

< □ > < @ > < 注 > < 注 > □ ≥

A unified formulation and analysis of HHO and VE methods

Simon Lemaire

https://sites.google.com/site/chezsimonlemaire

POEMs III, Marseille May 1st, 2019

Setting

- toy problem: $\bigtriangleup u = f$ in $\Omega \subset \mathbb{R}^2$, u = 0 on $\partial \Omega$
- polygonal mesh \mathcal{T}_h of Ω fulfilling classical admissibility requirements (no small edge in particular)
- focus on c/nc-VE and HHO methods of arbitrary order $k \ge 1$
- skeletal methods: cell DOF can be locally eliminated in terms of skeletal DOF
- VE methods are written in terms of (virtual) functions
- HHO methods are written in terms of DOF
- both paradigms are close: nc-VE and HHO are actually equivalent (up to equivalent cell polynomial degree, choice of stabilization, treatment of the RHS) [Cockburn, Di Pietro, Ern, 16], [Di Pietro, Droniou, Manzini, 18]

- there is a difference between VE and HHO when it comes to the analysis
- in standard analyses of VE, the approximation properties of the virtual space appear explicitly in the bound of the scheme error
- this is not the case for HHO
- the aim of this talk is (1) to understand why...
- and (2) to propose an alternative analysis of c-VE in broken H^1 -seminorm, based on a rewriting of c-VE in terms of DOF (in the vein of HHO), that eludes this virtual contribution...
- thus leading to a (3) unified analysis of VE/HHO methods
- we build upon existing works, in particular [Cangiani, Manzini, Sutton, 17] and [Di Pietro, Droniou, 18]

Main notation

- T denotes a generic element of the polygonal mesh \mathcal{T}_h
- \mathcal{F}_T denotes the set of edges of T
- \mathcal{V}_T denotes the set of vertices of T
- \mathbb{P}^l_X denotes the space of polynomials of total degree $\leqslant l$ on X
- π^l_X denotes the L^2 -orthogonal projector onto \mathbb{P}^l_X
- + Π^l_X denotes the elliptic projector onto \mathbb{P}^l_X
- $\mathbb{P}^l_{\mathcal{F}_T}$ denotes the space of functions v on ∂T s.t. $v_{|F} \in \mathbb{P}^l_F$ for all $F \in \mathcal{F}_T$

- $\mathbb{P}^{l,c}_{\mathcal{F}_T} := \mathbb{P}^l_{\mathcal{F}_T} \cap C^0(\partial T)$
- $H^{1,c}(T) := H^1(T) \cap C^0(\overline{T})$

Outline

Formulation

Broken H^1 -seminorm analysis

Non-conforming case: the HHO viewpoint

Local ingredients in each cell T of the mesh:

• space of DOF:
$$\underline{\mathbf{V}}_T^k := \mathbb{P}_T^{k-1} \times \left(\bigotimes_{F \in \mathcal{F}_T} \mathbb{P}_F^{k-1} \right)$$

• Polynomial projector: $p_T^k : \underline{V}_T^k \to \mathbb{P}_T^k$ s.t.

$$\begin{cases} \int_{T} \boldsymbol{\nabla} p_{T}^{k} \underline{\mathbf{v}}_{T} \cdot \boldsymbol{\nabla} \boldsymbol{\theta} = -\int_{T} \mathbf{v}_{T} \boldsymbol{\Delta} \boldsymbol{\theta} + \sum_{F \in \mathcal{F}_{T}} \int_{F} \mathbf{v}_{F} \boldsymbol{\nabla} \boldsymbol{\theta} \cdot \boldsymbol{n}_{T,F} \qquad \forall \boldsymbol{\theta} \in \mathbb{P}_{T}^{k} \\ \int_{T} p_{T}^{k} \underline{\mathbf{v}}_{T} = \int_{T} \mathbf{v}_{T} \end{cases}$$

Local bilinear/linear forms on $\underline{V}_T^k \times \underline{V}_T^k / \underline{V}_T^k$:

$$\mathbf{a}_T(\underline{\mathbf{u}}_T,\underline{\mathbf{v}}_T) := \int_T \boldsymbol{\nabla} p_T^k \underline{\mathbf{u}}_T \cdot \boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T + \mathbf{s}_T(\underline{\mathbf{u}}_T,\underline{\mathbf{v}}_T), \qquad \mathbf{l}_T(\underline{\mathbf{v}}_T) := \int_T f \mathbf{v}_T$$

The global space of DOF $\sum_{h,0}^{k}$ is obtained by gluing together the skeletal DOF between adjacent elements (and zeroing out the boundary DOF).

The global bilinear/linear forms $\mathbf{a}_h/\mathbf{l}_h$ are obtained by summing the local contributions.

The problem reads: find $\underline{\mathbf{u}}_h \in \underline{\mathbf{V}}_{h,0}^k$ s.t. $\mathbf{a}_h(\underline{\mathbf{u}}_h,\underline{\mathbf{v}}_h) = \mathbf{l}_h(\underline{\mathbf{v}}_h)$ for all $\underline{\mathbf{v}}_h \in \underline{\mathbf{V}}_{h,0}^k$.

Non-conforming case: the equivalent nc-VE viewpoint

- local virtual space: $V_T^k := \left\{ v \in H^1(T) \mid \triangle v \in \mathbb{P}_T^{k-1}, \, \nabla v \cdot \boldsymbol{n}_T \in \mathbb{P}_{\mathcal{F}_T}^{k-1} \right\}$
- reduction: $\underline{\Sigma}_T^k: V_T^k \to \underline{V}_T^k$ s.t. $\underline{\Sigma}_T^k v := \left(\pi_T^{k-1} v, \left(\pi_F^{k-1} v\right)_{F \in \mathcal{F}_T}\right)$
- $\underline{\Sigma}_T^k$ is a bijection
- there holds $p_T^k \circ \underline{\Sigma}_T^k = \Pi_T^k$
- equivalent local bilinear form on $V_T^k \times V_T^k \colon a_T(u,v) := \mathbf{a}_T \left(\underline{\Sigma}_T^k u, \underline{\Sigma}_T^k v \right)$
- $a_T(u,v) = \int_T \nabla \Pi_T^k u \cdot \nabla \Pi_T^k v + s_T(u,v)$ with $s_T(u,v) := s_T \left(\underline{\Sigma}_T^k u, \underline{\Sigma}_T^k v \right)$
- equivalent local linear form on $V_T^k\colon l_T(v):=l_T\big(\underline{\Sigma}_T^k v\big)=\int_T f\pi_T^{k-1}v$
- global virtual space: $V_{h,0}^k := \left\{ v_h \in V_{\mathcal{T}_h}^k, \ \pi_F^{k-1}(\llbracket v_h \rrbracket_F) \equiv 0 \ \forall F \in \mathcal{F}_h \right\}$

- global forms a_h/l_h obtained by sum of local ones
- problem: find $u_h \in V_{h,0}^k$ s.t. $a_h(u_h,v_h) = l_h(v_h)$ for all $v_h \in V_{h,0}^k$
- there holds $\underline{\mathbf{u}}_h = \underline{\Sigma}_h^k u_h$

Local ingredients in each cell T of the mesh:

- locally to each edge $F := [\boldsymbol{x}_{\nu_1}, \boldsymbol{x}_{\nu_2}] \in \mathcal{F}_T$
 - space of edge DOF: $\underline{V}_F^k := \mathbb{P}_F^{k-2} \times \mathbb{R}^2$
 - Preconstruction operator: $r_F^k : \underline{V}_F^k \to \mathbb{P}_F^k$ s.t.

$$\begin{cases} \int_{F} (r_{F}^{k} \underline{v}_{F})' \zeta' = -\int_{F} v_{F} \zeta'' + [v_{\nu_{2}} \zeta'(\boldsymbol{x}_{\nu_{2}}) - v_{\nu_{1}} \zeta'(\boldsymbol{x}_{\nu_{1}})] & \forall \zeta \in \mathbb{P}_{F}^{k} \\ r_{F}^{k} \underline{v}_{F}(\boldsymbol{x}_{\nu_{1}}) = v_{\nu_{1}} \end{cases}$$

• space of DOF:
$$\underline{\mathbf{V}}_{T}^{k} := \mathbb{P}_{T}^{k-1} \times \left(\bigotimes_{F \in \mathcal{F}_{T}} \mathbb{P}_{F}^{k-2} \times \mathbb{R}^{\operatorname{card}(\mathcal{V}_{T})} \right)$$

• Polynomial projector: $p_T^k : \underline{V}_T^k \to \mathbb{P}_T^k$ s.t.

$$\begin{cases} \int_{T} \boldsymbol{\nabla} p_{T}^{k} \underline{\mathbf{v}}_{T} \cdot \boldsymbol{\nabla} \boldsymbol{\theta} = -\int_{T} \mathbf{v}_{T} \triangle \boldsymbol{\theta} + \sum_{F \in \mathcal{F}_{T}} \int_{F} r_{F}^{k} \underline{\mathbf{v}}_{F} \boldsymbol{\nabla} \boldsymbol{\theta} \cdot \boldsymbol{n}_{T,F} \qquad \forall \boldsymbol{\theta} \in \mathbb{P}_{T}^{k} \\ \int_{T} p_{T}^{k} \underline{\mathbf{v}}_{T} = \int_{T} \mathbf{v}_{T} \end{cases}$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Local bilinear/linear forms on $\underline{\mathbf{V}}_T^k \times \underline{\mathbf{V}}_T^k / \underline{\mathbf{V}}_T^k$:

$$\mathbf{a}_T(\underline{\mathbf{u}}_T,\underline{\mathbf{v}}_T) := \int_T \boldsymbol{\nabla} p_T^k \underline{\mathbf{u}}_T \cdot \boldsymbol{\nabla} p_T^k \underline{\mathbf{v}}_T + \mathbf{s}_T(\underline{\mathbf{u}}_T,\underline{\mathbf{v}}_T), \qquad \mathbf{l}_T(\underline{\mathbf{v}}_T) := \int_T f \mathbf{v}_T$$

The global space of DOF $\sum_{h,0}^{k}$ is obtained by gluing together the skeletal DOF between adjacent elements (and zeroing out the boundary DOF).

The global bilinear/linear forms $\mathbf{a}_h/\mathbf{l}_h$ are obtained by summing the local contributions.

The problem reads: find $\underline{\mathbf{u}}_h \in \underline{\mathbf{V}}_{h,0}^k$ s.t. $\mathbf{a}_h(\underline{\mathbf{u}}_h, \underline{\mathbf{v}}_h) = \mathbf{l}_h(\underline{\mathbf{v}}_h)$ for all $\underline{\mathbf{v}}_h \in \underline{\mathbf{V}}_{h,0}^k$.

Conforming case: the equivalent c-VE viewpoint

- local virtual space: $V_T^k := \left\{ v \in H^1(T) \mid \triangle v \in \mathbb{P}_T^{k-1}, v_{\mid \partial T} \in \mathbb{P}_{\mathcal{F}_T}^{k,c} \right\}$
- reduction: $\underline{\Sigma}_T^k: V_T^k \to \underline{V}_T^k$ s.t. $\underline{\Sigma}_T^k v := \left(\pi_T^{k-1} v, \left(\pi_F^{k-2} v\right)_{F \in \mathcal{F}_T}, \left(v(x_\nu)\right)_{\nu \in \mathcal{V}_T}\right)$
- $\underline{\Sigma}_T^k$ is a bijection
- there holds $p_T^k \circ \underline{\Sigma}_T^k = \Pi_T^k$
- equivalent local bilinear form on $V_T^k \times V_T^k \colon a_T(u,v) := \mathbf{a}_T \left(\underline{\Sigma}_T^k u, \underline{\Sigma}_T^k v \right)$
- $a_T(u,v) = \int_T \nabla \Pi_T^k u \cdot \nabla \Pi_T^k v + s_T(u,v)$ with $s_T(u,v) := s_T \left(\underline{\Sigma}_T^k u, \underline{\Sigma}_T^k v \right)$
- equivalent local linear form on $V_T^k\colon l_T(v):=l_T\big(\underline{\Sigma}_T^k v\big)=\int_T f\pi_T^{k-1}v$
- global virtual space: $V_{h,0}^k := \left\{ v_h \in V_{\mathcal{T}_h}^k \cap C^0(\overline{\Omega}), v_{h|\partial\Omega} \equiv 0 \right\} \subset H_0^1(\Omega)$

- global forms a_h/l_h obtained by sum of local ones
- problem: find $u_h \in V_{h,0}^k$ s.t. $a_h(u_h, v_h) = l_h(v_h)$ for all $v_h \in V_{h,0}^k$
- there holds $\underline{\mathbf{u}}_h = \underline{\Sigma}_h^k u_h$

Outline

Formulation

Broken H^1 -seminorm analysis

Non-conforming case

- we extend $\underline{\Sigma}_T^k$ to $H^1(T)$
- \bigodot we remark that $p_T^k \circ \underline{\Sigma}_T^k : H^1(T) \to \mathbb{P}_T^k$ is still equal to Π_T^k
- we lead the analysis by writing that

$$\|\boldsymbol{\nabla}_h \big(u - p_h^k \underline{\mathbf{u}}_h\big)\|_{0,\Omega} \leqslant \|\boldsymbol{\nabla}_h \big(u - \Pi_h^k u\big)\|_{0,\Omega} + \|\boldsymbol{\nabla}_h p_h^k \big(\underline{\Sigma}_h^k u - \underline{\mathbf{u}}_h\big)\|_{0,\Omega}$$

- the first term in the RHS is handled using the H^1 approximation properties of Π^k_h
- the second term is such that

$$\|\boldsymbol{\nabla}_{h} p_{h}^{k}(\underline{\Sigma}_{h}^{k} u - \underline{\mathbf{u}}_{h})\|_{0,\Omega} \leq \max_{\underline{\mathbf{v}}_{h} \in \underline{\mathbf{V}}_{h,0}^{k}, |\underline{\mathbf{v}}_{h}|_{\mathbf{a},h} = 1} \left[\mathbf{a}_{h}(\underline{\Sigma}_{h}^{k} u, \underline{\mathbf{v}}_{h}) - \mathbf{l}_{h}(\underline{\mathbf{v}}_{h}) \right]$$

- it is bounded by the consistency error of the scheme, and can be estimated using the H^s approximation properties of Π^k_h

• the analysis can be led without explicit reference to the virtual space

Conforming case (1/3)

- we extend $\underline{\Sigma}^k_T$ to $H^{1,c}(T)$
- • in that case, $\mathcal{P}^k_T := p^k_T \circ \underline{\Sigma}^k_T : H^{1,c}(T) \to \mathbb{P}^k_T$ is not equal to Π^k_T
- actually, $\mathcal{P}^k_T=\Pi^k_T\circ\mathcal{I}^k_T$, where $\mathcal{I}^k_T:H^{1,c}(T)\to V^k_T$ is the canonical interpolator on the virtual space
- in standard analyses, one splits the error as

$$\begin{split} \|\boldsymbol{\nabla}_{h} \big(u - p_{h}^{k}\underline{\mathbf{u}}_{h}\big)\|_{0,\Omega} &\leq \|\boldsymbol{\nabla}_{h} \big(u - \Pi_{h}^{k}u\big)\|_{0,\Omega} + \|\boldsymbol{\nabla}_{h}\Pi_{h}^{k} \big(u - \mathcal{I}_{h}^{k}u\big)\|_{0,\Omega} + \|\boldsymbol{\nabla}_{h}p_{h}^{k}\big(\underline{\Sigma}_{h}^{k}u - \underline{\mathbf{u}}_{h}\big)\|_{0,\Omega} \\ &\leq \|\boldsymbol{\nabla}_{h} \big(u - \Pi_{h}^{k}u\big)\|_{0,\Omega} + \|\boldsymbol{\nabla}_{h} \big(u - \mathcal{I}_{h}^{k}u\big)\|_{0,\Omega} + \|\boldsymbol{\nabla}_{h}p_{h}^{k}\big(\underline{\Sigma}_{h}^{k}u - \underline{\mathbf{u}}_{h}\big)\|_{0,\Omega} \end{split}$$

- such a splitting makes the virtual space not that virtual...
- and requires the study of the approximation properties of \mathcal{I}_{h}^{k}
- in particular, one has to construct a bounded lifting of the traces of virtual functions, which is non-trivial on elements that are not star-shaped (case not covered in standard analyses)

• let us proceed differently and directly consider \mathcal{P}_h^k

Conforming case (2/3)

- • for any edge $F \in \mathcal{F}_T$, let $\mathcal{I}_F^k := r_F^k \circ \underline{\Sigma}_F^k : C^0(F) \to \mathbb{P}_F^k$
- for any $t \in C^0(F)$, there holds $(\mathcal{I}_F^k t)' = (\Pi_F^k t)'$ and $\mathcal{I}_F^k t(\boldsymbol{x}_{\nu_1}) = t(\boldsymbol{x}_{\nu_1})$
- hence, $\|\mathcal{I}_F^k t\|_{\infty,F} \lesssim \|t\|_{\infty,F}$
- also, $\mathcal{I}_F^k p = p$ for any $p \in \mathbb{P}_F^k$
- there holds, for any $z \in H^{1,c}(T)$,

$$\begin{cases} \int_{T} \boldsymbol{\nabla} \mathcal{P}_{T}^{k} z \cdot \boldsymbol{\nabla} \theta = -\int_{T} z \triangle \theta + \sum_{F \in \mathcal{F}_{T}} \int_{F} \mathcal{I}_{F}^{k}(z_{|F}) \boldsymbol{\nabla} \theta \cdot \boldsymbol{n}_{T,F} \qquad \forall \theta \in \mathbb{P}_{T}^{k} \\ \int_{T} \mathcal{P}_{T}^{k} z = \int_{T} z \end{cases}$$

• from this expression, one can easily prove that, for any $z \in H^2(T)$,

$$\|\mathcal{P}_T^k z\|_{0,T} \lesssim \|z\|_{0,T} + h_T |z|_{1,T} + h_T^2 |z|_{2,T}$$

• combined to the fact that \mathcal{P}_T^k preserves polynomials, this yields H^s approximation properties for \mathcal{P}_T^k

• with the introduction of \mathcal{P}_T^k and the study of its approximation properties, we can lead the error analysis just as in the non-conforming case:

$$\|\boldsymbol{\nabla}_{h}\left(u-p_{h}^{k}\underline{\mathbf{u}}_{h}\right)\|_{0,\Omega} \leqslant \|\boldsymbol{\nabla}_{h}\left(u-\mathcal{P}_{h}^{k}u\right)\|_{0,\Omega}+\|\boldsymbol{\nabla}_{h}p_{h}^{k}\left(\underline{\Sigma}_{h}^{k}u-\underline{\mathbf{u}}_{h}\right)\|_{0,\Omega}$$

- the second term in the RHS is here again bounded by the consistency error of the scheme (not that even in the conforming case, the output of the scheme is a nonconforming function), that can be estimated using the H^s approximation properties of \mathcal{P}_h^k
- last question: why that in the non-conforming case $\mathcal{P}_T^k = \Pi_T^k$? This is because $\mathcal{I}_T^k = \Pi_V$ with Π_V the elliptic projector onto V_T^k in that case!

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

• reference for this talk: [SL, preprint hal-01902962]

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ 臣 の�?

- no obstruction to the extension to 3D VE
- unified L²-norm error analysis?
- what about enhanced VE, or serendipity VE?

THANK YOU FOR YOUR ATTENTION (ESPECIALLY A 1^{st} OF MAY)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで