Gradient Discretisations Tools and Applications

Joint work by R. Herbin, C. Guichard, J. Droniou, T. Gallouët and R. Eymard

april 2019

Let us enjoy POEMS With p-Laplace problems

•  $\Omega$  is an open bounded connected subset of  $\mathbb{R}^d$   $(d \in \mathbb{N}^{\star})$ 

• 
$$p \in (1, +\infty)$$

• 
$$r \in L^{p'}(\Omega)$$
 and  $\boldsymbol{R} \in L^{p'}(\Omega)^d$  with  $p' = \frac{p}{p-1}$ .

Strong sense (homogeneous Dirichlet BC) :

Find 
$$\overline{u} \in W^{1,p}_0(\Omega)$$
 such that  $-\operatorname{div}(|\nabla \overline{u}|^{p-2}\nabla \overline{u} + \mathbf{R}) = r$ 

Weak sense :

Find 
$$\overline{u} \in W_0^{1,p}(\Omega)$$
 such that, for all  $v \in W_0^{1,p}(\Omega)$ ,  
 $\int_{\Omega} |\nabla \overline{u}(x)|^{p-2} \nabla \overline{u}(x) \cdot \nabla v(x) \mathrm{d}x = \int_{\Omega} r(x) v(x) \mathrm{d}x - \int_{\Omega} \mathbf{R}(x) \cdot \nabla v(x) \mathrm{d}x$ 

Using the Gradient Discretisation, Let us have schematisation

Gradient Discretisation for homogeneous Dirichlet BC :

 $\begin{array}{l} X_{\mathcal{D},0} \text{ vector space of degrees of freedom} \\ \Pi_{\mathcal{D}} : X_{\mathcal{D},0} \to L^p(\Omega) \text{ linear function reconstruction} \\ \nabla_{\mathcal{D}} : X_{\mathcal{D},0} \to L^p(\Omega)^d \text{ linear gradient reconstruction} \\ \|\nabla_{\mathcal{D}} \cdot \|_{L^p} \text{ norm on } X_{\mathcal{D},0} \end{array}$ 

Then scheme :

Find 
$$u \in X_{\mathcal{D},0}$$
 such that, for any  $v \in X_{\mathcal{D},0}$ ,  

$$\int_{\Omega} |\nabla_{\mathcal{D}} u(\mathbf{x})|^{p-2} \nabla_{\mathcal{D}} u(\mathbf{x}) \cdot \nabla_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x}$$

$$= \int_{\Omega} r(\mathbf{x}) \Pi_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x} - \int_{\Omega} \mathbf{R}(\mathbf{x}) \cdot \nabla_{\mathcal{D}} v(\mathbf{x}) d\mathbf{x}$$

Three examples of space approximations Which can be seen as Gradient Discretisations Applying mass-lumping, No longer conforming

On a triangular mesh,  $X_{\mathcal{D},0} = \{(u_i)_{i \in \mathcal{V}} \in \mathbb{R}^{\mathcal{V}}, u_i = 0 \text{ if } x_i \in \partial \Omega\}$ 



The meshes are more regular, When grid blocks are rectangular

On a rectangular mesh,  $X_{\mathcal{D},0} = \{(u_{\mathcal{K}})_{\mathcal{K}\in\mathcal{M}}\} \times \{(u_{\sigma})_{\sigma\in\mathcal{F}}, u_{\sigma} = 0 \text{ if } \sigma \subset \partial\Omega\}$ 



Leads to 5-point finite difference scheme if p = 2

cannot be seen as non-conforming finite elements ( $\nabla_{\mathcal{D}} u$  cannot be deduced from  $\Pi_{\mathcal{D}} u$ )

For discontinuous Galerkin, Put the stabilization therein.

Example of the Average Discontinuous Galerkin Gradient Discretisation (ADGGD)

 $V_h=\{\ v\in L^2(\Omega) \text{ such that, for all } K\in \mathcal{M}, v_{|K}\in \mathbb{P}^1(\mathbb{R}^d)\ \}, \ (\psi_i)_{i\in I} \text{ a basis of } V_h$ 

• 
$$X_{\mathcal{D},0} = \{ (u_i)_{i \in I} \}$$
 and  $\Pi_{\mathcal{D}} u = \sum_{i \in I} u_i \psi_i \in V_h$ 

• Let  $\beta \in ]0,1[$  given. For  $u \in X_{\mathcal{D},0}$ , for  $K \in \mathcal{M}$  and for any  $\sigma \in \mathcal{F}_{\sigma}$ :

$$\nabla_{\mathcal{D}} u = \begin{cases} \nabla(\Pi_{\mathcal{D}} u_{|K}) & \text{in } \mathcal{D}_{K,\sigma}^{(\beta)} \\ \nabla(\Pi_{\mathcal{D}} u_{|K}) + \frac{d}{(1-\beta)} \frac{[u]_{K,\sigma}^{a}}{\mathrm{d}(\mathbf{x}_{K},\sigma)} \mathbf{n}_{K,\sigma} & \text{in } D_{K,\sigma} \setminus \mathcal{D}_{K,\sigma}^{(\beta)} \end{cases}$$
  
if  $\mathcal{M}_{\sigma} = \{K, L\}, \ [u]_{K,\sigma}^{a} = (u_{L,\sigma}^{a} - u_{K,\sigma}^{a})/2 \\ \text{if } \mathcal{M}_{\sigma} = \{K\}, \ [u]_{K,\sigma}^{a} = 0 - u_{K,\sigma}^{a} & \text{with} \end{cases} \quad u_{K,\sigma}^{a} = \frac{1}{|\sigma|} \int_{\sigma} \Pi_{\mathcal{D}} u_{|K}(\mathbf{x}) \mathrm{d}\gamma(\mathbf{x})$ 

ADGGD is pleasant : Piecewise constant Gradient approximations Provide simple computations



Comparison in two dimensions With analytical solutions

$$d = 2, \ \Omega = (0,1)^2, \ r(x) = 2 \ , \ \mathbf{R}(x) = 0 \qquad \overline{u}(x) = \frac{p-1}{p} \left[ \left( \frac{1}{\sqrt{2}} \right)^{p/(p-1)} - |x - x_{\Omega}|^{p/(p-1)} \right]$$



profiles along the diagonal for ADGGD with  $\beta=0.8$ 

# In the case of the *p*-Laplace instance, The GDM shows some convergence

there exists  $C_1 > 0$ , depending on p, r, **R** and increasingly depending on  $C_{\mathcal{D}}$ , such that (recalling that  $\boldsymbol{V} := |\nabla \overline{u}|^{p-2} \nabla \overline{u} + \boldsymbol{R} \in W^{p'}_{div}(\Omega)$  since  $\operatorname{div} \boldsymbol{V} = -r$ ):  $\mathsf{lf} \ \boldsymbol{p} \in (1,2], \quad \frac{1}{C_1} \big( \mathcal{W}_\mathcal{D}(\boldsymbol{V})^{\frac{1}{p-1}} + \mathcal{S}_\mathcal{D}(\overline{u}) \big) \leq \|\nabla \overline{u} - \nabla_\mathcal{D} u_\mathcal{D}\|_{L^p(\Omega)^d} \leq C_1 \big( \mathcal{W}_\mathcal{D}(\boldsymbol{V}) + \mathcal{S}_\mathcal{D}(\overline{u})^{p-1} \big)$  $\text{If } p \in [2, +\infty), \quad \frac{1}{C} \left( W_{\mathcal{D}}(\boldsymbol{V}) + S_{\mathcal{D}}(\overline{u}) \right) \leq \left\| \nabla \overline{u} - \nabla_{\mathcal{D}} u_{\mathcal{D}} \right\|_{L^{p}(\Omega)^{d}} \leq C_{1} \left( W_{\mathcal{D}}(\boldsymbol{V}) + S_{\mathcal{D}}(\overline{u}) \right)^{\frac{1}{p-1}}$  $C_{\mathcal{D}} = \max_{w \in X_{\mathcal{D}} \setminus \{0\}} \frac{\|\Pi_{\mathcal{D}} w\|_{L^{p}(\Omega)}}{\|\nabla_{\mathcal{D}} w\|_{L^{p}(\Omega)}}$ for all  $\varphi \in W_0^{1,p}(\Omega)$ ,  $S_{\mathcal{D}}(\varphi) = \min_{w \in Y_{\mathcal{D}}} \left( \left\| \Pi_{\mathcal{D}} w - \varphi \right\|_{L^p(\Omega)} + \left\| \nabla_{\mathcal{D}} w - \nabla \varphi \right\|_{L^p(\Omega)^d} \right)$ with for all  $\varphi \in W^{p'}_{div}(\Omega) := \{\varphi \in L^{p'}(\Omega)^d, \operatorname{div} \varphi \in L^{p'}(\Omega)\},\$  $W_{\mathcal{D}}(\varphi) = \max_{w \in \mathcal{K}_{\mathcal{D}} \setminus \{0\}} \frac{1}{\|\nabla_{\mathcal{D}} w\|_{L^{p}(\Omega)^{d}}} \left| \int_{\Omega} \left( \nabla_{\mathcal{D}} w(x) \cdot \varphi(x) + \Pi_{\mathcal{D}} w(x) \operatorname{div} \varphi(x) \operatorname{dx} \right) \right|$ 

shows that  $W_{\mathcal{D}}(\mathbf{V}) \to 0$  and  $S_{\mathcal{D}}(\overline{u}) \to 0$  mandatory. Optimal only if p = 2.

For the 3 previous examples : if p = 2 and  $d \le 3$ ,  $\overline{u} \in W^{2,p}(\Omega)$  and  $|\nabla \overline{u}|^{p-2} \nabla \overline{u} + \mathbf{R} \in W^{1,p'}(\Omega)^d$ , order  $h_D^{p-1}$  if  $p \in (1,2]$ , and  $h_D^{\frac{1}{p-1}}$  if  $p \ge 2$  To the three examples, applies a series Of GDM core properties

For a sequence  $(\mathcal{D}_m)_{m\in\mathbb{N}}$  of such GDs with  $h_m \to 0$  under a regularity property,

 $(\mathcal{D}_m)_{m\in\mathbb{N}}$  is coercive :  $C_{\mathcal{D}_m} \leq C_P$ 

 $(\mathcal{D}_m)_{m\in\mathbb{N}}$  is consistent : for all  $\varphi \in W^{1,p}_0(\Omega), S_{\mathcal{D}_m}(\varphi) \to 0$ 

 $(\mathcal{D}_m)_{m\in\mathbb{N}}$  is limit-conforming : for all  $arphi\in W^{p'}_{\operatorname{div}}(\Omega),\ W_{\mathcal{D}_m}(arphi) o 0$ 

 $(\mathcal{D}_m)_{m\in\mathbb{N}}$  is **compact** : for all  $(u_m)_{m\in\mathbb{N}}$ , with  $u_m \in X_{\mathcal{D}_m}$  such that  $(\|\nabla_{\mathcal{D}_m} u_m\|_{L^p(\Omega)^d})_{m\in\mathbb{N}}$  bounded, exists subsequence of  $(\Pi_{\mathcal{D}_m} u_m)_{m\in\mathbb{N}}$  converging in  $L^p(\Omega)$  Need of different GD definitions For other boundary conditions

Example of non-homogeneous Neumann BC

let 
$$r \in L^{p'}(\Omega)$$
,  $\mathbf{R} \in L^{p'}(\Omega)^d$  and  $g \in L^{p'}(\partial\Omega)$  s.t.  $\int_{\Omega} r d\mathbf{x} + \int_{\partial\Omega} g ds = 0$   
find  $\overline{u} \in W^{1,p}(\Omega)$  with  $\int_{\Omega} \overline{u} d\mathbf{x} = 0$  and  $-div(|\nabla \overline{u}|^{p-2} \nabla \overline{u} + div \mathbf{R}) = r$   
with non-hom. Neumann BC  $(|\nabla \overline{u}|^{p-2} \nabla \overline{u} + \mathbf{R}) \cdot \mathbf{n} = g$  on  $\partial\Omega$ 

weak solution 
$$\overline{u}$$
  $\overline{u} \in W^{1,p}(\Omega)$  and, for all  $v \in W^{1,p}(\Omega)$ ,  
 $\int_{\Omega} |\nabla \overline{u}|^{p-2} \nabla \overline{u} \cdot \nabla v d\mathbf{x} + |\int_{\Omega} \overline{u} d\mathbf{x}|^{p-2} \int_{\Omega} \overline{u} d\mathbf{x} \int_{\Omega} v d\mathbf{x}$   
 $= \int_{\Omega} rv d\mathbf{x} - \int_{\Omega} \mathbf{R} \cdot \nabla v d\mathbf{x} + \int_{\partial\Omega} \mathbf{g} \gamma v d\mathbf{x}$ 

Scheme with GD :  $\mathcal{D} = (X_{\mathcal{D}}, \Pi_{\mathcal{D}}, \nabla_{\mathcal{D}}, \mathbb{T}_{\mathcal{D}})$ 

$$\overline{u} \in X_{\mathcal{D}} \text{ and, for all } v \in X_{\mathcal{D}},$$

$$\int_{\Omega} |\nabla_{\mathcal{D}} u|^{p-2} \nabla_{\mathcal{D}} u \cdot \nabla_{\mathcal{D}} v d\mathbf{x} + |\int_{\Omega} \Pi_{\mathcal{D}} u d\mathbf{x}|^{p-2} \int_{\Omega} \Pi_{\mathcal{D}} u d\mathbf{x} \int_{\Omega} \Pi_{\mathcal{D}} v d\mathbf{x}$$

$$= \int_{\Omega} r \Pi_{\mathcal{D}} v d\mathbf{x} - \int_{\Omega} \mathbf{R} \cdot \nabla_{\mathcal{D}} v d\mathbf{x} + \int_{\partial\Omega} g \mathbb{T}_{\mathcal{D}} v d\mathbf{x}$$

How should we define coercivity, consistency, Limit-conformity, compactness for all types of BC? Look for a common formulation Which provides a generalization

## **Continuous functional setting**

- L and L separable reflexive Banach spaces
- V closed subspace of L' ( $V = \{0\}$  possible)
- ${\it O} \hspace{0.1in} {\cal W}_{\rm G} \subset {\it L} \hspace{0.1in} {\rm dense} \hspace{0.1in} {\rm subspace} \hspace{0.1in} {\rm and} \hspace{0.1in} {\rm G}: {\it W}_{\rm G} \rightarrow {\it L} \hspace{0.1in} {\rm linear} \hspace{0.1in} {\rm operator} \hspace{0.1in} {\rm with} \hspace{0.1in} {\rm closed} \hspace{0.1in} {\rm graph}$

$$\|u\|_{W_{G}} = \sup_{\mu \in V \setminus \{0\}} \frac{|\langle \mu, u \rangle_{L', L}|}{\|\mu\|_{L'}} + \|Gu\|_{L}$$

$$\forall u \in W_{\mathrm{G}}, \ \forall v \in W_{\mathrm{D}}, \ \langle v, \mathrm{G} u \rangle_{L',L} + \langle \mathrm{D} v, u \rangle_{L',L} = 0$$

 $\mathsf{Remark}: \left\| u \right\|_L \leq C \left\| u \right\|_{W_{\mathrm{G}}} \Leftrightarrow \mathrm{Im}(\mathrm{D}) + V = L'$ 

Discrete functional setting  $\mathcal{D} = (X_{\mathcal{D}}, P_{\mathcal{D}}, G_{\mathcal{D}})$ 

- **(9)**  $X_{\mathcal{D}}$  finite dimensional vector space on  $\mathbb{R}$
- $\ \ \, {\rm P}_{\mathcal D} \ : \ X_{\mathcal D} \to L \text{ a linear mapping}$

$$\|u\|_{\mathcal{D}} := \sup_{\mu \in V \setminus \{0\}} \frac{|\langle \mu, \mathcal{P}_{\mathcal{D}} u \rangle_{L',L}|}{\|\mu\|_{L'}} + \|\mathcal{G}_{\mathcal{D}} u\|_{L}$$

assumed to be a norm on  $X_{\mathcal{D}}$ 

Properties in the abstract setting For the schemes converging

$$C_{\mathcal{D}} = \max_{\mathbf{v} \in X_{\mathcal{D}} \setminus \{0\}} \frac{\|\mathbf{P}_{\mathcal{D}}\mathbf{v}\|_{L}}{\|\mathbf{v}\|_{\mathcal{D}}}$$

**coercive** if there exists  $C_P \in \mathbb{R}_+$  such that  $C_{\mathcal{D}_m} \leq C_P$  for all  $m \in \mathbb{N}$ 

$$\begin{split} S_{\mathcal{D}} &: W_{G} \to [0, +\infty) \text{ be given by} \\ & \forall \varphi \in W_{G} , \quad S_{\mathcal{D}}(\varphi) = \min_{v \in X_{\mathcal{D}}} \left( \|P_{\mathcal{D}}v - \varphi\|_{L} + \|G_{\mathcal{D}}v - G\varphi\|_{L} \right) \\ & \text{consistent if } \forall \varphi \in W_{G} , \ \lim_{m \to \infty} S_{\mathcal{D}_{m}}(\varphi) = 0 \end{split}$$

$$\begin{split} & \mathcal{W}_{\mathcal{D}}: \mathcal{W}_{\mathrm{D}} \to [0, +\infty) \\ & \forall \varphi \in \mathcal{W}_{\mathrm{D}}, \ \mathcal{W}_{\mathcal{D}}(\varphi) = \sup_{u \in X_{\mathcal{D}} \setminus \{0\}} \frac{|\langle \varphi, \mathrm{G}_{\mathcal{D}} u \rangle_{\mathcal{L}', \mathcal{L}} + \langle \mathrm{D} \varphi, \mathrm{P}_{\mathcal{D}} u \rangle_{\mathcal{L}', \mathcal{L}}|}{\|u\|_{\mathcal{D}}}. \end{split}$$
  
limit-conforming if  $\forall \varphi \in \mathcal{W}_{\mathrm{D}}, \ \lim_{m \to \infty} \mathcal{W}_{\mathcal{D}_m}(\varphi) = 0 \end{split}$ 

 $(\mathcal{D}_m)_{m\in\mathbb{N}}$  compact if, for any sequence  $u_m \in X_{\mathcal{D}_m}$  such that  $(||u_m||_{\mathcal{D}_m})_{m\in\mathbb{N}}$  bounded,  $(P_{\mathcal{D}_m}u_m)_{m\in\mathbb{N}}$  is relatively compact in L An abstract Leray-Lions problem Enabling a convergence theorem

 $\textbf{\textit{a}}:\textbf{\textit{L}}\rightarrow\textbf{\textit{L}}'$  continuous, monotonous, coercive, bounded in some sense

 $a:L \rightarrow V$  weakly continuous, monotonous, coercive, bounded in some sense

### Strong formulation of the problem

$$\mathsf{Find}\ \overline{u} \in W_{\mathrm{G}} \quad \mathsf{such that} \quad -\mathrm{D}(\boldsymbol{a}(\mathrm{G}\overline{u}) + \boldsymbol{F}) + \boldsymbol{a}(\overline{u}) = f$$

#### Weak formulation of the problem

Find 
$$\overline{u} \in W_{G}$$
 such that,  $\forall v \in W_{G}$ ,  
 $\langle a(G\overline{u}), Gv \rangle_{L',L} + \langle a(\overline{u}), v \rangle_{L',L} = \langle f, v \rangle_{L',L} - \langle F, Gv \rangle_{L',L}$ 

#### **GDM** approximation

$$\begin{split} \text{Find } & u \in X_{\mathcal{D}} \text{ such that, } \forall v \in X_{\mathcal{D}}, \\ & \langle \boldsymbol{a}(\mathbf{G}_{\mathcal{D}}\boldsymbol{u}), \mathbf{G}_{\mathcal{D}}\boldsymbol{v} \rangle_{\boldsymbol{L}',\boldsymbol{L}} + \langle \boldsymbol{a}(\mathbf{P}_{\mathcal{D}}\boldsymbol{u}), \mathbf{P}_{\mathcal{D}}\boldsymbol{v} \rangle_{\boldsymbol{L}',\boldsymbol{L}} = \langle \boldsymbol{f}, \mathbf{P}_{\mathcal{D}}\boldsymbol{v} \rangle_{\boldsymbol{L}',\boldsymbol{L}} - \langle \boldsymbol{F}, \mathbf{G}_{\mathcal{D}}\boldsymbol{v} \rangle_{\boldsymbol{L}',\boldsymbol{L}} \end{split}$$

## Convergence theorem under consistency and limit-conformity

# Application of the abstract environment In order the BC to be in agreement

|                                                              | L                                                |                                                                                                  |
|--------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------|
|                                                              | homogeneous                                      | non-homogeneous                                                                                  |
|                                                              | Dirichlet                                        | Neumann                                                                                          |
| L                                                            | $L^p(\Omega)^d$                                  | $L^p(\Omega)^d$                                                                                  |
| L                                                            | $L^{p}(\Omega)$                                  | $L^p(\Omega) 	imes L^p(\partial \Omega)$                                                         |
| $V \subset L'$                                               | {0}                                              | $\mathbb{R}(1_{\Omega},0)$                                                                       |
| $W_{ m G} \subset L$                                         | $W^{1,p}_0(\Omega)$                              | $\{(u,\gamma u): u \in W^{1,p}(\Omega)\}$                                                        |
| $\ u\ _{W_{\mathrm{G}}}$                                     | $\ \nabla u\ _{L^p}$                             | $\  abla u\ _{L^p}+ \int_\Omega u $                                                              |
| $\mathrm{G}: \textit{W}_{\mathrm{G}} \rightarrow \textit{L}$ | $u \mapsto \nabla u$                             | $(u,w)\mapsto \nabla u$                                                                          |
| $\mathit{W}_{\mathrm{D}} \subset \mathit{L}'$                | $W^{p'}_{ m div}(\Omega)$                        | $W^{p'}_{\mathrm{div},\partial}(\Omega)$                                                         |
| $\mathrm{D}: W_{\mathrm{D}} \to L'$                          | $\mathbf{v}\mapsto \operatorname{div}\mathbf{v}$ | $oldsymbol{ u}\mapsto({ m div}oldsymbol{ u},-\gamma_{f n}oldsymbol{ u})$                         |
| $P_{\mathcal{D}}$ :                                          | $u\mapsto \Pi_{\mathcal{D}} u$                   | $u\mapsto (\Pi_{\mathcal{D}}u,\mathbb{T}_{\mathcal{D}}u)$                                        |
| $G_{\mathcal{D}}$ :                                          | $u \mapsto \nabla_{\mathcal{D}} u$               | $u\mapsto  abla_{\mathcal{D}}u$                                                                  |
| $\ u\ _{\mathcal{D}}$                                        | $\left\  \nabla_{\mathcal{D}} u \right\ _{L^p}$  | $\left\ \nabla_{\mathcal{D}} u\right\ _{L^{p}} + \left \int_{\Omega} \Pi_{\mathcal{D}} u\right $ |

Abstract Gradient Discretisation Applies to mechanics approximation

• 
$$\Omega \subset \mathbb{R}^3$$
  
•  $L = L^2(\Omega)^3$ , so that  $L' = L^2(\Omega)^3 = L$   
•  $L = L^2(\Omega)^{3\times3}$ , so that  $L' = L^2(\Omega)^{3\times3}$   
•  $W_D = H_{div}(\Omega)^3$ , and  $V = \{0\}$   
•  $W_G = H_0^1(\Omega)^3$   
G :  $H_0^1(\Omega)^3 \rightarrow L^2(\Omega)^{3\times3}$  defined by  $(Gu)_{i,j} = \frac{1}{2}(\partial_i u^{(j)} + \partial_j u^{(i)})$   
D :  $H_{div}(\Omega)^3 \rightarrow L^2(\Omega)^3$  defined by  $(D\sigma)_i = \sum_{j=1}^3 \partial_j \sigma^{(i,j)}$   
Hooke's law :  $a(Gu)_{i,j} = \lambda \sum_{k=1}^3 (Gu)_{k,k} \delta_{i,j} + 2\mu(Gu)_{i,j}$   
with  $\lambda \ge 0, \mu > 0$  (Lamé coefficients)  
Equilibrium of a solid : find  $u \in W_G$  s.t.  $-D(a(Gu)) = f$  with  $f \in L'$ 

It's now time to conclude Such that no results elude

The abstract Gradient Discretisation setting Helps, in a variety of boundary conditions, For easily formulating General approximations.