Gradient Discretisations Tools and Applications

Joint work by R. Herbin, C. Guichard,
J. Droniou, T. Gallouët and R. Eymard

- Ω is an open bounded connected subset of $\mathbb{R}^{d}\left(d \in \mathbb{N}^{\star}\right)$
- $p \in(1,+\infty)$
- $r \in L^{p^{\prime}}(\Omega)$ and $R \in L^{p^{\prime}}(\Omega)^{d}$ with $p^{\prime}=\frac{p}{p-1}$.

Strong sense (homogeneous Dirichlet BC) :

Find $\bar{u} \in W_{0}^{1, p}(\Omega)$ such that $-\operatorname{div}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}+R\right)=r$

Weak sense :
Find $\bar{u} \in W_{0}^{1, p}(\Omega)$ such that, for all $v \in W_{0}^{1, p}(\Omega)$,
$\int_{\Omega}|\nabla \bar{u}(x)|^{p-2} \nabla \bar{u}(x) \cdot \nabla v(x) \mathrm{d} x=\int_{\Omega} r(x) v(x) \mathrm{d} x-\int_{\Omega} R(x) \cdot \nabla v(x) \mathrm{d} x$

Using the Gradient Discretisation, Let us have schematisation

Gradient Discretisation for homogeneous Dirichlet BC :
$X_{\mathcal{D}, 0}$ vector space of degrees of freedom
$\Pi_{\mathcal{D}}: X_{\mathcal{D}, 0} \rightarrow L^{p}(\Omega)$ linear function reconstruction
$\nabla_{\mathcal{D}}: X_{\mathcal{D}, 0} \rightarrow L^{p}(\Omega)^{d}$ linear gradient reconstruction
$\left\|\nabla_{\mathcal{D}} \cdot\right\|_{L^{p}}$ norm on $X_{\mathcal{D}, 0}$
Then scheme:
Find $u \in X_{\mathcal{D}, 0}$ such that, for any $v \in X_{\mathcal{D}, 0}$,

$$
\begin{aligned}
\int_{\Omega}\left|\nabla_{\mathcal{D}} u(\boldsymbol{x})\right|^{p-2} & \nabla_{\mathcal{D}} u(\boldsymbol{x}) \cdot \nabla_{\mathcal{D}} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x} \\
& =\int_{\Omega} r(\boldsymbol{x}) \Pi_{\mathcal{D}} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}-\int_{\Omega} \boldsymbol{R}(\boldsymbol{x}) \cdot \nabla_{\mathcal{D}} v(\boldsymbol{x}) \mathrm{d} \boldsymbol{x}
\end{aligned}
$$

Three examples of space approximations
Which can be seen as Gradient Discretisations

On a triangular mesh, $X_{\mathcal{D}, 0}=\left\{\left(u_{i}\right)_{i \in \mathcal{V}} \in \mathbb{R}^{\mathcal{V}}, u_{i}=0\right.$ if $\left.x_{i} \in \partial \Omega\right\}$

mass lumped \mathbb{P}_{1} finite elements (CVFE)

$\nabla_{\mathcal{D}} u(x)=\sum_{i \in \mathcal{V}} u_{i} \nabla \varphi_{i}$

The meshes are more regular,
When grid blocks are rectangular
On a rectangular mesh, $X_{\mathcal{D}, 0}=\left\{\left(u_{K}\right)_{K \in \mathcal{M}}\right\} \times\left\{\left(u_{\sigma}\right)_{\sigma \in \mathcal{F}}, u_{\sigma}=0\right.$ if $\left.\sigma \subset \partial \Omega\right\}$

Leads to 5-point finite difference scheme if $p=2$
cannot be seen as non-conforming finite elements $\left(\nabla_{\mathcal{D}} u\right.$ cannot be deduced from $\left.\Pi_{\mathcal{D}} u\right)$

For discontinuous Galerkin, Put the stabilization therein.
Example of the Average Discontinuous Galerkin Gradient Discretisation (ADGGD)

$$
V_{h}=\left\{v \in L^{2}(\Omega) \text { such that, for all } K \in \mathcal{M}, v_{\mid K} \in \mathbb{P}^{1}\left(\mathbb{R}^{d}\right)\right\}, \quad\left(\psi_{i}\right)_{i \in I} \text { a basis of } V_{h}
$$

- $X_{\mathcal{D}, 0}=\left\{\left(u_{i}\right)_{i \in 1}\right\}$ and $\Pi_{\mathcal{D} u}=\sum_{i \in I} u_{i} \psi_{i} \in V_{h}$
- Let $\beta \in] 0,1$ [given. For $u \in X_{\mathcal{D}, 0}$, for $K \in \mathcal{M}$ and for any $\sigma \in \mathcal{F}_{\sigma}$:

$$
\begin{aligned}
& \nabla_{\mathcal{D}} u= \begin{cases}\nabla\left(\Pi_{\mathcal{D}} u_{\mid K}\right) & \text { in } D_{K, \sigma}^{(\beta)} \\
\nabla\left(\Pi_{\mathcal{D}} u_{\mid K}\right)+\frac{d}{(1-\beta)} \frac{[u]_{K, \sigma}^{a}}{\mathrm{~d}\left(\boldsymbol{x}_{K}, \sigma\right)} \boldsymbol{n}_{K, \sigma} & \text { in } D_{K, \sigma} \backslash D_{K, \sigma}^{(\beta)}\end{cases} \\
& \text { if } \mathcal{M}_{\sigma}=\{K, L\},[u]_{K, \sigma}^{a}=\left(u_{L, \sigma}^{a}-u_{K, \sigma}^{a}\right) / 2 \quad \text { with } \quad u_{K, \sigma}^{a}=\frac{1}{|\sigma|} \int_{\sigma} \Pi_{\mathcal{D}} u_{\mid K}(x) \mathrm{d} \gamma(x) \\
& \text { if } \mathcal{M}_{\sigma}=\{K\},[u]_{K, \sigma}^{a}=0-u_{K, \sigma}^{a}
\end{aligned}
$$

ADGGD is pleasant :
Piecewise constant
Gradient approximations
Provide simple computations

Comparison in two dimensions
With analytical solutions

$$
d=2, \Omega=(0,1)^{2}, r(x)=2, R(x)=0 \quad \bar{u}(x)=\frac{p-1}{p}\left[\left(\frac{1}{\sqrt{2}}\right)^{p /(p-1)}-\left|x-x_{\Omega}\right|^{p /(p-1)}\right]
$$

mesh1_1

$$
p=2
$$

$$
p=1.5
$$

$$
p=4
$$

profiles along the diagonal for ADGGD with $\beta=0.8$
there exists $C_{1}>0$, depending on p, r, R and increasingly depending on $C_{\mathcal{D}}$, such that (recalling that $V:=|\nabla \bar{u}|^{p-2} \nabla \bar{u}+\boldsymbol{R} \in W_{\text {div }}^{p^{\prime}}(\Omega)$ since $\operatorname{div} \boldsymbol{V}=-r$):

$$
\text { If } p \in(1,2], \quad \frac{1}{C_{1}}\left(W_{\mathcal{D}}(\boldsymbol{V})^{\frac{1}{p-1}}+S_{\mathcal{D}}(\bar{u})\right) \leq\left\|\nabla \bar{u}-\nabla_{\mathcal{D}} u_{\mathcal{D}}\right\|_{L^{p}(\Omega)^{d}} \leq C_{1}\left(W_{\mathcal{D}}(\boldsymbol{V})+S_{\mathcal{D}}(\bar{u})^{p-1}\right)
$$

$$
\text { If } p \in[2,+\infty), \quad \frac{1}{C_{1}}\left(W_{\mathcal{D}}(\boldsymbol{V})+S_{\mathcal{D}}(\bar{u})\right) \leq\left\|\nabla \bar{u}-\nabla_{\mathcal{D}} U_{\mathcal{D}}\right\|_{L^{p}(\Omega)^{d}} \leq C_{1}\left(W_{\mathcal{D}}(\boldsymbol{V})+S_{\mathcal{D}}(\bar{u})\right)^{\frac{1}{p-1}}
$$

shows that $W_{\mathcal{D}}(\boldsymbol{V}) \rightarrow 0$ and $S_{\mathcal{D}}(\bar{u}) \rightarrow 0$ mandatory. Optimal only if $p=2$.
For the 3 previous examples: if $p=2$ and $d \leq 3, \bar{u} \in W^{2, p}(\Omega)$ and $|\nabla \bar{u}|^{p-2} \nabla \bar{u}+\boldsymbol{R} \in W^{1, p^{\prime}}(\Omega)^{d}, \quad$ order $h_{\mathcal{D}}^{p-1}$ if $p \in(1,2]$, and $h_{\mathcal{D}}^{\frac{1}{p-1}}$ if $p \geq 2$

$$
\begin{aligned}
& C_{\mathcal{D}}=\max _{w \in X_{\mathcal{D}} \backslash\{0\}} \frac{\left\|\Pi_{\mathcal{D}} w\right\|_{L^{P}(\Omega)}}{\left\|\nabla_{\mathcal{D}} w\right\|_{L^{\rho}(\Omega)^{d}}} \\
& \text { for all } \varphi \in W_{0}^{1, p}(\Omega), S_{\mathcal{D}}(\varphi)=\min _{w \in X_{\mathcal{D}}}\left(\left\|\Pi_{\mathcal{D}} w-\varphi\right\|_{L^{p}(\Omega)}+\left\|\nabla_{\mathcal{D}} w-\nabla \varphi\right\|_{L^{P}(\Omega)^{d}}\right) \\
& \text { for all } \varphi \in W_{\text {div }}^{p^{\prime}}(\Omega):=\left\{\varphi \in L^{p^{\prime}}(\Omega)^{d}, \operatorname{div} \varphi \in L^{p^{\prime}}(\Omega)\right\}, \\
& W_{\mathcal{D}}(\varphi)=\max _{w \in X_{\mathcal{D}} \backslash\{0\}} \frac{1}{\left\|\nabla_{\mathcal{D}} w\right\|_{\mathcal{L}^{\rho}(\Omega)^{d}}}\left|\int_{\Omega}\left(\nabla_{\mathcal{D}} w(x) \cdot \varphi(x)+\Pi_{\mathcal{D}} w(x) \operatorname{div} \varphi(x) \mathrm{d} x\right)\right|
\end{aligned}
$$

To the three examples, applies a series Of GDM core properties

For a sequence $\left(\mathcal{D}_{m}\right)_{m \in \mathbb{N}}$ of such GDs with $h_{m} \rightarrow 0$ under a regularity property, $\left(\mathcal{D}_{m}\right)_{m \in \mathbb{N}}$ is coercive : $C_{\mathcal{D}_{m}} \leq C_{P}$
$\left(\mathcal{D}_{m}\right)_{m \in \mathbb{N}}$ is consistent : for all $\varphi \in W_{0}^{1, p}(\Omega), S_{\mathcal{D}_{m}}(\varphi) \rightarrow 0$
$\left(\mathcal{D}_{m}\right)_{m \in \mathbb{N}}$ is limit-conforming : for all $\varphi \in W_{\text {div }}^{p^{\prime}}(\Omega), W_{\mathcal{D}_{m}}(\varphi) \rightarrow 0$
$\left(\mathcal{D}_{m}\right)_{m \in \mathbb{N}}$ is compact :
for all $\left(u_{m}\right)_{m \in \mathbb{N}}$, with $u_{m} \in X_{\mathcal{D}_{m}}$ such that $\left(\left\|\nabla_{\mathcal{D}_{m}} u_{m}\right\|_{L^{p}(\Omega)^{d}}\right)_{m \in \mathbb{N}}$ bounded, exists subsequence of $\left(\Pi_{\mathcal{D}_{m}} u_{m}\right)_{m \in \mathbb{N}}$ converging in $L^{p}(\Omega)$

Need of different GD definitions
For other boundary conditions
Example of non-homogeneous Neumann BC
let $r \in L^{p^{\prime}}(\Omega), R \in L^{p^{\prime}}(\Omega)^{d}$ and $g \in L^{p^{\prime}}(\partial \Omega)$ s.t. $\int_{\Omega} r \mathrm{~d} x+\int_{\partial \Omega} g d s=0$
find $\bar{u} \in W^{1, p}(\Omega)$ with $\int_{\Omega} \bar{u} \mathrm{~d} x=0 \quad$ and $-\operatorname{div}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}+\operatorname{div} R\right)=r$
with non-hom. Neumann $\mathrm{BC}\left(|\nabla \bar{u}|^{p-2} \nabla \bar{u}+\boldsymbol{R}\right) \cdot \boldsymbol{n}=g$ on $\partial \Omega$
weak solution \bar{u}

$$
\begin{aligned}
& \bar{u} \in W^{1, p}(\Omega) \text { and, for all } v \in W^{1, p}(\Omega), \\
& \begin{aligned}
\int_{\Omega}|\nabla \bar{u}|^{p-2} \nabla \bar{u} \cdot \nabla v \mathrm{~d} \boldsymbol{x}+\left|\int_{\Omega} \bar{u} \mathrm{~d} \boldsymbol{x}\right|^{p-2} \int_{\Omega} \bar{u} \mathrm{~d} \boldsymbol{x} \int_{\Omega} v \mathrm{~d} \boldsymbol{x} \\
=\int_{\Omega} r v \mathrm{~d} \boldsymbol{x}-\int_{\Omega} \boldsymbol{R} \cdot \nabla v \mathrm{~d} \boldsymbol{x}+\int_{\partial \Omega} g \gamma v \mathrm{ds}
\end{aligned}
\end{aligned}
$$

Scheme with GD: $\mathcal{D}=\left(X_{\mathcal{D}}, \Pi_{\mathcal{D}}, \nabla_{\mathcal{D}}, \mathbb{T}_{\mathcal{D}}\right)$

$$
\begin{aligned}
& \bar{u} \in X_{\mathcal{D}} \text { and, for all } v \in X_{\mathcal{D}}, \\
& \int_{\Omega}\left|\nabla_{\mathcal{D}} u\right|^{p-2} \nabla_{\mathcal{D}} u \cdot \nabla_{\mathcal{D}} v \mathrm{~d} x+\left|\int_{\Omega} \Pi_{\mathcal{D}} u \mathrm{~d} x\right|^{\rho-2} \int_{\Omega} \Pi_{\mathcal{D}} u \mathrm{~d} x \int_{\Omega} \Pi_{\mathcal{D}} v \mathrm{~d} x \\
& =\int_{\Omega} r \Pi_{\mathcal{D}} v \mathrm{~d} x-\int_{\Omega} R \cdot \nabla_{\mathcal{D}} v \mathrm{~d} x+\int_{\partial \Omega} g \mathbb{T}_{\mathcal{D}} v d \mathrm{ds}
\end{aligned}
$$

How should we define coercivity, consistency,
Limit-conformity, compactness for all types of BC?

Look for a common formulation Which provides a generalization

Continuous functional setting

(1) L and L separable reflexive Banach spaces
(e) V closed subspace of $L^{\prime}(V=\{0\}$ possible $)$

- $W_{\mathrm{G}} \subset L$ dense subspace and $\mathrm{G}: W_{\mathrm{G}} \rightarrow L$ linear operator with closed graph
- $\|u\|_{W_{\mathrm{G}}}=\sup _{\mu \in V \backslash\{0\}} \frac{\left|\langle\mu, u\rangle_{L^{\prime}, L}\right|}{\|\mu\|_{L^{\prime}}}+\|\mathrm{G} u\|_{L}$
(0) $W_{D}=\left\{\boldsymbol{v} \in \boldsymbol{L}^{\prime}: \exists w \in L^{\prime}, \forall u \in W_{G},\langle\boldsymbol{v}, \mathrm{G} u\rangle_{L^{\prime}, L}+\langle w, u\rangle_{L^{\prime}, L}=0\right\}$ denote $\mathrm{Dv}:=w$
(- $\forall u \in W_{\mathrm{G}}, \forall \boldsymbol{v} \in \boldsymbol{W}_{\mathrm{D}},\langle\boldsymbol{v}, \mathrm{G} u\rangle_{L^{\prime}, L}+\langle\mathrm{D} \boldsymbol{v}, u\rangle_{L^{\prime}, L}=0$
Remark: $\|u\|_{L} \leq C\|u\|_{W_{\mathrm{G}}} \Leftrightarrow \operatorname{Im}(\mathrm{D})+V=L^{\prime}$
Discrete functional setting $\mathcal{D}=\left(X_{\mathcal{D}}, \mathrm{P}_{\mathcal{D}}, \mathrm{G}_{\mathcal{D}}\right)$
(1) $X_{\mathcal{D}}$ finite dimensional vector space on \mathbb{R}
(e) $\mathrm{P}_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow L$ a linear mapping
- $\mathrm{G}_{\mathcal{D}}: X_{\mathcal{D}} \rightarrow L$ linear mapping
- $\|u\|_{\mathcal{D}}:=\sup _{\mu \in V \backslash\{0\}} \frac{\left|\left\langle\mu, \mathrm{P}_{\mathcal{D}} u\right\rangle_{L^{\prime}, L}\right|}{\|\mu\|_{L^{\prime}}}+\left\|\mathrm{G}_{\mathcal{D} u}\right\|_{L_{L}}$

Properties in the abstract setting For the schemes converging

$$
C_{\mathcal{D}}=\max _{v \in X_{\mathcal{D}} \backslash\{0\}} \frac{\left\|\mathrm{P}_{\mathcal{D}} v\right\|_{\mathcal{L}}}{\|v\|_{\mathcal{D}}}
$$

coercive if there exists $C_{P} \in \mathbb{R}_{+}$such that $C_{\mathcal{D}_{m}} \leq C_{P}$ for all $m \in \mathbb{N}$
$S_{\mathcal{D}}: W_{\mathrm{G}} \rightarrow[0,+\infty)$ be given by

$$
\forall \varphi \in W_{\mathrm{G}}, \quad S_{\mathcal{D}}(\varphi)=\min _{v \in X_{\mathcal{D}}}\left(\left\|\mathrm{P}_{\mathcal{D}} v-\varphi\right\|_{L}+\left\|\mathrm{G}_{\mathcal{D}} v-\mathrm{G} \varphi\right\|_{L}\right)
$$

consistent if $\forall \varphi \in W_{\mathrm{G}}, \lim _{m \rightarrow \infty} S_{\mathcal{D}_{m}}(\varphi)=0$
$W_{\mathcal{D}}: \boldsymbol{W}_{\mathrm{D}} \rightarrow[0,+\infty)$
$\forall \varphi \in W_{\mathrm{D}}, W_{\mathcal{D}}(\varphi)=\sup _{u \in X_{\mathcal{D}} \backslash\{0\}} \frac{\left|\left\langle\boldsymbol{\varphi}, \mathrm{G}_{\mathcal{D}} u\right\rangle_{L^{\prime}, L}+\left\langle\mathrm{D} \varphi, \mathrm{P}_{\mathcal{D}} u\right\rangle_{L^{\prime}, L}\right|}{\|u\|_{\mathcal{D}}}$.
limit-conforming if $\forall \varphi \in W_{\mathrm{D}}, \lim _{m \rightarrow \infty} W_{\mathcal{D}_{m}}(\varphi)=0$
$\left(\mathcal{D}_{m}\right)_{m \in \mathbb{N}}$ compact if, for any sequence $u_{m} \in X_{\mathcal{D}_{m}}$ such that $\left(\left\|u_{m}\right\|_{\mathcal{D}_{m}}\right)_{m \in \mathbb{N}}$ bounded, $\left(\mathrm{P}_{\mathcal{D}_{m}} u_{m}\right)_{m \in \mathbb{N}}$ is relatively compact in L
$\boldsymbol{a}: \boldsymbol{L} \rightarrow \boldsymbol{L}^{\prime}$ continuous, monotonous, coercive, bounded in some sense
a : $L \rightarrow V$ weakly continuous, monotonous, coercive, bounded in some sense

Strong formulation of the problem

Find $\bar{u} \in W_{\mathrm{G}} \quad$ such that $\quad-\mathrm{D}(\boldsymbol{a}(\mathrm{G} \bar{u})+\boldsymbol{F})+a(\bar{u})=f$
Weak formulation of the problem

Find $\bar{u} \in W_{\mathrm{G}}$ such that, $\forall v \in W_{\mathrm{G}}$,
$\langle\boldsymbol{a}(\mathrm{G} \bar{u}), \mathrm{G} v\rangle_{\mathbf{L}^{\prime}, L}+\langle a(\bar{u}), v\rangle_{L^{\prime}, L}=\langle f, v\rangle_{L^{\prime}, L}-\langle\boldsymbol{F}, \mathrm{G} v\rangle_{L^{\prime}, L}$
GDM approximation
Find $u \in X_{\mathcal{D}}$ such that, $\forall v \in X_{\mathcal{D}}$,
$\left\langle\boldsymbol{a}\left(\mathrm{G}_{\mathcal{D}} u\right), \mathrm{G}_{\mathcal{D}} v\right\rangle_{\boldsymbol{L}^{\prime}, \boldsymbol{L}}+\left\langle a\left(\mathrm{P}_{\mathcal{D}} u\right), \mathrm{P}_{\mathcal{D}} v\right\rangle_{L^{\prime}, L}=\left\langle f, \mathrm{P}_{\mathcal{D}} v\right\rangle_{L^{\prime}, L}-\left\langle\boldsymbol{F}, \mathrm{G}_{\mathcal{D}} v\right\rangle_{\boldsymbol{L}^{\prime}, L}$
Convergence theorem under consistency and limit-conformity

Application of the abstract environment In order the $B C$ to be in agreement

	homogeneous Dirichlet	non-homogeneous Neumann						
L	$L^{p}(\Omega)^{d}$	$L^{p}(\Omega)^{d}$						
L	$L^{p}(\Omega)$	$L^{p}(\Omega) \times L^{p}(\partial \Omega)$						
$V \subset L^{\prime}$	$\{0\}$	$\mathbb{R}\left(1_{\Omega}, 0\right)$						
$W_{\mathrm{G}} \subset L$	$W_{0}^{1, p}(\Omega)$	$\left\{(u, \gamma u): u \in W^{1, p}(\Omega)\right\}$						
$\\|u\\|_{W_{\mathrm{G}}}$	$\\|\nabla u\\|_{L^{p}}$	$\\|\nabla u\\|_{L^{p}}+\left\|\int_{\Omega} u\right\|$						
$\mathrm{G}: W_{\mathrm{G}} \rightarrow \boldsymbol{L}$	$u \mapsto \nabla u$	$(u, w) \mapsto \nabla u$						
$W_{\mathrm{D}} \subset L^{\prime}$	$W_{\text {div }}^{p^{\prime}}(\Omega)$	$W_{\text {div }, \partial}^{p^{\prime}}(\Omega)$						
$\mathrm{D}: W_{\mathrm{D}} \rightarrow L^{\prime}$	$\boldsymbol{v} \mapsto \operatorname{div} \boldsymbol{v}$	$\boldsymbol{v} \mapsto\left(\operatorname{div} v,-\gamma_{\mathbf{n}} v\right)$						
$\mathrm{P}_{\mathcal{D}}:$	$u \mapsto \Pi_{\mathcal{D}} u$	$u \mapsto\left(\Pi_{\mathcal{D}} u, \mathbb{T}_{\mathcal{D}} u\right)$						
$\mathrm{G}_{\mathcal{D}}:$	$u \mapsto \nabla_{\mathcal{D}} u$	$u \mapsto \nabla_{\mathcal{D}} u$						
$\\|u\\|_{\mathcal{D}}$	$\left\\|\nabla_{\mathcal{D}} u\right\\|_{L^{p}}$	$\left\\|\nabla_{\mathcal{D}} u\right\\|_{L^{p}}+\left\|\int_{\Omega} \Pi_{\mathcal{D}} u\right\|$						

- $\Omega \subset \mathbb{R}^{3}$
- $L=L^{2}(\Omega)^{3}$, so that $L^{\prime}=L^{2}(\Omega)^{3}=L$
- $L=L^{2}(\Omega)^{3 \times 3}$, so that $L^{\prime}=L^{2}(\Omega)^{3 \times 3}$
- $W_{\mathrm{D}}=H_{\text {div }}(\Omega)^{3}$, and $V=\{0\}$
- $W_{G}=H_{0}^{1}(\Omega)^{3}$
$\mathrm{G}: H_{0}^{1}(\Omega)^{3} \rightarrow L^{2}(\Omega)^{3 \times 3}$ defined by $(\mathrm{G} u)_{i, j}=\frac{1}{2}\left(\partial_{i} u^{(j)}+\partial_{j} u^{(i)}\right)$
$\mathrm{D}: H_{\mathrm{div}}(\Omega)^{3} \rightarrow L^{2}(\Omega)^{3}$ defined by $(\mathrm{D} \sigma)_{i}=\sum_{j=1}^{3} \partial_{j} \sigma^{(i, j)}$
Hooke's law : $\quad a(G u)_{i, j}=\lambda \sum_{k=1}^{3}(\mathrm{Gu})_{k, k} \delta_{i, j}+2 \mu(\mathrm{G} u)_{i, j}$
with $\lambda \geq 0, \mu>0$ (Lamé coefficients)
Equilibrium of a solid : find $u \in W_{\mathrm{G}}$ s.t. $-\mathrm{D}(a(\mathrm{Gu}))=f$ with $f \in L^{\prime}$

It's now time to conclude Such that no results elude

The abstract Gradient Discretisation setting Helps, in a variety of boundary conditions, For easily formulating General approximations.

