho_{a} \dot{\varphi} \mathbf{n}_{a} & \text { on } \Gamma_{\mathrm{I}} \times(0, T] \\ c^{-2} \ddot{\varphi}-\triangle \varphi=f_{a} & \text { in } \Omega_{a} \times(0, T] \\ \partial \varphi / \partial \mathbf{n}_{a}=\dot{\mathbf{u}} \cdot \mathbf{n}_{e} & \text { on } \Gamma_{\mathrm{I}} \times(0, T]\end{cases}
$$

- u is the elastic displacement, φ is the acoustic potential
- ρ_{e} and ρ_{a} are the elastic and acoustic mass densities
- $\mathbb{C} \varepsilon(\mathbf{u})$ is the stress tensor (Hooke's law)
- c is the characteristic acoustic velocity

Elasto-acoustic coupling: governing equations

$$
\begin{cases}\rho_{e} \ddot{\mathbf{u}}-\operatorname{div}(\mathbb{C} \varepsilon(\mathbf{u}))=\mathbf{f}_{e} & \text { in } \Omega_{e} \times(0, T] \\ \mathbb{C} \varepsilon(\mathbf{u}) \mathbf{n}_{e}=\rho_{a} \dot{\varphi} \mathbf{n}_{a} & \text { on } \Gamma_{\mathrm{I}} \times(0, T] \\ c^{-2} \ddot{\varphi}-\Delta \varphi=f_{a} & \text { in } \Omega_{a} \times(0, T] \\ \partial \varphi / \partial \mathbf{n}_{a}=\dot{\mathbf{u}} \cdot \mathbf{n}_{e} & \text { on } \Gamma_{\mathrm{I}} \times(0, T]\end{cases}
$$

- u is the elastic displacement, φ is the acoustic potential
- ρ_{e} and ρ_{a} are the elastic and acoustic mass densities
- $\mathbb{C} \varepsilon(\mathbf{u})$ is the stress tensor (Hooke's law)
- c is the characteristic acoustic velocity

Interface conditions on Γ_{I}

- Continuity of the pressure loads (acoustic pressure $p_{a}=\rho_{a} \dot{\varphi}$)
- Continuity of the normal component of the velocity field (acoustic velocity $\mathbf{v}_{a}=-\nabla \varphi$)

Theoretical and numerical analysis

Well-posedness

Theorem

Under suitable regularity hypotheses on initial data and source terms, there is a unique strong solution s.t.

$$
\begin{gathered}
\mathbf{u} \in C^{2}\left([0, T] ; \mathbf{L}^{2}\left(\Omega_{e}\right)\right) \cap C^{1}\left([0, T] ; \mathbf{H}_{D}^{1}\left(\Omega_{e}\right)\right) \cap C^{0}\left([0, T] ; \mathbf{H}_{\mathbb{C}}^{\triangle}\left(\Omega_{e}\right) \cap \mathbf{H}_{D}^{1}\left(\Omega_{e}\right)\right), \\
\varphi \in C^{2}\left([0, T] ; L^{2}\left(\Omega_{a}\right)\right) \cap C^{1}\left([0, T] ; H_{D}^{1}\left(\Omega_{a}\right)\right) \cap C^{0}\left([0, T] ; H^{\triangle}\left(\Omega_{a}\right) \cap H_{D}^{1}\left(\Omega_{a}\right)\right) \\
\mathbf{H}_{\mathbb{C}}^{\triangle}\left(\Omega_{e}\right)=\left\{\mathbf{v} \in \mathbf{L}^{2}\left(\Omega_{e}\right): \operatorname{div} \mathbb{C} \varepsilon(\mathbf{v}) \in \mathbf{L}^{2}\left(\Omega_{e}\right)\right\}, \\
H^{\triangle}\left(\Omega_{a}\right)=\left\{v \in L^{2}\left(\Omega_{a}\right): \Delta v \in L^{2}\left(\Omega_{a}\right)\right\}
\end{gathered}
$$

Well-posedness

Theorem

Under suitable regularity hypotheses on initial data and source terms, there is a unique strong solution s.t.

$$
\begin{gathered}
\mathbf{u} \in C^{2}\left([0, T] ; \mathbf{L}^{2}\left(\Omega_{e}\right)\right) \cap C^{1}\left([0, T] ; \mathbf{H}_{D}^{1}\left(\Omega_{e}\right)\right) \cap C^{0}\left([0, T] ; \mathbf{H}_{\mathbb{C}}^{\triangle}\left(\Omega_{e}\right) \cap \mathbf{H}_{D}^{1}\left(\Omega_{e}\right)\right), \\
\varphi \in C^{2}\left([0, T] ; L^{2}\left(\Omega_{a}\right)\right) \cap C^{1}\left([0, T] ; H_{D}^{1}\left(\Omega_{a}\right)\right) \cap C^{0}\left([0, T] ; H^{\triangle}\left(\Omega_{a}\right) \cap H_{D}^{1}\left(\Omega_{a}\right)\right) \\
\mathbf{H}_{\mathbb{C}}^{\triangle}\left(\Omega_{e}\right)=\left\{\mathbf{v} \in \mathbf{L}^{2}\left(\Omega_{e}\right): \operatorname{div} \mathbb{C} \boldsymbol{\varepsilon}(\mathbf{v}) \in \mathbf{L}^{2}\left(\Omega_{e}\right)\right\}, \\
H^{\triangle}\left(\Omega_{a}\right)=\left\{v \in L^{2}\left(\Omega_{a}\right): \Delta v \in L^{2}\left(\Omega_{a}\right)\right\}
\end{gathered}
$$

Idea of the proof. Rewrite the problem as: find $\mathcal{U}(t) \in \mathbb{H}$ such that

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{U}}{\mathrm{~d} t}(t)+A \mathcal{U}(t) & =\mathcal{F}(t), \quad t \in(0, T] \\
\mathcal{U}(0) & =\mathcal{U}_{0},
\end{aligned}
$$

and prove that A is maximal monotone, i.e., $(A \mathcal{U}, \mathcal{U})_{\mathbb{H}} \geqslant 0$ for all $\mathcal{U} \in D(A)$ and that $I+A$ is surjective from $D(A)$ onto \mathbb{H}. Then, apply the Hille-Yosida theorem.

Sketch of the proof

Let $\mathcal{U}=(\mathbf{u}, \mathbf{w}, \varphi, \phi)$ and take $\mathbf{w}=\dot{\mathbf{u}}, \phi=\dot{\varphi}$. Consider

$$
\mathbb{H}=\mathbf{H}_{D}^{1}\left(\Omega_{e}\right) \times \mathbf{L}^{2}\left(\Omega_{e}\right) \times H_{D}^{1}\left(\Omega_{a}\right) \times L^{2}\left(\Omega_{a}\right),
$$

with scalar product

$$
\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)_{\mathbb{H}}=\left(\mathbb{C} \boldsymbol{\varepsilon}\left(\mathbf{u}_{1}\right), \boldsymbol{\varepsilon}\left(\mathbf{u}_{2}\right)\right)_{\Omega_{e}}+\left(\rho_{e} \mathbf{w}_{1}, \mathbf{w}_{2}\right)_{\Omega_{e}}+\left(\rho_{a} \boldsymbol{\nabla} \varphi_{1}, \boldsymbol{\nabla} \varphi_{2}\right)_{\Omega_{a}}+\left(c^{-2} \rho_{a} \phi_{1}, \phi_{2}\right)_{\Omega_{a}} .
$$

Sketch of the proof

Let $\mathcal{U}=(\mathbf{u}, \mathbf{w}, \varphi, \phi)$ and take $\mathbf{w}=\dot{\mathbf{u}}, \phi=\dot{\varphi}$. Consider

$$
\mathbb{H}=\mathbf{H}_{D}^{1}\left(\Omega_{e}\right) \times \mathbf{L}^{2}\left(\Omega_{e}\right) \times H_{D}^{1}\left(\Omega_{a}\right) \times L^{2}\left(\Omega_{a}\right),
$$

with scalar product

$$
\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)_{\mathbb{H}}=\left(\mathbb{C} \boldsymbol{\varepsilon}\left(\mathbf{u}_{1}\right), \boldsymbol{\varepsilon}\left(\mathbf{u}_{2}\right)\right)_{\Omega_{e}}+\left(\rho_{e} \mathbf{w}_{1}, \mathbf{w}_{2}\right)_{\Omega_{e}}+\left(\rho_{a} \boldsymbol{\nabla} \varphi_{1}, \boldsymbol{\nabla} \varphi_{2}\right)_{\Omega_{a}}+\left(c^{-2} \rho_{a} \phi_{1}, \phi_{2}\right)_{\Omega_{a}} .
$$

Then, we define the operator $A: D(A) \subset \mathbb{H} \rightarrow \mathbb{H}$ by

$$
\begin{aligned}
A \mathcal{U}=\left(-\mathbf{w},-\rho_{e}^{-1} \operatorname{div} \mathbb{C} \varepsilon(\mathbf{u}),-\phi,-c^{2} \triangle \varphi\right) \quad \forall \mathcal{U} \in D(A), \\
D(A)=\left\{\mathcal{U} \in \mathbb{H}: \mathbf{u} \in \mathbf{H}_{\mathbb{C}}^{\triangle}\left(\Omega_{e}\right), \mathbf{w} \in \mathbf{H}_{D}^{1}\left(\Omega_{e}\right), \varphi \in H^{\triangle}\left(\Omega_{a}\right), \phi \in H_{D}^{1}\left(\Omega_{a}\right) ;\right. \\
\left.\left(\mathbb{C} \varepsilon(\mathbf{u})+\rho_{a} \phi \mathbf{I}\right) \mathbf{n}_{e}=\mathbf{0} \text { on } \Gamma_{\mathrm{I}},(\boldsymbol{\nabla} \varphi+\mathbf{w}) \cdot \mathbf{n}_{a}=0 \text { on } \Gamma_{\mathrm{I}}\right\} .
\end{aligned}
$$

Sketch of the proof

Let $\mathcal{U}=(\mathbf{u}, \mathbf{w}, \varphi, \phi)$ and take $\mathbf{w}=\dot{\mathbf{u}}, \phi=\dot{\varphi}$. Consider

$$
\mathbb{H}=\mathbf{H}_{D}^{1}\left(\Omega_{e}\right) \times \mathbf{L}^{2}\left(\Omega_{e}\right) \times H_{D}^{1}\left(\Omega_{a}\right) \times L^{2}\left(\Omega_{a}\right),
$$

with scalar product

$$
\left(\mathcal{U}_{1}, \mathcal{U}_{2}\right)_{\mathbb{H}}=\left(\mathbb{C} \boldsymbol{\varepsilon}\left(\mathbf{u}_{1}\right), \boldsymbol{\varepsilon}\left(\mathbf{u}_{2}\right)\right)_{\Omega_{e}}+\left(\rho_{e} \mathbf{w}_{1}, \mathbf{w}_{2}\right)_{\Omega_{e}}+\left(\rho_{a} \boldsymbol{\nabla} \varphi_{1}, \boldsymbol{\nabla} \varphi_{2}\right)_{\Omega_{a}}+\left(c^{-2} \rho_{a} \phi_{1}, \phi_{2}\right)_{\Omega_{a}} .
$$

Then, we define the operator $A: D(A) \subset \mathbb{H} \rightarrow \mathbb{H}$ by

$$
\begin{gathered}
A \mathcal{U}=\left(-\mathbf{w},-\rho_{e}^{-1} \operatorname{div} \mathbb{C} \varepsilon(\mathbf{u}),-\phi,-c^{2} \triangle \varphi\right) \quad \forall \mathcal{U} \in D(A), \\
D(A)=\left\{\mathcal{U} \in \mathbb{H}: \mathbf{u} \in \mathbf{H}_{\mathbb{C}}^{\triangle}\left(\Omega_{e}\right), \mathbf{w} \in \mathbf{H}_{D}^{1}\left(\Omega_{e}\right), \varphi \in H^{\triangle}\left(\Omega_{a}\right), \phi \in H_{D}^{1}\left(\Omega_{a}\right) ;\right. \\
\left.\left(\mathbb{C} \varepsilon(\mathbf{u})+\rho_{a} \phi \mathbf{I}\right) \mathbf{n}_{e}=\mathbf{0} \text { on } \Gamma_{\mathrm{I}},(\nabla \varphi+\mathbf{w}) \cdot \mathbf{n}_{a}=0 \text { on } \Gamma_{\mathrm{I}}\right\} .
\end{gathered}
$$

Finally, let $\mathcal{F}=\left(\mathbf{0}, \rho_{e}^{-1} \mathbf{f}_{e}, 0, c^{2} f_{a}\right)$.
For $\mathcal{F} \in C^{1}([0, T] ; \mathbb{H})$ and $\mathcal{U}_{0} \in D(A)$, find $\mathcal{U} \in C^{1}([0, T] ; \mathbb{H}) \cap C^{0}([0, T] ; D(A))$:

$$
\begin{aligned}
\frac{\mathrm{d} \mathcal{U}}{\mathrm{~d} t}(t)+A \mathcal{U}(t) & =\mathcal{F}(t), \quad t \in(0, T] \\
\mathcal{U}(0) & =\mathcal{U}_{0}
\end{aligned}
$$

Discrete settings: mesh assumptions

$F \in \mathcal{F}_{h}^{e, \mathrm{~b}}$

Discrete settings: mesh assumptions

$$
F \in \mathcal{F}_{h}^{e, \mathrm{~b}} \quad \kappa^{e} \in \mathcal{T}_{h, \mathrm{I}}^{e} \quad \kappa^{a} \in \mathcal{T}_{h, \mathrm{I}}^{a} \quad F \in \mathcal{F}_{h, \mathrm{I}}^{a, \mathrm{~b}}
$$

$$
F \in \mathcal{F}_{h}^{e, \mathrm{i}} \quad F \in \mathcal{F}_{h}^{a, \mathrm{i}}
$$

- Nonconforming polytopal mesh $\mathcal{T}_{h}=\mathcal{T}_{h}^{e} \cup \mathcal{T}_{h}^{a}$
- Generalized shape regularity:
(i) $\forall F \subset \partial \kappa, h_{\kappa} \lesssim \frac{d\left|\kappa_{b}^{F}\right|}{|F|}$;
(ii) $\bigcup_{F \subset \partial \kappa} \bar{\kappa}_{b}^{F} \subseteq \bar{\kappa}$

Discrete settings: mesh assumptions

$F \in \mathcal{F}_{h}^{e, \mathrm{~b}} \quad \kappa^{e} \in \mathcal{T}_{h, \mathrm{I}}^{e} \quad \kappa^{a} \in \mathcal{T}_{h, \mathrm{I}}^{a} \quad F \in \mathcal{F}_{h, \mathrm{I}}^{a, \mathrm{~b}}$

$F \in \mathcal{F}_{h}^{e, \text { i }}$
$F \in \mathcal{F}_{h}^{a, \mathrm{i}}$

- Nonconforming polytopal mesh $\mathcal{T}_{h}=\mathcal{T}_{h}^{e} \cup \mathcal{T}_{h}^{a}$
- Generalized shape regularity:
(i) $\forall F \subset \partial \kappa, h_{\kappa} \lesssim \frac{d\left|\kappa_{b}^{F}\right|}{|F|}$;
(ii) $\bigcup_{F \subset \partial \kappa} \bar{\kappa}_{b}^{F} \subseteq \bar{\kappa}$
- Possible presence of degenerating faces

Discrete settings: mesh assumptions

$F \in \mathcal{F}_{h}^{e, \mathrm{~b}} \quad \kappa^{e} \in \mathcal{T}_{h, \mathrm{I}}^{e} \quad \kappa^{a} \in \mathcal{T}_{h, \mathrm{I}}^{a} \quad F \in \mathcal{F}_{h, \mathrm{I}}^{a, \mathrm{~b}}$

$F \in \mathcal{F}_{h}^{e, \text { i }}$
$F \in \mathcal{F}_{h}^{a, \mathrm{i}}$

- Nonconforming polytopal mesh $\mathcal{T}_{h}=\mathcal{T}_{h}^{e} \cup \mathcal{T}_{h}^{a}$
- Generalized shape regularity:
(i) $\forall F \subset \partial \kappa, h_{\kappa} \lesssim \frac{d\left|\kappa_{b}^{F}\right|}{|F|}$;
(ii) $\bigcup_{F \subset \partial \kappa} \bar{\kappa}_{b}^{F} \subseteq \bar{\kappa}$
- Possible presence of degenerating faces
- Shape regularty of the mesh covering

Discrete settings: mesh assumptions

$$
F \in \mathcal{F}_{h}^{e, \mathrm{i}} \quad F \in \mathcal{F}_{h}^{a, \mathrm{i}}
$$

- Nonconforming polytopal mesh $\mathcal{T}_{h}=\mathcal{T}_{h}^{e} \cup \mathcal{T}_{h}^{a}$
- Generalized shape regularity:
(i) $\forall F \subset \partial \kappa, h_{\kappa} \lesssim \frac{d\left|\kappa_{b}^{F}\right|}{|F|}$;
(ii) $\bigcup_{F \subset \partial \kappa} \bar{\kappa}_{b}^{F} \subseteq \bar{\kappa}$
- Possible presence of degenerating faces
- Shape regularty of the mesh covering
- hp-local bounded variation

Discrete settings: mesh assumptions

$F \in \mathcal{F}_{h}^{e, \mathrm{~b}} \quad \kappa^{e} \in \mathcal{T}_{h, \mathrm{I}}^{e} \quad \kappa^{a} \in \mathcal{T}_{h, \mathrm{I}}^{a} \quad F \in \mathcal{F}_{h, \mathrm{I}}^{a, \mathrm{~b}}$

$$
F \in \mathcal{F}_{h}^{e, \mathrm{i}} \quad F \in \mathcal{F}_{h}^{a, \mathrm{i}}
$$

- Nonconforming polytopal mesh $\mathcal{T}_{h}=\mathcal{T}_{h}^{e} \cup \mathcal{T}_{h}^{a}$
- Generalized shape regularity:
(i) $\forall F \subset \partial \kappa, h_{\kappa} \lesssim \frac{d\left|\kappa_{b}^{F}\right|}{|F|}$;
(ii) $\bigcup_{F \subset \partial \kappa} \bar{\kappa}_{b}^{F} \subseteq \bar{\kappa}$
- Possible presence of degenerating faces
- Shape regularty of the mesh covering
- hp-local bounded variation

Consequences [Cangiani et al. 17]

- Trace-inverse inequality on polytopal elements
- Approximation results in $\mathscr{P}_{p}(\kappa)$

Semi-discrete problem (SIP dG)

$$
\begin{aligned}
\boldsymbol{V}_{h}^{e} & =\left\{\boldsymbol{v}_{h} \in \boldsymbol{L}^{2}\left(\Omega_{e}\right): \boldsymbol{v}_{h \mid \kappa} \in\left[\mathscr{P}_{p_{e, \kappa}}(\kappa)\right]^{d}, p_{e, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{e}\right\}, \\
V_{h}^{a} & =\left\{\psi_{h} \in L^{2}\left(\Omega_{a}\right): \psi_{h \mid \kappa} \in \mathscr{P}_{p_{a, \kappa}}(\kappa), p_{a, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{a}\right\}
\end{aligned}
$$

Find $\left(\boldsymbol{u}_{h}, \varphi_{h}\right) \in C^{2}\left([0, T] ; \boldsymbol{V}_{h}^{e}\right) \times C^{2}\left([0, T] ; V_{h}^{a}\right)$ s.t., for all $\left(\boldsymbol{v}_{h}, \psi_{h}\right) \in \boldsymbol{V}_{h}^{e} \times V_{h}^{a}$,

$$
\begin{aligned}
& \left(\rho_{e} \ddot{\boldsymbol{u}}_{h}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(c^{-2} \rho_{a} \ddot{\varphi}_{h}(t), \psi_{h}\right)_{\Omega_{a}}+\mathcal{A}_{h}^{e}\left(\boldsymbol{u}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{A}_{h}^{a}\left(\varphi_{h}(t), \psi_{h}\right) \\
& \quad+\mathcal{C}_{h}^{e}\left(\dot{\varphi}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{C}_{h}^{a}\left(\dot{\boldsymbol{u}}_{h}(t), \psi_{h}\right)=\left(\boldsymbol{f}_{e}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(\rho_{a} f_{a}(t), \psi_{h}\right)_{\Omega_{a}}
\end{aligned}
$$

Semi-discrete problem (SIP dG)

$$
\begin{aligned}
V_{h}^{e} & =\left\{\boldsymbol{v}_{h} \in L^{2}\left(\Omega_{e}\right): \boldsymbol{v}_{h \mid \kappa} \in\left[\mathscr{P}_{p_{e, \kappa}}(\kappa)\right]^{d}, p_{e, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{e}\right\}, \\
V_{h}^{a} & =\left\{\psi_{h} \in L^{2}\left(\Omega_{a}\right): \psi_{h \mid \kappa} \in \mathscr{P}_{p_{a, \kappa}}(\kappa), p_{a, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{a}\right\}
\end{aligned}
$$

Find $\left(\boldsymbol{u}_{h}, \varphi_{h}\right) \in C^{2}\left([0, T] ; \boldsymbol{V}_{h}^{e}\right) \times C^{2}\left([0, T] ; V_{h}^{a}\right)$ s.t., for all $\left(\boldsymbol{v}_{h}, \psi_{h}\right) \in \boldsymbol{V}_{h}^{e} \times V_{h}^{a}$,

$$
\begin{aligned}
& \left(\rho_{e} \ddot{\boldsymbol{u}}_{h}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(c^{-2} \rho_{a} \ddot{\varphi}_{h}(t), \psi_{h}\right)_{\Omega_{a}}+\mathcal{A}_{h}^{e}\left(\boldsymbol{u}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{A}_{h}^{a}\left(\varphi_{h}(t), \psi_{h}\right) \\
& \quad+\mathcal{C}_{h}^{e}\left(\dot{\varphi}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{C}_{h}^{a}\left(\dot{\boldsymbol{u}}_{h}(t), \psi_{h}\right)=\left(\boldsymbol{f}_{e}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(\rho_{a} f_{a}(t), \psi_{h}\right)_{\Omega_{a}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{h}^{e}(\boldsymbol{u}, \boldsymbol{v})= & \left(\mathbb{C} \varepsilon_{h}(\boldsymbol{u}), \boldsymbol{\varepsilon}_{h}(\boldsymbol{v})\right)_{\Omega_{e}}-\left\langle\left\{\mathbb{C} \varepsilon_{h}(\boldsymbol{u})\right\}, \llbracket \boldsymbol{v} \rrbracket\right\rangle_{\mathcal{F}_{h}^{e}} \\
& \left.-\langle\llbracket \boldsymbol{u}],\left\{\mathbb{C} \varepsilon_{h}(\boldsymbol{v}) \boldsymbol{\}}\right\rangle_{\mathcal{F}_{h}^{e}}+\langle\eta[u], \llbracket \boldsymbol{v}]\right\rangle_{\mathcal{F}_{h}^{e}} \quad \forall \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}_{h}^{e},
\end{aligned}
$$

Semi-discrete problem (SIP dG)

$$
\begin{aligned}
V_{h}^{e} & =\left\{\boldsymbol{v}_{h} \in L^{2}\left(\Omega_{e}\right): \boldsymbol{v}_{h \mid \kappa} \in\left[\mathscr{P}_{p_{e, \kappa}}(\kappa)\right]^{d}, p_{e, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{e}\right\}, \\
V_{h}^{a} & =\left\{\psi_{h} \in L^{2}\left(\Omega_{a}\right): \psi_{h \mid \kappa} \in \mathscr{P}_{p_{a, \kappa}}(\kappa), p_{a, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{a}\right\}
\end{aligned}
$$

Find $\left(\boldsymbol{u}_{h}, \varphi_{h}\right) \in C^{2}\left([0, T] ; \boldsymbol{V}_{h}^{e}\right) \times C^{2}\left([0, T] ; V_{h}^{a}\right)$ s.t., for all $\left(\boldsymbol{v}_{h}, \psi_{h}\right) \in \boldsymbol{V}_{h}^{e} \times V_{h}^{a}$,

$$
\begin{aligned}
& \left(\rho_{e} \ddot{\boldsymbol{u}}_{h}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(c^{-2} \rho_{a} \ddot{\varphi}_{h}(t), \psi_{h}\right)_{\Omega_{a}}+\mathcal{A}_{h}^{e}\left(\boldsymbol{u}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{A}_{h}^{a}\left(\varphi_{h}(t), \psi_{h}\right) \\
& \quad+\mathcal{C}_{h}^{e}\left(\dot{\varphi}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{C}_{h}^{a}\left(\dot{\boldsymbol{u}}_{h}(t), \psi_{h}\right)=\left(\boldsymbol{f}_{e}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(\rho_{a} f_{a}(t), \psi_{h}\right)_{\Omega_{a}}
\end{aligned}
$$

$$
\begin{aligned}
\mathcal{A}_{h}^{e}(\boldsymbol{u}, \boldsymbol{v})= & \left(\mathbb{C} \varepsilon_{h}(\boldsymbol{u}), \boldsymbol{\varepsilon}_{h}(\boldsymbol{v})\right)_{\Omega_{e}}-\left\langle\left\{\mathbb{C} \varepsilon_{h}(\boldsymbol{u})\right\}, \llbracket \boldsymbol{v} \rrbracket\right\rangle_{\mathcal{F}_{h}^{e}} \\
& \left.\left.\left.-\langle\llbracket u],\left\{\mathbb{C} \varepsilon_{h}(\boldsymbol{v})\right\}\right\rangle_{\mathcal{F}_{h}^{e}}+\langle\eta \llbracket u], \llbracket \boldsymbol{v}\right]\right\rangle_{\mathcal{F}_{h}^{e}} \quad \forall \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}_{h}^{e}, \\
\mathcal{A}_{h}^{a}(\varphi, \psi)= & \left(\rho_{a} \boldsymbol{\nabla}_{h} \varphi, \boldsymbol{\nabla}_{h} \psi\right)_{\Omega_{a}}-\left\langle\left\{\rho_{a} \boldsymbol{\nabla}_{h} \varphi\right\}, \llbracket \psi \rrbracket\right\rangle_{\mathcal{F}_{h}^{a}} \\
& \left.-\left\langle\llbracket \varphi \rrbracket,\left\{\rho_{a} \boldsymbol{\nabla}_{h} \psi\right\}\right\rangle_{\mathcal{F}_{h}^{a}}+\langle\chi \llbracket \varphi], \llbracket \psi \rrbracket\right\rangle_{\mathcal{F}_{h}^{a}} \quad \forall \varphi, \psi \in V_{h}^{a},
\end{aligned}
$$

Semi-discrete problem (SIP dG)

$$
\begin{aligned}
V_{h}^{e} & =\left\{\boldsymbol{v}_{h} \in L^{2}\left(\Omega_{e}\right): \boldsymbol{v}_{h \mid \kappa} \in\left[\mathscr{P}_{p_{e, \kappa}}(\kappa)\right]^{d}, p_{e, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{e}\right\}, \\
V_{h}^{a} & =\left\{\psi_{h} \in L^{2}\left(\Omega_{a}\right): \psi_{h \mid \kappa} \in \mathscr{P}_{p_{a, \kappa}}(\kappa), p_{a, \kappa} \geqslant 1 \forall \kappa \in \mathcal{T}_{h}^{a}\right\}
\end{aligned}
$$

Find $\left(\boldsymbol{u}_{h}, \varphi_{h}\right) \in C^{2}\left([0, T] ; \boldsymbol{V}_{h}^{e}\right) \times C^{2}\left([0, T] ; V_{h}^{a}\right)$ s.t., for all $\left(\boldsymbol{v}_{h}, \psi_{h}\right) \in \boldsymbol{V}_{h}^{e} \times V_{h}^{a}$,

$$
\begin{aligned}
& \left(\rho_{e} \ddot{\boldsymbol{u}}_{h}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(c^{-2} \rho_{a} \ddot{\varphi}_{h}(t), \psi_{h}\right)_{\Omega_{a}}+\mathcal{A}_{h}^{e}\left(\boldsymbol{u}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{A}_{h}^{a}\left(\varphi_{h}(t), \psi_{h}\right) \\
& \quad+\mathcal{C}_{h}^{e}\left(\dot{\varphi}_{h}(t), \boldsymbol{v}_{h}\right)+\mathcal{C}_{h}^{a}\left(\dot{\boldsymbol{u}}_{h}(t), \psi_{h}\right)=\left(\boldsymbol{f}_{e}(t), \boldsymbol{v}_{h}\right)_{\Omega_{e}}+\left(\rho_{a} f_{a}(t), \psi_{h}\right)_{\Omega_{a}}
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{A}_{h}^{e}(\boldsymbol{u}, \boldsymbol{v})=\left.\left(\mathbb{C} \boldsymbol{\varepsilon}_{h}(\boldsymbol{u}), \boldsymbol{\varepsilon}_{h}(\boldsymbol{v})\right)_{\Omega_{e}}-\left\langle\mathbb{C} \mathbb{C}_{h}(\boldsymbol{u})\right\}, \llbracket \boldsymbol{v} \rrbracket\right\rangle_{\mathcal{F}_{h}^{e}} \\
&\left.\left.\left.-\langle\llbracket u],\left\{\mathbb{C} \boldsymbol{\varepsilon}_{h}(\boldsymbol{v})\right\}\right\rangle_{\mathcal{F}_{h}^{e}}+\langle\eta \llbracket u], \llbracket \boldsymbol{v}\right]\right\rangle_{\mathcal{F}_{h}^{e}} \quad \forall \boldsymbol{u}, \boldsymbol{v} \in \boldsymbol{V}_{h}^{e}, \\
& \mathcal{A}_{h}^{a}(\varphi, \psi)=\left(\rho_{a} \boldsymbol{\nabla}_{h} \varphi, \boldsymbol{\nabla}_{h} \psi\right)_{\Omega_{a}}-\left\langle\left\{\rho_{a} \boldsymbol{\nabla}_{h} \varphi\right\}, \llbracket \psi \rrbracket\right\rangle_{\mathcal{F}_{h}^{a}} \\
&\left.-\left\langle\llbracket \varphi \rrbracket,\left\{\rho_{a} \boldsymbol{\nabla}_{h} \psi\right\}\right\rangle_{\mathcal{F}_{h}^{a}}+\langle\chi \llbracket \varphi], \llbracket \psi \rrbracket\right\rangle_{\mathcal{F}_{h}^{a}} \quad \forall \varphi, \psi \in V_{h}^{a}, \\
& \mathcal{C}_{h}^{e}(\psi, \boldsymbol{v})=\left(\rho_{a} \psi \boldsymbol{n}_{e}, \boldsymbol{v}\right)_{\Gamma_{\mathrm{I}}}=\left\langle\rho_{a} \psi \boldsymbol{n}_{e}, \boldsymbol{v}\right\rangle_{\mathcal{F}_{h, \mathrm{I}}} \\
& \mathcal{C}_{h}^{a}(\boldsymbol{v}, \psi)= \forall(\psi, \boldsymbol{v}) \in V_{h}^{a} \times \boldsymbol{V}_{h}^{e}, \\
&\left.\rho_{a} \boldsymbol{v} \cdot \boldsymbol{n}_{a}, \psi\right)_{\Gamma_{\mathrm{I}}}=-\mathcal{C}_{h}^{e}(\psi, \boldsymbol{v}) \quad \forall(\boldsymbol{v}, \psi) \in \boldsymbol{V}_{h}^{e} \times V_{h}^{a}
\end{aligned}
$$

Penalization functions

The stabilization functions $\eta \in L^{\infty}\left(\mathcal{F}_{h}^{e}\right)$ and $\chi \in L^{\infty}\left(\mathcal{F}_{h}^{a}\right)$ are defined as follows

$$
\begin{gathered}
\eta_{\mid F}=\left\{\begin{array}{lll}
\alpha \max _{\kappa \in\left\{\kappa^{+}, \kappa^{-}\right\}}\left(\frac{\overline{\mathbb{C}}_{\kappa} p_{e, \kappa}^{2}}{h_{\kappa}}\right) & \forall F \in \mathcal{F}_{h}^{e, \mathrm{i}}, & F \subseteq \partial \kappa^{+} \cap \partial \kappa^{-}, \\
\frac{\overline{\mathbb{C}}_{\kappa} p_{e, \kappa}^{2}}{h_{\kappa}} & \forall F \in \mathcal{F}_{h}^{e, \mathrm{~b}}, & F \subseteq \partial \kappa ;
\end{array}\right. \\
\chi_{\mid F}=\left\{\begin{array}{lll}
\beta \max _{\kappa \in\left\{\kappa^{+}, \kappa^{-}\right\}}\left(\frac{\bar{\rho}_{a, \kappa} p_{a, \kappa}^{2}}{h_{\kappa}}\right) & \forall F \in \mathcal{F}_{h}^{a, \mathrm{i}}, & F \subseteq \partial \kappa^{+} \cap \partial \kappa^{-}, \\
\frac{\bar{\rho}_{a, \kappa} p_{a, \kappa}^{2}}{h_{\kappa}} & \forall F \in \mathcal{F}_{h}^{a, \mathrm{~b}}, & F \subseteq \partial \kappa
\end{array}\right.
\end{gathered}
$$

where α and β are positive constants to be properly chosen.

$$
\overline{\mathbb{C}}_{\kappa}=\left(\left|\mathbb{C}^{1 / 2}\right|_{2}^{2}\right)_{\mid \kappa} \quad \forall \kappa \in \mathcal{T}_{h}^{e}, \quad \bar{\rho}_{a, \kappa}=\rho_{a \mid \kappa} \forall \kappa \in \mathcal{T}_{h}^{a} .
$$

Semi-discrete stability and error estimate

Define the following energy norm for $\left(\mathbf{v}_{h}, \psi_{h}\right) \in C^{1}\left([0, T] ; \mathbf{V}_{h}^{e}\right) \times C^{1}\left([0, T] ; V_{h}^{a}\right)$:

$$
\begin{aligned}
\left\|\left(\mathbf{v}_{h}, \psi_{h}\right)\right\|_{\mathcal{E}}^{2}= & \left\|\rho_{e}^{1 / 2} \dot{\mathbf{v}}_{h}\right\|_{\Omega_{e}}^{2}+\left\|\mathbb{C}^{1 / 2} \varepsilon_{h}(\mathbf{v})\right\|_{\Omega_{e}}^{2}+\left\|\eta^{1 / 2} \llbracket \mathbf{v} \rrbracket\right\|_{\mathcal{F}_{h}^{e}}^{2} \\
& \left.+\left\|c^{-1} \rho_{a}^{1 / 2} \dot{\psi}_{h}\right\|_{\Omega_{a}}^{2}+\left\|\rho_{a}^{1 / 2} \nabla_{h} \psi\right\|_{\Omega_{a}}^{2}+\| \chi^{1 / 2} \llbracket \psi\right] \|_{\mathcal{F}_{h}^{a}}^{2}
\end{aligned}
$$

Semi-discrete stability and error estimate

Define the following energy norm for $\left(\mathbf{v}_{h}, \psi_{h}\right) \in C^{1}\left([0, T] ; \mathbf{V}_{h}^{e}\right) \times C^{1}\left([0, T] ; V_{h}^{a}\right)$:

$$
\begin{aligned}
\left\|\left(\mathbf{v}_{h}, \psi_{h}\right)\right\|_{\mathcal{E}}^{2}= & \left\|\rho_{e}^{1 / 2} \dot{\mathbf{v}}_{h}\right\|_{\Omega_{e}}^{2}+\left\|\mathbb{C}^{1 / 2} \varepsilon_{h}(\mathbf{v})\right\|_{\Omega_{e}}^{2}+\left\|\eta^{1 / 2} \llbracket \mathbf{v} \rrbracket\right\|_{\mathcal{F}_{h}^{e}}^{2} \\
& \left.+\left\|c^{-1} \rho_{a}^{1 / 2} \dot{\psi}_{h}\right\|_{\Omega_{a}}^{2}+\left\|\rho_{a}^{1 / 2} \nabla_{h} \psi\right\|_{\Omega_{a}}^{2}+\| \chi^{1 / 2} \llbracket \psi\right] \|_{\mathcal{F}_{h}^{a}}^{2}
\end{aligned}
$$

Stability of the semi-discrete formulation

For sufficiently large stabilization parameters α and β, we have

$$
\left\|\left(\mathbf{u}_{h}(t), \varphi_{h}(t)\right)\right\|_{\mathcal{E}} \lesssim\left\|\left(\mathbf{u}_{h}(0), \varphi_{h}(0)\right)\right\|_{\mathcal{E}}+\int_{0}^{t}\left(\left\|\mathbf{f}_{e}(\tau)\right\|_{\Omega_{e}}+\left\|f_{a}(\tau)\right\|_{\Omega_{a}}\right) \mathrm{d} \tau
$$

Semi-discrete stability and error estimate

Define the following energy norm for $\left(\mathbf{v}_{h}, \psi_{h}\right) \in C^{1}\left([0, T] ; \mathbf{V}_{h}^{e}\right) \times C^{1}\left([0, T] ; V_{h}^{a}\right)$:

$$
\begin{aligned}
\left\|\left(\mathbf{v}_{h}, \psi_{h}\right)\right\|_{\mathcal{E}}^{2}= & \left\|\rho_{e}^{1 / 2} \dot{\mathbf{v}}_{h}\right\|_{\Omega_{e}}^{2}+\left\|\mathbb{C}^{1 / 2} \varepsilon_{h}(\mathbf{v})\right\|_{\Omega_{e}}^{2}+\left\|\eta^{1 / 2} \llbracket \mathbf{v} \rrbracket\right\|_{\mathcal{F}_{h}^{e}}^{2} \\
& \left.+\left\|c^{-1} \rho_{a}^{1 / 2} \dot{\psi}_{h}\right\|_{\Omega_{a}}^{2}+\left\|\rho_{a}^{1 / 2} \nabla_{h} \psi\right\|_{\Omega_{a}}^{2}+\| \chi^{1 / 2} \llbracket \psi\right] \|_{\mathcal{F}_{h}^{a}}^{2}
\end{aligned}
$$

Stability of the semi-discrete formulation

For sufficiently large stabilization parameters α and β, we have

$$
\left\|\left(\mathbf{u}_{h}(t), \varphi_{h}(t)\right)\right\|_{\mathcal{E}} \lesssim\left\|\left(\mathbf{u}_{h}(0), \varphi_{h}(0)\right)\right\|_{\mathcal{E}}+\int_{0}^{t}\left(\left\|\mathbf{f}_{e}(\tau)\right\|_{\Omega_{e}}+\left\|f_{a}(\tau)\right\|_{\Omega_{a}}\right) \mathrm{d} \tau
$$

Energy-error estimate

Provided $(\mathbf{u}, \varphi) \in C^{2}\left([0, T] ; \mathbf{H}^{m}\left(\Omega_{e}\right)\right) \times C^{2}\left([0, T] ; H^{n}\left(\Omega_{a}\right)\right), m \geqslant p_{e}+1, n \geqslant p_{a}+1$,

$$
\sup _{t \in[0, T]}\left\|\left(\mathbf{u}(t)-\mathbf{u}_{h}(t), \varphi(t)-\varphi_{h}(t)\right)\right\|_{\mathcal{E}} \lesssim C_{\mathbf{u}}(T) \frac{h^{p_{e}}}{p_{e}^{m-3 / 2}}+C_{\varphi}(T) \frac{h^{p_{a}}}{p_{a}^{m-3 / 2}}
$$

Proof. Properly use discrete trace inequality to bound interface contributions.

Time discretization

Algebraic semi-discrete problem. Let U and Φ be two vectors containing the unknown expansion coefficients for \mathbf{u}_{h} and φ_{h} respectively. Then, one can obtain

$$
\left\{\begin{aligned}
\mathrm{M}_{e} \ddot{\mathrm{U}}(t)+\mathrm{A}_{e} \mathrm{U}(t)+\mathrm{C}_{e} \dot{\Phi}(t)=\mathrm{F}_{e}(t), & t \in(0, T], \\
\mathrm{M}_{a} \ddot{\Phi}(t)+\mathrm{A}_{a} \Phi(t)+\mathrm{C}_{a} \dot{\mathrm{U}}(t)=\mathrm{F}_{a}(t), & t \in(0, T], \\
+ \text { initial conditions. } &
\end{aligned}\right.
$$

Time discretization

Algebraic semi-discrete problem. Let U and Φ be two vectors containing the unknown expansion coefficients for \mathbf{u}_{h} and φ_{h} respectively. Then, one can obtain

$$
\left\{\begin{aligned}
\mathrm{M}_{e} \ddot{\mathrm{U}}(t)+\mathrm{A}_{e} \mathrm{U}(t)+\mathrm{C}_{e} \dot{\Phi}(t)=\mathrm{F}_{e}(t), & t \in(0, T], \\
\mathrm{M}_{a} \ddot{\Phi}(t)+\mathrm{A}_{a} \Phi(t)+\mathrm{C}_{a} \dot{\mathrm{U}}(t)=\mathrm{F}_{a}(t), & t \in(0, T], \\
+ \text { initial conditions. } &
\end{aligned}\right.
$$

Leap-frog method. Subdivide the time interval $[0, T]$ into N_{T} subintervals of length Δt. For any $n=0, \ldots, N_{T}-1$ solve

$$
\begin{aligned}
{\left[\begin{array}{cc}
\mathrm{M}_{e} & \frac{\Delta t}{2} \mathrm{C}_{e} \\
-\frac{\Delta t}{2} \mathrm{C}_{e}^{\top} & \mathrm{M}_{a}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}^{n+1} \\
\Phi^{n+1}
\end{array}\right]=} & {\left[\begin{array}{c}
\Delta t^{2} \mathrm{~F}_{e}^{n} \\
\Delta t^{2} \mathrm{~F}_{a}^{n}
\end{array}\right]+\left[\begin{array}{cc}
-\mathrm{M}_{e} & \frac{\Delta t}{2} \mathrm{C}_{e} \\
-\frac{\Delta t}{2} \mathrm{C}_{e}^{\top} & -\mathrm{M}_{a}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}^{n-1} \\
\Phi^{n-1}
\end{array}\right] } \\
& +\left[\begin{array}{cc}
2 \mathrm{M}_{e}-\Delta t^{2} \mathrm{~A}_{e} & 0 \\
0 & 2 \mathrm{M}_{a}-\Delta t^{2} \mathrm{~A}_{a}
\end{array}\right]\left[\begin{array}{l}
\mathrm{U}^{n} \\
\Phi^{n}
\end{array}\right]
\end{aligned}
$$

- Explicit and second order accurate with respect to the time step Δt

Numerical experiments

2D verification: [Mönköla, 2016]

- homogeneous isotropic elastic material
- $T=0.8 \mathrm{~s}$ and $\Delta t=10^{-4} \mathrm{~s}$
- analytical solution:

$$
\begin{aligned}
u(x, y ; t) & =\left(\cos \left(\frac{4 \pi x}{c_{p}}\right), \cos \left(\frac{4 \pi x}{c_{s}}\right)\right) \cos (4 \pi t) \\
\varphi(x, y ; t) & =\sin (4 \pi x) \sin (4 \pi t)
\end{aligned}
$$

$$
c_{p}=\sqrt{\frac{\lambda+2 \mu}{\rho_{e}}}, c_{s}=\sqrt{\frac{\mu}{\rho_{e}}}
$$

2D verification: [Mönköla, 2016]

- homogeneous isotropic elastic material
- $T=0.8 \mathrm{~s}$ and $\Delta t=10^{-4} \mathrm{~s}$
- analytical solution:
$\boldsymbol{u}(x, y ; t)=\left(\cos \left(\frac{4 \pi x}{c_{p}}\right), \cos \left(\frac{4 \pi x}{c_{s}}\right)\right) \cos (4 \pi t)$,
$\varphi(x, y ; t)=\sin (4 \pi x) \sin (4 \pi t)$,

$$
c_{p}=\sqrt{\frac{\lambda+2 \mu}{\rho_{e}}}, c_{s}=\sqrt{\frac{\mu}{\rho_{e}}}
$$

3D verification

- nonconforming mesh
- for $T=0.1 s, \Delta t=10^{-6} s$
- analytical solution

$$
\begin{aligned}
u_{x}(x, y, z ; t) & =\cos \left(\frac{4 \pi x}{c_{p}}\right) \cos (4 \pi t), \\
u_{y}(x, y, z ; t) & =\cos \left(\frac{4 \pi x}{c_{s}}\right) \cos (4 \pi t), \\
u_{z}(x, y, z, t) & =\cos \left(\frac{4 \pi x}{c_{s}}\right) \cos (4 \pi t), \\
\varphi(x, y, z ; t) & =\sin (4 \pi x) \sin (4 \pi t)
\end{aligned}
$$

3D verification

- nonconforming mesh
- for $T=0.1 s, \Delta t=10^{-6} s$
- analytical solution

$$
\begin{aligned}
u_{x}(x, y, z ; t) & =\cos \left(\frac{4 \pi x}{c_{p}}\right) \cos (4 \pi t) \\
u_{y}(x, y, z ; t) & =\cos \left(\frac{4 \pi x}{c_{s}}\right) \cos (4 \pi t) \\
u_{z}(x, y, z, t) & =\cos \left(\frac{4 \pi x}{c_{s}}\right) \cos (4 \pi t) \\
\varphi(x, y, z ; t) & =\sin (4 \pi x) \sin (4 \pi t)
\end{aligned}
$$

3D verification: Scholte waves [Wilcox et al. 2010]

Scholte waves propagate along elasto-acoustic interfaces.
We consider $\Omega_{e} \cup \Omega_{a}=(-1,1) m \times(-1,1) m \times(-20,20) m$, $h_{e}=h_{a}=0.41 \mathrm{~m}, T=0.1 \mathrm{~s}$, and $\Delta t=10^{-6} \mathrm{~s}$, with

$$
\begin{aligned}
u_{1}(x, y, z ; t) & =k\left(B_{2} e^{k b_{2 p} z}-B_{3} b_{2 s} e^{k b_{2 s} z}\right) \cos (k x-\omega t), & & \\
u_{2}(x, y, z ; t) & =0, & & \\
u_{3}(x, y, z ; t) & =k\left(B_{2} b_{2 p} e^{k b_{2 p} z}-B_{3} e^{k b_{2 s} z}\right) \sin (k x-\omega t), & & z<0 ; \\
\varphi(x, y, z ; t) & =\omega B_{1} e^{-k b_{1 p} z} \cos (k x-\omega t), & & z>0 .
\end{aligned}
$$

Wave amplitudes B_{1}, B_{2} and B_{3} have to satisfy a suitable eigenvalue problem of the form $\boldsymbol{\Lambda B}=\mathbf{0}$ stemming from the transmission conditions on Γ_{I}, and the speed of a Scholte wave is such that $\operatorname{det} \boldsymbol{\Lambda}=0$.

3D verification: Scholte waves [Wilcox et al. 2010]

We choose $\lambda=\mu=1 \mathrm{~N} / \mathrm{m}^{2}$ and $\rho_{e}=1 \mathrm{~kg} / \mathrm{m}^{3}$ for the elastic medium; $c=1 \mathrm{~m} / \mathrm{s}$ and $\rho_{a}=1 \mathrm{~kg} / \mathrm{m}^{3}$ for the acoustic medium. This yields $c_{\text {sch }}=0.7110017230197 \mathrm{~m} / \mathrm{s}$, and we choose $B_{1}=0.3594499773037$, $B_{2}=0.8194642725978$, and $B_{3}=1$.

Scattering by a point source

$$
t \mapsto\|\boldsymbol{u}(\boldsymbol{x} ; t)\| \text { and } t \mapsto|\varphi(\boldsymbol{x} ; t)|
$$

Point source in the acoustic domain (Ricker wavelet):

$$
\begin{gathered}
f_{a}(\boldsymbol{x}, t)=-f_{0}\left(1-2 \pi^{2} f_{p}^{2}\left(t-t_{0}\right)^{2}\right) e^{-\pi^{2} f_{p}^{2}\left(t-t_{0}\right)^{2}} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right), \\
\boldsymbol{x}_{0} \in \Omega_{a}, t_{0} \in(0, T], \\
\boldsymbol{x}_{0}=(0.2,0.5), \quad t_{0}=0.1
\end{gathered}
$$

Underground acoustic cavity

Vertical point source at $\quad x_{0}=(200,0,300) m$

Discretization parameters

- $h_{e}=20 \mathrm{~m}, h_{a}=5 \mathrm{~m}$
- $p_{e}=4, p_{a}=4$
- $\Delta t=10^{-5} \mathrm{~s}$

$$
\begin{gathered}
\mathbf{f}_{e}(\boldsymbol{x}, t)=f(t) \mathbf{e}_{z} \delta\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \\
f(t)=f_{0}\left(1-2 \pi^{2} f_{p}^{2}\left(t-t_{0}\right)^{2}\right) e^{-\pi^{2} f_{p}^{2}\left(t-t_{0}\right)^{2}} \\
t_{0}=0.25 s, f_{0}=10^{10} N, f_{p}=22 H z
\end{gathered}
$$

Geometry \& Material properties

$$
\begin{gathered}
\Omega_{a}=\left\{\boldsymbol{x} \in \mathbb{R}^{3}:\|\boldsymbol{x}\|<R\right\}, R=30 m \\
\Omega_{e}=\left(-L_{x}, L_{x}\right) \times\left(-L_{y}, L_{y}\right) \times\left(-L_{z}, L_{z}\right) \backslash \bar{\Omega}_{a} \\
L_{x}=L_{y}=600 m, \quad L_{z}=300 \mathrm{~m}
\end{gathered}
$$

Region	$\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	$c_{p}(\mathrm{~m} / \mathrm{s})$	$c_{s}(\mathrm{~m} / \mathrm{s})$
Ω_{e}	2700	3000	1734
Ω_{a}	1024	300	-

Underground acoustic cavity

Underground acoustic cavity: elastic monitors

$t \mapsto u_{z}(P, t)$ for monitored elastic points P from A to B, (top) and from C to D (bottom)

Conclusions \& perspectives

Conclusions

- The elasto-acoustic problem is well-posed in the continuous setting
- $h p$-convergence for a dG method was proven on polytopal meshes
- Verfication by 2D and 3D numerical experiments
- Application to realistic test cases

Conclusions \& perspectives

Conclusions

- The elasto-acoustic problem is well-posed in the continuous setting
- $h p$-convergence for a dG method was proven on polytopal meshes
- Verfication by 2D and 3D numerical experiments
- Application to realistic test cases

Perspectives

- Inferring error estimates for the fully discrete problem
- Consider elastic-nonlinear acoustic models (Westervelt equation)
- Enriching the elastic model by considering a viscoelastic material response

References I

P. F. Antonietti, F. Bonaldi, and I. Mazzieri.

A high-order discontinuous Galerkin approach to the elasto-acoustic problem.
Preprint arXiv:1803.01351 [math.NA], submitted, 2018.
A. Cangiani, Z. Dong, E. H. Georgoulis, and P. Houston.
hp-Version discontinuous Galerkin methods on polygonal and polyhedral meshes.
SpringerBriefs in Mathematics, Springer International Publishing, 2017.
P. F. Antonietti, P. Houston, X. Hu, M. Sarti, and M. Verani.

Multigrid algorithms for hp-version interior penalty discontinuous Galerkin methods on polygonal and polytopal meshes.
Calcolo, 54 (2017), pp. 1169-1198.
春
S. Mönköla.

On the accuracy and efficiency of transient spectral element models for seismic wave problems.
Adv. Math. Phys., (2016).
J. D. De Basabe and M. K. Sen.

A comparison of finite-difference and spectral-element methods for elastic wave propagation in media with a fluid-solid interface.
Geophysical Journal International, 200 (2015), pp. 278-298.

References II

H. Baruce, R. Djellouli, and E. Estecahandy.

Characterization of the Fréchet derivative of the elasto-acoustic field with respect to Lipschitz domains.
J. Inverse III-Posed Probl., 22 (2014), pp. 1-8.
H. Barucq, R. Djellouli, and E. Estecahandy.

Efficient dG-like formulation equipped with curved boundary edges for solving elasto-acoustic scattering problems.
Int. J. Numer. Meth. Engng, 98 (2014), pp. 747-780.
V. Péron.

Equivalent boundary conditions for an elasto-acoustic problem set in a domain with a thin layer.
ESAIM Math. Model. Numer. Anal., 48 (2014), pp. 1431-1449.
B. Flemisch, M. Kaltenbacher, and B. I. Wohlmuth.

Elasto-acoustic and acoustic-acoustic coupling on non-matching grids.
Int. J. Numer. Meth. Engng, 67 (2006), pp. 1791-1810.
D. Komatitsch, C. Barnes, and J. Tromp.

Wave propagation near a fluid-solid interface: a spectral-element approach, Geophysics, 65 (2000), pp. 623-631.

References II

G. C. Hsiao, T. Sánchez-Vizuet and F.-J. Sayas.

Boundary and coupled boundary-finite element methods for transient wave-structure interaction.
IMANUM, 37:1 (2017) pp. 237-265.
T. S. Brown, T. SÁnchez-Vizuet and F.-J. Sayas.

Evolution of a semidiscrete system modeling the scattering of acoustic waves by a piezoelectric solid.
ESAIM: M2AN, 52 (2018) pp. 423-455.

Thank you for the attention

