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Setting

e toy problem: —Au = fin Q < R2, u =0 on dQ

e polygonal mesh Tj, of Q fulfilling classical admissibility requirements (no small
edge in particular)

e focus on c¢/nc-VE and HHO methods of arbitrary order k > 1

o skeletal methods: cell DOF can be locally eliminated in terms of skeletal DOF
e VE methods are written in terms of (virtual) functions

o HHO methods are written in terms of DOF

e both paradigms are close: nc-VE and HHO are actually equivalent (up to
equivalent cell polynomial degree, choice of stabilization, treatment of the RHS)
[Cockburn, Di Pietro, Ern, 16], [Di Pietro, Droniou, Manzini, 18]



Aim of the talk

o there is a difference between VE and HHO when it comes to the analysis

e in standard analyses of VE, the approximation properties of the virtual space
appear explicitly in the bound of the scheme error

e this is not the case for HHO
e the aim of this talk is (1) to understand why. ..

e and (2) to propose an alternative analysis of c-VE in broken H'-seminorm, based
on a rewriting of c-VE in terms of DOF (in the vein of HHO), that eludes this
virtual contribution. ..

o thus leading to a (3) unified analysis of VE/HHO methods

o we build upon existing works, in particular [Cangiani, Manzini, Sutton, 17] and
[Di Pietro, Droniou, 18]



Main notation

e T denotes a generic element of the polygonal mesh Tp,
e Fr denotes the set of edges of T’

e V1 denotes the set of vertices of T'

. PZX denotes the space of polynomials of total degree <[l on X
° 71'lX denotes the L2-orthogonal projector onto PZX

° HlX denotes the elliptic projector onto PZX

° PlfT denotes the space of functions v on 0T s.t. v € PZF for all F e Fr

Le .
o Pz =P nCO0T)

o HLY(T) := HY(T) n C%(T)



Formulation

Broken H!-seminorm analysis




Non-conforming case: the HHO viewpoint

Local ingredients in each cell T' of the mesh:

e space of DOF: y’; = P"T"_1 X ( X F’fg”)

FeFr

. polynomial projector: p’% ;yl} — PI% s.t.

f Vp?gT-VG:fJ Vel + ) f vpVOnrp  V0ePk
T T F

FeFr
J plqc’XT zf vr
T T
Local bilinear/linear forms on y’% X M’%/X’%i
ar(up, vy) = f Vphup Vg + sr(up, vy, Ip(vy) = f fvr
T T

The global space of DOF X’Z o is obtained by gluing together the skeletal DOF
between adjacent elements (and zeroing out the boundary DOF).

The global bilinear/linear forms ay /1, are obtained by summing the local
contributions.

The problem reads: find u;, € Mﬁ,o s.t. ap(uy,vy,) = lp(vy,) forall vy, € y,’g,o.



Non-conforming case: the equivalent nc-VE viewpoint

local virtual space: Vi := {U e HY(T) | Ave Pl}_l, Vouvnr e P;Tl}

reduction: ZX : VE - VE st Bko = (wél_lv, (ﬁé‘rlq;)FEF’)

;’% is a bijection

there holds p% o =k, =TIk,

equivalent local bilinear form on Vi,lf X V{f: ar(u,v) := ar (El%u,zl%v)
ar(u,v) = ST VH’}U-VHI%U + s7(u,v) with sp(u,v) :=sp (2’%u,§§v)
equivalent local linear form on V.E: Ir(v) := 17 (Zkv) = §r fﬂ?ﬁlv
global virtual space: V}ﬁo = {vh € V7’S,L, wffl ([vn]l7) =0VF € fh}
global forms ay, /lj, obtained by sum of local ones

problem: find uy, € V}ﬁo s.t. ap(up,vy) = lp(vp) for all vy, € V}ﬁo

there holds u;, = S uy,



Conforming case: a DOF-based viewpoint (1/2)

Local ingredients in each cell T' of the mesh:
o locally to each edge F := [m,,l,myz] e Fr
e space of edge DOF: V. " = P"

X
k
° reconstruction operator: r L — PE st

2

R2

[ orbanye = = [ vre” 4 [v0a€ @ug) = vir € ()]
F F

k

Py (@) = v

e space of DOF: X’% = P§71 X ( X P/}_'TQ X R("”'d(vT)>
FeFrp

° polynomial projector: p’% :y’% — P]% s.t.

f Vp’%gT-VO:fJ vre+ Y f kv, Vonr p
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Conforming case: a DOF-based viewpoint (2/2)

Local bilinear/linear forms on V7. x V7. /V7%.:

ar(up,vy) i= fT Vpkup-Vpkve +sr(ugp, vy), Ir(vy) := JT fyvr

The global space of DOF MIZ o is obtained by gluing together the skeletal DOF
between adjacent elements (and zeroing out the boundary DOF).

The global bilinear/linear forms ay, /1, are obtained by summing the local
contributions.

The problem reads: find u;, € Xﬁ o Stoap(uy,vy,) =1x(yvy,) forall v, € y’; o0



Conforming case: the equivalent c-VE viewpoint

local virtual space: Vi := {U e HY(T) | Ave Pl}_l, vjor € Pl]”:;}

reduction: ZX : VE - VE st Bko = <7|'§~_1’U7 (ﬁé‘rz/z;)FEFr, (L‘(:Ey))uev,r)

;’% is a bijection

there holds p% o =k, =TIk,

equivalent local bilinear form on V:,IS X V{f: ar(u,v) := ar (El%u,zl%v)
ar(u,v) = ST VH’}U-VH]%U + s7(u,v) with sp(u,v) :=sp (2’%u,§§v)
equivalent local linear form on V.E: Ir(v) := 17 (Zkv) = §r fﬂ?ﬁlv
global virtual space: Viﬁo 1= {vh € V7’3h n CoQ), Uploq = 0} c H&(Q)
global forms ay, /lj, obtained by sum of local ones

problem: find uy, € Vfo s.t. ap(up,vy) = lp(vp) for all vy, € V}fo

there holds u;, = S uy,



Formulation

Broken H'!-seminorm analysis




Non-conforming case

o we extend X to H(T)
° we remark that pl} 02]72 : HY(T) — F"% is still equal to H’,}
e we lead the analysis by writing that
IVh(w—pEuy) o0 < |Va(u—TEu) oo + [ Vipk (Efu — up) o0
o the first term in the RHS is handled using the H! approximation properties of H’fL

e the second term is such that

IVaph (S —w)loa < max  fan(Shuw) < 1)
YhE¥h,00 ¥hla,h=

e it is bounded by the consistency error of the scheme, and can be estimated using
the H® approximation properties of Hﬁ

e the analysis can be led without explicit reference to the virtual space



Conforming case (1/3)

o we extend X% to HLS(T)
. in that case, PE := pk o Bk : HL.¢(T) — P& is not equal to IT%.

e actually, 'Péi = l‘[’C oIk, where I’C HI’C(T) — V:,’f is the canonical interpolator
on the virtual space

e in standard analyses, one splits the error as

IV (u—pfuy)llo,e < [V (u=T15u)|o, K (u=ZFu) o0+ Vil (Sfu—uy)]o,0
<[V (u—Tu) o0 + [Va (u — Zu) o, + [ Vipk (kv — ) o0

e such a splitting makes the virtual space not that virtual. ..
e and requires the study of the approximation properties of I,"L"

e in particular, one has to construct a bounded lifting of the traces of virtual
functions, which is non-trivial on elements that are not star-shaped (case not
covered in standard analyses)

e let us proceed differently and directly consider 73;?



Conforming case (2/3)

o for any edge F € Fr, let If := rk o 2% : CO(F) — Pk

for any t € CO(F), there holds (Zkt)' = (II%.t)" and Tht(zy,) = t(zy,)

hence,

Titloo,r < Itloo,r
e also, If,p =pforany pe P’}
there holds, for any z € H%¢(T),

f VPk2ve = 7f NEDY f Ip(zp)VOnrp  V0ePh
T T F

FeFr
J J
T T

e from this expression, one can easily prove that, for any z € H2(T),
I1PFzlo,0 S |2lo,7 + hrlzl1,r + h7 2|27

e combined to the fact that Péi preserves polynomials, this yields H*
approximation properties for P%



Conforming case (3/3)

e with the introduction of Pé“w and the study of its approximation properties, we can
lead the error analysis just as in the non-conforming case:

IV5 (u = piug) o,e < Vi (u— Plu)|

0,2 + | Vapk (ZFu —up,)lo,0

e the second term in the RHS is here again bounded by the consistency error of the
scheme (not that even in the conforming case, the output of the scheme is a
nonconforming function), that can be estimated using the H* approximation
properties of 77,]:

e last question: why that in the non-conforming case 7342 = H’%? This is because
I,f: = Iy, with IIy the elliptic projector onto Vqlf in that case!



Comments and perspectives

o reference for this talk: [SL, preprint hal-01902962]

e no obstruction to the extension to 3D VE

o unified L2-norm error analysis?

e what about enhanced VE, or serendipity VE?


https://hal.archives-ouvertes.fr/hal-01902962

OUR ATTENTION
15t OF MAY)

><C



	Formulation
	Broken H1-seminorm analysis

