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Abstract. We investigate the flow between a shallow rotating cone and a stationary plate. This
cone and plate device is used in rheometry, haemostasis as well as in food industry to study the
properties of the flow w.r.t. shear stress. Physical experiments and formal computations show
that close to the apex the flow is approximately azimuthal and the shear-stress is constant within
the device, the quality of the approximation being controlled essentially by the single parameter
Re ε2, where Re is the Reynolds number and ε the thinness of the cone-plate gap. We establish
this fact by means of rigorous energy estimates and numerical simulations. Surprisingly enough,
this approximation is valid though the primary flow is not itself a solution of the Navier–Stokes
equations, and it does not even fulfill the correct boundary conditions, which are in this particular
case discontinuous along a line, thus not allowing for a usual Leray solution. To overcome this
difficulty we construct a suitable corrector.
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1. Introduction

The cone-and-plate apparatus (CPA) consists of a shallow rotating cone on top
of a stationary plate, both surrounded by a circular cylinder, see Fig. 1.1. Liquid
is flowing inside the device. When the angle α between the cone and plate is
very small and the rotational speed ω is low, the flow is basically azimuthal, i.e.
streamlines are concentric circles, the velocity profile is linear and the shear-rate
is constant, like in Couette flow. Thus the most well-known motivation for the
use of CPA has been a viscometer, mainly used for very viscous or viscoelastic
fluids. Recently, it has been used to study fine properties of biological fluids under
shear stress. For instance in haemostasis [14], CPA is used as a flow chamber
to investigate shear-induced platelet aggregation (SIPA) and interactions between
platelets and the vessel wall in blood flow. According to [11], SIPA has been
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implicated as a potential mechanism underlying thrombotic events occurring in
blood vessels in which shear stresses are inordinately large, such as may be present
in the vicinity of a stenosed coronary artery. CPA is also used in food industry to
control the viscosity of some food products.

In fact the flow pattern is only approximately azimuthal: as the angle α and
rotational rate ω increase, the fluid near the cone experiences an increasing cen-
trifugal force that promotes radial fluid motion towards the periphery of the device.
Thus a radial secondary flow develops, streamlines turn into spirals, until the onset
of turbulence. This phenomenon was apparently first observed in [4], then numeri-
cally computed in [5]. The appearing of secondary flow was clearly identified in [9]
where it is shown to be controlled by a single parameter Re ε2, with ε = tan α and
Re the Reynolds number. In the latter paper, the authors considered an infinite
domain, so that boundary effects were neglected and the analysis relied on formal
asymptotic expansions.

From a mathematical view point CPA has been much less studied than Cou-
ette flow between cylinders, see [3, 7]. Indeed the cone-plate geometry gives rise
to a quite different picture: whereas in Couette flow there is an exact analytical
solution that becomes unstable, in CPA flow no analytical solution is available
but only an approximate one, which is stable, at least in the small gap limit. In
our paper, we give a precise mathematical proof of the fact that the flow is ap-
proximately azimuthal. One difficulty of the proof stems from the poor regularity
of the boundary condition. Due to a discontinuity located at the intersection of
the cylinder and the cone, the solution cannot belong to W 1,2(Ω). Navier–Stokes
equations with poorly regular boundary conditions have been investigated by D.
Serre [10]. The idea is to subtract from the solution a suitable corrector, so that
the singular part be removed. Here we construct a corrector, still azimuthal, which
will slightly perturb the basic flow, essentially only in the vicinity of the singu-
larity. Moreover, we give estimates for these approximations which allow us to
analyze the nonlinear stability of the primary flow.

The paper is organized as follows. In Section 2 we perform the natural scalings.
Some useful notations are collected in Section 3 and the formal asymptotical anal-
ysis leading to the basic (primary) flow is performed in Section 4. We investigate
the a priori singularity of the solution, introduce a suitable corrector and derive
a suitable weak formulation in Section 5. We state the main results in Section 6,
which we prove by means of careful energy estimates. Finally, in Section 7, we
show numerical simulations confirming the abstract results and revealing further
properties of the flow in this apparatus.

2. Problem setting and scaling

Let Ωε be the domain filled by the fluid, see Fig. 1.1, which we suppose to be
Newtonian, of kinematic viscosity ν and constant density ρ. The small parameter
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Fig. 1.1. Cone and Plate device, with angle α magnified.

is ε = tan α. The radius of the outer cylinder is denoted by R. Let O be the cone
apex, Oy3 its axis, Oy1y2 the plane in a rectangular Cartesian coordinate system
(y1, y2, y3) and corresponding basis (e1, e2, e3).

The incompressible Navier–Stokes equations with no-slip Dirichlet boundary
condition read: Given an initial function U0, find a velocity field U = (U1, U2, U3)
and a pressure field P , such that for τ > 0

∂τU + (U · ∇)U − ν∆U +
1
ρ
∇P = 0 in Ωε, (2.1a)

div U = 0 in Ωε, (2.1b)
U = 0 on ((y3 = 0) ∪ (r = R)), (2.1c)
U = rω · eθ on (y3 = r · ε), (2.1d)

U(·, 0) = U0 in Ωε. (2.1e)

Here and in the following, ω is the angular velocity of the cone, r the distance to
the vertical axis and eθ the azimuthal direction, see also below. In order to bring
(2.1a)–(2.1e) into non dimensional form and to make the domain independent of
ε, we set

x1 =
y1

R
, x2 =

y2

R
, x3 =

y3

Rε
, t = ωτ

so that Ω =
{

(x1, x2, x3) ∈ R
3; 0 < r < 1, 0 < x3 < r with r =

√
x2

1 + x2
2

}
is the

new fixed domain. Define the different parts of the boundary

Γ1 :=
{

x ∈ ∂Ω; r = x3

}
,Γ2 :=

{
x ∈ ∂Ω; x3 = 0

}
,Γ3 :=

{
x ∈ ∂Ω; r = 1

}
.
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The corresponding kinematic scaling is

u1 =
U1

Rω
, u2 =

U2

Rω
, u3 =

U3

Rωε
, p =

P

R2ω2ρ
, (2.2)

so that u = (u1, u2, u3) is the new unknown velocity and p the new pressure. As
corresponding Reynolds number we define

Re = R2ω/ν.

Other choices for typical length and velocity are possible, see Section 6.
With the above considerations, problem (2.1a)–(2.1e) transforms into the fol-

lowing anisotropic Navier–Stokes equations: Find u = (u1, u2, u3) and p, such that
for t > 0

∂tui + u · ∇ui − 1
Re

∆εui + ∂ip = 0 in Ω, i = 1, 2 (2.3a)

ε2
(
∂tu3 + u · ∇u3 − 1

Re
∆εu3

)
+ ∂3p = 0 in Ω, (2.3b)

div u = 0 in Ω, (2.3c)
u = g on ∂Ω, (2.3d)

u(·, 0) = u0 in Ω, (2.3e)

where ∆ε is an anisotropic Laplacian, defined by

∆ε :=
2∑

k=1

∂2

∂x2
k

+
1
ε2

∂2

∂x2
3

,

and the boundary data is collected in

g :=

⎧⎨
⎩

r · eθ on Γ1,
0 on Γ2,
0 on Γ3.

3. Notations and auxiliaries

Hereafter, ‖·‖ = ‖·‖Ω, and for G ⊆ Ω, ‖w‖G = (
∫

G
|w|2)1/2 denotes the usual

L2(G)-norm for scalar as well as vector- and matrix-valued functions on G, (·, ·) is
the L2-inner product. To avoid confusion, vector-valued functions will always be
denoted with boldface characters.

For 0 < r0 < 1 define Ωr0 := {x ∈ Ω; r < r0}.
We will need the following function spaces.

V = {φ ∈ C∞
0 (Ω); divφ = 0}.

V (resp. H) is defined as the closure of V in H1
0 (Ω) (resp. L2(Ω)).
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We shall frequently use cylindrical coordinates (r, θ, x3). We recall some for-
mulas, which will be used below. The cylindrical coordinates are defined by

r =
√

x2
1 + x2

2, x1 = r cos θ, x2 = r sin θ

with the corresponding basis

er =
1
r
(x1e1 + x2e2), eθ =

1
r
(−x2e1 + x1e2), e3.

Thus a 3D vector field w can be decomposed as

w = wrer + wθeθ + w3e3.

Furthermore, define the horizontal part vH of a 3D vector field v by

vH := v1e1 + v2e2

Likewise ∇H := e1∂1 + e2∂2 and

|||w|||2G := ‖wH‖2
G + ε2‖w3‖2

G.

In the sequel we will use the same notation for a function f depending on the
Euclidean basis or cylindrical coordinates: f(x1, x2, x3) = f(r, θ, x3). This abuse
of notation will not lead to confusion.

The following differential operators transform like:

∇ = er∂r +
1
r
eθ∂θ + e3∂3, ∂θeθ = −er, ∂θer = eθ,

div w =
1
r
∂r(rwr) +

1
r
∂θwθ + ∂3w3,

∆ w =
1
r

∂

∂r

(
r
∂w

∂r

)
+

1
r2

∂2w

∂θ2
+

∂2w

∂x2
3

,

∆w =
(

∆wr − 2
r2

∂θwθ − wr

r2

)
· er +

(
∆wθ +

2
r2

∂θwr − wθ

r2

)
· eθ + ∆w3 · e3.

4. Formal asymptotics

Multiplying (2.3a) by ε2, sending ε to zero and then formally equating (2.3a) yields

∂2uH

∂x2
3

= 0,

so that uH is linear in x3:

uH = AH(x1, x2)x3 + BH(x1, x2).

Taking into account the boundary conditions on Γ1 and Γ2 we formally get

u1 = x3(−x2/r), u2 = x3(x1/r).
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Plugging this in the incompressibility equation (2.3c) gives

∂3u3 = 0,

which, with the boundary condition on Γ2 allows us to derive

u3 = 0.

Hence the velocity field is completely characterized within the device:

u = x3 · eθ (4.1)

This is what is called the primary flow and will be denoted by ū.

Remark 4.1. The primary flow has only a θ-component (swirl), i.e. is purely
azimuthal. Its modulus depends on x3 only. It satisfies the no-slip boundary
conditions on the cone Γ1 and on the plane Γ2 but violates the boundary condition
at the outer cylinder Γ3.

In the physical variables, the primary flow is

Ū =
ωy3

ε
· eθ.

The resulting shear stress has constant magnitude:

σθ y3(Ū) = ρν∂y3Ū = ρν
ω

ε
· eθ. (4.2)

This basic flow is indeed observed in physical experiments and the shear stress (4.2)
is used to measure fluid viscosity, see [9], provided that Re ε2 is small enough. Now,
the surprising fact is that the primary flow is not a solution of the Navier–Stokes
equations (2.3). Indeed, we compute

− 1
Re

∆εū + (ū · ∇)ū =
1

Re

x3

r2
· eθ − x2

3

r
· er. (4.3)

It is easy to see that (4.3) is not a gradient, so the above term cannot be
balanced by a pressure gradient alone. Furthermore, if we take the limit of (2.3a)–
(2.3b) in the sense that we set u = ū and then formally send ε → 0 we get for the
pressure

∂rp =
x2

3

r
, (4.4)

∂θp = − 1
Re

x3

r
, (4.5)

∂3p = 0. (4.6)

Of course (4.4)–(4.6) cannot hold simultaneously.
For the same reason, as

− 1
Re

∆εū =
1

Re

x3

r2
· eθ, (4.7)

neither is the primary flow solution of Stokes equations.
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5. A suitable corrector and weak formulation

The boundary data g obviously exhibits a discontinuity at the line γ := {x ; r =
1, x3 = 1}, which excludes W 1,2(Ω) regularity of the solution. This means that the
usual energy inequality makes no sense. In order to cure this, we shall construct
a “corrector” u� = φ(r, x3) · eθ defined by

−∆εu� = 0 in Ω, (5.1a)
u� = g − ū on ∂Ω. (5.1b)

Remark 5.1. Since u� is azimuthal, it satisfies

div u� = 0.

Hence, the corrector u� is simply the Stokes flow, with zero pressure gradient,
which cancels the primary flow ū at the outer cylinder boundary.

The corrector u� is determined by the scalar function φ which in turn is given
by

Lεφ = 0 in Ω, (5.2a)
φ = g� on ∂Ω (5.2b)

with

g� :=

⎧⎨
⎩

0 on Γ1,
0 on Γ2,

−x3 on Γ3,

and
Lεψ := −∆εψ +

1
r2

ψ.

Again the boundary data does not belong to W 1/2,2(∂Ω), so that one cannot
simply use the standard energy method. Instead, we first give an existence result
from classical potential theory and then prove pointwise and local energy estimates
in Lemma 5.4.

Let us first recall ([6], Section 6.3) the concept of subsolutions for the elliptic
equation Lεη = 0.

Definition 5.2. A function ψ ∈ C0(Ω) is a subsolution if and only if for every ball
B � Ω and every solution η of Lεη = 0 in B, the inequality ψ ≤ η on ∂B implies
also ψ ≤ η in B.

By the classical maximum principle (inside a ball B � Ω, the singularity at
r = 0 plays no role), a function ψ belonging to C2(Ω) such that Lεψ ≤ 0 is a
subsolution.
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Lemma 5.3. There are functions u�, φ = φ(r, x3) ∈ C2(Ω), solutions of (5.1)
and (5.2) respectively, where the boundary conditions (5.1b), (5.2b) hold in the
sense that

u�(xn) → g(x) − ū(x), φ(xn) → g�(x)

for all xn → x, with x ∈ ∂Ω\γ.

Proof. Applying Perron’s method to problem (5.2) we get a solution φ ∈ C2(Ω)
by setting

φ(x) := sup{ψ(x) | ψ subsolution, ψ ≤ g� on ∂Ω}.
Since the full proof is lengthy, we omit the details here. The method follows exactly
the same steps as for subharmonic functions. Let us emphasize that the operator

Lεψ is strictly elliptic, and that the zero-order term
1
r2

ψ, though unbounded, is

positive. For the reader’s convenience, we refer to [6], pp. 102–106 for a more
complete account.
Since the domain Ω satisfies the exterior sphere condition, the boundary values
are attained continuously for all points where g� is continuous. Furthermore, for
symmetry reasons, the solution does not depend on θ. Finally, setting u� := φ · eθ

we obtain a solution of (5.1). �

We now establish some estimates for the corrector.

Lemma 5.4. Let φ be the solution of (5.2) from Lemma 5.3 and 0 < r0 < 1.
Then we have the following properties:

i) −1 ≤ φ ≤ 0 in Ω, ‖φ‖∞ = ‖u�‖∞ = 1,
ii) |φ(r, x3)| ≤ Cε2r for 0 < r ≤ r0, 0 ≤ x3 ≤ r,
iii) ‖u�‖Ωr0

= ‖φ‖Ωr0
≤ Cε2,

iv) ‖∂3φ‖Ωr0
≤ Cε3,

where in ii)–iv) the constants C depend on r0: C = C(r0).

Proof. i) Since −1 ≤ g� ≤ 0, the specific construction of φ := sup{ψ(x) | ψ
subsolution, ψ ≤ g� on ∂Ω} allows to deduce the first inequality. The rest of i) is
obvious.

ii) We shall construct a function ψ = ψ(r, x3) which is a subsolution. For this
define

h(r) :=
{

δr, for 0 ≤ r ≤ r0,
a(r − r0)3 + δr, for r0 ≤ r ≤ 1,

with some small 0 < δ < 1 to be determined below and a = 1−δ
(1−r0)3

.
The function h fulfills:

h ∈ C2([0, 1]), h(0) = 0, h(1) = 1.

Now define ψ(r, x3) := −h(r)ω(x3) with ω(x3) := sin(πx3
2 ).



Vol. 6 (2004) Quasi-Stability of the Primary Flow 261

Clearly, ψ ≤ g� on ∂Ω. Furthermore we have

(Lεψ)(r, x3) =
(

h′′(r) +
h′(r)

r
− h(r)

r2
−

( π

2ε

)2

h(r)
)

ω(x3).

For 0 < r < r0 this gives

(Lεψ)(r, x3) =
(

δ

r
− δ

r
−

( π

2ε

)2

δr

)
ω(x3) ≤ 0.

We want to choose δ such that Lεψ ≤ 0 also for r > r0.
Now, for r0 ≤ r ≤ 1 we have:

h′′(r) +
h′(r)

r
= 6a(r − r0) +

3a(r − r0)2 + δ

r
≤ 6a(1 − r0) +

3a(1 − r0)2

r0
+

δ

r
.

On the other hand

h(r)
r2

+
( π

2ε

)2

h(r) =
(
a(r − r0)3 + δr

) (
1
r2

+
( π

2ε

)2
)

≥ δ

r
+ δr0

( π

2ε

)2

.

If we choose δ =
12(1 + r0)ε2

π2r2
0(1 − r0)2 + 12(1 + r0)ε2

we easily verify, recalling a =

1 − δ

(1 − r0)3
, that

6a(1 − r0) +
3a(1 − r0)2

r0
≤ δr0(

π

2ε
)2.

Thus also for r0 < r < 1 we have

Lεψ ≤ 0 in Ω, ψ ≤ g� ≤ 0 on ∂Ω.

Again by definition of Perron’s solution we have

−ε2C r ≤ −h(r) ≤ ψ(x) ≤ φ(x) ≤ 0 in Ω (5.3)

for 0 < r ≤ r0 and with C =
12(1 + r0)

π2r2
0(1 − r0)2

.

iii) follows now easily with the help of ii):

‖φ‖2
Ωr0

≤ ε42πC2

r0∫
0

r∫
0

r3 dx3dr = ε4C2 2π

5
r5
0,

C the constant from ii).
iv) Let η ∈ C∞([0, 1]) be a cut-off function fulfilling

0 ≤ η ≤ 1, η(r) ≡ 1 for r ∈ [0, r0], η(r) ≡ 0 for r ∈ [r1, 1],

|η′(r)| ≤ 2
r1 − r0

for r ∈ [0, 1]
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with some r1, r0 < r1 < 1, e.g. let us define r1 := (1+ r0)/2. Multiplying Lεφ = 0
by η2φ and integrating by parts we get

r1∫
0

r∫
0

rη2
{|∂rφ|2 +

1
ε2
|∂3φ|2 +

1
r2

|φ|2}
︸ ︷︷ ︸

(I)

dx3dr + 2

r1∫
0

r∫
0

r∂rφ(∂rη)ηφ dx3dr = 0.

To see that integrating by parts is possible, we recall that φ is smooth in
Ω̄r0\{0}, see [6], and use some additional arguments for the origin.

From this we estimate

(I) ≤ 1
2

r1∫
0

r∫
0

rη2|∂rφ|2 + 2

r1∫
0

r∫
0

rφ2(∂rη)2.

Absorbing the first term on the right-hand side in (I) we get

(I) ≤ 4

r1∫
0

r∫
0

rφ2(∂rη)2 ≤ C(r0)ε4,

where we have used (5.3) to bound |φ|2 by |φ|2 ≤ Cε4. This yields

1
ε2
‖∂3φ‖2

Ωr0
≤ (I) ≤ C(r0)ε4,

which implies
‖∂3φ‖Ωr0

≤ C(r0)ε3. (5.4)

�

We now define the corrected primary flow

ũ = ū + u�. (5.5)

Let us decompose u into u = ũ + v, where v has now homogeneous boundary
data v|∂Ω = 0. Note that u3 = v3. Testing the nonlinear terms in the horizontal
momentum equation (2.3a) with a test function φ ∈ V we get

(u · ∇uH ,φ) = ((ũ + v) · ∇(ũ + vH),φH)
= (ũ · ∇ũ,φH) + (ũ · ∇vH ,φH) + (v · ∇ũ,φH) + (v · ∇vH ,φH)
= (ũ · ∇ũ,φH) + (ũ · ∇vH ,φH) − (v · ∇φH , ũ) + (v · ∇vH ,φH),

where the last step follows from integration by parts and observing that divv = 0.
The nonlinear term in the axial momentum equation (2.3b) can be treated as:

(u · ∇u3e3,φ) = ((ũ + v) · ∇v3, ϕ3) = (ũ · ∇v3, ϕ3) + (v · ∇v3, ϕ3).

Now we define the following forms:
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a(ψ,φ) :=
1

Re

(
(∇HψH ,∇HφH) + ε2(∇Hψ3,∇Hϕ3)

)

+
1

Re ε2

(
(∂3ψH , ∂3φH) + ε2(∂3ψ3, ∂3ϕ3)

)

+(ũ · ∇ψH ,φH) − (ψ · ∇φH , ũ) + ε2(ũ · ∇ψ3, ϕ3),

b(w,ψ,φ) := (w · ∇ψH ,φH) + ε2(w · ∇ψ3, ϕ3),

l(φ) :=
1

Re
(∆εũ,φH) − (ũ · ∇ũ,φH).

The next lemma states that these forms are well defined for functions in V.

Lemma 5.5. a,b, l are continuous bilinear, trilinear and linear forms on V, re-
spectively.

Proof. For a(·, ·) the assertion follows from the estimate

|a(ψ,φ)| ≤ max (
1

Re ε2
,

1
Re

,
ε2

Re
) ‖∇ψ‖ · ‖∇φ‖

+(1 + ε2)‖ũ‖∞‖∇ψ‖ · ‖φ‖ + ‖ũ‖∞‖∇φ‖ · ‖ψ‖.
For b(·, ·, ·) we conclude in the usual way:

|b(w,ψ,φ)| ≤ (1 + ε2) ‖w‖L4‖∇ψ‖ · ‖φ‖L4

≤ C(1 + ε2) ‖w‖H1‖ψ‖H1‖φ‖H1 .

The estimate for l(·) is a little bit more involved. Let us start with (∆εũ,φH).

|(∆εũ,φH)| = |(∆ε(ū + u�),φH)| = |(∆εū,φH)|

≤ ‖φθ‖ · ‖
x3

r2
‖ ≤

√
2π

3︸ ︷︷ ︸
C1

‖φH‖, (5.6)

because of (4.7). It remains to bound (ũ · ∇ũ,φH).

|((ũ · ∇)ũ,φH)| ≤ ‖ũ · ∇ũ‖ · ‖φH‖.
Recall that

(a · ∇) = ar∂r + aθ
∂

r∂θ
+ a3∂3.

As ũ is purely azimuthal,

(ũ · ∇)ũ = ũθ
∂

r∂θ
ũ = − ũ2

θ

r
· er.
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Using the triangle inequality and the definition of ũ we see

|ũ · ∇ũ|2 ≤ 8
( |ū|4

r2
+

|u�|4
r2

)
= 8

(
x4

3

r2︸︷︷︸
≤1 in Ω

+
|φ|4
r2

)
.

To estimate the last term on the right-hand side we split the integration over Ω
in a part Ωr0 and the complement Ω\Ωr0 with, say, r0 = 1/2.

From Lemma 5.4 ii) it follows:∥∥∥φ2

r

∥∥∥2

Ωr0

≤ Cε4 ≤ C.

For the other part we get from Lemma 5.4 i)∥∥∥φ2

r

∥∥∥2

Ω\Ωr0

≤ 1
r0

2
‖1‖2

Ω\Ωr0
≤ C.

Combining the above estimates we finally get

‖ũ · ∇ũ‖ ≤ C.

We summarize:

|l(φ)| ≤
(

C1

Re
+ C2

)
‖φH‖

with some constant C2. �

Lemma 5.6. The bilinear form a satisfies the coercivity condition

a(w,w) ≥ α‖∇w‖2 − β‖w‖2

for w ∈ V, where α and β are positive constants depending on ε and Re.

Proof. We first prove the assertion for w ∈ V, for general w it follows from a
density argument. We compute

a(w,w) =
1

Re
‖∇HwH‖2 +

1
Re ε2

‖∂3wH‖2 +
ε2

Re
‖∇Hw3‖2

+
1

Re
‖∂3w3‖2 − (w · ∇wH , ũ).

The terms (ũ ·∇wH ,wH), ε2(ũ ·∇w3, w3) vanish because ũ is divergence-free and
w has compact support. Therefore we only need to estimate

(w · ∇wH , ũ) ≤ ‖ũ‖∞‖∇wH‖ · ‖w‖ ≤ c

2
‖∇wH‖2 +

1
2c

‖w‖2.

Choosing c = min
(

1
Re , 1

Re ε2

)
yields the desired result. �

Proceeding in the usual way to derive a weak formulation for the Navier–Stokes
equations from (2.3a)–(2.3e) and taking into account the above considerations for
the nonlinear terms we arrive at the following notion for a weak formulation.
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Definition 5.7. Let u0 ∈ H be a divergence-free initial function. We call u a
weak solution of problem (2.3a)–(2.3e) iff

i) v = u − ũ ∈ L∞
loc(]0,∞[;H) ∩ L2

loc(]0,∞[;V),
ii) for all φ ∈ V the following identity holds in the distributional sense:

〈∂tv,φ〉 + a(v,φ) + b(v,v,φ) = l(φ),

iii) v satisfies the energy inequality

|||v(t)|||2 ≤ 2
∫ t

0

{
a(v,v) + l(v)

}
+ |||u0 − ũ|||2 for a.e. t > 0,

iv) the initial condition is fulfilled in the weak L2-sense:

u(t, ·) ⇀ u0 for t → 0 weakly in L2(Ω).

Remark 5.8. We require that weak solutions u of the problem are such that
u − ũ are in L2

loc(]0,∞[;V) and satisfy the energy inequality. Note that it is still
an open problem whether every distributional solution of Navier–Stokes equations
with regular boundary data fulfills the energy inequality.

Theorem 5.9. Let u0 ∈ H. Then there is at least one weak solution of problem
(2.3a)–(2.3e).

Proof. Owing to Lemma 5.5 and Lemma 5.6, the existence of such a weak solution
u can be established by a Galerkin procedure in the usual way, see for instance
[12]. �

6. Asymptotic stability

We can only expect the primary flow to be a good approximation for u, if the flow
is somehow laminar. This means we need an assumption on the smallness of Re.
The analysis below shows that it is sufficient to assume Re ε ≤ C. Note that Re ε
can be interpreted as a Reynolds number UL/ν with typical velocity U = Rω and
typical length equal to the gap width L = Rε. Our numerical results confirm the
necessity of a condition on Re. However, computationally the condition seems to
be a little bit less restrictive, namely to be of the kind Re ε2 ≤ C, see Section 7.

We now state our analytical results on the stability up to the boundary of the
corrected primary flow, under the above mentioned smallness assumption.

Theorem 6.1. Let u0 ∈ H be given, 0 < ε ≤ 1/2 and 1 ≤ Re ≤ 1
ε

√
4/3. Then

the following estimate holds for any weak solution u and for a.e. t > 0:

|||u(t) − ũ||| ≤ |||u0 − ũ||| exp
(
− t

2Re ε2

)
+ C Re ε2.
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For the shear strain we have the bound

1
t

t∫
0

‖∂3(uH(s) − ũ)‖2ds ≤ 2Re ε2

t
|||u0 − ũ|||2 + C Re2ε4

for all t > 0. In the above estimates the constants C are independent of ε and Re.

Remark 6.2. If we scale back to the original domain Ωε, and if we still denote
the original scale velocity by u, we obtain the relative error

‖u(t) − ũ‖L2(Ωε)

‖ũ‖L2(Ωε)
≤ ‖u0 − ũ‖L2(Ωε)

‖ũ‖L2(Ωε)
exp

(
− t

2Re ε2

)
+ C Re ε2.

The error consists of two parts, the first one decreasing exponentially with a
relaxation time proportional to Re ε2, the second part does not vanish because ũ
is not a solution of Navier–Stokes equations.

Now, due to the specific shape of the boundary corrector, we are able to obtain
the same estimates for the primary flow in a vicinity of the cone apex.

Theorem 6.3. Let u0 ∈ H be given, 0 < ε ≤ 1/2, 0 < r0 < 1 and 1 ≤ Re ≤
1
ε

√
4
3
. Then the following estimate holds for any weak solution u and for a.e.

t > 0:

|||u(t) − ū|||Ωr0
≤ |||u0 − ũ||| exp

(
− t

2Re ε2

)
+ C Re ε2.

For the shear strain we have the bound

1
t

t∫
0

‖∂3uH(s) − eθ‖2
Ωr0

ds ≤ 2Re ε2

t
|||u0 − ũ|||2 + C Re2ε4

for all t > 0. In the above estimates the constants C = C(r0) are independent of
ε and Re.

Proof. The statement is a direct consequence of Theorem 6.1, the triangle inequal-
ity and Lemma 5.4 iii), iv) respectively. Note that we have made the assumption
Re ≥ 1, which is the “bad” case of large Reynolds numbers. �

This last result explains why the primary flow is a good approximation of the
true solution in the vicinity of the cone apex, when Re ε2 is small enough, according
to physical experiments [9] and it explains also why the CPA device can be used
as a viscometer.

Proof of Theorem 6.1. The basic idea of the proof is to take advantage of the very

high vertical diffusion terms which predominates due to the factor
1

Re ε2
� 1. We
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start with the energy inequality iii) of Definition 5.7: For a.e. t > 0

|||v(t)|||2+
1

Re

t∫
0

{
|||∇Hv|||2+

1
ε2
|||∂3v|||2

}
≤

t∫
0

{
l(v)+(v·∇vH , ũ)

}
+|||u0−ũ|||2.

(6.1)
The terms (ũ · ∇vH ,vH), ε2(ũ · ∇v3, v3), (v · ∇vH ,vH) and ε2(v · ∇v3, v3) vanish
because both v and ũ are divergence-free and v is zero on the boundary.

The right-hand side of (6.1) was already estimated in the proof of Lemma 5.5.
Thus we conclude the following energy estimate in the distributional sense:

1
2

d

dt
|||v|||2 +

1
Re

(‖∇HvH‖2 + ε2‖∇Hv3‖2) +
1

Re ε2
(‖∂3vH‖2 + ε2‖∂3v3‖2)

≤ C3‖vH‖ + ‖vH‖ · ‖∇HvH‖ + ‖v3‖ · ‖∂3vH‖ (6.2)

with C3 = C1
Re + C2, the constants C1, C2 as in Lemma 5.5.

The last two terms on the right-hand side of (6.2) can be estimated by Young’s
inequality, the vertical Poincaré inequality which for this particular domain reads
‖w‖ ≤ 1/

√
2‖∂3w‖ for w ∈ V, and the condition Re ε ≤ √

4/3:

‖vH‖ · ‖∇HvH‖ ≤ 1
Re

‖∇HvH‖2 +
Re

4
‖vH‖2

≤ 1
Re

‖∇HvH‖2 +
Re

8
‖∂3vH‖2

≤ 1
Re

‖∇HvH‖2 +
1

6Re ε2
‖∂3vH‖2 (6.3)

and

‖v3‖ · ‖∂3vH‖ ≤ 1
3Re ε2

‖∂3vH‖2 +
3Re ε2

4
‖v3‖2

≤ 1
3Re ε2

‖∂3vH‖2 +
3Re ε2

8
‖∂3v3‖2

≤ 1
3Re ε2

‖∂3vH‖2 +
1

2Re
‖∂3v3‖2. (6.4)

Absorbing the quadratic terms (6.3), (6.4) on the left-hand side of (6.2) and
then throwing away the terms with horizontal gradients we arrive at

d

dt
|||v|||2 +

1
Re ε2

(‖∂3vH‖2 + ε2‖∂3v3‖2
)

≤ 2C3‖vH‖ ≤ 1
Re ε2

‖vH‖2 + C2
3Re ε2. (6.5)

Using again the vertical Poincaré inequality in (6.5) yields

d

dt
|||v|||2 +

1
Re ε2

|||v|||2 ≤ C2
3Re ε2, (6.6)
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With the help of Gronwall’s Lemma we conclude

|||v(t)|||2 ≤ |||u0 − ũ|||2 exp
( −t

Re ε2

)
+ C2

3Re2 ε4.

The estimate for the shear stress is now a direct consequence of the above bounds:
From (6.5) we can derive in the same way

d

dt
|||v|||2 +

1
2Re ε2

|||∂3v|||2 ≤ C2
3Re ε2.

Integrating this relation with respect to time from 0 to t and using the estimate
for |||v(t)||| we get the stated result. This completes the proof of Theorem 6.1. �

7. Numerical simulations

In this section we present some numerical results to study the behavior of the
solution and compare with the estimates of the analysis.
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Re=100

Fig. 7.1. |||u − ū|||Ωr0
versus ε, r0 = 0.5; the triangle has slope 2.

Since for small Reynolds numbers there is a unique stationary limit which in
turn is axisymmetric it is convenient to numerically solve for axisymmetric solu-
tions of problem (2.3a)–(2.3e). To this end we use the axisymmetric version [13]
of the method and the implementation described in [1, 2]. The code is based on
a finite element discretization by the Taylor–Hood element in space and by a vari-
ant of the fractional step θ-scheme, an operator splitting for time discretization.
The axisymmetric code solves for the unknowns (us(r, x3), uβ(r, x3), u3(r, x3)) and
p(r, x3), where us := ur

r , uβ := uθ

r . This scaling allows for a proper variational for-
mulation of the axisymmetric Navier–Stokes equation in appropriately r-weighted
Sobolev spaces, see also [8].
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Fig. 7.2. |||u − ū|||Ωr0
versus Re, r0 = 0.5; the triangle has slope 1.
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Fig. 7.3. |||u − ū|||Ωr0
versus Re ε2, r0 = 0.5; the triangle has slope 1.

Fig. 7.4. Level lines of uθ (left) and meridional flow (ur, ε u3) (right); ε = 0.1, Re = 100,
‖(ur, ε u3)‖∞ = 0.589 e-2 (scale of x2-axis exaggerated).
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Fig. 7.5. Level lines of uθ (left) and meridional flow (ur, ε u3) (right); ε = 0.1, Re = 5000,
‖(ur, ε u3)‖∞ = 0.133 (scale of x2-axis exaggerated).

Fig. 7.6. Level lines of uθ (left) and meridional flow (ur, ε u3) (right); ε = 0.1, Re = 15000,
‖(ur, ε u3)‖∞ = 0.126 (scale of x2-axis exaggerated).

The numerical examples were carried out on a sequence of successively refined
meshes to make sure that the discretization error is sufficiently small.

We performed simulations for all

(Re, ε)∈{100, 200, 500, 1000, 5000, 10000, 15000}×{0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4}.
The time evolution was run until a steady state was reached. Figures 7.1–

7.3 show the difference of the stationary limit for u to the primary flow ū with
respect to ε, Re and Re ε2, respectively. The numerical results confirm the estimate
of Theorem 6.3 very well. From Figure 7.3 it can be seen that the behavior is
determined by the single parameter Re ε2. Figures 7.4–7.6 show the stationary
solution on an axisymmetric cut of Ω for fixed ε = 0.1 and different values of Re.
Clearly the influence of increasing Re on the secondary flow can be seen.

A closer quantitative analysis of the data in Figures 7.1–7.3 suggests that the
“threshold”, for which the decay of the error in terms of Re ε2 is linear, is given
by a condition like Re ε2 ≤ C, C ≈ 150. This is somewhat in contrast to the
assumption made for the analysis, namely that Re ε has to be small, which is a
little bit more restrictive.
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