

oscience for a sustainable Earth

bram

Michele BOTTI¹, Daniele A. DI PIETRO², Olivier LE MAÎTRE³, and Pierre SOCHALA⁴

¹Department of Mathematics - MOX, Politecnico di Milano, Milano, Italy

²IMAG, Université de Montpellier, CNRS, Montpellier, France

³Laboratoire d'Informatique pour la Mécanique et les Sciences de l'Ingénieur, CNRS, Orsay, France

⁴Bureau de Recherches Géologiques et Minières, Orléans, France

Abstract

We propose a novel numerical method for the Biot problem with uncertain poroelastic coefficients. The uncertainty is modelled using a finite set of parameters with prescribed distribution. We present the variational formulation of the stochastic partial differential system and establish its well-posedness. The approximation is based on sparse spectral projection methods, which essentially amount to performing an ensemble of deterministic model simulations to estimate the Polynomial Chaos expansion coefficients. The deterministic solver is based on the Hybrid High-Order discretization of [1] supporting general polyhedral meshes and arbitrary approximation orders. We numerically investigate the convergence of the Polynomial Chaos approximations with respect to the level of the sparse grid. Finally, we assess the propagation of the input uncertainty onto the solution considering an injection-extraction problem.

1. The Biot problem with random coefficients

Let $\mu, \lambda, \alpha, c_0, \kappa : \Theta \to \mathbb{R}$ be random variables defined on the probability space $(\Theta, \mathcal{B}, \mathcal{P})$. For a given domain $D \subset \mathbb{R}^d$, final time $t_{\rm F} > 0$, load f, source g, and initial fluid content ϕ_0 ; find the displacement \boldsymbol{u} and pressure p solution of

 $-\nabla \cdot \boldsymbol{\sigma}(\theta) + \nabla (\alpha(\theta)p(\theta)) = \boldsymbol{f}, \quad \text{in } D \times \Theta \times (0, t_F],$ $d_t \phi(\theta) - \nabla \cdot (\kappa(\theta) \nabla p(\theta)) = g, \quad \text{in } D \times \Theta \times (0, t_F],$ $\phi(\theta, t = 0) = \phi_0$, in $D \times \Theta$, (+ BCs). • Stress tensor: $\boldsymbol{\sigma}(\theta) = 2\mu(\theta)\nabla_{s}\boldsymbol{u}(\theta) + \lambda(\theta)(\nabla\cdot\boldsymbol{u}(\theta))\boldsymbol{I}_{d}$ • Fluid content: $\phi(\theta) = c_0(\theta)p(\theta) + \alpha(\theta)\nabla \cdot \boldsymbol{u}(\theta)$

Applications

- Groundwater flow,

- Reservoir modelling,
- Earthquake engineering,
- CO_2 capture and storage...

-0.05 0 0.05 0.1 0.15 0.2 0.25 0.3 (

Distribution of $c_0(\mu, \lambda, \alpha)$

Probabilistic model

We use a set of uniformly *iid* canonical random variables, collected into a random vector $\boldsymbol{\xi}$: $\Theta \rightarrow [-1,1]^4$, to describe the uncertainty of the poroelastic coefficients.

3. HHO method for poroelasticity

Let \mathcal{T}_h be an admissible mesh (cf. [2, 4]), \mathcal{F}_h the set collecting the mesh faces, and $k \ge 1$ a polynomial degree.

DOFs:
$$\underline{U}_T^k \times \mathbb{P}_d^k(T)$$
, with $\underline{U}_T^k := \mathbb{P}_d^k(T)^d \times \left\{ \begin{array}{l} \underset{F \in \mathcal{F}_d}{\times} \mathbb{P}_{d-1}^k(F)^d \right\} \right\}$

The discretization of the **elasticity operator** is realized by

$$\begin{aligned} a_h(\underline{\boldsymbol{w}}_h, \underline{\boldsymbol{v}}_h) &\coloneqq \sum_{T \in \mathcal{T}_h} \left(\int_T \boldsymbol{\sigma}(\cdot, \boldsymbol{G}_{\mathrm{s},T}^k \underline{\boldsymbol{u}}_T) : \boldsymbol{G}_{\mathrm{s},T}^k \underline{\boldsymbol{v}}_T + s_T(\underline{\boldsymbol{w}}_T, \underline{\boldsymbol{v}}_T) \right), \\ s_T(\underline{\boldsymbol{w}}_T, \underline{\boldsymbol{v}}_T) &\coloneqq \sum_{F \in \mathcal{F}_T} h_F^{-1} \int_F \Delta_T^k \underline{\boldsymbol{u}}_T \cdot \Delta_{TF}^k \underline{\boldsymbol{v}}_T. \end{aligned}$$

In s_T we penalize in a least-square sense the face-based residual $\Delta_{TF}^k \underline{v}_T := \pi_F^k (\mathbf{r}_T^{k+1} \underline{v}_T - \mathbf{v}_F) - \pi_T^k (\mathbf{r}_T^{k+1} \underline{v}_T - \mathbf{v}_T).$

Symmetric gradient reconstruction operator $G_{\mathrm{s},T}^k : \underline{U}_T^k \to \mathbb{P}_d^k(T)_{\mathrm{sym}}^{d \times d}$ s.t. $\forall \boldsymbol{\tau} \in \mathbb{P}_d^k(T)_{\mathrm{sym}}^{d \times d}$ $\boldsymbol{G}_{\boldsymbol{\sigma},\boldsymbol{T}}^{k}\boldsymbol{v}_{\boldsymbol{T}}:\boldsymbol{\tau}=-\left(\boldsymbol{v}_{\boldsymbol{T}}\cdot(\nabla\cdot\boldsymbol{\tau})+\sum_{\boldsymbol{v}}\left(\boldsymbol{v}_{\boldsymbol{F}}\cdot(\boldsymbol{\tau}\boldsymbol{n}_{\boldsymbol{T}\boldsymbol{F}})\right)\right)$

4. Point injection and poroelastic footing tests

Validation tests using the PSP method with l=5 and $N_q=2561$ • Data: $D = [0, 1]^2$, f = 0, $\phi_0 = 0$, $t_F = 1$ s. Point source: $g = 10 \cdot \delta(x - x_0)$, where $x_0 = (0.25, 0.25)$. BCs on ∂D : $\boldsymbol{u} \cdot \boldsymbol{\tau} = 0$, $\nabla \boldsymbol{u} \boldsymbol{n} \cdot \boldsymbol{n} = 0$, p = 0.

Mean and variance pressure fields obtained using the HHO method with k = 3 on a Cartesian mesh with 1024 elements.

• Data: $D = [0,1]^2$, f = 0, g = 0, $\phi_0 = 0$, $t_F = 0.2s$. BCs: $\sigma n = (0, -5)$ on $\Gamma_N \coloneqq \{x \mid 0.3 \le x_1 \le 0.7, x_2 = 1\},\$ $\sigma n = 0$ on $\{x_2 = 1\} \setminus \Gamma_N$, u = 0 on $\partial D \setminus \{x_2 = 1\}$, p = 0 on ∂D .

$$\mu(\boldsymbol{\xi}) = 10^{(\xi_1 + 1)} \text{ kPa},$$

$$\lambda(\boldsymbol{\xi}) = 2 \cdot 10^{(\xi_2 + 1)} \text{ kPa},$$

$$\alpha(\boldsymbol{\xi}) = \frac{1 + \alpha_{\min}}{2} + \xi_3 \frac{1 - \alpha_{\min}}{2},$$

$$\kappa(\boldsymbol{\xi}) = 10^{(\xi_4 - 1)} \text{ m}^2 \text{ kPa}^{-1} \text{ s}^{-1}.$$

2. Stochastic discretization

Polynomial chaos expansions

Let $\rho: [-1,1]^N \to \mathbb{R}^+$ a pdf and $\{\phi_k(\boldsymbol{\xi}) : \boldsymbol{k} \in \mathbb{N}^N\}$ an Hilbertian basis of orthogonal multivariate polynomials in ξ :

 $\langle \phi_{\boldsymbol{k}}, \phi_{\boldsymbol{l}} \rangle = \int_{\Xi} \phi_{\boldsymbol{k}}(\boldsymbol{\xi}) \phi_{\boldsymbol{l}}(\boldsymbol{\xi}) \rho(\boldsymbol{\xi}) d\boldsymbol{\xi} = \delta_{\boldsymbol{k},\boldsymbol{l}}.$

The PC expansion of a second-order random variable X is

$$X(\boldsymbol{\xi}) = \sum_{\boldsymbol{k} \in \mathbb{N}^N} X_{\boldsymbol{k}} \phi_{\boldsymbol{k}}(\boldsymbol{\xi}).$$

The PC approximation $X_{\mathcal{K}}(\boldsymbol{\xi})$ of $X(\boldsymbol{\xi})$ is obtained by truncating the expansion to a finite set of multi-indices $\mathcal{K} \subset \mathbb{N}^N$.

Sparse Pseudo-Spectral Projection

In the spectral projection method the modes X_k of the PC expansion are computed using a numerical quadrature rule

$$X_{\boldsymbol{k}} = \langle X, \phi_{\boldsymbol{k}} \rangle \simeq \sum^{N_q} w^{(q)} X(\boldsymbol{\xi}^{(q)}) \phi_{\boldsymbol{k}}(\boldsymbol{\xi}^{(q)}),$$

$$\int_{T} \mathbf{J}_{T} \mathbf{J}_{T} \mathbf{J}_{T} \mathbf{J}_{T} \mathbf{J}_{T} \mathbf{J}_{F} \mathbf{J}$$

Displacement reconstruction operator $\boldsymbol{r}_T^{k+1}: \underline{\boldsymbol{U}}_T^k \to \mathbb{P}_d^{k+1}(T)^d$ s.t. $\forall \boldsymbol{w} \in \mathbb{P}_d^{k+1}(T)^d$ $\int_{T} (\nabla_{s} \boldsymbol{r}_{T}^{k+1} \underline{\boldsymbol{v}}_{T} - \boldsymbol{G}_{s,T}^{k} \underline{\boldsymbol{v}}_{T}) : \nabla_{s} \boldsymbol{w} = 0 + \text{rigid-body motions}.$

The hydro-mechanical coupling is realized by means of

$$b_h(\underline{\boldsymbol{v}}_h,q_h) := -\sum_{T \in \mathcal{T}_h} \int_T \boldsymbol{G}_{\mathrm{s},T}^k \underline{\boldsymbol{v}}_T : q_h \boldsymbol{I}_d, \ \forall \underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_h^k, \ \forall q_h \in \mathbb{P}_d^k(\mathcal{T}_h).$$

Lemma 2 (Inf-sup condition for b_h).

$$\exists \beta > 0 \text{ s.t. } \|q_h\| \leq \beta \sup_{\underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_{h,0}^k \setminus \{\underline{\mathbf{0}}\}} \frac{b_h(\underline{\boldsymbol{v}}_h, q_h)}{\|\underline{\boldsymbol{v}}_h\|_{a,h}}, \quad \forall q_h \in \mathbb{P}_d^k(\mathcal{T}_h) \cap L_0^2(\Omega)$$

The discrete counterpart of the **Darcy operator** is given by

$$\begin{split} c_h(r_h,q_h) &:= \int_{\Omega} \kappa \nabla_h r_h \nabla_h q_h + \sum_{F \in \mathcal{F}_h} \frac{\varsigma \lambda_{\kappa,F}}{h_F} \int_F \llbracket r_h \rrbracket_F \llbracket q_h \rrbracket_F + \\ &- \sum_{F \in \mathcal{F}_h} \int_F (\llbracket q_h \rrbracket_F \{\!\!\{ \kappa \nabla_h r_h \}\!\!\}_{\omega,F} + \llbracket r_h \rrbracket_F \{\!\!\{ \kappa \nabla_h q_h \}\!\!\}_{\omega,F} \,) \cdot n_F, \end{split}$$
where $\{\!\!\{ \cdot \}\!\!\}_{\omega,F}$ and $\llbracket \cdot \rrbracket_F$ are the average and jump operators.

Mean and variance pressure fields obtained using the HHO method with k = 2 on a triangular mesh with 3584 elements.

Convergence analysis

The accuracy of the PCEs is evaluated on a 500 points LHS.

Errors $\|MSE(\boldsymbol{u} - \boldsymbol{u}_{\mathcal{K}})\|$ and $\|MSE(p - p_{\mathcal{K}})\|$ vs. level l of the Sparse Grid for the injection (left) and footing (right) tests.

5. Injection-extraction test and sensitivity analysis

Data: $D = [0, 4 \text{ Km}] \times [0, 1 \text{ Km}], f = 0, g = 0, \phi_0 = 0, t_F = 1d.$ Dirichlet conditions on the holes boundaries: $p = \pm 100$ kPa.

Mean pressure field in kPa *and vertical displacement in* mm obtained with k = 1 on a Voronoi mesh with 10^4 elements.

q=1where the N_q nodes $\boldsymbol{\xi}^{(q)}$ and weights $w^{(q)}$ are constructed by tensorization of one-dimensional quadrature rules. The key-idea of PSP (cf. [3]) is to apply the Smolyak's formula on the projection operator, yielding, for the same sparse grid, a larger set \mathcal{K} of basis functions ϕ_k without internal aliasing:

$$\forall \boldsymbol{k}, \boldsymbol{l} \in \mathcal{K}, \ \sum_{q=1}^{N_q} w^{(q)} \phi_{\boldsymbol{k}}(\boldsymbol{\xi}^{(q)}) \phi_{\boldsymbol{l}}(\boldsymbol{\xi}^{(q)}) = \delta_{\boldsymbol{k}\boldsymbol{l}}.$$

Using an implicit time discretization (e.g. $\delta_t \varphi^n := \frac{\varphi^n - \varphi^{n-1}}{\tau}$), we obtain the **discrete coupled problems**:

At each step $1 \leq n \leq N$, find $\underline{\boldsymbol{u}}_h^n \in \underline{\boldsymbol{U}}_h^k$ and $p_h^n \in \mathbb{P}_d^k$ s.t. $a_{h}(\underline{\boldsymbol{u}}_{h}^{n},\underline{\boldsymbol{v}}_{h}) + b_{h}(\underline{\boldsymbol{v}}_{h},p_{h}^{n}) = \int_{\Omega} \boldsymbol{f}^{n} \cdot \boldsymbol{v}_{h} \; \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h}^{k}$ $(c_{0}\delta_{t}p_{h}^{n},q_{h}) - b_{h}(\delta_{t}\underline{\boldsymbol{u}}_{h}^{n},q_{h}) + c_{h}(p_{h}^{n},q_{h}) = \int_{\Omega} g^{n} q_{h} \; \forall q_{h} \in \mathbb{P}_{d}^{k}$

placement related to μ (top left), λ (top right), α (bottom left) and κ (bottom right). PSP method with l = 3 and $N_q = 209$.

References

[1] D. Boffi, M. Botti and D. A. Di Pietro, A nonconforming high-order method for the Biot problem on general meshes, SIAM J. Sci. Comp. 38(3), 2016. [2] M. Botti, D. A. Di Pietro and P. Sochala, A Hybrid High-Order method for nonlinear elasticity, SIAM J. Numer. Anal., 2017. [3] P. G. Constantine, M. S. Eldred and E. T. Phipps, Sparse pseudospectral approximation method, Comput. Methods Appl. Mech. Engrg., 2012. [4] D. A. Di Pietro and A. Ern, A hybrid high-order locking-free method for linear elasticity on general meshes, Comput. Meth. Appl. Mech. Engrg. 283, pp 1–21, 2015.

POEMs 2019, POlytopal Element Methods in Mathematics and Engineering, 29 April - 3 May 2019, CIRM Marseille, France