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Abstract

This paper constitutes an extension of the work of Mendez, Gibaud & Nicoud:

An unstructured solver for simulations of deformable particles in flows at ar-

bitrary Reynolds numbers, Journal of Computational Physics, 256(1): 465-483

(2014), for three-dimensional simulations of deformable membranes under flow.

An immersed thick boundary method is used, combining the immersed boundary

method with a three-dimensional modeling of the structural part. The immersed

boundary method is adapted to unstructured grids for the fluid resolution, us-

ing the reproducing kernel particle method. An unstructured finite-volume flow

solver for the incompressible Navier-Stokes equations, is coupled with a finite-

element solver for the structure. The validation process relying on a number

of test cases proves the efficiency of the method, and its robustness is illus-

trated when computing the dynamics of a tri-leaflet aortic valve. The proposed

immersed thick boundary method is able to tackle applications involving both

thin and thick membranes/closed and open membranes, in significantly high

Reynolds number flows and highly complex geometries.
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1. Introduction

Solving the fluid-structure interaction (FSI) problem involved when a mem-

brane is deformed by a flow is a scientific challenge which has been tackled

for several decades, due to its wide range of applications. When dealing with

numerical simulation of flow-induced deformation of membranes, the state of5

the art is extremely varied. Different communities work on the topic, focus-

ing on various applications. A large part of these applications are considering

deformable particles such as capsules, vesicles or cells. All these systems are

constituted by a liquid droplet enclosed by a very thin structure (its thickness

is much smaller than the size of the object). This structure can be a polymer10

structure for capsules, a phospholipid bilayer for vesicles, or a more complex

biological membrane in the case of red blood cells [1]. Due to their small size,

computations of flows of these deformable particles are often based on boundary

integral methods (BIM) [2]. This method can be used for low Reynolds number

flows, when the flow is well described by the Stokes equations. The BIM is a15

very popular technique to compute flows of capsules [3, 4, 5, 6, 7, 8, 9], vesicles

[10, 11, 12, 13, 14] and red blood cells [15, 16, 17], because of its precision and

its relatively moderate computational cost (only the membranes and boundaries

need to be discretized). When the flow is governed by the Navier-Stokes equa-

tions, methods with the fluid grid following the deformation of the interface,20

based on the Arbitrary Lagrangian-Eulerian (ALE) formalism are developed

[18, 19, 20]. However, they are not the most popular, as they involve frequent

remeshing. Authors generally prefer one-fluid formalisms, where the fluid equa-

tions are solved everywhere, over a fixed Eulerian grid. The membrane location

is computed by advecting either a function as the level-set function or a sec-25

ond Lagrangian grid following the membrane displacement. One can cite the

advected-field approach [21, 22], level-set methods [23, 24, 25, 26] and immersed

boundary or immersed interface methods [27, 28, 29, 30, 31, 32, 33, 34].

The immersed boundary method (IBM) was originally developed by Peskin
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et al. [35] and has since been extensively studied and applied to a wide variety30

of FSI problems. In a previous work, Mendez et al. [36] used the IBM to study

fluid-structure interaction of deformable particles in flows at arbitrary Reynolds

numbers, in the context of complex geometries often encountred when dealing

with medical artificial devices. Since this work was only considering the 2D res-

olution, the main purpose of the present paper is to extend it to 3D. The IBM35

being originally developed to deal with zero volume structures, a membrane-

like structure with an infinitely thin thickness can be considered, neglecting the

bending stiffness of the membrane. Although suitable when modeling very thin

capsules under flow [37, 38], this approach reaches its limitations when con-

sidering membranes having a significant bending rigidity. To capture bending40

effects, an additional model based on the Helfrich energy [39] can be introduced

(also used by Mendez et al. [36]), and has been notably used to model flowing

capsules and red blood cells [40, 41]. Another approach is the one introduced by

Le and Tan [32], where the IBM is combined with a thin-shell model to simulate

the deformation of liquid capsules under flow [32, 42, 33].45

In the present paper, another approach to simulate flowing deformable mem-

branes in the context of the IBM is proposed, the immersed thick boundary

method (ITBM). This approach is inspired from the extended immersed bound-

ary method (EIBM), introduced by Wang and Liu [29], and later adapted to the

immersed finite element method (IFEM) [43, 44]. Instead of the volumeless im-50

mersed boundary, a submerged solid which occupies a finite volume within the

fluid domain is considered. This approach constitutes an alternative to the one

consisting in combining the IBM with a thin shell model. Indeed, rather than

representing implicitly the thickness of the membrane using a thin shell model

(as Dupont et al. [45]), the thickness is represented in an explicit manner,55

modeling the membrane as a 3D continuum using the classical finite-element

method. A full description of the ITBM is done in section 2. The use of a

classical finite-element framework in the IBM is not generally employed for thin

membranes. As a consequence, the present paper presents an extensive vali-

dation work in section 3, in order to thoroughly determine the real limitations60
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of such an approach. The case of very thin membranes will be treated with

particular attention. Note that the present approach is not limited to closed

membranes. Both closed membranes and open membranes can be simulated

using the ITBM, and an application to the flow through a tri-leaflet aortic valve

is presented in section 4.65

2. The immersed thick boundary method

In the IBM framework, two independent meshes are considered to discretize

the solid domain Ωs and the fluid domain Ωf . The solid is discretized by a

moving Lagrangian mesh, and the fluid is discretized by a fixed Eulerian mesh,

which can be either structured or unstructured (Fig. 1). The different steps of70

the IBM are the following, as introduced by Peskin [27]:

(1) Knowing the displacement
−→
Um of each solid node, the mechanical force

−→
Fm

resulting from the membrane deformation is calculated.

(2) The mechanical force
−→
Fm is regularized on the fluid mesh, giving the volu-

metric force
−→
fj on each fluid node.75

(3) The Navier-Stokes equations (forced by the regularized mechanical forces)

are solved on the fluid mesh, yielding the velocity of the fluid −→vj on each

fluid node.

(4) The velocity of the membrane
−→
Vm on each solid node is interpolated from

the −→vj field, enabling to deduce the new position
−−→
Xm from the position at80

the previous timestep
−−→
Xm

previous, such as
−−→
Xm =

−−→
Xm

previous +Δt
−→
Vm. The

displacement is then updated
−→
Um =

−−→
Xm −

−−→
X0

m, where
−−→
X0

m stands for the

initial stress-free position, also referred to as the reference position.

In the present study, step (1) is performed by the LMGC90 solid mechanics

solver [46], while steps (2)-(4) are performed by the YALES2BIO numerical85

tool [36, 47, 48], based on a massively parallel unstructured finite volume flow

solver for the incompressible Navier-Stokes equations [49]. Note however that

steps (2) and (4) could be handled by a dedicated coupling program, in the case
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where modifications in the fluid solver cannot be easily performed. YALES2BIO

being an in-house solver, this option was not considered further.90

The main distinction between the IBM and the ITBM is that instead of

having a cluster of solid nodes spread over a surface, the cluster defines a volume

mesh (see Fig. 1). The different steps of the ITBM are detailed below.

Ωs

Ωf

Figure 1: Schematic representation of the discretized problem in 2D.

2.1. Computation of the mechanical force

When considering immersed volumetric objects, as this is the case with the

EIBM [29], the actual structural force to regularize is commonly composed of

the internal mechanical force
−→
Fm resulting from the static deformation of the

structure, and the inertial force M
−→̈
Um resulting from the dynamics of the struc-

ture, the mass matrix M being written as:

M = (ρs − ρ)V, (1)

where ρs and ρ stand for the solid and fluid densities, respectively, and V the95

volume matrix. When regularizing the structural force, the inertial force should

thus be neglected as long as the fluid-to-solid density ratio is close to unity

(ρs � ρ). This assumption is even more true when the solid phase is a very thin

membrane (V � 0).

The mechanical force
−→
Fm is calculated over the three-dimensional mesh rep-

resenting the solid domain, thanks to the classical finite-element method. Let
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σ be the cauchy stress tensor, and ε the Eulerian-Almansi strain tensor. Using

the virtual works principle, it is possible to identify:

−→
Fm.

−→
Um =

∫
Ωs

σ : ε dΩ. (2)

By using the transformation between the current and the reference configuration

of the domain Ω0
s, the total Lagrangian formulation of the previous equation

gives:
−→
Fm.

−→
Um =

∫
Ω0

s

S : E dΩ0, (3)

where S is the 2nd Piola-Kirchhoff stress tensor, and E is the Green-Lagrangian

strain tensor, which reads:

E =
1

2
(C− I) , (4)

with C = F
T
F the Right Cauchy-Green deformation tensor, and F = I +∇−→Um

the deformation gradient tensor. The right-hand side of Eq. (3) can be rewritten

as the scalar product of the equivalent vector forms of S and E:

−→
Fm.

−→
Um =

∫
Ω0

s

−→
S .
−→
E dΩ0. (5)

Introducing the gradient matrix B which contains the spatial derivatives of the

shape functions, Eq. (5) becomes:

−→
Fm.

−→
Um =

∫
Ω0

s

−→
S . B −→Um dΩ0. (6)

Eliminating
−→
Um on both sides and discretizing the domain as a sum of elements

Ω0
s = ∪ Ω0

el, one finally obtains:

−→
Fm =

∑
Ω0

el

[∫
Ω0

el

−→
S . B dΩ0

]
. (7)

In the present paper, both prismatic linear elements (see Fig. 2, left) and100

hexaedral quadratic elements (see Fig. 2, right) are tested. In the case of linear

elements, the linear shape function is defined between two elements nodes. And

in the case of quadratic elements, an interpolation node between two element

nodes is needed to define the quadratic shape function. The effective resolution
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H of the elements is introduced, as being the biggest distance between two105

nodes (between two element nodes in the case of linear elements, and between

one element node and one interpolation node in the case of quadratic elements).

Note that in the case of linear elements, the effective resolution H is equal to the

element resolution, and to half of the element resolution in the case of quadratic

elements. If the membrane thickness e is smaller than the element resolution110

(as this is the case in Fig. 2), the membrane is meshed only with one element

in the thickness. But if the element resolution is smaller than the membrane

thicknes e, the number of elements in the thickness is greater than one.

e

H
H

element nodes

interpolation nodes

Prismatic linear element Hexaedral quadratic element

Figure 2: Left: Prismatic linear element where linear shape functions are defined between

two element nodes. Right: Hexaedral quadratic element. Interpolation nodes are needed to

define the quadratic shape functions.

Constitutive laws

The LMGC90 computational code features a wide library of constitutive115

laws. Only a few of them are used in the present paper:

• The compressible Saint-Venant Kirchoff law

S =
2Gν

1− 2ν
Tr (E) I+ 2GE, (8)

where G and ν are the shear modulus and the Poisson coefficient, respectively.

• The compressible Neo-Hookean law, as introduced by Simo and Pister [50]
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⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S = 2
∂W

∂C

W =
G

2
(I1 − 3)−G ln J +

Gν

1− 2ν
(ln J)

2

(9)

where W is the strain energy density function. J = detF = λ1λ2λ3 is the Jaco-

bian of the transformation, expressed as the product of the principal stretches

λi and I1 is the first invariant of the Right Cauchy-Green deformation tensor

C, which reads:

I1 = λ2
1 + λ2

2 + λ2
3. (10)

• The quasi-incompressible Yeoh law⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

S = 2
∂W

∂C

W = C1

(
Ī1 − 3

)
+ C2

(
Ī1 − 3

)2
+ C3

(
Ī1 − 3

)3
+

G (1 + ν)

3 (1− 2ν)
(ln J)

2

(11)

where Ci are material constants and Ī1 is the first invariant of the isochoric

Right Cauchy-Green deformation tensor C̄, such as Ī1 = J−2/3I1. The quantity

2C1 can be interpreted to be the shear modulus G, and when C2 and C3 are120

chosen to be C2 = C3 = 0, this leads to the quasi-incompressible Neo-Hookean

law.

2.2. Forces regularization

The force per unit volume applied on the fluid by the membrane is computed

from the mechanical forces on the solid nodes, through the process of force

regularization:

−→
fj =

M∑
m=1

[
−→
Fm × w

(
||−→xj −−−→Xm||

h

)]
, (12)

where w is a discrete Dirac function allowing to regularize the mechanical force

at the neighboring fluid nodes from the mechanical force at the solid node loca-125

tion (Fig. 3).

When using a regular Cartesian mesh of constant mesh size h, the discrete

Dirac function w can be easily defined as the product of one-dimensional delta
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solid node m

fluid node j

dVj

4h

Figure 3: Schematic representation of the procedure to compute the window function w.

functions:

w

(
||−→xj −−−→Xm||

h

)
= D

(
xj −Xm

h

)
D

(
yj − Ym

h

)
D

(
zj − Zm

h

)
. (13)

The cosine representation is often used, as introduced by Peskin [27]:

D(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

4h

[
1 + cos

(πr
2

)]
if |r| < 2

0 if |r| ≥ 2

(14)

When using unstructured meshes, the Cartesian version of w cannot be used.

Adaptation of the immersed boundary formalism to unstructured meshes relies

on the Reproducing Kernel Particle Method [51, 52, 36]. The intensity and the

point of application of the force to regularize have to be ensured by the chosen

discrete Dirac function w. To this respect, it proves useful to introduce the

moments of the window function w at the location of the solid node m:

ma,b,c(
−−→
Xm) =

J∑
j=1

[(
xj −Xm

h

)a(
yj − Ym

h

)b(
zj − Zm

h

)c

×w
(
||−→xj −−−→Xm||

h

)
dVj

]
.

(15)

For a unit point force applied at coordinates
−−→
Xm, moments calculated at

−−→
Xm

are known: the first moment m0,0,0 is 1, and the following ones are all 0.
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When using unstructured meshes, the following isotropic extension of Eqs.

(13)-(14) is naturally introduced:

w

(
||−→xj −−−→Xm||

h

)
= w(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1

2dim−1

1

4h

[
1 + cos

(πr
2

)]
if |r| < 2

0 if |r| ≥ 2

(16)

Since the resulting regularized force
−→
fj does not meet the moment condition

(ma,b,c = 0 except m0,0,0 = 1), a modified weight function for regularization is

introduced:

w

(
||−→xj −−−→Xm||

h

)
= w

(
||−→xj −−−→Xm||

h

)
×
[
β0 + β1

xj −Xm

h

+ β2
yj − Ym

h
+ β3

zj − Zm

h

]
,

(17)

where βk are the coefficients of the polynomial correction of the original window

function. The moments of the modified window function are then given by:

ma,b,c(
−−→
Xm) =

J∑
j=1

[(
xj −Xm

h

)a(
yj − Ym

h

)b(
zj − Zm

h

)c

×w
(
||−→xj −−−→Xm||

h

)
dVj

]
.

(18)

By plugging the definition of w into Eq. (18), one easily obtains that:⎛
⎜⎜⎜⎜⎜⎜⎝

m0,0,0

m1,0,0

m0,1,0

m0,0,1

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m0,0,0 m1,0,0 m0,1,0 m0,0,1

m1,0,0 m2,0,0 m1,1,0 m1,0,1

m0,1,0 m1,1,0 m0,2,0 m0,1,1

m0,0,1 m1,0,1 m0,1,1 m0,0,2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

⎞
⎟⎟⎟⎟⎟⎟⎠

=M

⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

⎞
⎟⎟⎟⎟⎟⎟⎠

, (19)

where M contains the moments of the isotropic window function w (Eq. (16)).

The first moments of the modified window function can then be imposed to
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their expected values (1, 0, 0, 0) by calculating βk such as:⎛
⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

⎞
⎟⎟⎟⎟⎟⎟⎠

=M−1

⎛
⎜⎜⎜⎜⎜⎜⎝

m0,0,0

m1,0,0

m0,1,0

m0,0,1

⎞
⎟⎟⎟⎟⎟⎟⎠

=M−1

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (20)

In this case, the modified window function ensures that the moment of order 0

is equal to 1, and the moments of order 1 are equal to 0. To also impose the

moments of order 2 to 0, the original window function has to be corrected with

a quadratic correction leading to the calculation of 10 βk coefficients [52]:

w

(
||−→xj −−−→Xm||

h

)
= w

(
||−→xj −−−→Xm||

h

)
×
[
β0 + β1

xj −Xm

h

+ β2
yj − Ym

h
+ β3

zj − Zm

h
+ β4

(
xj −Xm

h

)(
yj − Ym

h

)

+ β5

(
yj − Ym

h

)(
zj − Zm

h

)
+ β6

(
zj − Zm

h

)(
xj −Xm

h

)

+ β7

(
xj −Xm

h

)2

+ β8

(
yj − Ym

h

)2

+ β9

(
zj − Zm

h

)2
]
,

(21)

leading to:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0,0,0

m1,0,0

m0,1,0

m0,0,1

m1,1,0

m0,1,1

m1,0,1

m2,0,0

m0,2,0

m0,0,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

m0,0,0 m1,0,0 · · · m0,0,2

m1,0,0 m2,0,0 · · · m1,0,2

...
...

. . .
...

m0,0,2 m1,0,2 · · · m0,0,4

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

β4

β5

β6

β7

β8

β9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=M

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

β4

β5

β6

β7

β8

β9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (22)
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The coefficients βk are thus given by:⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

β0

β1

β2

β3

β4

β5

β6

β7

β8

β9

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

m0,0,0

m1,0,0

m0,1,0

m0,0,1

m1,1,0

m0,1,1

m1,0,1

m2,0,0

m0,2,0

m0,0,2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=M−1

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

0

0

0

0

0

0

0

0

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (23)

At the end, computing the regularized force as:

−→
fj =

M∑
m=1

[
−→
Fm × w

(
||−→xj −−−→Xm||

h

)]
, (24)

allows a proper representation of the membrane force location, and moments

up to second order. Although possible in principle, the proper representation of130

higher order moments is not considered in this study.

2.3. Navier-Stokes equations resolution

A massively parallel unstructured finite-volume flow solver is used to solve

the forced Navier-Stokes equations over the Eulerian mesh using a projection

method [53]. The momentum conservation equations reads:

ρ

(
∂−→vj
∂t

+−→vj .∇−→vj
)

= −∇pj +∇.
[
μ
(
∇−→vj + (∇−→vj )T

)]
+
−→
fj , (25)

where −→vj and pj are the velocity vector and pressure on fluid node j, ρ the

density and μ the dynamic viscosity. For an incompressible flow, the mass

conservation constraint becomes:

∇.−→vj = 0. (26)

The fluid velocity is first advanced using a 4th-order central scheme in space

and a 4th-order Runge-Kutta scheme in time. A divergence-free velocity field is
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obtained at the end of the time-step by solving a Poisson equation for pressure135

and correcting the predicted velocity. A Deflated Preconditioned Conjugate

Gradient algorithm is used to solve this Poisson equation. More details about

the employed numerical methods can be found in [49, 54].

2.4. Membrane convection

Adherence of the fluid over the membrane makes the fluid velocity continu-

ous at the membrane location and equal to the membrane velocity. Thus, the

velocity
−→
Vm of the solid node m is calculated by interpolating the fluid velocity

at the solid nodes location from the fluid velocity at the neighboring fluid nodes:

−→
Vm =

J∑
j=1

[
−→vj × w

(
||−→xj −−−→Xm||

h

)
dVj

]
. (27)

This interpolation process again involves the use of the discrete Dirac function140

w, which is defined in the same manner as in the forces regularization process

described in section 2.2.

2.5. Discretization

When using immersed boundary methods, authors generally recommend the

use of similar solid and fluid mesh discretizations. Numerical experiences showed145

that the present method performes well when the ratio h/H between the fluid

mesh resolution and the solid effective resolution is such that 0.5 < h/H < 2.

An initial ratio h/H ≈ 1 is typically suited to start with.

2.6. Volume correction

The original immersed boundary method tends to suffer from a small leakage150

problem. Indeed, whatever the choice made for the window function, interpo-

lation does not conserve the divergence-free character of the carrying fluid flow

[27]. This issue is sometimes pointed out as a major drawback of the IBM [28].

When dealing with closed membranes, this leakage problem results in a non-

conservation of the volume enclosed by the flexible membrane. In this case, the155

volume can be corrected by using a Lagrange Multiplier method to calculate
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the smallest correction of the solid nodes coordinates to conserve the particle

volume. This procedure is detailed in [36] in the case of 2D particles, and

generalization for 3D particles is provided in appendix. Such a correction is

however not possible when dealing with open membranes. In the present ITBM,160

this procedure is performed by constructing a triangulation of the middle surface

of the membrane, which however limits its use to linear prismatic elements, but

will be later adapted for quadratic hexaedral elements.
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3. Verification and validation

This section is dedicated to the verification and the validation of the present165

method. Table 1 summarizes the selection of the test cases considered in this

respect.

Test case (section) Diagram Reference data

Non-linear bending of

an elastic plate

(section 3.1)

Numerical results from

Sze et al. (2004) [55]

Inflation of a spherical

capsule (section 3.2)
Analytical solution

Capsule in a linear

shear flow (section 3.3)

Numerical results from

Lac et al. (2004) [56]

Red blood cell

stretched by optical

tweezers (section 3.4)

Experimental data

from Mills et al.

(2004) [57]

Flow-induced

vibration of an elastic

beam behind a

cylinder (section 3.5)

Numerical results from

Turek and Hron

(2006) [58] and Turek

et al. (2010) [59]

Table 1: Summary of the validation test cases presented in section 3.

Test cases of sections 3.1 and 3.2 should be considered as verification test

cases, whereas the other test cases are more challenging and are referred to as

validation test cases.170
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3.1. Non-linear bending of an elastic plate

The principle of this test case is to look at the mechanical equilibrium of

a plate. As shown in Fig. 4, the plate is defined by its length L, width l and

thickness e. One of its extremities is fixed, while the other is loaded by applying

a force F , normal to the initial position of the plate. The objective is to verify175

that the mechanical equilibrium obtained by the FSI computation is the same

as the one from a simple structural computation, performed with the LMGC90

solid mechanics solver. Although it appears trivial, this test case is actually

a good mean to verify the operation of the coupling algorithm. Indeed, FSI

and structural resolutions are completely different insofar as the displacement180

of the structure
−→
Um is solved during the structural computation, whereas in the

FSI computation the displacement is imposed by the velocity of the fluid, the

only contribution of the solid mechanics solver being to compute the mechanical

force
−→
Fm resulting from this imposed displacement. In this context, the errors

generated by the procedures of forces regularization (section 2.2) and membrane185

convection (section 2.4) could potentially impact the mechanical equilibrium of

the plate.

F

L
l

e

Figure 4: Geometrical parameters of the plate. The force F is applied over all the surface of

the plate extremity.

3.1.1. Structural computation

The static structural problem is first solved using the LMGC90 solid me-

chanics solver, giving the mechanical equilibrium of the plate. The plate is190

modeled by a Neo-Hookean material (Eq. (9)). The parameters used for this

computation are the same of those used in the benchmark test proposed by Sze

et al. (2004) [55], and are given in Tab. 2.
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F L l e E ν

4 N 10 m 1 m 0.1 m 1.2 106 Pa 0

Table 2: Parameters of the benchmark test case proposed by Sze et al. (2004) [55].
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Figure 5: Left: Evolution of the maximal displacement as a function of the number of

elements. Results obtained with both linear and quadratic hexaedral finite elements are

compared with the result of Sze et al. (2004) [55]. Right: Error relative to most refined

computation.

In order to study the influence of the finite element interpolation, both linear

hexaedral finite elements and quadratic hexaedral finite elements are compared195

with the reference result of Sze et al. (2004) [55]. Figure 5 (left) shows the

maximal displacement (in the direction of the applied force) obtained at the

extremity of the plate, for different mesh resolutions. It is seen that the chosen

interpolation has a strong influence on the final result. Indeed, the numerical

solution converge much faster when the quadratic interpolation is chosen. When200

using quadratic elements, the solution reaches a constant relative difference of

0.45% with respect to the reference result. For the linear interpolation, the

solution is not yet converged when reaching the maximal number of elements,

and a final relative difference of 14.15% is obtained. It appears that, with linear

elements, flexural deformation cannot be properly simulated without using very205

fine mesh resolutions. In contrast, quadratic elements offer a better accuracy

even with a coarse mesh. Regarding the relative convergence error (see Fig. 5,
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right) calculated from the most refined computation, it is seen that the order of

convergence for both the linear and the quadratic interpolation is retrieved.

3.1.2. Fluid-structure interaction computation210

The next step is to perform a FSI computation, and compare the result with

the one obtained in the structural computation. A time dependent FSI problem

is solved, by immersing the plate in a fluid computational domain (Fig. 6, left).

The fluid box is extended from 0 to 1.15L in length, from -2l to 2l in width,

and from -15e to 85e in height. The fluid mesh is an unstructured tetrahedral215

mesh of 23 174 elements, with a constant resolution of h = 0.5 m. The plate

is meshed using 10 quadratic hexaedral elements (second point in Fig. 5), with

an effective resolution of H = 0.5 m. Note that in this case, the ratio between

the fluid mesh resolution and the thickness of the membrane is h/e = 5.

(a)

(b)

(c)

(d)
(e)
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Figure 6: Left: Visualisation of the plate deformation within the fluid box. Right: Evolution

of the maximal displacement of the plate extremity. The FSI computation is compared with

the structural computation.

At each iteration, the external force F is added to the calculated mechanical220

force
−→
Fm. This external force is distributed over the solid nodes located at the

extremity of the plate. As the mechanical force, the applied external force is

regularized on the fluid grid (see section 2.2), resulting in a motion of the fluid.
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The displacement of the plate is then calculated during the step of membrane

convection (see section 2.4). It is thus the motion of the fluid which enables to225

the plate to deform and reach the equilibrium position.

Figure 6 shows the deformation of the plate (left) and the time evolution

of the maximal displacement of the plate extremity from the FSI computation

(right). Applying the loading first puts the plate in motion until a steady state

is finally reached. Once the fluid is at rest, the plate reaches its mechanical230

equilibrium. This equilibrium is compared with the equilibrium given by the

structural computation. The comparison has been done for both first order and

second order corrections for the computation of the window function (see section

2.2), leading to the same result: for the given rounding precision (three decimal

places), the maximal displacement given by the FSI computation is strictly the235

same of the one from the structural computation. When increasing the ratio h/e

up to 1000, FSI and structural computations still provide identical mechanical

equilibriums (not shown), showing that the present method is able to simulate

membranes having a thickness much smaller than the fluid mesh resolution.

3.2. Inflation of a spherical capsule240

In this section, the inflation of a spherical capsule is considered. The capsule

is defined by its internal and external radii, respectively Ri and Re (Fig. 7, left).

An elastic linear isotropic material is used, defined by its Young modulus E and

Poisson coefficient ν. When submitted to an internal pressure P , the capsule

deforms (Fig. 7, right).245

Ri

Re

P

Figure 7: A spherical capsule of internal radius Ri and external radius Re is inflated applying

an internal pressure P .
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Within the assumption of small perturbations, it is possible to derive an

analytical solution of the radial displacement of the capsule submitted to the

internal pressure P :

Ur (r) =
Ri

3

Re
3 −Ri

3

[
(1− 2ν) r + (1 + ν)

Re
3

2r2

]
P

E
, (28)

with Ri < r < Re.

3.2.1. Structural computation

As in the previous test case, the structural problem is first solved using the

LMGC90 solid mechanics solver. The values of the physical parameters are

given in Tab. 3, where e and R denote the thickness and mean radius of the250

capsule, respectively.

P e R Ri Re E ν

500 Pa 0.05 m 0.5 m R− e/2 R+ e/2 1.5 106 Pa 0.4

Table 3: Parameters chosen for the structural computation.
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Figure 8: Left: Evolution of the radial displacement as a function of the number of elements.

Results obtained with both linear and quadratic hexaedral finite elements are compared with

the analytical solution. Right: Relative error for both linear and quadratic interpolations.

Here again, the influence of the finite-element interpolation is investigated.

Both linear hexaedral finite elements and quadratic hexaedral finite elements are
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compared with the analytical solution. Figure 8 shows the radial displacement

Ur (r) (for r = Re) and the relative error, for different mesh resolutions. The255

quadratic interpolation still shows a faster convergence, with a higher order of

convergence regarding the relative error. But errors obtained for both linear

and quadratic elements are very small, even for the coarsest mesh. Indeed, the

relative error range from 3.91% to 9.38 10−2% for the linear interpolation, and

from 2.34% to 7.33 10−5% for the quadratic interpolation. It has been seen in260

section 3.1.1 that, when the mesh is not well refined, flexural deformation cannot

be properly simulated using linear elements. In this case, it is demonstrated that

when the deformation is purely extensional, the linear interpolation is sufficient

and provides reasonable errors.

3.2.2. Fluid-structure interaction computation265

An equivalent FSI problem can be solved by immersing the spherical capsule

in a fluid computational domain (Fig. 9, left). The fluid box is extended from

-4R to 4R in all the directions. The fluid mesh is composed of 2 101 165

tetrahedral elements, with a mesh resolution around the capsule of h = 0.025

m. The capsule is meshed using 1536 quadratic hexahedral elements, with an270

effective resolution of H = 0.025 m.

−4 −2 0 2 4

0

200

400

600

x/R

P
(P

a
)

Target pressure

FSI computation

Figure 9: Left: Setup of the FSI computation, the capsule is immersed in a fluid box. Right:

Pressure profile along the line (−4R, 4R).
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The capsule is thus surrounded by an outer fluid, and contains an inner

fluid. Rather than applying a pressure on the capsule as for the structural

problem, the capsule is inflated by imposing the analytical displacement on

each solid node. This results in a pressurization of the inner fluid, and the inner275

pressure can then be compared to the target pressure applied in the structural

computation (P = 500 Pa). Figure 9 (right) shows a pressure profile along a

line which crosses the fluid computational domain. The pressure drop between

the inner and the outer fluid is seen to be very close to the target pressure.

Regarding the pressure at the center of the capsule, the relative error is 0.11%.280

The regularization process detailed in section 2.2 generates some oscillations

near to the membrane location delimitating the inner and the outer fluids, but

does not prevent to accuratly capture the pressure drop.

3.3. Capsule in a linear shear flow

In this test case, an initially spherical capsule of mean radius a is deposited285

in a linear shear flow, defined as 
u = ky 
ex (see Fig. 10, left). When deposited

in the linear shear flow, the capsule begins to deform by changing orientation,

and a steady deformation is finally reached (see Fig. 10, right).

x

y

�u = ky �ex

a

e

A

B θ

Figure 10: Left: The capsule is initially spherical, and deposited in a linear shear flow. Right:

A steady deformation is reached, during which a tank-treading motion of the membrane is

observed.
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The orientation θ of the capsule, and the lengths A and B of the two prin-

cipal axes of the ellipsoid of inertia in the shear plane can then be calculated.

The deformation of the capsule in the shear plane is measured by the Taylor

parameter:

D =
A−B

A+B
. (29)

All the parameters relevant to the test case can be found in Tab. 4. The

capsule-based Reynolds number Re is chosen sufficiently low to satisfy the Stokes290

flow assumption, and the capillary number Ca which compares the viscous force

to the membrane elastic force is successively set to 0.15; 0.3; 0.6. The membrane

of the capsule is assumed to follow the Yeoh law (Eq. (11)), with C1 = G/2

and C2 = C3 = 0 . A Poisson coefficient ν = 0.4995 is chosen to insure

that the membrane is quasi-incompressible. The ratio a/e between the initial295

mean radius of the capsule and the thickness of the membrane is chosen to be

significantly high. A ratio a/e = 1000 is used, ensuring that the membrane is

very thin compared to the size of the capsule, and making the bending resistance

of the membrane almost negligible. All these conditions were selected to allow

a proper comparison with the numerical results reported in Lac et al. (2004)300

[56].

Capsule parameters

Initial mean radius a

Thickness e Non-dimensional parameters

Shear modulus G
Capillary number Ca =

μka

eGPoisson coefficient ν

Flow parameters
Reynolds number Re =

ρka2

μ
Dynamic viscosity μ

Density ρ

Shear rate k

Table 4: Definition of the capsule, flow, and non-dimensional parameters.
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The fluid domain is extended from -16a to 16a around the spherical capsule.

The fluid mesh is composed of 1 924 682 tetrahedral elements with a mesh

resolution at the center of the fluid box of h = a/10. In order to use the volume

correction procedure (see section 2.6), the capsule is meshed using 2 906 linear

prismatic elements, with an effective resolution of H = a/10. Figure 11 shows305

the evolution of the capsule deformation over the computation, for Ca = 0.6.

The field displayed on the figure corresponds to the x-coordinate of the initial

(reference) position of the membrane, introduced in section 2. From (a) to (e),

the capsule deforms and reach constant deformation and orientation. From (f)

to (j), the well known tank-treading behaviour of the membrane turning around310

the inner fluid is observed.

X0
m

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

− (a+ e/2) a+ e/2
x

y

Figure 11: Visualisation of the capsule deformation over the computation. The x-coordinate of

the initial position of the membrane nodes is displayed, enabling to visualize the tank-treading

phenomenon.

The Taylor parameter D and the capsule inclinaison θ/π can be calculated

from the steady deformation of the capsule. Figure 12 shows the evolution of

both parameters as a function of the capillary number Ca. The present results

are compared with the results of Lac et al. (2004) [56] where the membrane is315

considered to be infinitely thin and incompressible. A satisfactory comparison

is obtained for both parameters. The relative error for the Taylor parameter D
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range from 0.18% to 1.03%, and from 0.64% to 6.08% for the capsule inclinaison

θ/π. The maximal relative error is obtained when Ca = 0.6, and still increases

when increasing the capillary number (not shown). This is probably due to the320

incompressibility of the membrane, which is not strictly insured in the present

computations since using a quasi-incompressible model. Indeed, volume varia-

tions are still allowed, and are seen to increase with the capillary number (not

shown).
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Figure 12: Left: Evolution of the Taylor parameter D as a function of the capillary number

Ca. Right: Evolution of the capsule inclinaison θ/π. The present results are compared with

the results of Lac et al. (2004) [56].

Influence of the volume correction procedure is shown in Tab. 5, considering325

the highest capillary number Ca = 0.6. A volume variation of 2.73% is observed

when no volume correction is performed, whereas there is almost 0% volume

variation when correcting the inner volume of the capsule. The influence of this

volume correction procedure on the output parameters D and θ/π is however

very small.330

Volume variation (%) D θ/π

Volume correction ≈ 10−4 0.5279 0.1034

No volume correction 2.73 0.5350 0.1019

Table 5: Influence of the volume correction on the outputs of the simulation for Ca = 0.6.
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3.4. Red blood cell stretched by optical tweezers

The purpose is now to simulate the optical tweezers experiment, which con-

sists in stretching a red blood cell (RBC) by using the optical trap principle

[57]. An illustration of the experiment is given in Fig. 13.

−F F

DA

DT

4.12 μm

Figure 13: Illustration of the optical tweezers experiment. The effect of the beads is simulated

by applying a stretching force to two opposite regions over the cell membrane, following the

procedure of Mills et al. (2004) [57].

Two silica microbeads, each 4.12 μm in diameter, are attached to the cell335

at diametrically opposite points. The left bead is anchored to the surface of a

glass slide while the right bead is trapped by a laser beam. The trapped bead

remaining at rest, moving the slide and attached left bead stretches the cell. The

experiment is simulated by applying a stretching force F to two opposite regions

over the membrane in order to mimic the beads effect. For each imposed force340

F , the axial diameter DA (in the direction of the stretching), and the transverse

diameter DT (orthogonal to the stretching direction) of the cell are measured

(see Fig. 13, right) after the equilibrium has been reached (zero velocity field

over the whole computational domain).

The average shape of a RBC has been determined by Evans [60], and is given

by:

z = ±0.5R0

[
1− x2 + y2

R2
0

] [
A+B

x2 + y2

R2
0

+ C

(
x2 + y2

R2
0

)2
]

(30)

where R0 = 3.91 μm is the average RBC radius, A = 0.207161, B = 2.002558,345

and C = −1.122762. The thickness of the RBC membrane is known to be few

nanometers [61], and is here chosen to be e = 4.0 nm. As in the work of Mills

et al. (2004) [57], the complex membrane of the RBC is modeled as a three-

dimensional continuum, following the Yeoh law (Eq. (11)) with C1 = G/2,
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C2 = 0 and C3 = G/30. The product between the membrane thickness e and350

the shear modulus G, also known as the in-plane shear modulus, is chosen to

be eG = 7.3μN/m. As in the previous test case, a Poisson coefficient ν =

0.4995 is chosen to insure that the membrane is quasi-incompressible. The

RBC is immersed in a fluid box extended from -3R0 to 3R0 in the direction of

the stretching, from -2R0 to 2R0 in the direction orthogonal to the stretching,355

and from −R0 to R0 in the height of the cell. The fluid mesh is composed of

628 660 tetrahedral elements, with a constant mesh resolution of h = R0/12.5.

In order to use the volume correction procedure (see section 2.6), the RBC

is meshed using 3 360 linear prismatic elements, with an effective resolution of

H = R0/12.5. The same procedure as the one used for the test case of section 3.1360

is here used. As an external force, the force F is applied on the RBC membrane.

The fluid thus starts moving, and the cell deforms. After a transient phase, the

mechanical forces inside the membrane and the applied external force balance,

and a steady deformation is obtained. Figure 14 shows the deformation of the

RBC for different values of the applied force F , which ranges from 0 to 193 pN.365

Each stretching force thus corresponds to one computation. Starting from the

well known biconcave shape of the RBC, the cell is more and more elongated

when increasing the force, and a large fold appears. Note that this kind of shape

is also observed in the work of Mills et al. (2004) [57].

193 pN120 pN80 pN40 pN0 pN

Figure 14: Visualisation of the red blood cell deformation over the entire range of stretching

force. Only half of the cell is displayed.

Figure 15 shows the mechanical response of a RBC stretched by optical370

tweezers, as a function of the applied force. As the cell is more and more

elongated when increasing the stretching force, it is seen that the axial diameter

DA increases. The elongation of the cell leads to its contraction in the orthogonal
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direction, resulting in a decreasing of the transverse diameter DT . The present

computation accurately captures experimental trends over the entire range of375

stretching force, and provides a good prediction of the diameters.
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Figure 15: Axial (DA) and transverse (DT ) diameters of the RBC stretched by optical tweez-

ers. Comparison with the experimental data from Mills et al. (2004) [57].

As in section 3.3, the volume correction has only a small impact on the

outcome of the simulation. For the maximum imposed force of 193 pN, there is

no influence of this correction on the measured axial diameter DA, whereas the

transverse diameter DT varies from 4.82 μm with correction (with ≈ 10−4 %380

volume variation) to 4.79 μm without correction (with 1.59% volume variation).

3.5. Flow-induced vibration of an elastic beam behind a cylinder

The last validation test case presented is the flow-induced vibration of an

elastic beam behind a cylinder. This situation is more challenging than the

former ones, since a periodic motion of the solid beam where inertia effects must385

be properly predicted is sought for. This test case was also selected because of

the well-documented results obtained by numerous research groups which used

different numerical methods for the FSI numerical resolution. These methods

are summarized and briefly described in Tab. 6. For more information, the

reader is referred to the paper of Turek et al. (2010) [59]. The configuration of390

the problem, as introduced by Turek and Hron (2006) [58], is detailed in Fig.

16.
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x

y

L = 2.5 m

H = 0.41 m

l = 0.35 m

h = 0.02 m
D = 0.1 m

Figure 16: Details of the beam-cylinder configuration.

The cylinder center is positioned at (0.2 m, 0.2 m) (measured from the left

bottom corner of the channel). The right bottom corner of the elastic beam

is positioned at (0.6 m, 0.19 m). Note that the setting is non-symmetric (the

centerline of the beam is at y = 0.2 m while the centerline of the channel is y =

0.205 m), preventing the extreme sensitivity of the results on the details of the

flow computation. The problem is initially in 2D but is here extended to 3D by

slightly extruding the 2D domain in the third direction, and imposing periodic

boundary conditions on the upper and lower walls for both the fluid and the

solid. A parabolic velocity profile is prescribed at the inlet of the channel:

v (0, y, z) = 1.5U
y (H − y)

(H/2)
2 , (31)

where U is the bulk velocity. Two configurations were simulated, as referred to

in [58, 59]: FSI1 and FSI3. The corresponding sets of parameters are gathered

in Tab. 7. The elastic beam is modeled by a Saint-Venant law (Eq. (8)).395

The displacement of the beam extremity, initially positioned at (0.6 m, 0.2 m),

is tracked during the computation for comparison with previous results. For

each configuration, three different meshes were tested as summarized in Tab.

8. For each of the meshes, the fluid mesh is tetrahedric, and the mesh of the

beam is made of quadratic hexaedral elements. Concerning the fluid, the mesh400

resolution is not constant over the whole fluid domain, the resolutions provided

in Tab. 8 correspond to the mesh size around the elastic beam.
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Method Description

1 (Schäfer)

Implicit partitioned approach [62, 63] combining the

finite-volume multigrid flow solver FASTEST and the

finite-element structural solver FEAP, using an ALE

formulation.

2a (Rannacher)
Monolithic variational formulation based on a unified

Eulerian framework (”interface capturing”).

2b (Rannacher)
Monolithic variational formulation based on the stan-

dard ALE approach (”interface fitting”).

3 (Turek/Hron) Fully implicit monolithic ALE-FEM approach.

4 (Breuer)

Partitioned approach combining the finite-volume

scheme FASTEST-3D for the flow and the finite-

element structural solver Carat, using an ALE for-

mulation.

5 (Krafczyk/Rank)

Explicit partitioned approach which combines the

Lattice-Boltzmann flow solver VirtualFluids (VF)

and the structural p-FEM solver AdhoC.

6 (Wall)

A strongly coupled iterative staggered scheme [64, 65]

based on an ALE formulation, Q2Q2 elements for the

fluid and an EAS formulation for the structure.

7 (Bletzinger)

Partitioned approach based on a combination of three

independent softwares: in-house codes CARAT++

and CoMA for structural shell analysis, coupling con-

trol and data transfer between non-matching grids,

and the open source finite volume flow solver Open-

FOAM.

Table 6: Summary of the different methods used in [59] to simulate the present test case.
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FSI1 FSI3

Flow parameters

Density ρ = 1000 kg/m3 ρ = 1000 kg/m3

Dynamic viscosity μ = 1 Pa.s μ = 1 Pa.s

Inlet velocity U = 0.2 m/s U = 2 m/s

Reynolds number ρUD/μ = 20 ρUD/μ = 200

Beam parameters

Density ρs = 1000 kg/m3 ρs = 1000 kg/m3

Shear modulus G = 0.5 MPa G = 2 MPa

Poisson coefficient ν = 0.4 ν = 0.4

Table 7: Parameters of the test case, two configurations are simulated.

M1 M2 M3

Fluid

Number of elements 160 707 971 069 6 582 336

Mesh resolution h 1.0 10−2 m 5.0 10−3 m 2.5 10−3 m

Solid

Number of elements 72 560 4 480

Effective resolution H 1.0 10−2 m 5.0 10−3 m 2.5 10−3 m

Table 8: Parameters of the meshes.

The FSI1 configuration is first simulated, leading to a stationary displace-

ment of the elastic beam, consistent with [59]. Table 9 shows the two compo-

nents of the displacement of the tracked point located at the extremity of the

beam. The results obtained in [59] for different numerical methods are first

displayed in the table. The present results are also displayed for the different

meshes which have been tested in the study. From the 3 levels of mesh M1,

M2 and M3 used to simulate the present test case, it is possible to calculate

the apparent spatial order p of the method. Let dx1, dx2, dx3 be the spatial

resolutions of meshes M1, M2 and M3, respectively (with dx = h = H provided
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ux

[×10−5
]
(m) uy

[×10−4
]
(m)

2a 2.4800 7.7800

2b 2.2695 8.1556

3 2.2705 8.2088

5 2.2160 8.2010

6 2.2680 8.2310

7 2.2640 8.2800

M1 2.8547 8.9378

M2 2.6724 7.7917

M3 2.5841 8.2243

M∞ 2.5012 8.4866

p 1.05 1.41

e∞ (%) 3.32 3.09

Table 9: Results for the FSI1 configuration.
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Figure 17: ux and uy components of the displacement of the beam extremity. The results

obtained with the methods reported in [59] (displayed in white, and described in Tab. 6) can

be compared with the present results, obtained for 3 different mesh resolutions (displayed in

black). The extrapolated results are also provided (displayed in gray).
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in Tab. 8), and r = dx1/dx2 = dx2/dx3 be the refinement factor, the apparent

spatial order p is given by [66]:

p =
1

ln(r)

∣∣∣∣ln
∣∣∣∣φ1 − φ2

φ2 − φ3

∣∣∣∣
∣∣∣∣ , (32)

where φk denotes the output variable of the simulation for the kth mesh. The

extrapolated value φ∞ can then be calculated as follows:

φ∞ =
rpφ3 − φ2

rp − 1
=

rpφ2 − φ1

rp − 1
. (33)

The extrapolated relative error reads:

e∞ =

∣∣∣∣φ∞ − φ3

φ∞

∣∣∣∣ . (34)

The extrapolated values of the 2 components of the displacement of the beam

extremity (corresponding to the infinitely refined mesh M∞) as well as the cor-

responding apparent spatial order p and extrapolated relative error are also405

summarized in Tab. 9. Orders obtained from the output variables are greater

than 1, which is satisfactory for an immersed boundary method. One can also

note that extrapolated relative errors are small.

For a better comparison, the whole results summarized in Tab. 9 are dis-

played in Fig. 17. A meaningful comparison between the reference results410

summarized in [59] and the present results is difficult to carry out for several

reasons:

• In [59], the test case is 2D, and has been extended to 3D for the validation

of the present method.

• Equivalent values of h and H for the simulations performed in [59] are415

not provided. Only the number of resolved unknowns is provided, and ranges

from 11 250 (for method 2a) to 19 320 832 (for method 3), which is quite a wide

range.

• It is difficult to determine if the results of the simulations performed in

[59] are well converged for all the methods summarized, given the variability of420

the number of resolved unknowns.
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At least, one can say that the present method is able to retrieve a stationary

displacement of the beam extremity which is in good agreement with values

reported in [59]. Indeed, regarding extrapolated results displayed in Fig. 17, it

is seen that the present results converge to the range of results reported in [59].425

Velocity (m/s)

(a)

(b)

(c)

(d)

0 5

Figure 18: Visualisation of the flow-induced vibration of the elastic beam over one period of

oscillation, for the FSI3 configuration. The velocity field around the beam is also displayed.

The set of parameters used for the FSI3 configuration leads to a periodic

displacement of the beam extremity, as shown in Fig. 18. In this case, the

mean displacement is provided in Tab. 10, with the amplitude of the oscillation.

Two frequencies can also be calculated from the oscillatory signal of ux and uy,

respectively fx and fy. Again, spatial orders larger than unity are obtained430

for all the output variables. Extrapolated relative errors show that the present

results are well converged with respect to the frequencies, almost converged with

respect to the uy displacement, but hardly converged with respect to the ux

displacement, which needs refinement to reach convergence. This may reflect

the difficulty of the method to capture displacements tangent to the beam,435
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coming from shear sollicitations.

ux

[×10−3
]
(m) uy

[×10−3
]
(m) fx (s−1) fy (s−1)

1 -2.91 ± 2.77 1.47 ± 35.26 11.63 4.98

2a -2.48 ± 2.24 1.27 ± 36.50 10.10 5.10

2b -2.84 ± 2.67 1.28 ± 34.61 10.84 5.42

3 -2.88 ± 2.72 1.47 ± 34.99 10.93 5.46

4 -4.54 ± 4.34 1.50 ± 42.50 10.12 5.05

5 -2.88 ± 2.71 1.48 ± 35.10 11.00 5.50

6 -2.00 ± 1.89 1.45 ± 29.00 10.60 5.30

7 -3.04 ± 2.87 1.55 ± 36.63 10.99 5.51

M1 -0.55 ± 0.49 2.11 ± 13.89 10.83 5.41

M2 -2.06 ± 1.94 1.22 ± 29.21 10.92 5.46

M3 -2.57 ± 2.41 1.39 ± 32.75 10.95 5.47

M∞ -2.83 ± 2.63 1.43 ± 33.81 10.97 5.49

p 1.57 ± 1.62 2.39 ± 2.11 1.58 1.34

e∞ (%) 9.18 ± 8.59 2.78 ± 3.15 0.14 0.20

Table 10: Results for the FSI3 configuration.

The results of Tab. 10 are also displayed in Fig. 19, for a better comparison.

The variability of the results reported in [59] shows the extreme sensitivity of

the present configuration. This time, the number of resolved unknowns reported

in [59] ranges from 11 250 (for method 2a) to 2 480 814 (for method 5). The 3440

meshes provide similar frequencies of oscillation, which are in good agreement

with the results reported in [59]. However, regarding mean values and ampli-

tudes of the displacement, it is seen that only meshes M2 and M3 provide a

satisfactory comparison with the results reported in [59]. One can note that the

extrapolated results are very close to the results obtained with method 5, which445

is the one resolving the most of unknowns.

The same procedure as the one described in Eq. (32) can be used to deter-
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Figure 19: Results obtained for the FSI3 configuration. The first line shows the two com-

ponents of the mean displacement, the second line the corresponding amplitudes, and the

frequencies are displayed in the third line. The results obtained with the methods reported in

[59] (displayed in white, and described in Tab. 6) can be compared with the present results,

obtained for 3 different mesh resolutions (displayed in black). The extrapolated results are

also provided (displayed in gray).
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mine the apparent temporal order of the method, considering 3 different time

steps dt1, dt2 and dt3 for the simulation, and using the mesh M2. The beam

displacements obtained for these 3 time steps are summarized in Tab. 11 with450

the corresponding extrapolated values, apparent orders and extrapolated rela-

tive errors. The apparent temporal orders obtained are around p = 1, which

is consistent with the explicit Euler time-integration used for the membrane

convection, and extrapolated relative errors are below 1%.

ux

[×10−3
]
(m) uy

[×10−3
]
(m)

dt1 = 5.00 10−5 s -2.0489 ± 1.9274 1.1925 ± 29.1467

dt2 = 2.50 10−5 s -2.0403 ± 1.9191 1.1843 ± 29.0895

dt3 = 1.25 10−5 s -2.0363 ± 1.9150 1.1868 ± 29.0565

dt∞ -2.0326 ± 1.9110 1.1878 ± 29.0109

p 1.07 1.00 1.74 0.79

e∞ (%) 0.18 0.21 0.09 0.16

Table 11: Determination of the apparent temporal order.

4. Application: flow through an aortic valve455

In this section, an application of the method is presented to illustrate its

potential. The chosen application is the flow throught an aortic valve, which

has been widely investigated in a number of works [67, 68, 69, 70, 71, 72, 73].

Figure 20 (left) shows the meshed fluid geometry used for the computation,

corresponding to an idealized geometry of the aorta. The diameter of the aorta460

is chosen to be D = 2 cm. The fluid mesh is composed of 752 460 tetrahedral

elements, with a constant mesh resolution of h = 0.5 mm. The geometry of the

aortic valve is composed of three leaflets, and has been constructed to fit the

arotic root, as displayed in Fig. 20 (right). The whole aortic valve is meshed

using 450 quadratic hexahedral elements, with an effective resolution of H =465

0.5 mm.
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inflow

outflow

Figure 20: Left: Meshed geometry of the idealized aorta. Right: Meshed geometry of the

model of aortic valve positioned inside the aorta.

The mean velocity prescribed as inflow is given, for 0 < t < T =
60

nbpm
:

Umean(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1

2

μRe

ρD

[
1 + sin

(
2π

FIT

(
t− FIT

4

))]
if t ≤ FIT

0 if t > FIT

(35)

where nbpm stands for the number of beats per minutes and FI is a parameter

which allows to set the duration of the injection phase.
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Figure 21: Mean velocity prescribed as inflow. The signal corresponds to one cycle for FI =

0.3. Snapshots at instants (a) to (j) are displayed in Fig. 22-23.

Figure 21 shows the time evolution of the mean velocity Umean(t). The inlet

velocity profile is chosen to be parabolic, even if this assumption is not suitable470
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given the relatively high value of the Womersley number (greater than 10). The

parameters of the present study are summarized in Tab. 12, and are inspired

from the work of De Hart et al. [68]. The leaflets of the valve are modeled by a

Neo-Hookean law. The flow solver represents the turbulent flow by Large Eddy

Simulation and the Sigma model [74] is used to model the effect of the scales475

which are too small to be properly discretized by the fluid mesh.

Flow parameters

Density ρ = 1000 kg/m3

Dynamic viscosity μ = 4.0 10−3 Pa.s

Reynolds number Re = 4500

Number of beats per minute nbpm = 60

Fraction of injection FI = 0.3

Valve parameters

Shear modulus G = 3.0 104 Pa

Poisson coefficient ν = 0

Thickness of the leaflets e = 0.2 mm

Table 12: Parameters of the flow and the valve leaflets.

Four cycles were simulated, and different snapshots of the valve deformation

over the fourth cycle are displayed in Fig. 22. Labels from (a) to (j) correspond

to the ones displayed in Fig. 21. From (a) to (d), the inlet mean velocity

is increasing, resulting in the opening of the valve. Regarding snapshot (b)480

in Fig. 22-23, it is seen that the valve inflates while the opening deformation

initiates at the middle of the valve and then spreads toward the extremities.

This observation is consistent with the work of Hsu et al. [73], where the same

opening behavior was observed. From (d) to (g), the inlet velocity is decreasing,

and the valve is gradually closing with a strong flapping of the leaflets. At the485

end of this phase, the inlet velocity is zero, but one leaflet remains open. Then,

the leaflet is gradually closing from (g) to (j), and the valve is finally closed at

the end of the cycle. One can notice that for the four cycles simulated, this
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phenomenon does not appear every time, or when appearing it is not always

on the same leaflet (not shown). These cycle-to-cycle variations were expected,490

given the value of the Reynolds number.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 22: Snapshots of the valve deformation over the fourth cycle.

(b) (d) (f) (g)

Figure 23: Snapshots of the instantaneous velocity vectors over the fourth cycle. Only four

snapshots out of the ten displayed in Fig. 22 are shown.

Figure 23 shows four snapshots of the instantaneous velocity vectors over the

fourth cycle. The flapping of the leaflets generates numerous of vortices down-

stream of the valve, reflecting the presence of flow instabilities, also observed in

[68, 70, 73]. Further flow analysis could be conducted, but is out of the scope of495

this paper. Still, the present simulation has proven the robustness of the ITBM,

which leads to a realistic description of a very complex flow at high Reynolds
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number and non-trivial deformation of the membrane.

5. Conclusion

A numerical method for simulating the fluid-structure interaction problem500

in the case of highly deformable membranes has been presented. The approach

is based on the immersed boundary method adapted to unstructured grids with

the reproducing kernel particle method. The specificity of the approach is that

the membrane constituting the immersed boundary is in fact a thick bound-

ary, modeled as a 3D continuum. This enables to use a classical finite-element505

formulation to solve the membrane mechanics.

The computing accuracy of the method has been demonstrated by a number

of test cases where the results provided by the present numerical tool were con-

fronted to either previous numerical, analytical or experimental data. The test

cases of section 3 showed that both closed and open membranes can be properly510

simulated with the ITBM. Simulating very thin membranes having a thickness

much smaller than the fluid mesh resolution was expected to lead to problem-

atic issues, especially regarding the procedures of regularization/convection (de-

scribed in sections 2.2 and 2.4, respectively). The test cases of sections 3.3 and

3.4 however showed that this is actually well managed by the present method.515

The ITBM was then used to simulate the flow through a tri-leaflet aortic

valve, at a significantly high Reynolds number. The highly complex valve de-

formation and flow instabilities observed in this study demonstrated the strong

robustness of the method, which however needs to be further validated on such

a highly complex FSI problem. A combined experimental and numerical study520

is currently undergoing in this direction, and will be the subject of a future

paper.
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Appendix: Volume correction

The IBM does not intrinsically conserve the volume enclosed by the flexible

membrane as the interpolation of the velocity field required before convecting

the solid nodes does not conserve the divergence-free character of the carrying

fluid flow. A Lagrange Multiplier method is used to find the smallest correc-

tion that should be applied to the solid nodes location in order to ensure the

conservation of the particle volume. The membrane middle surface is composed

of F triangular elements, and M Lagrangian markers. Each face f has three

markers f1, f2 and f3. The volume enclosed by the membrane middle surface

can be calculated as:

V
(
X
)
=

1

18

F∑
f=1

[−−→
Xf1 .

(−−→
Xf2 ×

−−→
Xf3

)
+
−−→
Xf2 .

(−−→
Xf3 ×

−−→
Xf1

)
+

−−→
Xf3 .

(−−→
Xf1 ×

−−→
Xf2

)]
.

(36)

At the beginning of the calculation, the volume of the particle V0 is calcu-

lated. At the end of each time step, the coordinates of the Lagrangian markers535

X are predicted, after time advancement of the solid nodes position. As already

stated, V
(
X
) 	= V0 since the interpolation does not conserve the divergence-

free character of the velocity field.

The aim is then to find the smallest markers displacements δX in norm, so

that V
(
Xcorr

)
= V0, where X

corr = X+δX denotes the matrix containing the

final coordinates. Introducing a Lagrange multiplier Λ, the sought correction
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displacements δX minimize the following cost function:

JΛ
(
δX

)
=

M∑
m=1

[
(δXm)

2
+ (δYm)

2
+ (δZm)

2
]
+ Λ

[
V
(
X + δX

)− V0

]
. (37)

Zeroing the partial derivatives of JΛ with respect to the location correction

(δXm, δYm, δZm) of the Lagrangian marker m leads to:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2δXm + Λ
∂V

(
X + δX

)
∂δXm

= 0

2δYm + Λ
∂V

(
X + δX

)
∂δYm

= 0

2δZm + Λ
∂V

(
X + δX

)
∂δZm

= 0

(38)

with:

∂V
(
X + δX

)
∂δXm

=
1

6

⎡
⎣ ∑
f :m=f1

∂
(−−→
Xf1 +

−−−→
δXf1

)
∂δXm

[(−−→
Xf2 +

−−−→
δXf2

)
×
(−−→
Xf3

+
−−−→
δXf3

)]
+

∑
f :m=f2

∂
(−−→
Xf2 +

−−−→
δXf2

)
∂δXm

[(−−→
Xf3 +

−−−→
δXf3

)
×
(−−→
Xf1 +

−−−→
δXf1

)]

+
∑

f :m=f3

∂
(−−→
Xf3 +

−−−→
δXf3

)
∂δXm

[(−−→
Xf1 +

−−−→
δXf1

)
×
(−−→
Xf2 +

−−−→
δXf2

)]⎤⎦.

(39)

Assuming that the correction displacements are small, so that
−−→
Xm+

−−→
δXm ≈ −−→Xm,

one obtains:
−−→
δXm = Λ−→αm, (40)

with:

−→αm = − 1

12

⎡
⎣ ∑
f :m=f1

(−−→
Xf2 ×

−−→
Xf3

)
+

∑
f :m=f2

(−−→
Xf3 ×

−−→
Xf1

)

+
∑

f :m=f3

(−−→
Xf1 ×

−−→
Xf2

)⎤⎦.
(41)

When JΛ is minimum, ∂JΛ/∂Λ = 0, which means that V
(
X + δX

)
= V0.
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Equations (36) and (40) thus lead to:

1

18

F∑
f=1

[(−−→
Xf1 + Λ−→αf1

)
.
[(−−→

Xf2 + Λ−→αf2

)
×
(−−→
Xf3 + Λ−→αf3

)]

+
(−−→
Xf2 + Λ−→αf2

)
.
[(−−→

Xf3 + Λ−→αf3

)
×
(−−→
Xf1 + Λ−→αf1

)]

+
(−−→
Xf3 + Λ−→αf3

)
.
[(−−→

Xf1 + Λ−→αf1

)
×
(−−→
Xf2 + Λ−→αf2

)]]
− V0 = 0.

(42)

After some algebra, the following third-order polynomial equation in Λ is ob-

tained: AΛ3 +BΛ2 + CΛ +D = 0, with:

A =
1

18

F∑
f=1

[−→αf1 . (
−→αf2 ×−→αf3) +

−→αf2 . (
−→αf3 ×−→αf1) +

−→αf3 . (
−→αf1 ×−→αf2)] , (43)

B =
1

6

F∑
f=1

[−−→
Xf1 . (

−→αf2 ×−→αf3) +
−−→
Xf2 . (

−→αf3 ×−→αf1) +
−−→
Xf3 . (

−→αf1 ×−→αf2)
]
, (44)

C =
1

6

F∑
f=1

[−→αf1 .
(−−→
Xf2 ×

−−→
Xf3

)
+−→αf2 .

(−−→
Xf3 ×

−−→
Xf1

)
+−→αf3 .

(−−→
Xf1 ×

−−→
Xf2

)]
, (45)

D = V
(
X
)− V0. (46)

This third-order polynomial equation is then solved numerically and Λ is com-

puted as the real valued root (there is always one at least) of smallest amplitude.

Once Λ is found, the Lagrangian markers positions are updated to ensure volume

conservation, as follows:
−−→
Xm → −−→

Xm + Λ−→αm. (47)
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