Université de Lille

A unified formulation and analysis of HHO and VE methods

Simon Lemaire

https://sites.google.com/site/chezsimonlemaire

POEMs III, Marseille
May $1^{\text {st }}, 2019$

Setting

- toy problem: $-\triangle u=f$ in $\Omega \subset \mathbb{R}^{2}, u=0$ on $\partial \Omega$
- polygonal mesh \mathcal{T}_{h} of Ω fulfilling classical admissibility requirements (no small edge in particular)
- focus on $\mathrm{c} / \mathrm{nc}-\mathrm{VE}$ and HHO methods of arbitrary order $k \geqslant 1$
- skeletal methods: cell DOF can be locally eliminated in terms of skeletal DOF
- VE methods are written in terms of (virtual) functions
- HHO methods are written in terms of DOF
- both paradigms are close: nc-VE and HHO are actually equivalent (up to equivalent cell polynomial degree, choice of stabilization, treatment of the RHS) [Cockburn, Di Pietro, Ern, 16], [Di Pietro, Droniou, Manzini, 18]

Aim of the talk

- there is a difference between VE and HHO when it comes to the analysis
- in standard analyses of VE, the approximation properties of the virtual space appear explicitly in the bound of the scheme error
- this is not the case for HHO
- the aim of this talk is (1) to understand why...
- and (2) to propose an alternative analysis of c-VE in broken H^{1}-seminorm, based on a rewriting of $\mathrm{c}-\mathrm{VE}$ in terms of DOF (in the vein of HHO), that eludes this virtual contribution...
- thus leading to a (3) unified analysis of VE/HHO methods
- we build upon existing works, in particular [Cangiani, Manzini, Sutton, 17] and [Di Pietro, Droniou, 18]

Main notation

- T denotes a generic element of the polygonal mesh \mathcal{T}_{h}
- \mathcal{F}_{T} denotes the set of edges of T
- \mathcal{V}_{T} denotes the set of vertices of T
- \mathbb{P}_{X}^{l} denotes the space of polynomials of total degree $\leqslant l$ on X
- π_{X}^{l} denotes the L^{2}-orthogonal projector onto \mathbb{P}_{X}^{l}
- Π_{X}^{l} denotes the elliptic projector onto \mathbb{P}_{X}^{l}
- $\mathbb{P}_{\mathcal{F}_{T}}^{l}$ denotes the space of functions v on ∂T s.t. $v_{\mid F} \in \mathbb{P}_{F}^{l}$ for all $F \in \mathcal{F}_{T}$
- $\mathbb{P}_{\mathcal{F}_{T}}^{l, c}:=\mathbb{P}_{\mathcal{F}_{T}}^{l} \cap C^{0}(\partial T)$
- $H^{1, c}(T):=H^{1}(T) \cap C^{0}(\bar{T})$

Outline

Formulation

Broken H^{1}－seminorm analysis

Non-conforming case: the HHO viewpoint

Local ingredients in each cell T of the mesh:

- space of DOF: $\underline{\mathrm{V}}_{T}^{k}:=\mathbb{P}_{T}^{k-1} \times\left(\underset{F \in \mathcal{F}_{T}}{X} \mathbb{P}_{F}^{k-1}\right)$
- - polynomial projector: $p_{T}^{k}: \underline{\mathrm{V}}_{T}^{k} \rightarrow \mathbb{P}_{T}^{k}$ s.t.

$$
\left\{\begin{array}{l}
\int_{T} \boldsymbol{\nabla} p_{T}^{k} \underline{\mathrm{v}}_{T} \cdot \boldsymbol{\nabla} \theta=-\int_{T} \mathrm{v}_{T} \Delta \theta+\sum_{F \in \mathcal{F}_{T}} \int_{F} \mathrm{v}_{F} \boldsymbol{\nabla} \theta \cdot \boldsymbol{n}_{T, F} \quad \forall \theta \in \mathbb{P}_{T}^{k} \\
\int_{T} p_{T}^{k} \underline{\mathrm{v}}_{T}=\int_{T} \mathrm{v}_{T}
\end{array}\right.
$$

Local bilinear/linear forms on $\underline{\mathrm{V}}_{T}^{k} \times \underline{\mathrm{V}}_{T}^{k} / \underline{\mathrm{V}}_{T}^{k}$:

$$
\mathrm{a}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right):=\int_{T} \nabla p_{T}^{k} \underline{\mathrm{u}}_{T} \cdot \nabla p_{T}^{k} \underline{\mathrm{v}}_{T}+\mathrm{s}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right), \quad \mathrm{l}_{T}\left(\underline{\mathrm{v}}_{T}\right):=\int_{T} f \mathrm{v}_{T}
$$

The global space of DOF $\underline{\mathrm{V}}_{h, 0}^{k}$ is obtained by gluing together the skeletal DOF between adjacent elements (and zeroing out the boundary DOF).
The global bilinear/linear forms $\mathrm{a}_{h} / \mathrm{l}_{h}$ are obtained by summing the local contributions.
The problem reads: find $\underline{\mathrm{u}}_{h} \in \underline{\mathrm{~V}}_{h, 0}^{k}$ s.t. $\mathrm{a}_{h}\left(\underline{\mathrm{u}}_{h}, \underline{\mathrm{v}}_{h}\right)=\mathrm{l}_{h}\left(\underline{\mathrm{v}}_{h}\right)$ for all $\underline{\mathrm{v}}_{h} \in \underline{\mathrm{~V}}_{h, 0}^{k}$.

Non-conforming case: the equivalent nc-VE viewpoint

- local virtual space: $V_{T}^{k}:=\left\{v \in H^{1}(T) \mid \Delta v \in \mathbb{P}_{T}^{k-1}, \boldsymbol{\nabla} v \cdot \boldsymbol{n}_{T} \in \mathbb{P}_{\mathcal{F}_{T}}^{k-1}\right\}$
- reduction: $\underline{\Sigma}_{T}^{k}: V_{T}^{k} \rightarrow \underline{\mathrm{~V}}_{T}^{k}$ s.t. $\underline{\Sigma}_{T}^{k} v:=\left(\pi_{T}^{k-1} v,\left(\pi_{F}^{k-1} v\right)_{F \in \mathcal{F}_{T}}\right)$
- $\underline{\underline{T}}_{T}^{k}$ is a bijection
- there holds $p_{T}^{k} \circ \underline{\Sigma}_{T}^{k}=\Pi_{T}^{k}$
- equivalent local bilinear form on $V_{T}^{k} \times V_{T}^{k}: a_{T}(u, v):=\mathrm{a}_{T}\left(\underline{\Sigma}_{T}^{k} u, \underline{\Sigma}_{T}^{k} v\right)$
- $a_{T}(u, v)=\int_{T} \boldsymbol{\nabla} \Pi_{T}^{k} u \cdot \nabla \Pi_{T}^{k} v+s_{T}(u, v)$ with $s_{T}(u, v):=\mathrm{s}_{T}\left(\underline{\Sigma}_{T}^{k} u, \underline{\Sigma}_{T}^{k} v\right)$
- equivalent local linear form on $V_{T}^{k}: l_{T}(v):=1_{T}\left(\underline{\underline{N}}_{T}^{k} v\right)=\int_{T} f \pi_{T}^{k-1} v$
- global virtual space: $V_{h, 0}^{k}:=\left\{v_{h} \in V_{\mathcal{T}_{h}}^{k}, \pi_{F}^{k-1}\left(\llbracket v_{h} \rrbracket_{F}\right) \equiv 0 \forall F \in \mathcal{F}_{h}\right\}$
- global forms a_{h} / l_{h} obtained by sum of local ones
- problem: find $u_{h} \in V_{h, 0}^{k}$ s.t. $a_{h}\left(u_{h}, v_{h}\right)=l_{h}\left(v_{h}\right)$ for all $v_{h} \in V_{h, 0}^{k}$
- there holds $\underline{\mathrm{u}}_{h}=\underline{\Sigma}_{h}^{k} u_{h}$

Conforming case: a DOF-based viewpoint (1/2)

Local ingredients in each cell T of the mesh:

- locally to each edge $F:=\left[\boldsymbol{x}_{\nu_{1}}, \boldsymbol{x}_{\nu_{2}}\right] \in \mathcal{F}_{T}$
- space of edge DOF: $\underline{\mathrm{V}}_{F}^{k}:=\mathbb{P}_{F}^{k-2} \times \mathbb{R}^{2}$
- ${ }^{-}$reconstruction operator: $r_{F}^{k}: \underline{\mathrm{V}}_{F}^{k} \rightarrow \mathbb{P}_{F}^{k}$ s.t.

$$
\left\{\begin{array}{l}
\int_{F}\left(r_{F}^{k} \underline{\mathrm{v}}_{F}\right)^{\prime} \zeta^{\prime}=-\int_{F} \mathrm{v}_{F} \zeta^{\prime \prime}+\left[\mathrm{v}_{\nu_{2}} \zeta^{\prime}\left(\boldsymbol{x}_{\nu_{2}}\right)-\mathrm{v}_{\nu_{1}} \zeta^{\prime}\left(\boldsymbol{x}_{\nu_{1}}\right)\right] \quad \forall \zeta \in \mathbb{P}_{F}^{k} \\
r_{F \underline{\mathrm{~V}}_{F}}^{k}\left(\boldsymbol{x}_{\nu_{1}}\right)=\mathrm{v}_{\nu_{1}}
\end{array}\right.
$$

- space of DOF: $\underline{\mathrm{V}}_{T}^{k}:=\mathbb{P}_{T}^{k-1} \times\left(\underset{F \in \mathcal{F}_{T}}{X} \mathbb{P}_{F}^{k-2} \times \mathbb{R}^{\operatorname{card}\left(\mathcal{V}_{T}\right)}\right)$
- D polynomial projector: $p_{T}^{k}: \underline{\mathrm{V}}_{T}^{k} \rightarrow \mathbb{P}_{T}^{k}$ s.t.

$$
\left\{\begin{array}{l}
\int_{T} \boldsymbol{\nabla} p_{T}^{k} \underline{\mathrm{v}}_{T} \cdot \boldsymbol{\nabla} \theta=-\int_{T} \mathrm{v}_{T} \Delta \theta+\sum_{F \in \mathcal{F}_{T}} \int_{F} r_{F}^{k} \underline{\mathrm{v}}_{F} \boldsymbol{\nabla} \theta \cdot \boldsymbol{n}_{T, F} \quad \forall \theta \in \mathbb{P}_{T}^{k} \\
\int_{T} p_{T}^{k} \underline{\mathrm{v}}_{T}=\int_{T} \mathrm{v}_{T}
\end{array}\right.
$$

Conforming case: a DOF-based viewpoint $(2 / 2)$

Local bilinear/linear forms on $\underline{\mathrm{V}}_{T}^{k} \times \underline{\mathrm{V}}_{T}^{k} / \underline{\mathrm{V}}_{T}^{k}$:

$$
\mathrm{a}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right):=\int_{T} \boldsymbol{\nabla} p_{T}^{k} \underline{\mathrm{u}}_{T} \cdot \boldsymbol{\nabla} p_{T}^{k} \underline{\mathrm{v}}_{T}+\mathrm{s}_{T}\left(\underline{\mathrm{u}}_{T}, \underline{\mathrm{v}}_{T}\right), \quad \mathrm{l}_{T}\left(\underline{\mathrm{v}}_{T}\right):=\int_{T} f \mathrm{v}_{T}
$$

The global space of DOF $\underline{\mathrm{V}}_{h, 0}^{k}$ is obtained by gluing together the skeletal DOF between adjacent elements (and zeroing out the boundary DOF).

The global bilinear/linear forms $\mathrm{a}_{h} / \mathrm{l}_{h}$ are obtained by summing the local contributions.

The problem reads: find $\underline{\mathrm{u}}_{h} \in \underline{\mathrm{~V}}_{h, 0}^{k}$ s.t. $\mathrm{a}_{h}\left(\underline{\mathrm{u}}_{h}, \underline{\mathrm{v}}_{h}\right)=\mathrm{l}_{h}\left(\underline{\mathrm{v}}_{h}\right)$ for all $\underline{\mathrm{v}}_{h} \in \underline{\mathrm{~V}}_{h, 0}^{k}$.

Conforming case: the equivalent c-VE viewpoint

- local virtual space: $V_{T}^{k}:=\left\{v \in H^{1}(T) \mid \Delta v \in \mathbb{P}_{T}^{k-1}, v_{\mid \partial T} \in \mathbb{P}_{\mathcal{F}_{T}}^{k, c}\right\}$
- reduction: $\underline{\Sigma}_{T}^{k}: V_{T}^{k} \rightarrow \underline{\mathrm{~V}}_{T}^{k}$ s.t. $\underline{\Sigma}_{T}^{k} v:=\left(\pi_{T}^{k-1} v,\left(\pi_{F}^{k-2} v\right)_{F \in \mathcal{F}_{T}},\left(v\left(\boldsymbol{x}_{\nu}\right)\right)_{\nu \in \mathcal{V}_{T}}\right)$
- $\underline{\underline{L}}_{T}^{k}$ is a bijection
- there holds $p_{T}^{k} \circ \Sigma_{T}^{k}=\Pi_{T}^{k}$
- equivalent local bilinear form on $V_{T}^{k} \times V_{T}^{k}: a_{T}(u, v):=\mathrm{a}_{T}\left(\underline{\Sigma}_{T}^{k} u, \underline{\Sigma}_{T}^{k} v\right)$
- $a_{T}(u, v)=\int_{T} \boldsymbol{\nabla} \Pi_{T}^{k} u \cdot \nabla \Pi_{T}^{k} v+s_{T}(u, v)$ with $s_{T}(u, v):=\mathrm{s}_{T}\left(\underline{\Sigma}_{T}^{k} u, \underline{\Sigma}_{T}^{k} v\right)$
- equivalent local linear form on $V_{T}^{k}: l_{T}(v):=l_{T}\left(\underline{\Sigma}_{T}^{k} v\right)=\int_{T} f \pi_{T}^{k-1} v$
- global virtual space: $V_{h, 0}^{k}:=\left\{v_{h} \in V_{T_{h}}^{k} \cap C^{0}(\bar{\Omega}), v_{h \mid \partial \Omega} \equiv 0\right\} \subset H_{0}^{1}(\Omega)$
- global forms a_{h} / l_{h} obtained by sum of local ones
- problem: find $u_{h} \in V_{h, 0}^{k}$ s.t. $a_{h}\left(u_{h}, v_{h}\right)=l_{h}\left(v_{h}\right)$ for all $v_{h} \in V_{h, 0}^{k}$
- there holds $\underline{\underline{u}}_{h}=\underline{\Sigma}_{h}^{k} u_{h}$

Outline

Formulation

Broken H^{1}－seminorm analysis

Non-conforming case

- we extend $\underline{\Sigma}_{T}^{k}$ to $H^{1}(T)$
- . we remark that $p_{T}^{k} \circ \underline{\Sigma}_{T}^{k}: H^{1}(T) \rightarrow \mathbb{P}_{T}^{k}$ is still equal to Π_{T}^{k}
- we lead the analysis by writing that

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-p_{h}^{k} \underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega} \leqslant\left\|\boldsymbol{\nabla}_{h}\left(u-\Pi_{h}^{k} u\right)\right\|_{0, \Omega}+\left\|\boldsymbol{\nabla}_{h} p_{h}^{k}\left(\underline{\Sigma}_{h}^{k} u-\underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega}
$$

- the first term in the RHS is handled using the H^{1} approximation properties of Π_{h}^{k}
- the second term is such that

$$
\left\|\boldsymbol{\nabla}_{h} p_{h}^{k}\left(\underline{\Sigma}_{h}^{k} u-\underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega} \leqslant \max _{\underline{\mathrm{v}}_{h} \in \underline{\mathrm{~V}}_{h, 0}^{k},\left|\underline{\underline{v}}_{h}\right|_{\mathrm{a}, h}=1}\left[\mathrm{a}_{h}\left(\underline{\Sigma}_{h}^{k} u, \underline{\mathrm{v}}_{h}\right)-\mathrm{l}_{h}\left(\underline{\mathrm{v}}_{h}\right)\right]
$$

- it is bounded by the consistency error of the scheme, and can be estimated using the H^{s} approximation properties of Π_{h}^{k}
- the analysis can be led without explicit reference to the virtual space

Conforming case $(1 / 3)$

- we extend $\underline{\Sigma}_{T}^{k}$ to $H^{1, c}(T)$
- ${ }^{-}$in that case, $\mathcal{P}_{T}^{k}:=p_{T}^{k} \circ \underline{\Sigma}_{T}^{k}: H^{1, c}(T) \rightarrow \mathbb{P}_{T}^{k}$ is not equal to Π_{T}^{k}
- actually, $\mathcal{P}_{T}^{k}=\Pi_{T}^{k} \circ \mathcal{I}_{T}^{k}$, where $\mathcal{I}_{T}^{k}: H^{1, c}(T) \rightarrow V_{T}^{k}$ is the canonical interpolator on the virtual space
- in standard analyses, one splits the error as

$$
\begin{gathered}
\left\|\nabla_{h}\left(u-p_{h}^{k} \underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega} \leqslant\left\|\boldsymbol{\nabla}_{h}\left(u-\Pi_{h}^{k} u\right)\right\|_{0, \Omega}+\left\|\boldsymbol{\nabla}_{h} \Pi_{h}^{k}\left(u-\mathcal{I}_{h}^{k} u\right)\right\|_{0, \Omega}+\left\|\boldsymbol{\nabla}_{h} p_{h}^{k}\left(\underline{\underline{\Sigma}}_{h}^{k} u-\underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega} \\
\leqslant\left\|\boldsymbol{\nabla}_{h}\left(u-\Pi_{h}^{k} u\right)\right\|_{0, \Omega}+\left\|\boldsymbol{\nabla}_{h}\left(u-\mathcal{I}_{h}^{k} u\right)\right\|_{0, \Omega}+\left\|\boldsymbol{\nabla}_{h} p_{h}^{k}\left(\underline{\Sigma}_{h}^{k} u-\underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega}
\end{gathered}
$$

- such a splitting makes the virtual space not that virtual...
- and requires the study of the approximation properties of \mathcal{I}_{h}^{k}
- in particular, one has to construct a bounded lifting of the traces of virtual functions, which is non-trivial on elements that are not star-shaped (case not covered in standard analyses)
- let us proceed differently and directly consider \mathcal{P}_{h}^{k}

Conforming case (2/3)

- - for any edge $\mathrm{C} \in \mathcal{F}_{T}$, let $\mathcal{I}_{F}^{k}:=r_{F}^{k} \circ \underline{\Sigma}_{F}^{k}: C^{0}(F) \rightarrow \mathbb{P}_{F}^{k}$
- for any $t \in C^{0}(F)$, there holds $\left(\mathcal{I}_{F}^{k} t\right)^{\prime}=\left(\Pi_{F}^{k} t\right)^{\prime}$ and $\mathcal{I}_{F}^{k} t\left(\boldsymbol{x}_{\nu_{1}}\right)=t\left(\boldsymbol{x}_{\nu_{1}}\right)$
- hence, $\left\|\mathcal{I}_{F}^{k} t\right\|_{\infty, F} \lesssim\|t\|_{\infty, F}$
- also, $\mathcal{I}_{F}^{k} p=p$ for any $p \in \mathbb{P}_{F}^{k}$
- there holds, for any $z \in H^{1, c}(T)$,

$$
\left\{\begin{array}{l}
\int_{T} \boldsymbol{\nabla} \mathcal{P}_{T}^{k} z \cdot \boldsymbol{\nabla} \theta=-\int_{T} z \Delta \theta+\sum_{F \in \mathcal{F}_{T}} \int_{F} \mathcal{I}_{F}^{k}\left(z_{\mid F}\right) \boldsymbol{\nabla} \theta \cdot \boldsymbol{n}_{T, F} \quad \forall \theta \in \mathbb{P}_{T}^{k} \\
\int_{T} \mathcal{P}_{T}^{k} z=\int_{T} z
\end{array}\right.
$$

- from this expression, one can easily prove that, for any $z \in H^{2}(T)$,

$$
\left\|\mathcal{P}_{T}^{k} z\right\|_{0, T} \lesssim\|z\|_{0, T}+h_{T}|z|_{1, T}+h_{T}^{2}|z|_{2, T}
$$

- combined to the fact that \mathcal{P}_{T}^{k} preserves polynomials, this yields H^{s} approximation properties for \mathcal{P}_{T}^{k}

Conforming case (3/3)

- with the introduction of \mathcal{P}_{T}^{k} and the study of its approximation properties, we can lead the error analysis just as in the non-conforming case:

$$
\left\|\boldsymbol{\nabla}_{h}\left(u-p_{h}^{k} \underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega} \leqslant\left\|\boldsymbol{\nabla}_{h}\left(u-\mathcal{P}_{h}^{k} u\right)\right\|_{0, \Omega}+\left\|\boldsymbol{\nabla}_{h} p_{h}^{k}\left(\underline{\Sigma}_{h}^{k} u-\underline{\mathrm{u}}_{h}\right)\right\|_{0, \Omega}
$$

- the second term in the RHS is here again bounded by the consistency error of the scheme (not that even in the conforming case, the output of the scheme is a nonconforming function), that can be estimated using the H^{s} approximation properties of \mathcal{P}_{h}^{k}
- last question: why that in the non-conforming case $\mathcal{P}_{T}^{k}=\Pi_{T}^{k}$? This is because $\mathcal{I}_{T}^{k}=\Pi_{V}$ with Π_{V} the elliptic projector onto V_{T}^{k} in that case!

Comments and perspectives

- reference for this talk: [SL, preprint hal-01902962]
- no obstruction to the extension to 3D VE
- unified L^{2}-norm error analysis?
- what about enhanced VE, or serendipity VE?

THANK YOU FOR YOUR ATTENTION (ESPECIALLY A $1^{\text {st }}$ OF MAY)

