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Abstract Two different implementation techniques of wall functions for cell-vertex

based numerical methods are described and evaluated. The underlying wall model is

based on the classical theory of the turbulent boundary layer. The present work focuses

on the integration of this wall-model in a cell-vertex solver for large eddy simulations

and its implications when applied to complex geometries, in particular domains with

sudden expansions (more generally in presence of sharp edges). At corner nodes, the

conjugation of law of the wall models using slip velocities on walls and of the cell-vertex

approach leads to difficulties. Therefore, an alternative implementation of wall func-

tions is introduced, which uses a no-slip condition at the wall. Both implementation

methods are compared in a turbulent periodic channel flow, representing a typical val-

idation case. The case of an injector for aero-engines is presented as an example for an

industrial-scale application with a complex geometry.
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1 Introduction

A correct treatment of walls in Large Eddy Simulations (LES) of industrial-scale com-

plex geometries remains a challenging task. Despite growing computing resources,

mainly in the form of massively parallel machines, the resolution of boundary layer flows

remains out of reach for routine application [19], making wall modeling a crucial ingre-

dient of practical LES [13]. Alongside hybrid approaches of LES and RANS (Reynolds

Averged Navier-Stokes) like Detached Eddy Simulation (DES [28, 27]), wall functions

[4, 25] are often the method of choice for large LES cases (e.g. combustion chambers

[24]). Here, wall functions avoid to resolve the turbulent eddies that are proportional

in size to the wall-normal distance (as opposed to wall-resolved LES), as well as the

strongest gradients in the viscous sublayer (which is still necessary when resolving

RANS equations near the wall, as in DES approaches). The gain in terms of grid res-

olution is considerable [19], while very satisfying precision can be obtained even for

complex flows [13].

The use of wall functions in LES was first published by Deardorff [4] in 1970 for

a channel flow at infinite Reynolds number. This method was extended by Schumann

[25] for a finite Reynolds number channel flow, but the method required the average

wall shear stress to be known a priori. Grötzbach [6] modified Schumann’s method for

arbitrary channel flows but the wall shear stress was still evaluated for quantities aver-

aged over the entire channel surface. Today’s methods evaluate wall functions locally

at each grid cell, following the approaches used by Mason and Callen [12] or Piomelli

et al. [20]. A more detailed description of early applications of wall functions can be

found in [20].

Wall-modeling for LES is often critically viewed because it combines models that

are derived from ensemble-averaged equations for a turbulent boundary layer with an

approach that is based on a spatial filtering argument. A common argument [19] is that,

provided the first near-wall grid cell is large enough, it contains a sufficient number of

turbulent structures (with typically faster turnover times than the outer flow) to justify

the application of a wall model based on the ensemble-average of these structures in

an unsteady LES. As Nicoud et al. [16] point out, this leads to a conflict of objectives

in the mesh region directly above the first off-wall grid point. Here, the LES requires

relatively isotropic grid cells that diminish in size towards the wall, whereas the wall

model demands large grid cells for the statistical argument to hold. A typical mesh

is therefore a compromise and generally leads to an under-resolved intermediate zone

resulting in a loss of accuracy.

Building on the basic principle of the pioneering work, modern studies on wall func-

tion approaches mainly focus on the underlying wall-model. The goal is to take more

physical phenomena into account, such as heat fluxes [6] or chemical reactions [3] to

name some examples. This includes efforts to extend the validity of the wall-model

to configurations including streamwise pressure gradients, wall-curvature or separated

flows [8, 2], in which standard equilibrium formulations can be expected to perform

poorly.

Another relevant subject is the interaction of the wall-model with the numerical

scheme. While the pioneering papers on wall functions provide details on the actual
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implementation method (an example is Schumann [25]), contemporary studies tend

to give only superficial information on how the wall-model considered is implemented

into a flow solver. This becomes even more critical for numerical methods that have

a different structure than those used in the early studies [4, 25, 6]. In particular for

less-widespread methods like cell-vertex based schemes, we are not aware of any study

discussing implementation methods and their performance. Arguably, this lack of in-

formation is related to the use of the periodic channel flow as a standard test case

for publications on wall-modeling, where the implementation method is indeed of lit-

tle influence. In this paper, it will be shown that there are several ways to couple

wall functions with a numerical scheme and that these differences can affect the results

of a LES. Configurations like the flow over a corner reveal that classical implementation

methods that perform soundly in the turbulent channel can be problematic in realistic

applications. The study is limited to cell-vertex-type solvers.

The intent is to provide a guideline for implementation techniques aimed at the

application on realistic configurations that often have complex geometries. The paper

covers all elements that are relevant during the implementation process: in the first part,

an example for a standard wall-model is presented, followed by a description of the cell-

vertex formalism. In the next part, two methods methods to implement wall functions

are detailed, together with their respective technical advantages and drawbacks. In the

last part, both methods are evaluated in several test cases. First, they are compared

in a turbulent channel flow, following a standard validation procedure. Then, the flow

over a sudden expansion is considered as an example for a situation where one of the

formulation encounters problems. Finally, the potential of a wall-modeling approach

in realistic applications is demonstrated at the example of a premixing swirler for

aero-engines.

2 Pre-requisites: wall-model and cell-vertex approach

2.1 Wall-model

Wall modeling in itself is not the main interest of the present work. Therefore, a very

basic model using classical boundary layer theory is used and shall be presented briefly

in the following. It should be noted that the implementation strategies presented in

this paper can in principle be combined with other, more sophisticated wall law formu-

lations. Furthermore, although turbulent heat transfer is an important part in a wall

modeling approach, it shall be excluded in this paper, which will focus on momentum

conservation.

The fully developed turbulent boundary layer flow over an infinite flat plate is consid-

ered. This implies that, in a Reynolds-averaged form, the problem is steady (∂/∂t = 0)

and one-dimensional (∂/∂x = 0, ∂/∂z = 0) with the wall-distance y being the only

relevant spatial direction and the streamwise velocity u the sole non-zero mean velocity

component. Here, Reynolds-averaged variables are denoted with the bar-operator ( ).

The density ρ and the molecular dynamic viscosity µ are considered constant in this

context. An additional assumption is the absence of chemical reactions. The momentum
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equation of the time-averaged flow then reduces to:

∂ p

∂x
=
∂ τxy
∂y

− ∂

∂y
ρ u′v′| {z }
−τt

(1)

Where τxy = µ ∂u/∂y is the viscous stress tensor and τt the Reynolds-stress tensor,

which can be modeled using the Boussinesq assumption:

τt = µt
∂ u

∂y
(2)

The case of a flat plate is characterized by the absence of a longitudinal pressure

gradient ∂ p/∂x = 0. The momentum equation written in terms of µ and µt then takes

the following form:

∂

∂y

„
∂ u

∂y
(µ+ µt)

«
= 0 (3)

This equation states that the total level of friction, τtot = τxy + τ t is constant

throughout the boundary layer. It implies that the total friction must be equal to

the wall-friction, which corresponds to the viscous wall shear stress τw = µ ∂u/∂y|w,

since the turbulent stress vanishes at the wall due to the absence of any fluctuations.

The subscript ‘w’ stands for variables evaluated at the wall. Integration of eq. 3 using

τtot = τw yields:

∂ u

∂y
(µ+ µt) = τw (4)

In boundary layer theory, it is convenient to introduce wall units, based on the

friction velocity uτ =
p
τw/ρ and defined as:

y+ =
ρuτy

µ
u+ =

u

uτ
(5)

In the inertial layer that is characterized by µ+
t >> µ+, the Prandtl mixing length

model [23] provides a closure for the turbulent viscosity. Integration of eq. 4 then yields

the well-known logarithmic law:

u+ =
1

k
ln(y+) + C (6)

where k is the Von Kármán constant [31]. The values commonly retained for the

model constants are k = 0.41 and C = 5.5 for confined flows (C = 5.2 is rather

preferred for external flows).

2.2 The cell-vertex approach

The cell-vertex approach is one of the common discretization methods for finite volume

schemes, the very popular alternative being the cell-centered formulation [7, 30]. While

in the latter case, flow variables are stored at the center of the cells, they are stored at

the grid nodes in the former.

The key difference is the computation of fluxes through cell boundaries. For cell-

centered schemes, the flux through a cell boundary is based on the reconstruction



5

from values at the centers of the neighbouring cells. In a cell-vertex scheme, the flux is

obtained from the values at the nodes that delimit the cell boundary. The “vertices”

are to be understood as points that coincide with the grid nodes but are associated to

a grid cell. This means that one grid node can coincide with several vertices, one for

each of the grid cells clustered around it.

Written in flux variables, the Navier-Stokes equations take the compact form

∂U

∂t
+ ~5 · ~F = S (7)

where U is the vector of the conservative flow variables, ~F the flux tensor of U and

S the vector of source terms. The flux tensor can be decomposed in a convective part
~FC and a viscous part ~FV :

~F = ~FC(U) + ~FV (U, ~5U) (8)

The first important aspect of the cell-vertex method is the definition of metrics, in

particular of the normal vectors. Here, Sf denotes the normal vector of a given element

face (or edge in 2D), defined as pointing towards the exterior. Its length is weighted by

the area of the element face (resp. edge length). The normal vector ~Sk at the vertex k

of an element (pointing inward) is obtained by

~Sk =
X
f3k
− d

nfv

~Sf (9)

where d is the number of spatial dimensions and nfv the number of vertices of face f .

Figure 1 illustrates the process of calculating ~Sk1 , the normal at the vertex k = k1 for

a triangular and a quadrilateral element. It has to be noted that this method differs

for domain boundaries as explained for diffusive fluxes at the end of this section.

Based on this element description, eq. 7 can be written in a semi-discretized form

at node j:

dUj

dt
= −~5 · ~FC

˛̨̨
j
− ~5 · ~FV

˛̨̨
j

+ S
˛̨̨
j

(10)

To obtain the divergence of the convective fluxes ~5 · ~FC
˛̨̨
j

the element residual

Re is calculated summing flux values located at all vertices k of the element e (the

ensemble of these vertices being Ke):

Re = − 1

dVe

X
k∈Ke

~FCk · ~Sk (11)

Here, Ve is the element volume which is defined as (d being the number of spatial

dimensions):

Ve = − 1

d2

X
k∈Ke

~xk · ~Sk (12)

The nodal value of the flux divergence is then obtained by summing the weighted

residuals VeRe of all cells having a vertex coinciding with the node j (the ensemble of

these cells being noted Dj):



6

1

2

3

!Sf1
!Sf3

!Sf2
Node j =


3Vertex k =

Element e


!Sk1

!Sk1 = −(!Sf1 + !Sf4)

!Sf4

!Sf1

!Sf2

!Sf3

1

2

34

Fig. 1 Schematic of the face- (f) and vertex- (k) normals of a triangular and a quadrilateral
element.

~5 · ~FC
˛̨̨
j

=
1

dVj

X
e∈Dj

Dj,eVeRe (13)

This summation, called scatter -operation, is schematized in Fig. 2. The nodal vol-

ume Vj =
P
e∈Dj

Ve/n
e
v is called dual cell as it acts as a control volume during the

residual scatter. Here, nev is the number of vertices of an element e. The residual dis-

tribution matrix Dj,e is a central part of the numerical scheme that is built upon the

cell-vertex formalism and shall not be detailed here. Note that for the scheme to be

conservative, the sum over all distribution matrices at the vertices of an element must

be equal to unity [29]: X
k∈Ke

Dk,e = I (14)

e


Primary Cell
 Dual Cell


j


Fig. 2 Schematic of the cell-vertex formalism. The dotted line delimits an element e (primary
cell), the dashed line the control volume of the node j (dual cell), arrows symbolize the scatter
operation of an element residual to the surrounding nodes (eq. 13).
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For the divergence of the viscous terms ~5 · ~FV , the method applied differs from

the one used for the convective fluxes. First, the gradient of the conservative variables“
~5U

”
e

is calculated for the element e. Using this gradient and the nodal value Uj

allows to calculate the viscous flux tensor from element and node values:

~FVj,e = ~FV
“
~5U

”
e

(15)

The divergence is then obtained by summing all contributions in the dual cell

associated to the node j:

~5 · ~FV
˛̨̨
j

=
1

dVj

X
e∈Dj

~FVj,e · ~Sj,e (16)

The normal vectors ~Sj,e used in this operation are located at the center of a given

element e and associated to the node j. Figure 3 schematizes the location and direction

of these normals. It can be shown that they are equal to the vertex normals ~Sk, where

the vertex k coincides with the node j considered.

Fig. 3 Sketch of the normals ~Sj,e used for the diffusion scheme.

Fig. 4 Sketch of the face-based normals ~Sffwe appearing at the application of Neumann bound-
ary conditions on elements with boundary faces, noted we.

Applying Neumann boundary conditions in a finite volume framework corresponds

to imposing fluxes through the domain boundary. To do this efficiently, the diffusive

flux divergence operation in eq. 15 is modified for nodes located on wall boundaries,
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noted jw (see Fig. 4): the prediction of the diffusion scheme is corrected by adding

fluxes given by the boundary condition, ~FBCjw,we.

~5 · ~FV
˛̨̨
jw

=
1

dVjw

X
e∈Djw

~FVjw,e · ~Sjw,e| {z }
Diffusion scheme prediction

(17)

+
X

we∈Djw

~FBCjw,we · ~S
ff
we| {z }

Boundary correction

Instead of ~Sj,e, the correction term uses face-based normal vectors, noted ~Sffwe.

They are defined as the normals of an element face located on the boundary, as shown

in Fig. 4 for the boundary elements (denoted by we). Equation 17 clearly shows that

Neumann boundary conditions only have a direct effect on the grid nodes located at

the domain boundary (jw). This also means that Dirichlet boundary conditions cannot

be applied simultaneously, because they would affect the same nodes (jw) and thus

effectively overwrite the flux corrections. It should be noted that in a cell-centered

framework, this limitation does not exist, as fluxes do not appear at the same location

as the flow variables.

2.3 The use of wall functions in LES solvers

In sections 2.1 and 2.2, the wall model and the numerical framework have been de-

scribed. The missing ingredient for the implementation of wall laws is how numerics

and wall model are combined in a LES context. For the sake of clarity, the following

paragraphs are limited to a one-dimensional view (in wall-normal direction), analogous

to turbulent boundary layer theory. The shear balance in the element adjacent to the

wall (noted ‘we’) takes the form:

τxy

˛̨̨
we

=
d û

dy

˛̨̨̨
˛
we

(µ+ µsgs|we) =
û2 − û1

∆y
(µ+ µsgs|we) (18)

where u1 and u2 are the velocities at directly on the wall and on the first grid point

respectively, ‘ ’̂ is the LES filter operator, ∆y is the wall-distance of the first point and

µsgs the subgrid-scale viscosity. In cases of low near-wall grid resolution, this equation

cannot yield correct results: the subgrid-scale viscosity is given by a LES model that is

designed to account for stresses in the unresolved scales of turbulence. Near the wall,

however, typical models will fail to predict the wall shear stress correctly, as they are not

based on physical arguments related to under-resolved, wall-bounded flows. Instead,

their behaviour is known to be often unphysical in under-resolved boundary-layers or

generally in zones of pure shear [15], for instance in the case of the Smagorinsky model

[26].

The central idea of wall functions consists in locally using boundary layer theory (of

the type layed out in section 2.1) in lieu of the diffusion scheme to restore the correct

balance in eq. 18. In the element adjacent to the wall, the predicted shear stress τxy|we
is corrected by a value obtained from a wall model, τmodelw .
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τxy

˛̨̨
we

= τmodelw (19)

In the present study, τmodelw is obtained from the logarithmic law (eq. 6). Written

in flow variables, it reveals its practical property of relating the wall shear stress to

any point in the velocity profile located inside the inertial layer:

û =
1

k

r
τw
ρ
ln

 
ρy
p
τw/ρ

µ

!
+ C (20)

In practice, this equation can be resolved numerically or interpolated from lookup

tables to provide the wall shear stress as a function of the velocity û2 at the first

off-wall point with the wall distance ∆y (assuming ρwe and µwe to be constant):

τw = f(∆y, û2) (21)

Note that this approach involves Reynolds-averaged variables (noted with the bar

operator ‘ − ’ ) as filtered variables of the LES. In a wall function approach, it is

generally assumed that the near-wall control volume contains a sufficient number of

turbulent structures for a Reynolds averaged view to be justified, even in an instanta-

neous flow field [19]. RANS quantities in the first cell can therefore be combined with

instantaneous variables of the LES.

The following sections describe in detail different options of applying eq. 20 to the

numerical scheme as a wall boundary condition.

3 Implementation methods

3.1 Implementation as a wall-boundary condition

The first method to be discussed is considered the standard for cell-vertex solvers

because it is straightforward to implement and is therefore widely used in literature

[16, 24, 17, 11, 13]. It starts from the idea that the wall-function should be applied

through a conventional boundary condition, i.e. the locations where values are imposed

should be limited to the nodes on the domain boundary (see eq. 17). In view of the

cell-vertex formalism, this means that the physically motivated no-slip condition at the

wall nodes has to be replaced by a no-transpiration condition if a wall-normal shear

stress is to be prescribed there.

In practice, the procedure is as follows: the scheme calculates a momentum flux (the

wall-normal component being τxy) at the cell-center we. These predictions are scat-

tered to all surrounding nodes. The values of τxy that are sent to a wall-node jw

are then replaced by the value given by the wall-function τw (eq. 17, illustrated in

Fig. 5). In an arbitrary 3D geometry, this correction is applied selectively on the wall-

normal component of the momentum flux, the direction of shear being aligned with

the wall-parallel velocity vector. The wall-normal velocity is set to zero (u1,⊥ = 0) as a

Dirichlet-type boundary condition (classical Dirichlet or the NSCBC (for Navier Stokes

Characteristic Boundary Conditions) [22] equivalent). As the no-slip condition on the

wall-parallel velocity had to be removed, this method generally leads to a slip-velocity

appearing on the wall, as illustrated in Fig. 6. Most studies that provide information
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τw τw

τxy τxy

we

Fig. 5 Application of the wall functions in the slip-wall formulation. Schematic of the scat-
ter operation of the momentum flux contributions. Black arrows correspond to contributions
calculated by the diffusion scheme, grey arrows to contributions corrected by the wall function.

on implementation methods justify this slip velocity as a point on the velocity profile

at the wall-distance δ. An example is the study of Panara et al. [17] (Fig. 7 a) where it

is assumed that the slip velocity is 0 < u1 < u2, which means that there is a point on

the theoretical profile with u(y = δ) = u1. It is further assumed that δ can be neglected

and that therefore u1 is a valid approximation of the theoretical profile. Another ex-

ample is Mohammadi et al. [13], who assume that the computational domain ends at a

wall-distance δ that is large enough to reach into the log-layer (see Fig. 7 b). The slip

velocity is then equivalent to the velocity in the log-layer u2.

Δy 

y = y1 

y = y2 

u1  

u2 

d u

dy

∣∣∣∣
we

Fig. 6 Overview of the most important variables appearing in the formulation with a slip
velocity.

3.2 Implementation without slip velocity at the wall

In certain cases, it can be preferrable to avoid a slip-velocity at the wall as will be

discussed in detail in section 3.4. The central requirement for an alternative imple-

mentation method is therefore that the physically motivated no-slip condition can be

imposed at the wall nodes. By doing so, however, one makes it impossible to apply the

corrected wall shear stress at the same location. This is because, in a given time step,
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a)

y = y1

y = y2

u1 

u2



b)

y = y2
u2

y
2

Fig. 7 Alternative interpretations of the slip-wall function approach.

the corrected contributions of the diffusion scheme τwe exclusively affect the nodes

they are directed to. Neighbouring nodes are only influenced indirectly in subsequent

time steps. A Dirichlet-condition, imposed after the computation of the diffusive terms

will therefore cancel out any effect of the numerical scheme on these nodes. The logical

alternative is to apply the wall function away from the wall, at the upper nodes of

the first cell, as shown in Fig. 8. This choice is in fact consistent with the underlying

boundary layer theory, as eq. 3 clearly shows that the shear is constant throughout the

first wall cell (equal to τw). The fact that the gradient inside the wall element (Fig. 9)

is unphysically high has no consequence in this case, because the diffusion scheme is

inactive in this cell, its predictions being replaced by the wall function and the no-slip

condition.

u1 = 0 u1 = 0

Fig. 8 Application of the wall functions in the no-slip formulation. Schematic of the scat-
ter operation of the momentum flux contributions. Grey arrows symbolize the contributions
corrected by the wall function.

An overview of the key differences between both implementation methods can be

obtained from table 1, where a simplified sequence of events during a numerical time

step is presented.
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Δy 

y = y1 

y = y2 

u1 = 0 

u2 

d u

dy

∣∣∣∣
we

Fig. 9 Overview of the most important variables appearing in the no-slip formulation.

No-slip wall law Slip wall law

Initial field of conservative variables U

Calculation of the flux tensor ~F

Neumann boundary conditions

τw at y2 (1st off-wall node) τw at y1 (wall)

Advancement in time: ∂U/∂t+ ~5 · ~F = S

New field of conservative variables U

Correction of conservative variables U
Dirichlet boundary conditions

u1 = 0 u1,⊥ = 0

Final field of conservative variables U

Table 1 Comparative overview of the no-slip and slip wall function implementations. Simpli-
fied sequence of events during one computational time step.

3.3 Alternative implementation methods in literature

The list of implementation methods discussed up to this point is not exhaustive - meth-

ods may vary in detail but there are also entirely different strategies. One example is

the work of Breuer et al. [2] who use the subgrid-scale viscosity to apply the informa-

tion given by the logarithmic law (eq. 20) into a solver. In principle, any value in the

near-wall shear balance (eq. 18) can be corrected to impose the wall-shear stress.

In cell-vertex codes, however, the SGS-viscosity is subject to gather and scatter oper-

ations as it is calculated at the cell center and then stored at the nodes. This means

that some smoothing is always introduced and it may be difficult (depending on how

a code is structured) to impose exact values at a precise location in the near-wall cell.

It is therefore often preferred to correct the wall-normal momentum fluxes as they

correspond directly to the wall-normal stresses.
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In the following, the discussion will be limited to two implementation methods: the

first is the standard procedure as illustrated in fig. 6 and will be referred to as the slip-

wall formulation. The second is the alternative method based on a no-slip condition

that will be referred to as the no-slip formulation.

3.4 Critique of the implementation methods

Although there are various ways to justify the slip velocity that cannot be avoided if the

wall-shear stress is applied as a boundary condition, the practical use of the slip-wall

formulation should proceed with caution. For the variant shown in Fig. 7 a), the slip

velocity must satisfy 0 < u1 < u2 in order to have a sensible physical interpretation.

The main limitation is that the magnitude of the slip velocity u1 depends predomi-

nantly on the level of subgrid-scale viscosity in the wall element. This becomes clear

when rearranging eq. 18 at the wall-element with τw obtained from the wall function:

d û

dy

˛̨̨̨
˛
we

=
τw(û2, y2)

µ+ µsgs|we
(22)

Assuming that the velocity at the first node above the wall behaves ideally and thus

coincides with the log-law for a given τw and the molecular viscosity µ is constant,

this equation yields a gradient that will establish between y1 and y2, which depends

only on µsgs (see Fig. 6 for an illustration). This relation reveals that the method is

well-suited for the use in conjunction with the Smagorinsky model, for which µsgs does

not vanish near the wall, leading to raised levels of subgrid-scale viscosity and thus to a

moderate gradient. In contrast, when used with turbulence models that yield near-zero

subgrid-scale velocity at the wall (e.g. the WALE model [15]), this gradient will be very

steep and could potentially lead to reversed slip-velocities (u1 < 0), causing spurious

oscillations.

To provide a certain estimate for the domain of validity of the slip-wall formula-

tion, a relation for the magnitude of u1 is developed at the example of the Smagorinsky

model. In a time-averaged (〈〉-operator), one-dimensional form (assuming a linear dis-

cretization of the velocity profile), the expression for µsgs|we reads:

〈µsgs|we〉 = 〈ρ〉 (Cs∆)2
(〈û2〉 − 〈û1〉)

y2
(23)

Here, Cs is the Smagorinsky constant and ∆ a length scale for the cell size. The

slip-velocity can be estimated as:

〈û1〉 = 〈û2〉 − y2
〈τw〉

〈µ〉+ 〈µsgs|we〉
(24)

Combining equations 23 and 24 finally allows to obtain the average slip velocity

〈û1〉 explicitely:

〈û1〉 = 〈û2〉 −
y2

2 〈ρ〉(Cs∆)2

„
−〈µ〉+

q
〈µ〉2 + 4〈ρ〉(Cs∆)2〈τw〉

«
(25)

An evaluation of eq. 25 over a wide range of parameters shows that u1 takes values

that are roughly contained in an interval of u2 > u1 > 0.75u2, indicating that for most
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applications using the Smagorinsky model, the slip-velocity is indeed positive (and thus

physical in the sense of Fig. 7 a)).

Any procedure that allows a slip-velicity at the wall will lead to a difficulty at corner

points. Unlike the Neumann boundary conditions that are applied on the boundary

face (see equation 17), the Dirichlet conditions of zero wall-normal velocity are applied

directly on the conservative variables at the nodes. At the node coinciding with the

corner, the definition of the wall-normal vectors is ambiguous (see Fig. 10). Following

the standard procedure of calculating the nodal wall normal ~Sbj as the average of the

surrounding boundary-face normals ~Sffe , the resulting normal at the corner point ~Sbj,c
(and consequently also the velocity vector) would take an unphysical angle of ≈ 45

degrees. Therefore, at the corner point only, the normal is either chosen equal to the

one of the upstream boundary face or set to zero (removing all constraints on the

direction of the velocity). Both methods lead to a nodal velocity vector that is aligned

with the upstream wall. As a result, however, mass conservation will no longer be

respected because of a flux through the boundary face situated at the downstream wall,

as illustrated in Fig. 11.1. To correct that, a (face-based) Neumann boundary condition

of zero mass flux can be applied instead of the Dirichlet condition of zero normal

velocity. This ensures mass conservation but the correction of the face downstream of

the corner effectively reduces the slip-velocity at the corner, leading to perturbations

of the flow-field in this area. As the wall-element in a mesh adapted for wall functions

is of a relatively large size in order to reach into the inertial layer, these perturbations

can take magnitudes that lead to unphysical flow fields or numerical instabilities (see

section 4.2).

!uc !uc !uc

!Sff
we

Standardmetric

!Sb
j !Sb

j,c

!Sb
j

!Sb
j

!Sb
j

!Sb
j

!Sb
j,c = !Sff

we
!Sb

j,c = !0

!Sb
j,c

Fig. 10 Schematic illustration of different definitions of the nodal normal vector ~Sj,c at the
corner node. Generic configuration of a flow over a corner.

Note that these difficulties are limited to the cell-vertex approach, as illustrated in

Fig. 11: for a cell-centered formulation (Fig. 11.3), the wall-normal vector ambiguities

and problems of mass-conservation do not appear due to the location of the velocity

vectors at the cell-center. In a cell-vertex formalism, these problems can easily be

overcome if a no-slip condition is imposed at the wall nodes as shown in Fig. 11.2. The

following sections are therefore dedicated to wall functions with a no-slip condition at

the wall.

The no-slip formulation removes all difficulties related to domains with corners.

However, it adds some difficulty to the implementation for certain near-wall element
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1.  Cell-vertex  
 slip wall law 

2.  Cell-vertex 
 no-slip wall law 

3.  Cell-centered 

Mass flux through wall 

y1 

y2 

Fig. 11 Schematic of mass fluxes in vicinity of a corner (’→’ symbolizes a momentum vec-
tor), comparing a cell-vertex scheme with/without slip velocity to the cell-centered approach.
Generic configuration of a flow over a corner.

types. The slip-wall formulation can be deployed on any type of mesh, as it is an

approach limited to the boundary of the domain. The no-slip approach, as it acts

inside the fluid volume, is more sensitive to grid topology. The key example is a pure

tetraedra mesh (Fig. 12 a), where the algorithms to establish the connectivity to the

off-wall vertices (where the wall function would be applied) are complex and costly.

Furthermore, the irregular wall-distances (for example the variation marked ∆y23 in

Fig. 12 a) have led to oscillatory behaviour in the tests that were conducted. The no-slip

approach is therefore better suited for all sorts of prismatic elements (typically prisms

and hexaedra, see Fig. 12 b) that ensure uniform wall-distance and straightforward

access (in terms of connectivity) to the ‘upper’ element vertices. The capability of

treating hybrid, unstructured meshes is therefore considered as a prerequisite for the

use of no-slip wall functions in complex geometries. This is not a very strong limitation

as the use of prismatic elements near the wall can generally be expected to lead to

better results than a purely tetrahedral mesh.

1
2

3

4

y ∆y2 3

1 2 3

y

a) b)

Fig. 12 Implementation in a triangular (tetrahedral in 3D) mesh (a) and a hybrid mesh (b).
The vertices represented as closed symbols are the locations where flux corrections are applied
in the no-slip formulation.
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# Reb Reτ y+ grid nodes (nx,ny ,nz) 2 δ [m]

1 20 000 ≈ 322 ≈ 30 29 x 21 x 29 1.5 10−3

2 40 000 ≈ 594 ≈ 50 33 x 25 x 33 3.0 10−3

3 80 000 ≈ 1100 ≈ 100 25 x 23 x 25 6.0 10−3

4 200 000 ≈ 2524 ≈ 100 33 x 51 x 33 1.5 10−2

5 400 000 ≈ 4798 ≈ 150 33 x 61 x 33 3.0 10−2

6 2 000 0000 ≈ 20816 ≈ 1000 41 x 41 x 41 1.5 10−1

Table 2 Summary of the turbulent periodic channel cases.

4 Applications and Results

In the following, three application cases are presented. The first is a turbulent channel

flow that serves as a basic validation case. The second is the flow over a sudden expan-

sion that illustrates the implications of the corner problem described in 3.4. The third

is a an aeronautical injector as an example for a complex, industrial-scale geometry.

4.1 Turbulent channel flow

A Large Eddy Simulation of a periodic channel flow is the most simple configuration

with solid boundaries for which reference data in the form of analytical solutions as well

as data from direct simulations are available. It should be noted that the purpose of this

section is to present a typical procedure that is used to validate a new implementation,

and to provide the reader with a general idea of the results that can be achieved

with a standard wall-modeling approach and highlight certain effects of the different

implementation methods. Due to the coarse near-wall grid resolution that is typical for

any wall function approach, results are always affected by several sources of error that

are not or only indirectly related to the wall treatment. A detailed assessment of the

accuracy of wall-function approaches is therefore not in the scope of this work.

The configuration consists of a doubly periodic box (in x- and z direction) with walls

on the top and bottom surfaces (in y-direction). Six different cases are considered (a

summary is given in table 2), distinguished by different Reynolds numbers, such as

Reb (based on bulk properties, subscript ‘b’) and the friction Reynolds number Reτ ,

defined as:

Reb =
ρDh ub
µ

Reτ =
ρ δ uτ
µ

(26)

Where Dh = 4δ is the hydraulic diameter and δ the channel half-width. The box

size varies between Lx+ = 1, 290 ; Ly+ = 643 ; Lz+ = 643 (for case #1) and

Lx+ = 80, 000 ; Ly+ = 40, 000 ; Lz+ = 40, 000 (for case #6). The mesh in all cases

is of uniform, cartesian type with grid resolutions adapted to the respective values of

Reb. The grid cells are approximately isotropic in spanwise direction, with ∆z ≈ ∆y

(depending on the case) and slightly anisotropic (∆x ≈ 2∆y) in streamwise direction.

All results are obtained using the second-order accurate Lax-Wendroff scheme [14] and

a standard Smagorinsky formulation [26] for the subgrid-scale turbulent viscosity.

Statistics are presented in Fig.s 13 and 14 for a single, typical case (# 4) at

Reb = 200 000, which corresponds to a friction Reynolds number of Reτ ≈ 2524.
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Figure 13 shows profiles of dimensionless longitudinal velocity u+. There is a good

agreement between the logarithmic law, DNS data of Hoyas and Jiménez [9] and both

LES simulation results near the first grid point, showing that the most direct effect that

wall functions have on the flow is correctly reproduced. In the region of the first few

grid points towards the center of the channel, profiles from both wall functions start

to deviate from the logarithmic law, an effect that is slightly stronger in the no-slip

formulation. This is due to various sources of error related to the numerical sheme or

the turbulence model. Another well-known effect is related to under-resolved and thus

unphysical turbulent mechanisms near the wall, which are a result of the inherent lack

of grid resolution that is described, for instance, by Nicoud et al. [16] (in the context

of a wall function approach) and studied in a more general context by Piomelli et al.

[21]. In this intermediate layer, the subgrid-scale viscosity is given by a LES model and

therefore takes values that are lower than a turbulence model in a RANS approach

would predict, leaving a share of the stress balance to be accounted for by resolved

Reynolds stresses. On the other hand, the grid resolution in these zones is determined

by the wall function approach and therefore too coarse to resolve turbulent structures

at scales small enough for a LES to result in correct Reynolds stresses. A study of the

resolution requirements in LES of shear flows can be found in the work of Baggett et

al. [1]. Differences between both formulations can be observed on the velocity fluctua-

1 10 100 1000
0

5

10

15

20

25

30

linear law

standard logarithmic law (κ = 0.41, C = 5.5)

DNS (Hoyas & Jimenez, Reτ = 2000)

slip formulation

no-slip formulation

y+

u+

Fig. 13 Turbulent channel, dimensionless velocity profiles for case #4 (Reτ ≈ 2524). Com-
parison between the analytical profile, DNS data [9] and LES results, obtained with a second-
order Lax-Wendroff scheme, using wall functions in slip- and no-slip formulation. Case of
Reb = 200000.

tion profiles shown in Fig. 14 where the peak of the no-slip wall functions is displaced

by approximately one point away from the wall with respect to the one of the slip-

wall function. This indicates that for the slip-formulation the under-resolved near-wall

vortical structures can be accomodated by the wall nodes thanks to the presence of

a slip velocity, whereas in the case of the no-slip results, these structures are shifted

away from the wall (Fig. 15), which seems to slightly increase their negative effect.

An overview of the global performance of both wall functions over a wide range of

Reynolds numbers is shown in Fig. 16. Here, the mean friction coefficient Cf of the

channel flow is compared to the classical correlations of Kármán and Nikuradse [10] as

well as Petukhov [18]. The general trend observed is that for low Reynolds numbers,

the slip-formulation yields superior results but deteriorates slightly for increasing Reb.
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Fig. 14 Turbulent channel, dimensionless velocity fluctuation profiles for case #4 (Reτ ≈
2524). Comparison between the analytical profile, DNS data [9] and LES results, obtained
with a second-order Lax-Wendroff scheme, using wall functions in slip- and no-slip formulation.
Case of Reb = 200000.

Shifted near-wall vortex


Flow direction: x

x
y


z


Slip-wall formulation
 No-slip formulation


Fig. 15 Sketch of the effect of shifted near-wall vortical structures comparing slip- and no-slip
formulations.

Inversely, the no-slip formulation shows the largest errors for low Reynolds numbers

with increasingly good agreement for growing Reb, eventually surpassing the accuracy

of the slip-formulation. This observation can be explained by the diminishing influence

of the near-wall effects relative to the channel height that work to the disadvantage of

the no-slip formulation.

As applications with complex geometries such as the one presented in section 4.3

often use tetrahedral meshes, an additional simulation using hexahedral elements has

been conducted. It is based on parameters identical to case #4 (table 2), including grid

spacing, and uses the slip-wall formulation. The result shows slightly different friction

levels but the error on Cf is comparable to case #4 using a hexahedral mesh.

4.2 Illustration of the corner problem: the flow over a sudden expansion

The turbulent channel flow of section 4.1 revealed only minor differences between imple-

mentation methods. Based uniquely on this test-case and considering its ease of imple-

mentation, the classical slip-wall formulation must appear as the preferrable method.

On the other hand, in more complex geometries that feature sharp edges, the corner

problem becomes a major limitation of the slip-wall formulation while at the same
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Fig. 16 Wall friction coefficient Cf as a function of the Reynolds number Reb based on
the bulk velocity in the channel. Comparison of slip- and no-slip results with correlations of
Kármán and Nikuradse [10] as well as Petukhov [18].

time, it can be expected not to affect the no-slip formulation. To illustrate this advan-

tage, the flow over a sudden expansion is considered (see Fig. 17). The example shown

here follows the lines of the experiment of Dellenback et al. [5] at a Reynolds number

of 30 000. The mesh is composed entirely of hexahedral elements with 10 cells across

the diameter of the upstream tube, which results in a first off-wall grid point situated

at approximately 160 wall units. This geometry, in conjunction with the rather coarse

x

y


z


D


2 D


2 D


x = 0

Inlet


Outlet


Fig. 17 Flow over a sudden expansion: Mesh and geometry overview.

grid resolution, is typical for certain geometrical details in very large LES cases, which

often include small-scale jets that are emitted by tubes or ducts into a larger reservoir.

Examples are dilution holes, injection points for gaseous fuel in combustion chambers

or the narrow passage around the valves of an internal combustion engine, which are

often meshed quite coarsely. It is typically this kind of configuration where the corner

problem leads to undesired numerical artefacts.

Qualitative differences between the wall-law formulations can be observed on the

iso-contours of mean axial velocity shown in Fig. 18. The flow field remains totally
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Fig. 18 Mean axial velocity iso-contours of the flow over a sudden expansion. Top: slip wall
function without correction (not mass-conservative). Center: slip wall function with correction.
Bottom: no-slip wall function.

unaffected (Fig. 18, top) for slip wall functions in their non-conservative form, i.e.

without correction of wall-normal mass flux (see section 3.4, Fig. 11). However, the

absence of this correction leads to an unphysical mass flux through the wall downstream

of the step that amounts to approximately 15 % of the global mass flux. On the other

hand, when the mass-flux correction is applied (Fig. 18, center), a notable perturbation

of the flow field can be observed at the corner points and causes numerical oscillations

over the entire diameter. These oscillations are not observed for wall functions in the

no-slip formulation (Fig. 18, bottom), which is mass-conservative and shows a smooth,

unperturbed flow field at the same time.

4.3 Injector for aero-engines

The last application is an idealized laboratory combustion chamber with one single

premixing swirler like it is typically found in the latest generation of aero-engine com-

bustors (Fig. 19). It is an example for one of the more complex geometries encountered

in LES. The swirler is characterized by three stages, each composed of a series of narrow

channels separated by the guide vanes, as highlighted in the right part of Fig. 19. Here,
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it is operated in a purely aerodynamic regime (without liquid fuel injection or combus-

tion) in order to assess the influence of the wall-model implementation method. The

chamber is pressurized at 4.3 bar, the air fed into the plenum is pre-heated to 473 K,

which corresponds roughly to the operating conditions of an engine at partial load. A

bulk Reynolds number of the outer swirler channels is approximately 25, 000. A bulk

Reynolds number of the chamber (based purely on global mass flux and cross-section)

is approx. 120, 000. The airflow from the plenum to the chamber is split between the

three-staged swirler and a cooling film placed near the circumference of the chamber

upstream wall.

Owing to the complexity of the computational domain, the grid is composed of tetra-

Fig. 19 Left: cut-away view of the injector. Right: transparent view with swirler stages high-
lighted.

hedral elements in its volume and of one single layer of prismatic elements at the

boundary where wall functions are applied (see section 3.4 for details on the necessity

of this method). This approach is applicable in arbitrary geometries as it simply con-

sists in extruding the triangular tesselation of the domain boundary towards the inside.

However, the more prismatic layers one chooses to apply or the thicker the layers are,

the more the prisms tend to be distorted on sharp edges or corners. A view of the mesh

and a detail of the prismatic layer is shown in Fig. 20. The thickness of the prism layer

is varied locally and carefully adapted to be as close to 100 wall units. A visualiza-

tion of instantaneous values of y+ is given in Fig. 21. The resulting mesh comprises

approximately 8.5 million cells and 1.6 million nodes. The simulations were performed

using the second-order accurate Lax-Wendroff scheme [14] and a standard Smagorinsky

formulation [26] for subgrid-scale turbulent viscosity. In the two simulations compared

below, the only difference is the wall treatment. Everything else remains the same

(mesh, algorithms, time step).

Quantitative results are presented in the form of mean velocity profiles (Fig. 23) and

RMS velocity profiles (Fig. 24). In both figures, the axial and tangential components

obtained with both wall function formulations are compared to experimental data pro-

vided by ONERA Fauga-Mauzac. The profiles are extracted over three transverse lines

positionned at 10, 15 and 30 mm downstream of the swirler exit (see figure 22). The
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Fig. 20 Mesh overview and detail of hybrid wall boundary region with a layer of prismatic
elements.

Fig. 21 Distance in wall units of the first off-wall grid point (y+) for the instantaneous flow
field (result obtained with the no-slip formulation).
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Fig. 22 Instantaneous velocity magnitude contours on a central cross-section through the
domain. Upper half: result obtained using no-slip wall functions. Lower half: result obtained
using slip wall function. White lines: positions of the extraction of velocity profiles.

agreement of the no-slip results in axial direction with experimental data is excellent,

both the position and the magnitude of the peaks corresponding to the central flow and

the cooling films are accurately reproduced. This is observed on all three measurement

positions. The results of the slip wall functions are less satisfying because the peaks of

the main flow are shifted slightly towards the center, indicating that the opening angle

of the cone-shaped flow is too small. Purely qualitatively, this discrepancy in opening

angle can also be observed on the instantaneous velocity field, shown in figure 22. As

a consequence, the peak magnitudes increase, a behavior that is observed consistently

at all three positions. In the tangential direction, the same observations can be made:

very good agreement for the no-slip formulation and an over-estimation of tangential

velocity peaks due to a under-estimated opening of the main flow.

Differences are less pronounced for the axial velocity fluctuations shown in figure 24.

Here, the magnitude of the strongest fluctuations in the turbulent shear layer between

the main flow and the central recirculation zone is well captured in both simulations.

Differences are observed on the third measurement line at 30 mm, where the offset of

the peaks from the slip wall function results becomes most noticeable. In tangential di-

rection, fluctuations are slightly over-estimated on the first measurement line (10 mm)

in both simulations. Downstream, the agreement is better for the no-slip results, while

the slip wall functions again show over-estimated peaks displaced towards the inside.

The quality of both LES (without considering the differences resulting from wall mod-

eling) is very satisfying as shown by the results obtained using the no-slip wall function

approach. With all other simulation parameters (mesh, numerical scheme, turbulence

model etc.) being identical, the discrepancies observed relative to the slip wall function

formulation show that the implementation of the wall model alone can lead to signifi-

cantly different results in a realistic application. Here, the reason for the differences is

not necessarily related to the corner problem described in section 3.4. An additional

effect could be the tendency of the slip velocity (which forces the near-wall momen-

tum in wall-parallel direction) to keep the flow closely attached to curved geometrical

features, which can be expected to delay boundary layer detachment. In this case, the
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Fig. 23 Mean velocity profiles. Axial component (upper diagram) and tangential component
(lower diagram). Comparison of no-slip wall functions (—), slip wall functions (- - -) and
experimental data (◦ ◦ ◦).

main flow concentrates along the shape of the inner lip of the injector cone, which

results in a more confined shape of the overall flow.

Another important aspect is the numerical robustness of either approach. An instruc-

tive way of looking at this issue is to observe the temporal evolution of pressure and

slip velocity at a set of probes located on the wall of a narrow channel. The arrange-

ment of the three probes considered is shown in figure 25. The evolution of the slip

velocity x-component, presented in figure 26 reveals its very unstable behavior. While

it is observed in the turbulent channel flow that the slip-velocity accommodates to the

natural near-wall fluctuations to a certain extent (see fig. 14), it becomes clear that in
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Fig. 24 Velocity fluctuation profiles. Axial component (upper diagram) and tangential com-
ponent (lower diagram). Comparison of no-slip wall functions (—), slip wall functions (- - -)
and experimental data (◦ ◦ ◦).

the case of a less resolved and less regular mesh, the slip-velocity reveals a non-physical

strong oscillatory tendency up to the point of briefly taking counterstreamwise orienta-

tions. The resulting pressure fluctuations are five times stronger than in the case of the

no-slip formulation, as shown in figure 27. Obviously, this would become an issue if the

LES was used for aeroacoustics simulations, where wall functions in slip-formulation

create a non-physical noise. Furthermore, the advantages of the no-slip formulation

in terms of a problem-free (i.e. more robust at locations that are prone to destabiliz-

ing the numerics) application by the end-user and the gained rapidity in setting up a

simulation should not be under-estimated.
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Fig. 27 Pressure signal recorded at the three probes over a period of 1.2 milliseconds. Com-
parison of results from slip- and no-slip wall functions.

5 Conclusion

Two different implementation methods of wall functions in cell-vertex type solvers have

been presented in detail. The classical method imposes the shear-stress from the wall
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model directly at the boundary, which results in a slip-velocity at the wall itself. The

artificial nature of this slip-velocity and its negative consequences on certain configura-

tions encountered in real-world LES applications has been highlighted. To avoid these

difficulties, a formulation with a no-slip condition at the wall is proposed. The wall

shear-stress is applied at the first off-wall node, which leads to the necessity of using

hexahedral or prismatic meshes in near-wall regions.

Both formulations are compared in different applications. The first is the turbulent,

periodic channel flow, which corresponds to a standard validation case and demon-

strates the basic capability of both approaches to reproduce global quantities such as

the wall-friction coefficient. The second is the flow over a sudden expansion, which il-

lustrates problems that occur at the corner point. As a more realistic application with

a complex geometry, an injector for aero-engines is presented.

It is shown that the proposed no-slip formulation has superior qualities in reproducing

the experimental velocity profiles, which is explained by the increased tendency of the

slip wall functions to force the flow into wall-parallel direction along curved surfaces,

resulting in a slightly altered flow topology. Furthermore, the tendency to oscillatory

behaviour of the slip-velocity in certain cases and its impact on numerical robustness

is highlighted.

It can be stated that in realistic applications, the way a wall-model is implemented in

a given code and the way it interacts with the numerical methods used (in particular:

scheme and SGS turbulence model) can influence the results as much as the wall-model

itself. While the present work uses a very basic model, the performance of the proposed

no-slip formulation in conjunction with more sophisticated models should be further

investigated.
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