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Abstract. These notes are both an introduction to and a survey on Chern-Simons
theory for 3-manifolds. In particular, we describe the rigidity properties and the
critical points of the Chern-Simons action (the flat connections) and we construct
the Chern-Simons line bundle over the moduli spaces of flat connections over closed
surfaces. In the case of gauge group PSL(2,C) we develop the applications to the
symplectic geometry of these moduli spaces, three-dimensional hyperbolic geometry,
and volumes of holonomy representations of 3-manifolds. By recalling the derivation
of the Chern-Simons 3-forms from Chern-Weil theory, we also describe explicit sim-
plicial formulas of the Chern-Simons action of flat connections which were obtained
recently. We conclude with the quantization of Chern-Simons theory for PSL(2,C):
we discuss the status of the Reshetikhin-Turaev TQFT on this problem, and, by using
elementary geometric tools and known results of Teichmüller theory, we reconstruct
both the full classical Chern-Simons theory developed previously (thus providing a
kind of axiomatic definition for it), and its quantizations based on the non restricted
quantum group Uεsl(2,C) at roots of unity.
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1. Foreword

These notes grew out of lectures given at the Scuola di dottorato Galileo Galilei, Uni-
versita’ di Pisa, Italy, in February 2009. The goal was to provide a self-contained
treatment of various aspects of three dimensional Chern-Simons theory.

Loosely speaking, three dimensional Chern-Simons theory is the theory of an integral,
called Chern-Simons action, of some “characteristic” differential form defined over the
spaces of connections on 3-manifolds with values in a fixed Lie algebra. This integral
was introduced (in any dimension) in the seminal paper of S-S. Chern and J. Simons
[CS]. It produces very powerful invariants of 3-manifolds which have many applications
to their geometry and topology, and is also at the heart of the geometric understanding
of the three dimensional quantum field theories based on the combinatorics of repre-
sentations of quantum groups, which describe fundamental algebraic structures specific
to knots, surfaces and 3-manifolds.

To fullfill the aim of this note would require at least to develop, on one hand, the gauge-
theoretic aspects of the Chern-Simons action and of the Chern-Simons line bundle,
which is defined over the moduli spaces of flat connections on closed surfaces, and, on
another hand, the homological interpretation of the Chern-Simons action as a secondary
characteristic class for flat connections. We have tried to do both, clarifying as far as
possible their relationships as well as providing the tools for understanding (if not
working with) the more recent results. We hope this has been successful in particular
regarding the simplicial formulas of the Chern-Simons action for flat (P )SL(2,C)-
connections and their quantization via quantum groups. We provide new results in
this area. We do not consider the gauge theoretic aspects of Chern-Simons theory for
3-manifolds with corners, which relies on the Wess-Zumino-Witten (1+1)-dimensional
conformal field theory for surfaces with boundary and is developed in [Fr], because we
will be able to recover it by using the simplicial formulas.

In Section 3 and 5 we define the Chern-Simons action and the Chern-Simons line bundle
via gauge theory, following T.R. Ramadas - I.M. Singer - J. Weitsman [RSW], S. Freed
[Fr], and P. Kirk and E. Klassen [KK] approach. We give applications, in particular
to hyperbolic geometry, and develop the relationships with the volumes of holonomy
representations of 3-manifolds in Section 4 and 7. We pay a particular attention to
variation formulas for cusped hyperbolic manifolds. Chern-Simons theory gives a very
powerful unifying framework to deal with all these objects. In this direction, perhaps
the most fundamental results are due to T. Yoshida [Yo], J.L. Dupont [Du1], C.D.
Hogdson [Ho] and W. Neumann [Ne0, Ne1]. We describe also in detail the complex
symplectic structure on the moduli space of flat sl(2,C)-connections on surfaces in
terms of the Chern-Simons connection. This symplectic structure extends the one
defined by M. Atiyah and R. Bott [AB] in the case of flat su(2)-connections, as well as
the Weil-Petersson symplectic structure on Teichmüller space [Go1, Go2].
A purely topological reformulation of the Chern-Simons line bundle is given in Section
6. It serves mainly as an introduction to both the applications given in Section 7, and
to the results of the following sections.
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In Section 8 and 9 we change our way, and construct the simplicial formulas of Dupont
and Neumann for the Chern-Simons action of flat sl(2,C)-connections on closed 3-
manifolds. In order to make their results accessible we have included some elements
of Chern-Weil theory and Cheeger-Chern-Simons secondary characteristic classes. Our
main tools are [CS], [Du0]; the reader may also consult the general references [MiSt]
and [Mo1, Mo2]. Then we present the original approach of Dupont and Neumann,
which relies on the study of the cohomology of the classifying space BPSL(2,C)δ,
where PSL(2,C) is given the discrete topology ([Du1], [Ne1]). We also give a new
direct derivation of these simplicial formulas, based on a careful analysis of the integral
of the Chern-Simons 3-form over 3-simplices. This new derivation is interesting on its
own, as it may be regarded as the basic building block for quantization, and allows to
understand the Chern-Simons action of flat connections on manifolds with boundary
in the spirit of combinatorial field theories.

In the last section we consider quantum Chern-Simons theories. After a brief presen-
tation of what has been done on the side of global geometric quantization, we present
a certain number of results which we believe have notably clarified some of the rela-
tionships between the “classical” Chern-Simons theory and the combinatorially defined
quantum field theories for SL(2,C).
First we consider the deformation quantization of SL(2,C)-characters via skein theory
and the Kauffman bracket.
Then we define the quantization of the simplicial formulas of the Chern-Simons action,
based on the representation theory of the quantum group Uεsl(2,C) at roots of unity,
and developed by the author with R. Benedetti in [BB] and subsequent papers.

Finally we show how essentially the same constructions can be applied to reconstruct
completely the classical Chern-Simons theory described in the previous sections by
using only “elementary” geometric means.

There is an extensive litterature on Chern-Simons theory. Good introductions to the
subject and other developpments can be found eg. in the books of E. Guadagnini [Ga]
and T. Kohno [Ko].

2. Preliminaries: bundles and connections

For the material in this section, see eg. [Du0], [Na] or [Mo1].

Principal bundles. All manifolds, maps, actions, etc are assumed to be smooth. Let
G be a Lie group, and P , X manifolds. A principal G-bundle is a map π : P → X,
where G acts freely on P on the right, and the quotient P/G is diffeomorphic to X.
We denote the action of g by p 7→ p · g.
For all x ∈ X and p ∈ Px = π−1(x), we have a diffeomorphism commuting with the
right G actions

(1)
Φp : G −→ Px

g 7−→ p · g.
If p′ = p · g′, then Φ−1

p ◦Φp′ = L′g, the left translation on G by g′. Hence the collection
of maps Φp identifies TpPx with the set of vectors fields on G invariant under left
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translation, that is, the Lie algebra g of G. In fact

(2)
dΦp : g −→ TpPx

a 7−→ (Xa)p

where for all f : P → R the vector field Xa is given by

dfp(Xa) =
d

dt

(
f(p · eta))

t=0

Since the projection map π : P → X is a submersion, a principal G bundle is locally
trivial: for any sufficiently small open set Ui in X we can construct local sections
si : Ui → P by lifting linearly independendent vector fields on Ui and considering their
flows. Then, for any such a section we have a trivialization

(3)
τi : Ui ×G −→ π−1(Ui)

(x, g) 7−→ si(x) · g
If Ui ∩ Uj 6= ∅ we get

(4) τ−1
j ◦ τi : (x, g) 7−→ (x, gi,j(x)g)

The map gi,j : Ui ∩ Uj → G is called a transition function of P . Note that transition
functions act on the fiber on the left and commute with the right G-action. Clearly, the
bundle π can be reconstructed from the transitions functions associated to any open
covering of X by open sets Ui with sections si as above.

Connections. A connection on P is a subbundle HP of TP which at any point p ∈ P
is a complement in TpP to the tangent space TpPx of the fiber, and is equivariant in
the sense that

(5) Rg∗HpP = Hp·gP.

We call HpP the horizontal subspace of TpP , and vectors in TpPx are called vertical.
We say that a path γ in P is horizontal if γ′(t) ∈ Hγ(t)P for all t.
A connection can be equivalently defined as a one-form w ∈ T ∗P ⊗ g such that

w(Xa) = a(6)

R∗gw = Adg−1w(7)

where the vertical vector field Xa is defined in (2), and Ad is the adjoint action of G,
which applies here to the values in g of w. Then HpP = Ker(wp), and wp is the parallel
projection on TpPx followed by the identification with g.
The equation (6) means that the restriction i∗xw of w to the fibers, where ix : Px ↪→ P is
the inclusion, can be identified with the Maurer-Cartan form θ on G, which is defined
by:

(8)
θg : TgG −→ g

X 7−→ Lg−1∗X.

For a matrix group G the Maurer-Cartan form can be written as follows:

(9) θ = g−1dg

where g means the matrix of coordinate functions on G.
In fact, if we fix an isomorphism Φp as in (1), for any a ∈ g = TeG we have
(Φ∗

pi
∗
xw)e(a) = a = θ(a). Since Φp commutes with the right G action, by (7) and
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the obvious R∗gθ = Adg−1θ, this equality extends to any tangent vector of G (obtained
as Rg∗a from some a ∈ g). Since the change of Φp to Φp′ is by left translation on G,
and θ is left invariant, this identification of i∗xw with θ does not depend on the choice
of Φp.
The equations (6)-(7) are affine and convex. Hence connections on P can be defined
by using a partition of unity to patch local connections (which obviously exist). Also,
the set of connections of P is an affine subspace AP of A1

P (g), the g-valued one-forms
on P .

Curvature. The curvature of w is the g-valued 2-form on P given by

Ω(X1, X2) = dω(XH
1 , X

H
2 ) = −ω([XH

1 , X
H
2 ]).

We can extend the usual exterior product to g-valued differential forms on P just by
tensoring the coefficients:

(10) · ∧ · : AkP (g)⊗ AlP (g) −→ Ak+lP (g⊗ g).

Then, by taking the Lie bracket of coefficients we obtain a map

[· ∧ ·] : AkP (g)⊗ AlP (g) −→ Ak+lP (g)

which is explicitly given by

[ζ ∧ η] (X1, . . . , Xk+l) =
∑

σ∈Sk+l
ε(σ)

[
ζ(Xσ(1), . . . , Xσ(k)), η(Xσ(k+1), . . . , Xσ(k+l))

]
.

For instance if ζ ∈ A1
P (g) we have

(11) [ζ ∧ ζ] (X, Y ) = 2 [ζ(X), ζ(Y )] .

If G is a matrix group the Lie bracket of g is the commutator of matrices, so that
(1/2) [· ∧ ·] is sometimes denoted by ∧ (hence “ζ ∧ ζ(X, Y )” is used for [ζ(X) ∧ ζ(Y )]).
We will not use this notation as we observed it often leads to confusions.

Connections on P satisfy the Cartan structure equation

(12) Ω = dw +
1

2
[w ∧ w]

and the Bianchi identity

(13) dΩ + [w ∧ Ω] = 0

Exercise 1. Prove these identities :
1. For (12) decompose vector fields into horizontal and vertical components. Re-
member that w associates a constant value in g to any vertical field, and show, using
Rg∗HpP = Hp·gP , that [X1, X2] is horizontal if X1 is horizontal and X2 vertical.
2. For (13) take the exterior derivative of (12), and use the identity

(14) [[w ∧ w] ∧ w] = 0.

which follows from the Jacobi identity for the Lie bracket of g.

The Maurer-Cartan form (which can be interpreted as a connection on the bundle
G→ {pt}) satisfies also the Cartan structure equation with vanishing curvature:

(15) dθ = −1

2
[θ ∧ θ] .
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This is easily deduced from (11) and

dθ(X1, X2) = X1.θ(X2)−X2.θ(X1)− θ([X1, X2]) = −θ([X1, X2]) = − [θ(X1), θ(X2)] ,

where X1 and X2 are left invariant, so that X1.θ(X2) and X2.θ(X1) vanish.

Gauge transformations. By definition, a map of principal G-bundles ϕ : P ′ → P
commutes with the G-actions. If moreover the baseX andX ′ are equal and the induced
map ϕ̄ : X ′ → X is the identity, we say that ϕ is a morphism.
An automorphism, or gauge transformation, is a morphism ϕ : P → P from P to itself.
Then there exists a map gϕ : P → G such that

ϕ(p) = p · gϕ(p).
If ϕ : P ′ → P is a bundle map and w a connection on P , then ϕ∗w is a connection on
P ′. In particular, the group of gauge transformations acts on the right on the space of
connections AP .
Let us derive this action explicitly. Let γ be a path in P , γ(0) = p and γ′(0) = V . If
ϕ is a gauge transformation, then

ϕ∗V =
d

dt
(γ(t) · gϕ(γ(t))t=0

=
d

dt
(γ(t) · gϕ(γ(0))t=0 +

d

dt
(γ(0) · gϕ(γ(t))t=0

= Rgϕ(p)∗V +
d

dt

(
p · gϕ(p)g−1

ϕ (p)gϕ(γ(t))
)
t=0

= Rgϕ(p)∗V + ϕ(p) · g∗ϕθ(V )

where θ is, as usual, the Maurer-Cartan form (see (9)), and the second term means the
infinitesimal action of g∗ϕθ(V ) ∈ g on ϕ(p). By evaluating with w we deduce

(16) ϕ∗w = Adg−1
ϕ
w + g∗ϕθ.

The “correction” term g∗ϕθ takes care of the contribution of horizontal vector fields (see
(20)). The curvature has a very different behaviour, since it transforms as a tensor.
Indeed,

ϕ∗Ω(Y, Z) = dw((Rgϕ∗Y )H , (Rgϕ∗Z)H)
= dw(Rgϕ∗(Y

H), Rgϕ∗(Z
H))

= dR∗gϕw(Y H , ZH)

= dAdg−1
ϕ
w(Y H , ZH)

= Adg−1
ϕ
dw(Y H , ZH).

Hence

(17) ϕ∗Ω = Adg−1
ϕ

Ω.

We will comment on this property of Ω when considering associated bundles.

Let us derive two consequences of (16).

First, represent w locally as Ai = s∗iw ∈ A1
Ui

(g), with (Ui, si) as in (3), and similarly
for (Uj, sj). We have sj = sigij, where gij : Ui ∩ Uj → P is the transition function.
Then, by taking ϕ = gij we deduce from (16) that

(18) Aj = Adg−1
ij
Ai + g∗ijθ.
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This is the local compatibility relation required to define a connection by patching local
g-valued one forms on the sets Ui. In the particular case of a line bundle, by writing
the transition functions as gij(p) = exp(−χij(p) ∈ U(1), (18) reads

(19) Aj = Ai − dχij(p).

Second, suppose that γ is a path in P and ϕ(γ) = γ · gϕ(γ) is horizontal. Then, by
applying (16) to the tangent vectors to γ we get

(20)
d

dt
(gϕ(γ(t)))t=0 = −wγ(0)(γ

′(0))gϕ(γ(t)).

This is an ordinary linear differential equation, with a unique solution for each initial
condition gϕ(γ(0)) ∈ G. Hence, for any path γ̄ in X and any point p ∈ Pγ̄(0) there is a
unique horizontal path through p lifting γ̄.
The geometric meaning of this solution is the following. Since the flow of (20) depends
only on the projection γ̄ = π(γ) it defines a map between fibers

(21) PTγ̄ : Pγ̄(0) −→ Pγ̄(1)

which associates to p0 ∈ Pγ̄(0) the unique point p1 ∈ Pγ̄(1) contained in the horizontal
lift γ̃ of γ̄ passing through p0. To compute explicitly that point, we have to fix a gauge
(ie. a section over γ̄), which is just an arbitrary lift γ of γ̄, as we did above. Then,
with the same notations,

p0 = γ(0) · gϕ(γ(0)) , p1 = γ(1) · gϕ(γ(1)),

and the points γ̃(t) of the horizontal lift through p0 are given by

(22) γ(t) · exp

(
−

∫ t

0

wγ(t)(γ
′(t))dt

)
.

We call PTγ̄ the parallel transport, and gϕ (or ϕ) a horizontal or parallel gauge trans-
formation.

Exercise 2. Show that:
1. Parallel transport commutes with the right G-action: PTγ̄ ◦ Rg = Rg ◦ PTγ̄.
(Hint: show that for any two horizontal lifts γ̃1 and γ̃2 of a same path γ̄ in X we have
γ̃1 = γ̃2 · g for some fixed g ∈ G.)
2. A gauge transformation ϕ : P → P is parallel if and only if it is an automor-
phism of the connection: ϕ∗w = w. In particular, if X is connected a parallel gauge
transformation is the identity at some point of P if and only if it is the identity.

Covariant derivatives and associated bundles. Let V be k-dimensional vector
space with a faithful linear representation ρ of G. Let us write ρ as an action on the
left (hence ρ(g)(v) = g · v).
Define the bundle associated to (P and) ρ as

(23) PV = P × V/
(
(p, v) ∼ (p · g, g−1 · v)) .

This is a k-dimensional vector bundle, denoted P ×ρ V , with projection πV given by
πV [(p, v)] = π(p), and transition functions given by the action of those of P : at any
point p ∈ π−1(Ui ∩ Uj) 6= ∅ we have

τ−1
j ◦ τi : [(p, v)] 7−→ [(p · gij, v)] = [(p, gij · v].
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Hence the principal bundle π can be recovered uniquely from its associated vector
bundles.

The counterpart of connections in this context are the covariant derivatives. Take a
small path γ in X, and set x = γ(0) and ζ = γ′(0). For any section s of PV we can
write

s(γ(t)) = [(γ̃(t), η(t))]

for some horizontal lift γ̃ of γ, by properly choosing the representatives in the class.
Then

(24) (∇ζs)x := [(γ̃(0),
d

dt
(η(t))t=0)].

By Exercise 2 this is clearly independent of the choice of a horizontal lift. The rela-
tion with the connection w on P comes from the characterization of parallel sections.
Namely, let σ : U → P be a local section such that

(25) s(γ(t)) = [(σ(γ(t)), η)]

with η a constant vector. Hence σ(γ) = γ̃ · g−1
ϕ (γ) for some gϕ : U → G. We have

(∇ζs)x = [(γ̃(0),
d

dt

(
g−1
ϕ (γ(t))

)
t=0

· η)]
= [(γ̃(0),−g−1

ϕ (γ(0))
d

dt
(gϕ(γ(t)))t=0 g

−1
ϕ (γ(0)) · η)]

= [σ(x), wx(σ∗ζ) · η)].
Here we use (20). If we choose a local frame over U , ie. a basis of sections si with
linearly independent vectors ηi in (25), for any local section s(x) = [(σ(x), f i(x)ηi)] we
get

(26) (∇ζs)x = [σ(x), df ix(ζ)ηi + f i(x)wx(σ∗ζ) · ηi)].
As a consequence, the covariant derivative ∇ on PV and the connection w on P are
equivalent objects.
In general we will identify the image of a section with its component in the fiber. Then
we say that a section is horizontal, or parallel, when the above differential expression
vanishes, and we write (∇ζs)x = 0. Parallel sections map paths in X to horizontal
lifts.

Denote by AkX(PV ) the space of k-forms on PV , also called V -valued differential forms
on X. Locally they are given by tensor products µ⊗ s, where µ is a k-form on X and
s is a section of PV . In particular A0

X(PV ) is the space of sections of PV , and we can
rewrite equation (26) as

∇ζs = (df i ⊗ ηi + f i ⊗ w · ηi)(ζ) = (ds+ w · s)(ζ)
where s = f i ⊗ ηi ∈ A0

X(PV ) in the local trivialization σ : U → P . Hence ∇ = d + w·
defines a map ∇0 : A0

X(PV ) → A1
X(PV ). It extends naturally to a map

∇k : AkX(PV ) → Ak+1
X (PV )

via the Leibniz rule

∇k(µ⊗ s) = dµ⊗ s+ (−1)kµ ∧∇0s, µ ∈ AkX(PV ).
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We can recover the curvature as follows. Assume without loss of generality that the
section s is constant. Then

∇k+1∇k(µ⊗ s) = ∇k+1(dµ⊗ s+ (−1)kµ ∧∇0s)

= (−1)k+1dµ ∧∇0s+ (−1)kdµ ∧∇0s+ µ ∧∇1∇0s

= µ ∧∇1(w · s)
= µ ∧ (dw · s− w ∧ (w · s)).

By using (11) and the fact that G acts on the right on P and on the left on V (see eg.
the computation of (∇ζs)x above), it is readily check that

−w ∧ (w · s)(U, V ) = [w(U), w(V )] · s = (1/2) [w ∧ w] (U, V ) · s.
We deduce the following counterpart of Cartan’s equation

(27) ∇k+1∇k(µ⊗ s) = µ ∧ (Ω · s).
On another hand,

(dw · s− w ∧ (w · s))(U, V ) = (U.w(V )) · s− (V.w(U)) · s− w([U, V ]) · s−
−w(U) · (w(V ) · s) + w(V ) · (w(U) · s)

= ∇0
U(w(V ) · s)−∇0

V (w(U) · s)−∇0
[U,V ]s

= ∇0
U∇0

V s−∇0
V∇0

Us−∇0
[U,V ]s

thus recovering the usual formula for the curvature.

A main example of associated bundle is the Adjoint bundle Pg = P ×Ad g, where G
acts on g via the adjoint action. By (26) the covariant derivative is

(28) ∇ = d+ ad(w).

Also, recall that by the definition of the curvature Ω and by (17) we have

(29)
i∗xΩ = 0
ϕ∗Ω = Adg−1

ϕ
w.

These properties show that Ω descends to a two-form on Pg.

3. The Chern-Simons action

In the course of the construction of the Chern-Simons action we will make three as-
sumptions, two on the group G and one the manifold X.

Hypothesis 1. There exists a bilinear symmetric Ad-invariant form

(30) 〈·, ·〉 : g× g → C.

Recall that the Ad-invariance means 〈Adga,Adgb〉 = 〈a, b〉 for all g ∈ G, and that it
implies the ad-invariance 〈[c, a] , b〉 = −〈a, [c, b]〉 for all c ∈ g. We will identify 〈·, ·〉
with an element 〈·〉 ∈ S2(g∗), the second symmetric power of g∗, thus writing 〈a ⊗ b〉
for 〈a, b〉. The main example is the multiples of the Killing form for semi-simple Lie
groups. The case of SL(2,C) is detailed below.

Definition 3.1. The Chern-Simons 3-form of the connection w is

α(w) = 〈w ∧ Ω〉 − 1

6
〈w ∧ [w ∧ w]〉 = 〈w ∧ dw +

1

3
w ∧ [w ∧ w]〉 ∈ A3

P (C).
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Several comments are in order. First, recall the wedge product of g-valued forms (see
(10)). We define 〈w ∧ Ω〉 by applying 〈·〉 ∈ S2(g∗) to the coefficients of w ∧ Ω, and so
on. Hence α(w) is a genuine complex valued 3-form on P .

The origin of α(w) will be explained in Section 8. As shows the next proposition, it is a
primitive of a tensor in the curvature, which we will interpret as the Chern-Weil 4-form
associated to 〈·〉 and representing a characteristic class of P in De Rham cohomology.
We also give the behaviour under gauge transformations.

Proposition 3.2. The following holds:

(1) dα(w) = 〈Ω ∧ Ω〉;
(2) Denote as usual by θ the Maurer-Cartan form. If ϕ : P → P is a gauge

transformation acting on fibers via gϕ : P → G, then

ϕ∗α(w) = α(w) + d〈Adg−1
ϕ
w ∧ g∗ϕθ〉 −

1

6
g∗ϕ〈θ ∧ [θ ∧ θ]〉.

Proof. The proof is by direct computation. We have

dα(w) = 〈dw ∧ Ω〉 − 〈w ∧ dΩ〉 − 1

6
(〈dw ∧ [w ∧ w]〉 − 〈w ∧ d [w ∧ w]〉) .

By the Leibniz rule and the commutation rule [ζ ∧ η] = (−1)kk
′+1 [η ∧ ζ], where ζ and

η are forms of degree k and k′, and the ad-invariance and the symmetry of 〈·〉, we get

〈w ∧ d [w ∧ w]〉 = −2〈w ∧ [w ∧ dw] = 2〈[w ∧ w] ∧ dw〉 = 2〈dw ∧ [w ∧ w]〉.
Then, using Cartan (6) and Bianchi (13),

dα(w) = 〈(Ω− 1

2
[w ∧ w]) ∧ Ω〉+ 〈w ∧ [w ∧ Ω]〉 − 1

2
〈(Ω− 1

2
[w ∧ w]) ∧ [w ∧ w]〉.

The ad-invariance and the Jacobi identity (14) imply 〈[w ∧ w]∧ [w ∧ w]〉 = 0. The first
result then follows from 〈w ∧ [w ∧ Ω]〉 = 〈[w ∧ w] ∧ Ω〉.
Let us prove (2). Put φ = g∗ϕθ, the pull-back of the Maurer-Cartan form. Ad-invariance
and (16) yield

ϕ∗〈w ∧ Ω〉 = 〈(Adg−1
ϕ
w + φ) ∧ Adg−1

ϕ
Ω〉 = 〈w ∧ Ω〉+ 〈φ ∧ Adg−1

ϕ
Ω〉.

Also, using Ad- and ad-invariance, and the commutation rule of [· ∧ ·] we get

ϕ∗〈w ∧ [w ∧ w]〉 = 〈(Adg−1
ϕ
w + φ) ∧

[
(Adg−1

ϕ
w + φ) ∧ (Adg−1

ϕ
w + φ)

]
〉

= 〈w ∧ [w ∧ w]〉+ 〈φ ∧ [φ ∧ φ]〉+ 3〈Adg−1
ϕ
w ∧ [φ ∧ φ]〉+

+3〈φ ∧
[
Adg−1

ϕ
w ∧ Adg−1

ϕ
w

]
〉.

Gathering terms we deduce

ϕ∗α(w) = 〈w ∧ Ω〉 − 1

6
〈w ∧ [w ∧ w]〉

− 1

2
〈Adg−1

ϕ
w ∧ [φ ∧ φ]〉 − 1

2
〈φ ∧

[
Adg−1

ϕ
w ∧ Adg−1

ϕ
w

]
〉

− 1

6
〈φ ∧ [φ ∧ φ]〉+ 〈φ ∧ Adg−1

ϕ
Ω〉.
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Now, Cartan’s equation (12) gives

〈φ ∧ Adg−1
ϕ

Ω〉 = 〈φ ∧ Adg−1
ϕ
dw〉+

1

2
〈φ ∧ Adg−1

ϕ
[w ∧ w]〉

= 〈Adg−1
ϕ
dw ∧ φ〉+

1

2
〈φ ∧ Adg−1

ϕ
[w ∧ w]〉

= d〈Adg−1
ϕ
w ∧ φ〉 − 〈Adg−1

ϕ
w ∧ dφ〉+

1

2
〈φ ∧ Adg−1

ϕ
[w ∧ w]〉.

Recall that φ is a pull-back of the Maurer-Cartan form, and thus satisfies (15). Then
we see that the last two terms cancel those in the second line of the computation of
ϕ∗α(w) above. This achieves the proof. 2

Remark 3.3. Since i∗xΩ = 0, where ix : Px ↪→ P is the inclusion, the pull-back of the
Chern-Simons 3-form to the fibers is

i∗xα(w) = g∗ϕ〈θ ∧ [θ ∧ θ]〉.
By arguments similar to those used in the proof above we can check very easily that it
is closed:

d〈θ ∧ [θ ∧ θ]〉 = 3〈dθ ∧ [θ ∧ θ]〉 = −3

2
〈[θ ∧ θ] ∧ [θ ∧ θ]〉 =

3

2
〈θ ∧ [θ ∧ [θ ∧ θ]] = 0.

where we use, in particular, the ad-invariance and the Jacobi identity (14). Alterna-
tively, this results from i∗xdα(w) = i∗x〈Ω ∧ Ω〉 = 0 (Ω is horizontal).

Recall that a principal G-bundle π : Q→ Y is trivial when it admits a global section.
Then a trivialization is given by

s̃ : Y ×G −→ Q
(x, g) 7−→ s(x) · g

Obstructions to finding a section are homotopic, since once a continuous sections exists
it can be smoothed within a same homotopy class. The following result is standard,
and comes by taking a cellulation of Y and trying to define a section of Q skeleton by
skeleton (we use also that π2(G) = 0 always holds true).

Lemma 3.4. If Y is a compact orientable manifold of dimension ≤ 3, and the homo-
topy groups π0(G) and π1(G) are trivial, then Q admits a global section.

We shall meet situations where we allow G = SO(3) or PSL(2,C), which have π1 equal
to Z/2; by the way we will only make the following assumption:

Hypothesis 2. The manifold X is a compact oriented manifold of dimension three,
and the principal G-bundle π : P → X is trivial.

Hence for G = SO(3) or PSL(2,C) we will assume that the second Stiefel-Whitney
characteristic class of π is zero. What is important is that the lemma shows that the
following definition makes sense in a great variety of situations, for instance for all
semi-simple Lie groups.

Definition 3.5. Let s : X → P be a global section. The Chern-Simons invariant of w
and s is

(31) SX(w, s) =

∫

X

s∗α(w).
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We call
SX : AP × Γ(P ) −→ C

(w, s) 7−→ SX(w, s)

the Chern-Simons action.

An immediate consequence of Proposition 3.2 is the behaviour under a change of sec-
tion:

Proposition 3.6. Let ϕ : P → P is a gauge transformation acting on fibers via
gϕ : P → G. Denote g = gϕ ◦ s : X → G and φg = g∗θ. We have

SX(w,ϕ ◦ s) = SX(ϕ∗w, s)

= SX(w, s) +

∫

∂X

〈Adg−1s∗w ∧ φg〉+

∫

X

−1

6
〈φg ∧ [φg ∧ φg]〉.

Recall from Remark 3.3 that the form 〈θ∧[θ ∧ θ]〉 ∈ A3
G(C) is closed. Then it represents

a class in the cohomology group H3(G;R). We now make our last assumption, which is
about the normalization of the form 〈·〉 (a multiple of the Killing form for semi-simple
Lie groups):

Hypothesis 3. The class −(1/6) [〈θ ∧ [θ ∧ θ]〉] ∈ H3
G(C) is integral, that is, it is the

image of a class in H3(G;Z) under the natural inclusion.

Corollary 3.7. The Chern-Simons action is a smooth function of connections and
satisfies (we use the notations of Proposition 3.6):

(1) If X has no boundary, then

SX(w) = SX(w, s) mod(1)

is a well-defined invariant of (X,w) independent of s. Hence

SX : AP/G → C/Z
well defines a smooth map1 on the set AP of connections on P up to the action
of the group G of gauge transformations.

(2) If ∂X 6= ∅, then the Wess-Zumino-Witten functional

W∂X(∂g) =

∫

X

−1

6
〈φg ∧ [φg ∧ φg]〉 mod(1)

depends only on the restriction ∂g of g : X → G to ∂X.

Proof. The smoothness of SX(w, s) follows from the smoothness of α(w) with respect to
w. Consider the first claim. Recall that dα(w) = 〈Ω∧Ω〉 (Proposition 3.2(1)). Because
of (29) and Ad-invariance, this forms descends on X. Since X has dimension three,
it is zero. Hence dα(w) is closed, so that SX(w, s) does not change under homotopies
of s. To conclude, we note that using the trivialization defined by s to identify P
with X × G, any other section s′ appears as a map s̄′ : X → G. Thus, the image
of the fundamental class (s∗ − s′∗) [X] ∈ H3(P ;Z) reduces to a class in H3(G;Z) (this
class may also be identified in the Künneth formula of H3(P ;Z) ∼= H3(X × G;Z)).

1Some (non generic) connections have non trivial isotropy groups in G, so that the space AP /G
has orbifold points. In fact it has even non-Haussdorff points corresponding to open orbits when G is
non-compact (see Section 5 and 6). We will check smoothness away from such singularities.
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From Hypothesis 3 and the fact that i∗xα(w) = 〈θ ∧ [θ ∧ θ]〉 (Remark 3.3), we deduce
SX(w, s)− SX(w, s′) ∈ Z.
Alternatively, and perhaps more simply, by Hypothesis 3 the class − [〈θ ∧ [θ ∧ θ]〉] /6
pulls back via g to an integral class on X, so that its integral over X is an integer.
We conclude by using the fact that any two sections of P are related by a gauge
transformation.
For the second claim, assume g′ : X ′ → G coincides with g under an orientation
reversing diffeomorphism ∂X ∼= ∂X ′. Glue X to X ′ along their boundaries by using
this diffeomorphism, and consider the induced map g̃ : g∪∂ g′ : X ∪∂X ′ → G. We have

W∂X(g)−W∂X′(g
′) =

∫

X−X′
−1

6
〈φg̃ ∧ [φg̃ ∧ φg̃]〉.

By the first claim, this is an integer. 2

Hence the behaviour of the Chern-Simons action of manifolds with boundary under
gauge transformations can be controlled along the boundary. This will be the main
ingredient of the construction of the Chern-Simons line bundle.

From Proposition 3.2 and Stockes’ theorem, in the case of closed manifolds we also
derive the following alternative definition of the Chern-Simons action in terms of Chern-
Weil forms:

Proposition 3.8. Let P → W be a principal G-bundle with connection w over a
compact oriented 4-manifold W . Denote the curvature of w by Ω, and ∂w the restriction
to the boundary. Then

S∂W (∂w) =

∫

W

〈Ω ∧ Ω〉 mod(1).

Example: the metric Chern-Simons invariant. Let (X3, g) be a riemannian mani-
fold, and∇g : TX → T ∗X⊗TX the Levi-Civita connection. The bundle with covariant
derivative (TX,∇g) is associated to a principal SO(3)-bundle, the frame bundle F (X),

with a connection ∇̃g (see Section 2). It is a classical result that any closed orientable
manifold is parallelizable, that is, has a trivial tangent bundle. Hence F (X) is trivial;
this justifies his name: it can be identified with the bundle of frames of X by letting
elements of SO(3) act on a fixed frame at some point of X. Below we describe the
Ad-invariant form on so(3). Hence we can define a Chern-Simons invariant (the factor
1/2 is put in agreement with [CS])

(32) SX(g) :=
1

2
SX(∇̃g).

Theorem 3.9. (Chern-Simons [CS]) SX(g) is an invariant of the conformal class of
g. If (X, g) admits a global conformal immersion in R4 then SX(g) = 0 mod(1).

In particular, RP 3 ∼= SO(3) with its standard riemannian metric gs cannot be con-
formally immersed in R4, although it is locally conformally flat. This follows from a
computation similar to that given at the end of Proposition 3.13 below, which identifies
the Chern-Simons form of ∇̃g with−1/π2 times the volume form of SO(3) ⊂ PSL(2,C)
(see Remark 3.14). Hence

SRP 3(gs) =
1

2
mod(1).
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We refer to the paper of Chern and Simons for more on this.

The case of SL(2,C) and SU(2): volumes and the Killing form. Recall that the
Lie algebra sl(2,C) of trace-free 2× 2-matrices is generated over C by

h =

(
1 0
0 −1

)
, e =

(
0 1
0 0

)
, f =

(
0 0
1 0

)

satisfying the relations

[h, e] = 2e , [h, f ] = −2f , [e, f ] = h.

Up to scalar multiples the Killing form K is the unique Ad-invariant symmetric bilinear
form on sl(2,C). By definition it is given by

K(a, b) = Trace(ada ◦ adb) = −4Trace(ab) ∀a, b ∈ sl(2,C)

where ada : sl(2,C) → sl(2,C) is the endomorphism induced by the adjoint action of
a, and similarly for b. On the right-hand side, however, a and b stand for their matrix
representatives in the fundamental representation given above. The equality between
the traces is easily checked. Hence we can set

〈a⊗ b〉 =
k

8π2
K(a, b), k ∈ C.

Let us compute which values of k are admissible for the Integrality Hypothesis 3. In
the basis (h, e, f) the Killing form reads

K(h,e,f) =



−8 0 0

0 0 −4
0 −4 0


 .

Denote by h∗, e∗ and f ∗ the complex left-invariant 1-forms associated to h, e and f
(that is, dual to them at the identity). The Maurer-Cartan form of SL(2,C) reads

θ = h⊗ h∗ + e⊗ e∗ + f ⊗ e∗.

Then
−(1/6)〈θ ∧ [θ ∧ θ]〉 = −(1/6) · 6〈h⊗ [e, f ]〉h∗ ∧ e∗ ∧ f ∗

=
k

π2
h∗ ∧ e∗ ∧ f ∗.

We get very similar results with the real Lie algebras su(2) and so(3). Recall that
su(2) can be represented as the Lie algebra of trace free 2×2-skew-hermitian matrices.
Under multiplication2 by −i we can take as generators the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)

with the Lie bracket [a, b] = i(ab− ba). We have the relations

(33) [σ1, σ2] = −2σ3 , [σ2, σ3] = −2σ1 , [σ3, σ1] = −2σ2.

2this choice yields real valued SU(2) Chern-Simons invariants.
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Since su(2) is a Lie subalgebra of sl(2,C), the above Killing form restricts to define a
real-valued ad-invariant symmetric bilinear form. In the basis (σ1, σ2, σ3) it is −4 times
the identity. Thus, expanding as above the Maurer-Cartan form of SU(2) we find

(34)
−(1/6)〈θ ∧ [θ ∧ θ]〉 = −〈σ1 ⊗ [σ2, σ3]〉σ∗1 ∧ σ∗2 ∧ σ∗3

= − k

π2
σ∗1 ∧ σ∗2 ∧ σ∗3.

Consider now the Lie algebra so(3). It has the standard basis (A12, A13, A23) given in
(42); the linear map defined by (A12, A13, A23) 7→ (σ1/2, σ2/2, σ3/2) provides an isomor-
phism with su(2). The Killing form of so(3) is the trace. Computing Trace(A2

12) = −2
we get

(35) −(1/6)〈θ ∧ [θ ∧ θ]〉 = − k

4π2
A∗12 ∧ A∗13 ∧ A∗23.

Equations (34)-(35) are volume forms; since V ol(SU(2)) = 2π2, for k = 1 the former
is minus the pull-back of the standard volume form on SO(3) by the two-fold regular
covering SU(2) → SO(3). Because SL(2,C) (resp. PSL(2,C)) is homotopy equivalent
to SU(2) (resp. PSU(2) ∼= SO(3)) we deduce:

Lemma 3.10. Let g = sl(2,C) or g = su(2), identified with their fundamental
representations as matrix Lie algebras. Any Ad-invariant symmetric bilinear form
〈·, ·〉 : g× g → C satisfying Hypothesis 3 is of the form

〈a⊗ b〉 = − k

2π2
Trace(ab)

where k ∈ Z [1/2] if G = SL(2,C) or SU(2), and k ∈ Z if G = PSL(2,C). For
g = so(3) we have

〈a⊗ b〉 =
k

8π2
Trace(ab), k ∈ 4Z.

Remark 3.11. The integer k is usually called the level. Besides providing a unified
treatment of the normalization, it is used to rescale the symplectic structure on moduli
spaces of flat connections on surfaces, that we will derive from the Chern-Simons action
in Section 5. This will be crucial for quantization.

Remark 3.12. The normalization k = 1 for G = SL(2,C) or g = SU(2) is −4 times
the one derived from Chern-Weil theory (see Section 8). For G = SO(3) and the
Riemannian Chern-Simons invariant (32), the standard normalization is k = 1/2.

Exercise 3. Check that for a closed manifold and G = SL(2,C) or SU(2), the integral∫

X

−1

6
〈φg ∧ [φg ∧ φg]〉 is the degree of the map g : X → G (see Proposition 3.6).

In the complex case the decomposition into real and imaginary parts also make the
connection with volumes:

Proposition 3.13. Denote by volH the volume form of the hyperbolic 3-space, and ∇̃H
the Levi-Civita connection on its frame bundle F (H) = PSL(2,C). We have:

(i/π2)h∗ ∧ e∗ ∧ f ∗ = (1/π2)volH + dγ + iα(∇̃H)

where γ is an (explicit) real 2-form.
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Proof. First we will identify explicitly PSL(2,C) with the frame bundle F (H) by fixing
a point in H and considering the action of PSL(2,C) ∼= Isom+(H). Then we will
compute the standard left invariant basis of vector fields on PSL(2,C) (considered
as a real manifold) in terms of the pull-backs of a moving frame and the Levi-Civita
connection on H under the identification PSL(2,C) ∼= F (H). Finally we will put the
result in the Chern-Simons 3-form to obtain the result.
Let us take the Poincaré upper half space model of H. It is realized as the subspace of
the quaternions

R〈1, i, j, k〉 =

{(
z t
−t̄ z̄

)
, z, t ∈ C

}

where the complex coordinate t is real, and t > 0. Here we use the standard basis

1 :=

(
1 0
0 1

)
, i :=

(
i 0
0 −i

)
, j :=

(
0 1

−1 0

)
, k :=

(
0 i
i 0

)
.

Hence
H = {z + tj | z = x+ yi, x, y ∈ R, t > 0} ∈M2(C)

with the usual metric ds2 = (dx2 +dy2 +dt2)/t2. The action of PSL(2,C) = Aut(CP1)
by Moëbius transformations on the boundary at infinity CP1 = ∂∞H extends to the
isometric action on H via the Poincaré extension. It is given by

γ · ζ = (aζ + b)(cζ + d)−1

=
1

det(cζ + d)

(
(az + b)(cz + d) + ac̄t+ tj

)
(36)

where γ = ±
(
a b
c d

)
∈ PSL(2,C) and ζ = z+tj ∈ H. Here we denote by · the action

by Poincaré extension, and on the right hand side the operations of multiplication and
taking the inverse are the matrix ones, inherited from the quaternions. For instance,
if γ · z = λz + µ, then γ · ζ = λz + µ+ |λ|tj, and if γ · z = 1/z̄, then γ · ζ = ζdet(ζ)−1.
Then the map

(37)
π : PSL(2,C) −→ H

γ 7−→ γ · j
is a principal fibration; the structure group is the isotropy subgroup at j, which from
(36) is computed as PSU(2) ∼= SO(3). By considering the action on the standard
orthonormal frame at j we get the bundle automorphism

PSL(2,C) −→ F (H)
γ 7−→ (γ · j, γ∗(∂/∂x, ∂/∂y, ∂/∂t)j).

Now recall the standard basis vectors h, e, f of the complex Lie algebra sl(2,C). Let
us denote them by hC, eC, fC, and write h, e, f , ih, ie, if the corresponding basis of
sl(2,C) over R. By using (36) we easily compute that for any u ∈ R we have

euh/2 · j = euj

eu(e+f) · j =

(
cosh(u) sinh(u)
sinh(u) cosh(u)

)
· j =

sinh(2u) + j

cosh(2u)

eu(ie−if) · j =

(
cosh(u) i sinh(u)

−i sinh(u) cosh(u)

)
· j =

2i sinh(2u) + j

cosh(2u)
.
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Hence

d

du

(
euh/2 · j)

u=0
= j ,

d

du

(
eu(e+f) · j)

u=0
= 2 ,

d

du

(
eu(ie−if) · j)

u=0
= 2i

which implies, by using the fibration π in (37),

(38) dπe∗(h/2) = (∂/∂t)j , dπe∗(e+ f) = 2(∂/∂x)j , dπe∗(ie− if) = 2(∂/∂y)j.

Denote by θ = {θi} the fundamental form (or moving frame) of the riemannian connec-
tion on H dual to (∂/∂t, ∂/∂x, ∂/∂y)j at j, and h∗, e∗, f ∗, (ih)∗, (ie)∗, (if)∗ the basis
of left-invariant (real) vector fields on PSL(2,C) associated to the basis h, e, f , ih, ie,
if of sl(2,C)R. Since both basis are left-invariant under the left action of PSL(2,C),
from (38) we deduce

(39) π∗θ1 = 2h∗ = 2σ∗3 , π∗θ2 = e∗ + f ∗ = σ∗1 , π∗θ3 = (ie)∗ − (if)∗ = −σ∗2
where we denote by σi the Pauli matrices. In fact, remember the polar decomposition
diffeomorphism PSL(2,C) ∼= H × SO(3), where H denotes the set of stricly positive
2 × 2-hermitian matrices with unit determinant. The fibration π identifies H with
H. Its tangent space at the identity is TidH = R〈σ1, σ2, σ3〉, the set of trace free
2 × 2-hermitian matrices. Since SU(2) is the space of quaternions of unit norm (ie.
determinant 1), we have also su(2) = TidSU(2) = R〈i, j, k〉, the orthogonal complement
to the identity, which is the same as R〈iσ3, iσ2, iσ1〉 = iTidH. Hence (39) just identifies
the (dual of the) first summand of the isomorphism of tangent spaces sl(2,C)(h,e,f) =R
TidH(σ3,σ2,σ1) ⊕R su(2)(i,j,k) (the factor 2 in f ∗θ1 = 2h∗ = 2σ∗3 is because the map
SU(2) → SO(3) is degree two). This discussion gives an alternative argument to the
above computation.
Next consider the Levi-Civita connection (θij) ∈ A1

H(so(3)). It is characterized by the
torsion-free condition

(40) dθi +
3∑
j=1

θij ∧ θj = 0

which consequently completely determines (π∗θij). For instance, by evaluating on left-
invariant vector fields X and Y we have an identity

−(e∗ + f ∗)([X,Y ]) = −π∗θ2([X,Y ]) = π∗dθ2(X, Y )

= (−π∗θ23 ∧ π∗θ3 − π∗θ21 ∧ π∗θ1)(X, Y ).

Proceeding in the same way for the two other dθi we get a linear system which, by
using (39) and letting X and Y span a basis dual to h∗, . . ., (if)∗, is solved by

(41) π∗θ12 = e∗ − f ∗ , π∗θ13 = (ie)∗ + (if)∗ , π∗θ23 = −2(ih)∗.

By comparing with (39) and decomposing into real and imaginary parts as h∗C =
h∗ + i(ih)∗ etc, we eventually get

h∗C =
1

2
π∗(θ1 − iθ23) , e∗C =

1

2
π∗((θ2 + θ12) + i(θ3 + θ13))

f ∗C =
1

2
π∗((θ2 − θ12)− i(θ3 − θ13)).
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Let us now compute the Chern-Simons 3-form. By inserting these expressions into
h∗C ∧ e∗C ∧ f ∗C we find that this complex valued 3-form has real part

Re(h∗C ∧ e∗C ∧ f ∗C) =
1

4
(θ12 ∧ θ13 ∧ θ23 − θ1 ∧ θ2 ∧ θ12 − θ2 ∧ θ3 ∧ θ23 − θ1 ∧ θ3 ∧ θ13)

and imaginary part

Im(h∗C ∧ e∗C ∧ f ∗C) =
1

4
(−θ1 ∧ θ2 ∧ θ3 + θ2 ∧ θ12 ∧ θ23 + θ1 ∧ θ12 ∧ θ13 + θ3 ∧ θ13 ∧ θ23).

Since H a constant curvature −1, the riemannian curvature two-form is Ωij = −θi ∧
θj. Hence Cartan’s structure equation read as dθij = −Σk=1,2,3θik ∧ θkj − θi ∧ θj. A
straightforward computation then gives

d(θ1 ∧ θ23) + d(θ2 ∧ θ31) + d(θ3 ∧ θ12) =

3θ1 ∧ θ2 ∧ θ3 + θ2 ∧ θ12 ∧ θ23 + θ3 ∧ θ13 ∧ θ23 + θ1 ∧ θ12 ∧ θ13.

Note that volH = θ1 ∧ θ2 ∧ θ3. Hence

i

π2
h∗C ∧ e∗C ∧ f ∗C =

1

π2
volH − 1

4π2
d(θ1 ∧ θ23 + θ2 ∧ θ31 + θ3 ∧ θ12)+

+
i

4π2
(θ12 ∧ θ13 ∧ θ23 − θ1 ∧ θ2 ∧ θ12 − θ2 ∧ θ3 ∧ θ23 − θ1 ∧ θ3 ∧ θ13).

We are left to identify the imaginary part. Consider the standard basis of so(3), given
by

(42) A12 =




0 1 0
−1 0 0

0 0 0


 , A13 =




0 0 1
0 0 0

−1 0 0


 , A23 =




0 0 0
0 0 1
0 −1 0


 .

It satisfies the relations

[A12, A13] = −A23 , [A12, A23] = A13 , [A13, A23] = −A12.

By Lemma 3.10 and Remark 3.12 the normalized bracket is 〈A⊗B〉 = Trace(AB)/8π2.
Moreover, Ωij = −θi ∧ θj implies that the so(3)-components of Ω12, Ω13 and Ω23 are
−A13, A23 and −A12 (remember that the θi are dual to (∂/∂t, ∂/∂x, ∂/∂y)j in this
order, and that these have coefficients A12, A23 and A13). From equation (40) we see
that the so(3)-components of θ12, θ13 and θ23 are A13, −A23 and A12. Hence denoting
by θ the connection matrix (θij) of F (H) and similarly for its curvature Ω we find

〈θ ∧ Ω〉 = (1/4π2)(θ12 ∧ Ω12 + θ13 ∧ Ω13 + θ23 ∧ Ω23).

Also, using (11) we get

[θ ∧ θ] = 4A12 ⊗ (θ12 ∧ θ13) + 4A23 ⊗ (θ12 ∧ θ23) + 4A13 ⊗ (θ13 ∧ θ23)

and similarly

θ ∧ [θ ∧ θ] = 4(A⊗2
12 + A⊗2

13 + A⊗2
23 )⊗ (θ12 ∧ θ13 ∧ θ23).

Hence

〈θ ∧ [θ ∧ θ]〉 =
4

16π2
Trace(A2

12 + A2
13 + A2

23)θ12 ∧ θ13 ∧ θ23 = − 3

2π2
θ12 ∧ θ13 ∧ θ23
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and finally

α(θ) = 〈θ ∧ Ω〉 − 1

6
〈θ ∧ [θ ∧ θ]〉

= (1/4π2)(θ12 ∧ Ω12 + θ13 ∧ Ω13 + θ23 ∧ Ω23 + θ12 ∧ θ13 ∧ θ23)

= Im

(
i

π2
h∗C ∧ e∗C ∧ f ∗C

)
.(43)

This concludes the proof. 2

Remark 3.14. By similar computations it is readily checked that the formula

α(θ) = (1/4π2)(θ12 ∧ Ω12 + θ13 ∧ Ω13 + θ23 ∧ Ω23 + θ12 ∧ θ13 ∧ θ23)

holds true for the Levi-Civita connection θ of any Riemannian 3-manifold.

4. Rigidity and volumes of representations

Recall that the space AP of connections on P is an affine subspace of A1
P (g), and that

the Chern-Simons action is a smooth function on AP . Next we are going to compute
the derivative of SX .
Note that by (6)-(7), a tangent vector ẇ to AP satisfies

(44)
i∗xẇ = 0
R∗gẇ = Adg−1ẇ.

Hence, as for the curvature (see (29)) we see that ẇ is a one-form on the adjoint bundle
Pg.

Proposition 4.1. Let wt be a smooth path of connections on P which restricts to a

fixed connection over ∂X. Denote by w = w0, ẇ =
d

dt
(wt)t=0, and Ω the curvature of

w. Then, for any section p of π : P → X we have

d

dt
(SX(wt, p))t=0 = 2

∫

X

p∗〈Ω ∧ ẇ〉.

Proof. Consider the cylinder [0, t] × X. In case X has boundary, smooth the corners
{0} × ∂X and {1} × ∂X. The path of connections ws on P , with s ∈ [0, t], forms
a single connection w· on the pull-back of the bundle π : P → X by the projection
[0, t]×X → X.
Denote by Ωs the curvature of w· at time s, and Ω(s) the curvature of the connection
ws on P at time s. Then

Ωs = d(w·)s +
1

2
[ws ∧ ws]

= dws + ds ∧ d

ds
(ws) +

1

2
[ws ∧ ws]

= Ω(s) + ds ∧ d

ds
(ws).

Let us write p̃ the pull-back section to the cylinder. Because w· is constant over ∂X
we have

S[0,t]×∂X(w·, p̃) =

∫

[0,t]×∂X
p̃∗α(w·) = 0.
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Hence, using Proposition 3.2(1) we get

SX(wt, p)− SX(w0, p) =

∫

∂([0,t]×X)

p∗α(w·)

=

∫

[0,t]×X
p̃∗〈Ωs ∧ Ωs〉

= 2

∫

[0,t]×X
p̃∗〈Ω(s) ∧ ds ∧ d

ds
(ws)〉

= 2

∫ t

0

∫

X

p∗〈Ω(s) ∧ d

ds
(ws)〉.

The result follows by differentiating at t = 0. 2

Corollary 4.2. The Chern-Simons action is constant along any path rel(∂) of flat
connections, that is, connections with curvature Ω = 0.

Similarly as in the proof of Proposition 4.1, by using dα(w) = 〈Ω ∧ Ω〉 we get:

Proposition 4.3. Let W be a compact oriented 4-manifold with boundary X0∪ (∂X0×
[0, 1]) ∪ (−X1), and P → W a trivial principal G-bundle with a flat connection w and
a section s. Denote by wi, si the restrictions of w and s to Xi.
If the restriction of s∗w to the cylinder ∂X0 × [0, 1] has no dt component, then

SX0(w0, s0) = SX1(w1, s1).

We say that the Chern-Simons action is an invariant of flat cobordism rel(∂).

This result applies in particular when W = [0, 1] ×X and X has no boundary. Then
it says that the Chern-Simons action is rigid under continuous deformations of (gauge
equivalence classes of) connections on X. To see this we use the next lemma (note that
it holds true in any dimension).

Lemma 4.4. Let Q → Y be a G-bundle over a manifold Y , and w a connection on
the pull-back bundle [0,∞) ×Q→ [0,∞) × Y to the cylinder over Y .
(i) There exists a unique gauge transformation ϕ of [0,∞) ×Q such that ϕ|{0}×Q = id
and ϕ∗w has no dt component. Hence ϕ∗w defines a path ηt of connections over Y .
(ii) If moreover the curvature of w vanishes then the path ηt is constant.
(iii) As a consequence, for any any pseudo-isotopy ψ : [0, 1]× Y → [0, 1]× Y and any
flat connection η on Q→ Y , the connections ψ∗0η and ψ∗1η are gauge equivalent.

Since [0,∞) is contractible any bundle P → [0,∞) × Y is isomorphic to [0,∞) ×
Q, where Q is the restriction of P to {0} × Y . Hence the lemma says that, up to
gauge equivalence, connections over cylinders are paths of connections on a boundary
component, and that flat connections correspond to constant paths. That is, denoting
by G the group of gauge transformations, we have an identification

AP/G = Map([0,∞) ,AQ)/G.
Moreover, denoting spaces of gauge equivalence classes of flat connections by M, we
have

M[0,∞)×Y ∼= MY .



CHERN SIMONS THEORY IN DIMENSION THREE 21

In particular, a section s such that s∗w satisfies the hypothesis of Proposition 4.3 is
the composition of a section id× s′, s′ : Y → Q, and a gauge transformation as in the
lemma. Such sections s are called temporal gauges.

Proof. Denote by gt : Q → G the map associated to ϕ|{t}×Q, and φt = g∗tw. We can
write w as

w = ηt + ζtdt, t ∈ [0,∞) , ηt ∈ A1
Q(g), ζt ∈ A0

Q(g).

From equation (16) we see that ϕ∗w(∂/∂t) = 0 if and only if

Adg−1
t
ζt + φt(

∂

∂t
) = 0.

This is a first order ordinary differential equation, with a unique solution such that
g0 = id.

The curvature Ω of ϕ∗w = ηt at time s is Ωs = Ω(s) + ds ∧ d

ds
(ηs), where Ω(s) is the

curvature of ηs (see Proposition 4.1). If the curvature of w vanishes, then so does Ω.

Hence ds ∧ d

ds
(ηs) = 0, which implies that ηt is constant.

Take w as the pull-back of η. Since w does not depend on t and η is flat, w is flat.
Consider the connection ψ∗w on [0, 1]×Q. By (i)-(ii) there is a gauge transformation
ϕ such that ϕ∗ψ∗w is a constant path of connections on Q, and ϕ0 = id. Hence
ψ∗0η = ϕ∗0ψ

∗
0w = ϕ∗1ψ

∗
1w = ϕ∗1ψ

∗
1η. 2

Proposition 4.3 shows the fundamental topological nature of flat connections. Note
that the identity ϕ∗Ω = Rg∗Ω implies that flat connections make an invariant subset
of AP under gauge transformations.
The next proposition singles out some characterizations of this space. First we need a
definition.

Definition 4.5. The trivial connection on a trivial product bundle U ×G→ U is the
pull-back of the Maurer-Cartan form by the projection proj2 : U ×G→ G:

θ(x,g) = (Lg−1 ◦ proj2)(x,g)∗.

For any trivial principal G-bundle π : P → U and any trivialization τ : P → U × G,
we call τ ∗θ the trivial connection of π (induced by the trivialization).
For an arbitrary principal G-bundle we say that a connection is flat if its curvature
vanishes.

Exercise 4. Show that the trivial connection on a trivial principal G-bundle P → U
with trivialization τ : P → U ×G is the pull-back of the Maurer-Cartan connection on
the G-bundle over a point:

E
proj2◦τ //

²²

G

²²

U // {pt}.
Proposition 4.6. Let π : P → X be a principal G-bundle over a connected manifold
X, and w a connection on P . The followings are equivalent:

(1) w is a flat connection (ie. Ω = 0);
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(2) the horizontal distribution HP is integrable;
(3) for each point of x there is a neighborhood U of x and a trivialization of π|π−1(U)

such that the restriction of w to π−1(U) is the trivial connection;
(4) there is a covering of X by open sets Ui such that π|π−1(Ui) is trivial, the tran-

sition functions gij : Ui ∩ Uj → G are constant, and w agrees with the trivial
connection on π|π−1(Ui).

(5) The parallel transport defines a conjugacy class of holonomy representations

ρ : π1(X, x) −→ G

which determine the gauge equivalence class of w uniquely.

Hence, denoting by G the group of gauge transformations and

MX = {w ∈ AP |Ω = 0}/G,
we have a natural identification of sets

MX = Hom(π1(X, x), G)/G.

Since holonomy representations are well-defined up to conjugacy we often omit the
base point x when writing π1(X, x).

Proof. By its very definition Ω vanishes if and only the Lie bracket of horizontal vectors
fields is horizontal. Hence equivalence of (1) and (2) is Frobenius’ integrability theorem,
which asserts that HP defines a foliation F with tangeant space HpP at each point
p ∈ P . That (3) implies (1) is a consequence of Cartan’s structure equation (15) for
the Maurer-Cartan form, which holds true also for the trivial connections of product
bundles and hence implies they have vanishing curvature.
Next we prove (1) ⇒ (3). Fix p ∈ P and put x = π(p). Since dπp : HpP → TxX is
an isomorphism we can find a neighborhood V of p in the leaf F through p such that
π|V : V → U is a diffeomorphism. Denote by s = π−1

|V : U → V the inverse section of

π|π−1(U). Hence π|π−1(U) is trivial, with trivialization

τ : U ×G −→ π−1(U)
(y, g) 7−→ s(y) · g.

For any g ∈ G and q ∈ V we know that (see (5))

Ty·gV = Hy·gP = Rg∗HpP = Rg∗TyV.

Hence w and the trivial connection on π|π−1(U) define the same horizontal subspaces in

π−1(U), and therefore coincide.
Assume now that (3) holds true, and let Ui and Uj be two open sets as above, with
Ui∩Uj 6= ∅ and trivialisations τi and τj. The map τij = τ−1

j ◦ τi : (Ui∩Uj)×G→ (Ui∩
Uj)×G preserves the trivial connection. Hence it permutes the leaves of the horizontal
foliation. This implies for all x ∈ Ui ∩ Uj and g ∈ G we have τij(x, g) = (xgijg) for
some constant gij ∈ G (see Exercise 2 (1)). In other words, the transition functions
are constant over Ui ∩ Uj.
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Conversely, assume (4). With the same notations as above, we have a commutative
diagram of bundle maps

(Ui ∩ Uj)×G
τij //

proj2

²²

(Ui ∩ Uj)×G

proj2

²²
G

Lgij // G.

Since the Maurer-Cartan form θ on G is left-invariant we have τ ∗ijproj
∗
2θ = proj∗2θ.

Hence the trivial connections agree on π−1(Ui ∩ Uj), and we can glue them to define
the connection w on P , which necessarily has vanishing curvature.
We conclude with (1) ⇔ (5). For each point p ∈ Px and each loop γ : [0, 1] → X based
at x the parallel transport defines a map

ρx,p : γ 7−→ g−1, γ̃p(1) = p · g
where γ̃p is the horizontal lift of γ through p. When Ω = 0 we can consider the
restriction π|Fp : Fp → X of the bundle projection to the horizontal leaf Fp through p.
Since dπp : HpP → TxX is an isomorphism, π|Fp is a covering. In particular, any two
homotopic loops on X based at x lift to paths in Fp having the same endpoints. Hence
ρx,p gives the same value to homotopic loops.

Let α, β be two loops based at x and denote by α̃, β̃ their horizontal lifts starting at

p. Since the lift of β starting at α̃(1) = p · ρx,p(α)−1 is β̃ · ρx,p(α)−1, the lift α̃β of αβ

starting at p is α̃β̃ · ρx,p(α)−1. Hence

p · ρx,p(αβ)−1 = α̃β(1) = p · ρx,p(β)−1ρx,p(α)−1 = p · (ρx,p(α)ρx,p(β))−1.

This shows that ρx,p is a homomorphism. Exercise 2(1) implies that the conjugacy class
of ρx,p does not depend on the choice of p in Px, and ρx,p is deformed isomorphically
when we move p in a horizontal leaf (hence moving the base point x of loops in X).
Since any gauge transformation ϕ conjugates the values of ρx,p by gϕ(p)

−1, we deduce
that the gauge equivalence class [w] defines a holonomy

[ρ] ∈ Hom(π1(X, x), G)/G

represented by the maps ρx,p, where the action of G is by conjugation.
Finally we prove that [ρ] determines the gauge equivalence class of w completely. When
X is simply connected the covering π|Fp is a diffeomorphism. Hence the section π−1

|Fp
defines a trivialization P ∼= X×G, which is an isomorphism of bundles with connections
(ie. an isomorphism of flat bundles, see the proof of (1) ⇒ (3) above) when X ×G has
the trivial connection.
For an arbitrary X we consider the pull-back bundle P̃ → X̃ defined by the commu-
tative diagram

P̃
c̃ov //

π̃
²²

P

π

²²
X̃

cov // X

where X̃ → X the universal covering map. We have just seen that there is an isomor-
phism of flat bundles ϕ̃ : P̃ → X̃ ×G. To state this isomorphism explicitely let us use
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the following model of X̃:

X̃ = {γ : [0, 1] → X | γ(1) = x0}/homotopy rel(∂)

where x0 ∈ X is our base point. The covering map is cov([γ]) = γ(0), and the (right)
action of π1(X) on X̃ by deck transformations is ([γ] , α) 7→ [γα]. By definition we
have

P̃ = {([γ] , p) ∈ X̃ × P | π(p) = cov([γ]) = γ(0)}.
Fix a base point p0 ∈ Px0 . Then

ϕ̃ : P̃ −→ X̃ ×G
([γ] , p) 7−→ ([γ] , g[γ](p))

where for each point p ∈ P we set p = γ̃(0) · g[γ](p), and γ̃ is the horizontal lift of γ

such that γ̃(1) = p0. Under this isomorphism the action of π1(X) on P̃ reads

([γ]α, p) 7−→ ([γ]α, g[γ]α(p)).

Since the right action of α on [γ] induces the parallel transport along the lifts of α−1

we have
p = γ̃(0) · g[γ](p) = γ̃(0)ρ(α) · g[γ]α(p).

Hence g[γ]α(p) = ρ(α)−1g[γ](p). This proves that the action of π1(X) on X̃ lifts to

P̃ ∼= X̃ ×G as follows:

(X̃ ×G)× π1(X) −→ X̃ ×G
(([γ] , g), α) 7−→ ([γ]α, ρ(α)−1g).

The isomorphism ϕ̃ thus descends to an isomorphism of flat bundles

ϕ : P → X̃ ×ρ G

where X̃ ×ρG is the quotient of X̃ ×G by the above (free) action of π1(X). Note that

the bundle projection πρ : X̃ ×ρ G → X is given by πρ([([γ] , g)]) = γ(0), and the flat

connection on X̃ ×ρG is induced from the trivial one on X̃ ×G, which is left-invariant
and so passes to the quotient.
Since any two isomorphisms ϕ as above (ie. corresponding to different choices of
base points x0 and p0) are related by a gauge transformation, the conjugacy class [ρ]
determines the gauge equivalence class [w] uniquely. 2

This proposition has the following striking consequence. Recall the form

−(1/6)〈θ ∧ [θ ∧ θ]〉 ∈ A3
G(C).

Since it is left-invariant, the pull-back via the projection proj2 : X̃ ×G→ G descends
to a 3-form on X̃ ×ρ G, which is just the Chern-Simons 3-form for the canonical flat

connection induced by the trivial one on X̃ ×G. We denote it by −(1/6)〈θ ∧ [θ ∧ θ]〉.
Corollary 4.7. For any closed manifold X and gauge equivalence class [w] of flat
connection w on π : P → X we have

SX([w]) =

∫

X

−(1/6)s∗〈θ ∧ [θ ∧ θ]〉

where s : X → P is an arbitrary section.
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Proof. This is a direct consequence of the existence of an isomorphism of bundles
ϕ : P → X̃×ρG described in Proposition 4.6(5). Such isomorphisms are non canonical,
but since SX does not depend on the choice of section for closed manifolds it is invariant
under gauge transformations.
Alternatively, by proposition 4.6(4) the Chern-Simons 3-form α(w) agrees locally with
α(θi) over each trivializing set Ui, where θi is the trivial connection on π|π−1(Ui) induced

by the trivialization τi : π−1(Ui) → Ui ×G. By Remark 3.3 we have

α(θi) = τ ∗i proj
∗
i,2(−(1/6)〈θ ∧ [θ ∧ θ])

where proji,2 : Ũi ×G→ G. Hence α(w) coincides with −(1/6)〈θ ∧ [θ ∧ θ]〉. 2

We have seen in Section 3 that for G = (P )SL(2,C) or G = (P )SU(2) the form
−(1/6)〈θ ∧ [θ ∧ θ]〉 can be interpreted as a normalized volume form, or a complex
extension of it. So, for flat connections w it is natural to look for an interpretation of
SX(w) as a kind of volume twisted by the choice of w.

First a general definition. Let X be a closed manifold with holonomy representation
ρ : π1(X) → G. Assume that G acts transitively and faithfully on the left by isometries
on a 3-dimensional riemannian manifold F with volume form vF . Consider the F -
bundle P ×ρ F → X associated to the flat G-bundle πρ : P = X̃ ×ρ G → X. It is

isomorphic to πF : X̃×ρF → X since both have the same holonomy. Since πρ is trivial,

so is πF . In fact, for any section s : X → X̃ ×ρ G and any point f0 ∈ F we have a
trivialization

P ×ρ F −→ X × F
[(s(x)g, f0)] 7−→ (x, g · f0).

Denote by vF the 3-form on X̃×ρF obtained by pulling-back vF via proj2 : X̃×F → F ,

and then projecting down to X̃ ×ρ F by using invariance under the action of G by
isometries.

Definition 4.8. The vF -volume of ρ associated to a section s : X → X̃ ×ρ F is the
integral

V ol(ρ, s) =

∫

X

s∗vF .

In general V ol(ρ, s) depends on s. If F is contractible, for instance when F = H is
the hyperbolic 3-space and G = PSL(2,C) is identified with the group of orientation
preserving isometries of H, then any two sections of πF are homotopic, so that V ol(ρ) =
V ol(ρ, s) is independent of s. When G = SU(2) acts on F = S3 with the spherical
metric, then V ol(ρ) = V ol(ρ, s) is well-defined mod(1). In fact Corollary 4.7 just
says that the Chern-Simons action of flat su(2)-connections is this spherical volume of
representations.
Here is the analog for G = PSL(2,C) ∼= Isom+(H). Recall that fixing a frame over a
point of H identifies its frame bundle F (H) with PSL(2,C). Given any representation
ρ : π1(X) → PSL(2,C) we can construct a pseudo-developing map D̄ : X̃ → H such
that D̄(γ · x̃) = ρ(γ)D̄(x̃) for all γ ∈ π1(X), x̃ ∈ X̃. This map is well-defined up
to post-composition by an hyperbolic isometry, and can be obtained by fixing a chart
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Ui → H arbitrarily, and then proceeding by analytic continuation to develop X̃ in H
using the transition functions of the bundle X̃×ρH. This yields a map of frame bundles

D : F (X̃) → F (H) = PSL(2,C).

Let ∇̃H be the Levi-Civita connection of F (H). Since ρ acts by isometries on H, the
pull-back D∗∇̃H descends to a connection ∇ρ

H on the frame bundle F (X). On another
hand, on bases D̄∗volH descends to a volume form on X.
When X is hyperbolic it is identified with a quotient H/Γ, where Γ is a discrete
subgroup of PSL(2,C). Then ρ maps π1(X) to a conjugate of Γ in PSL(2,C), and
D is an isometric diffeomorphism. We call such a ρ a hyperbolic holonomy. Under
the identification of X̃ with H the above connection ∇ρ

H is just the usual Levi-Civita
connection on the frame bundle, and D∗volH the volume form of X.

Proposition 4.9. For any closed manifold X and any gauge equivalence class [w] of
flat sl(2,C)-connection w on π : P → X with holonomy representation ρ : π1(X) →
PSL(2,C), we have

SX([w]) = SX(∇ρ
H)− i

π2
V ol(ρ).

In particular, when (X, g) is hyperbolic and ρ is the hyperbolic holonomy we have

SX([w]) = SX(g)− i

π2
V ol(X)

where V ol(X) is the volume of X and SX(g) its metric Chern-Simons invariant.

Proof. Consider the projection r : X̃ × PSL(2,C) → PSL(2,C). By Proposition
3.13, the Chern-Simons 3-form for the trivial connection on the product bundle X̃ ×
PSL(2,C) → X̃ is just −ir∗C, where

C = (i/π2)h∗ ∧ e∗ ∧ f ∗ = (1/π2)volH + dγ + iα(∇̃H).

Denote by p : F (X̃) → X̃ the projection of the frame bundle. We have a map

q̃ : p×D : F (X̃) → X̃ × PSL(2,C)

which is equivariant with respect to the action of π1(X) and hence descends to give a
map of principal bundles covering the identity map of X:

q : F (X) → X̃ ×ρ PSL(2,C).

In particular, given a section s of F (X), we have a section

ŝ = q ◦ s : ŝ : X → X̃ ×ρ PSL(2,C).

From r ◦ q̃ = D we deduce

SX([w]) =

∫

X

ŝ∗α(w) = −i
∫

X

s∗q∗r∗C = −i
∫

X

s∗D∗C = SX(∇ρ
H)− i

π2
V ol(ρ).

which proves the result. 2
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5. The Chern-Simons line bundle, I

In this section we consider the Chern-Simons action of manifolds X with boundary.
Our aim is to prove the following theorem.

Recall that we denote by

MX = {w ∈ AP |Ω = 0}/G
the moduli space of flat connections on X. Hence, points in MX are represented by
flat connections on bundles Q → X related by gauge transformations. We use the
same notation MY for oriented surfaces Y . Recall that for any G-bundle Q→ Y and
connection η ∈ AQ the pairing 〈 ∧ 〉 : TηAQ ∧ TηAQ → C descends to a two-form on
Y .

Theorem 5.1. The Chern-Simons action determines :

(a) for each closed oriented surface Y , a smooth hermitian line bundle LY →MY

with connection ϑ, whose curvature times i/2π is given by

Ξ̄[η]([η̇1] , [η̇2]) = −2

∫

Y

〈η̇1 ∧ η̇2〉, η̇i ∈ TηAQ

where η is a flat connection on an arbitrary G-bundle Q → Y with section
q : Y → Q, and [ ] denotes the gauge equivalence class.

When the bracket 〈 〉 is non degenerate the (closed) two-form Ξ̄ defines a
symplectic form on MX (complex if G is complex).

(b) for each compact oriented 3-manifold X a parallel section

e2iπSX(·) : MX −→ r∗XL∂X
of the pull-back bundle by the restriction map rX : MX →M∂X (we put L∅ := C
and M∅ := {pt}).

These assignments are functorial, additive, oriented, and satisfy gluing laws. If the Lie
group G is compact, the connection ϑ is unitary and e2iπSX(·) has unit norm.

Definition 5.2. We call (LY →MY , ϑ) the Chern-Simons line bundle.

Let us draw some important consequences of Theorem 5.1. The assertion that e2iπSX(·)

is a parallel section of the bundle r∗XL∂X → MX implies that the variation of the
Chern-Simons action along a path of connections on X can be computed as a parallel
transport, by integrating the connection ϑ along the restriction of the path to the
boundary. This yields a generalization of Corollary 4.2.
The symplectic form Ξ̄ is well-known for G = SU(2) or G = (P )SL(2,C) since the
works of Atiyah-Bott [AB] and Goldman [Go1] (see Section 6); on the Teichmüller
component of the moduli space of flat sl(2,R)-connections it coincides with the Weil-
Petersson form [Go1, §2]. For dimensional reasons, the map rX is then a Lagrangian
map (in fact, since r∗XL∂X has no holonomy we have r∗XΞ̄ = 0).
Finally, by Chern-Weil theory the cohomology class

[
Ξ̄
] ∈ H2(MY ;C) is integral, and

is the first Chern class of the bundle LY →MY (see section 8).

The proof of Theorem 5.1 will be done in several steps. It consists of a process of
symplectic reduction, by defining a line bundle with connection over the whole space of
connections on a fixed G-bundle over Y , and then passing to the quotient by a suitable
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action of the group G of gauge transformations. A first step should certainly be to give
a smooth structure to the space MX , which is endowed with the quotient topology.
As it is not essential in order to understand Theorem 5.1 we prefer to postpone it to
the end of the section.

Fix a G-bundle Q → Y , and denote by Γ(Q) the set of its sections. For each η ∈ AQ

set
Lη = {f : Γ(Q) → C | ∀ϕ ∈ G, f(ϕs) = c(s∗η, gϕs)−1f(s)}

where, as usual, for any gauge transformation ϕ : Q → Q we denote by gϕ : Q → G
the map given by ϕ(q) = q · gϕ(q), we write ϕs for ϕ ◦ s etc., and for all a ∈ A1

Y (g) and
maps g : Y → G we put

(45) c(a, g) = exp

(
2πi

∫

Y

〈Adg−1a ∧ φg〉+ 2πiWY (g)

)
.

Here we use the notations φg = g∗θ, where θ is the Maurer-Cartan form, and (see
Proposition 3.7(2))

WY (g) =

∫

X

−1

6
〈φg̃ ∧ [φg̃ ∧ φg̃]〉

where X is an arbitrary compact oriented 3-manifold with boundary ∂X = Y , and
g̃ : X → G extends g to X.

Lemma 5.3. The set Lη is a well-defined complex hermitian line, with a trivialization
given for each section q : Y → Q by

sq,η : Lη −→ C
f 7−→ f(s).

Moreover, for any connection w on a principal G-bundle P → X over a compact
oriented 3-manifold X we have (∂w denotes the restriction to ∂X)

e2πiSX(w) ∈ L∂w.
When the Lie group G is compact the trivializations sq are unitary and e2πiSX(w) has
unit norm.

Proof. First note that ϕ = id implies gϕ is the constant map to the identity element
of G, so that c(s∗η, gϕs) = c(s∗η, s) = 1 and thus f(id ◦ s) = f(s). We have to check
the coherence of the definition of Lη with respect to the action of the group of gauge
transformations, that is

∀f ∈ Lη,∀ϕ, ψ ∈ G f((ψϕ)s) = f(ψ(ϕs)).

In other words, Lη is the set of invariant sections of the functor mapping any section
s : Y → Q to C, and any gauge transformation ϕ of Q → Y , which is a morphism
ϕ : s 7→ s′ = ϕs, to the morphism of C given by multiplication with c(s∗η, gϕs).
Abusing of notations, let us denote by g1 and g2 the maps gϕs and gψs, respectively, and
at the same time arbitrary extensions of these maps to a compact oriented 3-manifold
with boundary ∂X = Y . Let us write g1g2 : Y → G the map obtained by pointwise
multiplication. Setting ω(g) = −(1/6)〈φg ∧ [φg ∧ φg]〉 we have

c(a, g1g2) = exp

(
2πi

∫

Y

〈Ad(g1g2)−1a ∧ φg1g2〉+ 2πi

∫

X

ω(g1g2)

)
.
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Since

φg1g2 = Adg−1
2
φg1 + φg2 ,

by using Ad-invariance and Cartan’s equation (15) we find

ω(g1g2) = ω(g1) + ω(g2)− 1

2
〈Adg−1

2
φg1 ∧ [φg2 ∧ φg2 ]〉 −

1

2
〈φg2 ∧

[
Adg−1

2
φg1 ∧ Adg−1

2
φg1

]
〉

= ω(g1) + ω(g2) + 〈Adg−1
2
φg1 ∧ dφg2〉+ 〈φg2 ∧ Adg−1

2
dφg1〉

= ω(g1) + ω(g2) + d〈φg1 ∧ Adg2φg2〉.
Hence, using again Ad-invariance we get

c(a, g1g2) = exp

(
2πi

∫

Y

〈Adg−1
1
a ∧ φg1〉+ 2πiWY (g1)+

+

∫

Y

Adg−1
2

(Adg−1
1
a+ φg1) ∧ φg2〉+ 2πiWY (g2)

)
=

= c(a, g1)c(a
g1 , g2)

where we put ag1 = Adg−1
1
a+ φg1 . Therefore

f((ψϕ)s) = c(s∗η, (gϕs)(gψϕs))−1f(s) = c(s∗η, gϕs)−1c((s∗η)gϕs, gψϕs)−1f(s)

= c((s∗η)gϕ , gψϕs)−1f(ϕs) = f(ψ(ϕs))

which proves our claim.
That e2πiSX(w) ∈ L∂w follows from Proposition 3.7(2); it is well-defined because of
our integrality Hypothesis 3. Since any pair (Q → Y, η) is the boundary of a pair
(P → X,w) we have Lη 6= ∅ for all η ∈ AQ. Also, an element f ∈ Lη is completely
determined by its value at some section s : Y → Q. Hence Lη has complex dimension
1, with hermitian metric given in each trivialization by the standard one in C. The
last claim follows from the fact that for compact Lie groups the connections and the
bracket 〈 〉 are real-valued, so that c(a, g) ∈ S1 and e2πiSX(w) has unit norm. 2

Proposition 5.4. For any G-bundles Q→ Y and P → X the assignments

(i) η 7−→ Lη, η ∈ AQ

(ii) w 7−→ e2πiSX(w), w ∈ AP

define:

(i) a smooth hermitian line bundle LQ → AQ endowed with an action of the gauge
group G lifting the one on AQ,

(ii) a smooth G-invariant section of the pull-back bundle r∗XL∂P , where ∂P denotes
the restriction of the bundle P → ∂X to ∂X, and rX : AP → A∂P is the
restriction map.

Moreover these assignments satisfy the following properties:

(i) (Functoriality) Any bundle map ψ : Q′ → Q covering an orientation preserving
diffeomorphism ψ̄ : Y ′ → Y induces isomorphisms (isometries if G is compact)

ψ∗ : LQ,η −→ LQ′,ψ∗η, η ∈ AQ
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such that ψ∗1 ◦ ψ∗2 = (ψ1 ◦ ψ2)
∗, and for any bundle map ϕ : P ′ → P covering

an orientation preserving diffeomorphism ϕ : X ′ → X and with induced map
∂ϕ : ∂P ′ → ∂P over the boundary, we have

(∂ϕ)∗e2πiSX(w) = e2πiSX′ (ϕ
∗w).

(ii) (Orientation) Changing the orientation of Y induces natural isomorphisms L−Q,η ∼=
L̄Q,η̄, where ¯ denotes the complex conjugation, and these isomorphisms iden-

tify the sections e2πiS−X(w) and e2πiSX(w̄).
(iii) (Additivity) The disjoint union of bundles Qi → Yi with connections wi induces

natural isomorphisms LQ1
F
Q2
∼= LQ1 ⊗ LQ2, and these isomorphisms identify

the sections e2πiSX1
F
X2

(w1
F
w2) and e2πiSX1

(w1) ⊗ e2πiSX2
(w2).

(iv) (Cutting/Gluing) Assume that Y is embedded in X, and P → X restricts to
Q → Y . Denote by Xcut = X \ Y , and P cut = f cut∗P → Xcut the pull-back
bundle of P via the natural gluing map f cut : Xcut → X. Let wcut ∈ AP cut be
such that there exists η ∈ AQ whose pull-back f cut∗η coincides with wcut over

(f cut)−1(Y ) ∼= Y
⊔

(−Y ).

Then we can extend η to connections w on P , smooth on X\Y and continuous
on X, which are well-defined up to gauge equivalence, such that f cut∗w is gauge

equivalent to wcut and equal to wcut over (f cut)−1(∂X
⊔
Y ), and satisfying

e2πiSX(w) = Traceη

(
e2πiSXcut (w

cut)
)

where

Traceη : L∂P cut,∂wcut ∼= L∂P,∂w ⊗ LQ,η ⊗ L̄Q,η̄ → L∂P,∂w

is induced by additivity and the hermitian metric on Lη.

Remark 5.5. The functoriality applied to gauge transformations means that the
Chern-Simons action is invariant under orientation preserving diffeomorphism. The
cutting/gluing properties are very powerful; they allow one to compute the Chern-
Simons action by decomposing manifolds in more elementary blocks.

Proof. Lemma 5.3 shows that the assignments (i)-(ii) well define the bundle LQ → AQ

and a section of r∗XL∂P , and that the former is trivialized by the maps sq : LQ →
AQ×C associated to sections q : Y → Q. Transition functions are associated to gauge
transformations; in a given trivialization sq they are the maps η 7→ c(q∗η, gψq), ψ ∈ G,
which are clearly smooth over smooth families of connections. Hence η 7→ Lη and the
trivializations sq are smooth.
In particular, the restriction to ∂X of a section p : X → P determines a smooth
trivialization s∂p : L∂P → A∂P × C. In this trivialization e2πiSX(·) is the function

w 7→ e2πiSX(w,s), which varies smoothly with w (see Corollary 3.7). Hence e2πiSX(w) is
smooth.
The G-action on LQ → AQ follows from the functoriality property applied to gauge
transformations. Let us prove the latter. Any section q′ : Y ′ → Q′ defines a section
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q = ψq′ψ̄−1 : Y → Q. We define ψ∗ by the commutative diagram

(46) LQ,η
ψ∗ //

∼= sq

²²

LQ′,ψ∗η

∼=sq′
²²

C id // C
We have to show that this does not depend on the choice of q′. In fact, if q′2 : Y ′ → Q′

is another section and ϕ : Q′ → Q′ the gauge transformation such that q′2 = ϕq′, we
have commutative diagrams

LQ′,ψ∗η
sq′ //

sq′2 ##FF
FF

FF
FF

F C
×c((q′ )∗ψ∗η,gϕq′)

²²
C

LQ,η
sq //

sq2 !!CC
CC

CC
CC

C
×c(q∗η,g

ϕψ
q)

²²
C

where q2 = ψq′2ψ̄
−1 = ψϕq′ψ̄−1; since ψ is a bundle map we have q2 = ϕψq for a

gauge transformation ϕψ : Q→ Q such that the associated map gϕψ : Q→ G satisfies

gϕψψ = gϕ. Using that ψ̄ has degree one we get c(q∗η, gϕψq) = c((q
′
)∗ψ∗η, gϕq′). This

shows that changing the trivialization q′ to q′2 compensates in (46), which therefore
well defines the isomorphism ψ∗. The last claim of Lemma 5.3 implies that ψ∗ is an
isometry when G is compact.

We prove the identity ψ∗1◦ψ∗2 = (ψ1◦ψ2)
∗ by working in a fixed trivialization sq,η : Lη

∼=→
C for each η ∈ AQ. Then it reduces to the cocycle property c(a, g1g2) = c(a, g1)c(a

g1 , g2)
as in Lemma 5.3 (the extension to bundle maps of the argument given there for gauge
transformations is immediate).
The equation (∂ϕ)∗e2πiSX(w) = e2πiSX′ (ϕ

∗w) follows from the invariance of integrals under
degree one maps, using that ϕ̄ is degree one and fixing a trivialization p′ of P ′ → X ′

to identify e2πiSX′ (ϕ
∗w) with a function ϕ∗w 7→ e2πiSX(ϕ∗w,p′). The section e2πiSX(w)

is then identified with w 7→ e2πiSX(w,p), where p = ϕp′ϕ̄−1 : P → X (recall that
(∂φ)∗ : L∂P → L∂P ′ relates the trivializations given by ∂p and ∂p′).
Orientation and additivity are straightforward consequences of the facts that after
fixing some trivialization, c(a, g) and the Chern-Simons action change sign when the
orientation of Y and X are reversed, and that the integral over a disjoint union is the
sum of the integrals. In particular, we get a hermitian pairing

LQ,η ⊗ L̄Q,η̄ −→ C
f ⊗ g 7−→ f(q)g(q), q ∈ Γ(Q)

which does not depend on the choice of section q and coincides in each trivialization
with the standard hermitian metric on C.
For the cutting property we have to show at first that wcut can be glued continuously
along Y up to gauge transformations. Denote by Y1, Y2 the two submanifolds of ∂Xcut

mapping diffeomorphically onto Y via the gluing map f cut. Since f cut∗η = wcut|Y1
F
Y2

, the

connections wcut|Y1
and wcut|Y2

agree under the identification of the bundles P cut
|Y1

and P cut
|Y2

induced by f cut. Hence it is enough to find a gauge transformation ϕ̃ : P cut → P cut

such that ϕ̃∗wcut|Yi = wcut|Yi and ϕ̃∗wcut has no transverse component near Yi. Then we

will define w by gluing ϕ̃∗wcut along the identification P cut
|Y1

∼= P cut
|Y2

.
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To do it we fix tubular neighborhoods Ni
∼= [0,∞) × Yi of Yi in Xcut and bundle

isomorphisms P cut
|Ni

∼= [0,∞) × P cut
|Yi , and we use the gauge transformations ϕi over Ni

given by Lemma 4.4. Namely, we define ϕ̃ as the identity outside of Ni and we put

(47) ∀p ∈ P cut
|Yi , ϕ̃|Ni(t, p) =





ϕi(ρ(t), p), 0 ≤ t ≤ 1
ϕi(1− ρ(t− 1), p), 1 ≤ t ≤ 2
id, 2 ≤ t

where ρ : [0, 1] → [0, 1] is a monotone increasing smooth function equal to 0 near 0 and
equal to 1 near 1. Then clearly ϕ̃∗wcut satisfies the above requirements.

The last claim follows from

∫

X\Y
=

∫

X

, functoriality for the bundle map f cut : P cut →
P (f cut is a diffeomorphism off of Y ), the equality Trace(∂f cut)∗) = id, and the fact that
the Chern-Simons action is the same for connections related by gauge transformations
equal to the identity near boundary components. 2

Proposition 5.6. For any G-bundle Q→ Y the section e2πiS[0,1]×Y ∈ LQ ⊗ L−Q is the
parallel transport of a canonically defined G-invariant connection on LQ → AQ, whose
curvature times i/2π is given by

Ξ(η̇1, η̇2) = −2

∫

Y

〈η̇1 ∧ η̇2〉, η̇i ∈ TAQ.

When G is compact the connection is unitary and the parallel transport is an isometry.

Proof. Take a path ηt in AQ. It defines a connection η· on the pull-back bundle [0, 1]×
Q→ [0, 1]× Y to the cylinder over Y , via the projection map proj2 : [0, 1]× Y → Y .
Fix a section q : Y → Q and put q̃ = proj∗2q. Then at time t we have

α(η·)t = 〈η· ∧ Ω·〉t − 1

6
〈η· ∧ [η· ∧ η·]〉t

= 〈ηt ∧ (Ωt + dt ∧ η̇t)〉 − 1

6
〈ηt ∧ [ηt ∧ ηt]〉

= 〈ηt ∧ Ωt〉 − 〈ηt ∧ η̇t〉 ∧ dt− 1

6
〈ηt ∧ [ηt ∧ ηt]〉.

Hence q̃∗α(η·) = −q∗〈ηt ∧ η̇t〉 ∧ dt, and

(48) S[0,1]×Y (η·, q̃) = −
∫ t

0

∫

Y

q∗〈ηt ∧ η̇t〉.

Formula (22) gives a guess for the desired connection on LQ → AQ. Namely, set

(49) (θq)η(η̇) = 2πi

∫

Y

q∗〈η ∧ η̇〉, η ∈ AQ, η̇ ∈ TηAQ.

We are going to show that the family {θq}q, for q varying among all sections of Q→ Y ,
satisfies the local compatibility condition (18) of connections given in local charts (here
the trivializations sq : LQ → AQ × C).
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Let ψ : Q→ Q be a gauge transformation. We have

(θψq)η(η̇) = 2πi

∫

Y

q∗〈ψ∗η ∧ ψ∗η̇〉

= 2πi

∫

Y

q∗〈Adg−1
ψ
η ∧ Adg−1

ψ
η̇〉+ 2πi

∫

Y

q∗〈φgψ ∧ Adg−1
ψ
η̇〉

= (θq)η(η̇)− 2πi

∫

Y

〈Adg−1q∗η̇ ∧ φg〉.
where we put g = gψq. Note that

dcY (q∗η, gψq)(η̇)
cY (q∗η, gψq)

= 2πi

∫

Y

〈Adg−1q∗η̇ ∧ φg〉.

From formula (19) and the fact that the trivializations sq and sψq are related by
sq(η)cY (q∗η, gψq)−1 = sψq(η), we conclude that {θq}q defines a connection on LQ → AQ

satisfying

exp(2πiS[0,1]×Y (η·, q̃)) = exp(−
∫ 1

0

(θq)ηt(η̇t)dt).

Denote by ∂η· the restriction of η· to the disjoint unionQ∪Q→ ({0}×Y )∪({1}×(−Y )).
By using the metric on Lη0 we can identify L∂η·

∼= Lη0 ⊗ L̄η̄1 with the line of linear

maps Lη0 → Lη1 . Then equation (22) shows that e2πiS[0,1]×Y (η·) is the parallel transport
of the connection {θq}q along the path of connections ηt:

(50) e2πiS[0,1]×Y (η·) = PTηt : Lη0 −→ Lη1 .

The curvature times i/2π of the connection {θq}q is

wη(η̇1, η̇2) =
i

2π
d(θq)η(η̇1, η̇2) = −

∫

Y

q∗d〈η ∧ η̇〉(η̇1, η̇2)

= −2

∫

Y

〈η̇1 ∧ η̇2〉.
Note that the result does not depend on the choice of trivialization q.
Because of the functoriality property of Proposition 5.4, the Chern-Simons action is
preserved under the action of the gauge group G on LQ. Equivalently, the parallel
transport (50), whence the connection {θq}q and its curvature, is preserved. The last
claim follows from Lemma 5.3. 2

Proof of Theorem 5.1. Since the line bundle LQ → AQ with its metric, connection and
curvature is G-invariant, by restricting to flat connections they pass to a hermitian line
bundle LX → MX with connection on the quotient. This is the Chern-Simons line
bundle. It clearly satisfies all properties stated in Proposition 5.4.
We are left to prove that the section e2iπSX(·) : MX −→ r∗XL∂X is parallel (or flat). We
can work on a fixed bundle P → X and consider representatives of gauge equivalence
classes of connections on X. Let wt be a path of flat connections on P , and w· the
corresponding connection on [0, 1] × P . Denote the curvature of w· by Ω. Since wt is
flat for all t, we have Ω = dt ∧ ẇt. Hence

exp(2πiS∂([0,1]×X)(w·)) = exp

(
2πi

∫

[0,1]×X
〈Ω ∧ Ω〉

)
= 1.
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On another hand

exp(2πiS∂([0,1]×X)(w·)) = exp(2πiSX(w0)) exp(−2πiSX(w1))×

× exp(2πi

∫

[0,1]×∂X
α(w·)).

Because of (50) we see that exp(2πiSX(w1)) is obtained from exp(2πiSX(w0)) via the
parallel transport PT∂wt : L∂w0 → L∂w1 , which proves that the section e2iπSX(·) is
parallel. In particular, for loops w· : S1 → MX of flat connections on X we get a
trivial holonomy. This can be seen directly from the fact that the holonomy of w· is
exp(2πiSS1×∂X(w·)), which is equal to 1 by the same reasoning as above. 2

As promised at the beginning of the section we prove now that (MY , Ξ̄) can be identi-
fied with a symplectic reduction of the affine space of flat connections on Q under the
symmetry group G (the non degeneracy of Ξ̄ is proved in Section 6). We obtain this
result by combining the next proposition and Theorem 5.9 (iii).

Proposition 5.7. The action of G on the bundle LQ → AQ determines a moment map
µ : AQ → Lie(G)∗ for the action of G on (AQ,Ξ), which is given by

µζ(η) = 2

∫

Y

〈Ω(η) ∧ ζ〉

where ζ ∈ A0
Y (Qg) ∼= Lie(G) is an infinitesimal gauge transformation. In particular

MY = µ−1(0)/G.

Proof. For any hermitian line bundle L → M with connection θ, curvature −2πiΞ,
and G-action ρ : G → Aut(L) preserving the metric and the connection, a moment
map µ : M → g∗, m 7→ µ·(m), for the quotient G-action on (M,Ξ) is given by the
obstruction to descend the connection θ to the quotient L/G. In formula:

(51) µζ(m) = − i

2π
θl(ρ̇(ζ))

where l ∈ Lm and ρ̇(ζ) is the vector field on L generated by ζ ∈ g. In fact, by the very
definition of a moment map we have

dµζ(m)(V ) = Ξl(ρ̇(ζ), V ) =
i

2π
dθl(ρ̇(ζ), V )

=
i

2π
(ρ̇(ζ) · θl(V )− V · θl(ρ̇(ζ))− θl([ρ̇(ζ), V ]))

= − i

2π
V · θl(ρ̇(ζ)).

Here we identify V ∈ TmM with its horizontal lift at l ∈ Lm, so that θl(V ) = 0 and
θl([ρ̇(ζ), V ]) = 0 since ρ preserve the connection and consequently the Lie derivative
[ρ̇(ζ), V ] is horizontal. The formula (51) follows.
In our situation we will compute the analog of θl(ρ̇(ζ)) by working in a fixed trivial-
ization sq : LQ → AQ × C associated to a section q : Y → Q, and then comparing the
action of an infinitesimal gauge transformation with the infinitesimal parallel transport
it defines.
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Recall that in the trivialization q a gauge transformation Ψ : Q→ Q is a map g = gψq :
Y → G, and that in the associated trivialization sq the isomorphism ψ : Lη → Lψ∗η is
identified with the multiplication by exp(2πicY (a, g)) (as usual we put a = q∗η). An
infinitesimal gauge transformation read as a map ζ : Y → g, acting as multiplication
by the derivative

(52)
d

dt

(
exp(2πicY (a, etζ))

)
t=0

= 2πi

∫

Y

〈a ∧ dζ〉.

On another hand, denoting by ae
tζ

the action of the gauge transformation etζ on the

connection a in the trivialization q, the formula (16) reads as ae
tζ

= Ade−tζa + etζ∗θ.
Hence

(53)
d

dt

(
ae

tζ
)
t=0

= − [ζ ∧ a] + dζ = daζ.

This is the covariant derivative of ζ viewed as a section of the adjoint bundle Qg,
associated to the connection a (see (28)). Hence the infinitesimal parallel transport in
the direction of ζ acts as multiplication by

(54) −(θq)a(daζ) = −2πi

∫

Y

〈a ∧ daζ〉.

Using Stockes’ theorem we see that the difference of (52) and (54) times (−i/2π) is∫

Y

〈a ∧ (2dζ + [a ∧ ζ])〉 = 2

∫

Y

〈da ∧ ζ〉+

∫

Y

〈a ∧ [a ∧ ζ]〉

= 2

∫

Y

〈da ∧ ζ〉+

∫

Y

〈[a ∧ a] ∧ ζ〉

= 2

∫

Y

〈Ω(a) ∧ ζ〉.

This computes the vertical component of the infinitesimal action of ζ in the trivializa-
tion q, and thus coincides with µζ(a). 2

Remark 5.8. Consider the commutative diagram

(55) MX
//

rX

²²

AP/G
rX

²²
M∂X

// A∂P/G
where the horizontal arrows are the natural inclusions, and the vertical arrows are the
restriction maps.
At the bottom right we have a hermitian line bundle3 with connection (L∂P/G →
A∂P/G, ϑ). At the top right we have a section of the pull-back bundle exp(2πiSX(·)) :
AP/G → r∗XL∂P/G, which in general is not parallel. The Chern-Simons line bundle
and parallel section over MX are obtained by pulling back via the inclusions, and so
are the solutions of the Euler-Lagrange equation Ω = 0 for the Chern-Simons action
(Proposition 4.1).

3I don’t want to care about the topology, smoothness etc. of that quotient space here.
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We conclude the section with a brief “gauge-theoretic” discussion about the smoothness
of the moduli spaces MY . It will be completed in Section 6.

Given a bundle R→ Z with a connection η over a finite dimensional manifold Z, denote
by Stab(η) the stabilizer of η in the group of gauge transformations. That is, ψ ∈
Stab(η) if ψ∗η = η, or equivalently if ψ is parallel (see Exercise 2(2)), or equivalently
if the associated map gψ : Q → G commutes with the holonomy representations of
η. There is an inclusion Z(G) ⊂ Stab(η) of the center of G, identified with the set of
constant gauge transformations. We will say that η is irreducible if Lie(Stab(η)) = {0},
and denote by Airr

R , Mirr
Z etc. the corresponding subspaces.

Theorem 5.9. Let X be a compact oriented 3-manifold, and Y a closed oriented
surface Y with a fixed G-bundle Q→ Y .

(i) The moduli space Mirr
Y ⊂ MY is a smooth top dimensional orbifold of dimen-

sion −dim(G)χ(Y ).
(ii) At each point η ∈ AQ the action of Stab(η) on the Chern-Simons line Lη factors

through an action of the (finite) group π0(Stab(η)/Z(G)). Hence the line bundle
LY →Mirr

Y is smooth.
(iii) If the bracket 〈 〉 is non degenerate then so is the pairing

Ξ̄ : TMY × TMY → C.
Hence the closed two-form Ξ̄ defines a symplectic form on Mirr

Y (complex val-

ued when G is complex, continuous at orbifold points) and Mirr
Y = Aflat irr

Q ∩
µ−1(0)/G is the symplectic reduction of AQ.

(iii) The restriction map r∗X : MX →M∂X is Lagrangian.

Sketch of proof. (i) By definition the action of G/Z(G) on Airr
Q is locally free, and it

is free at the subset A0
Q of connections η where Stab(η) = Z(G). By restricting to

flat connections this action is also proper, so Mirr
Y = Aflat−irr

Q /(G/Z(G)) is an orbifold

which is smooth at Aflat−0
Q /(G/Z(G)). When G is compact this is clear. When G is non

compact this follows from a result of Culler and Shalen ([CuSh], Prop. 1.5.2), using
the identification of MY as a space of holonomy representations, described in Section
6. Open G-orbits of (reducible) connections must be identified in order to make the

full space MY = Aflat
Q /G Haussdorf. Dimensions are computed below.

(ii) Take ψ ∈ Stab(η). Consider the bundle Qψ → S1×Y formed by gluing the ends of
[0, 1]×Q using ψ. The connection η defines a connection on [0, 1]×Q, which glues to
define a connection ηψ on Qψ → S1 × Y . By the gluing property of the Chern-Simons
action we have

e2πiSS1×Y (ηψ) = Trace(e2πiS[0,1]×Y (ηψ,·)),

where (see (50))

e2πiS[0,1]×Y (ηψ,·) = PTηt : Lη −→ Lψ∗η
is parallel transport along the path ηt in AQ associated via Lemma 4.4 to the restriction
of ηψ over the cylinder [0, 1]× Y . Clearly it computes the action of ψ on Lη.
Now, if ψ and ψ′ are connected by a path ψt in Stab(η), there is a gauge transformation
ψ· : [0, 1] × Q → [0, 1] × Q such that ψ·|{0}×Q = id and ψ·|{1}×Qψ = ψ′, defined by
sending (t, q) to (t, ψtψ

−1(q)). It yields a gauge transformation Qψ → Qψ′ such that
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ψ∗· ηψ = ηψ′ . Since e2πiSS1×Y (·) is invariant under gauge transformations, we deduce that

e2πiSS1×Y (ηψ) = e2πiSS1×Y (ηψ′ ). Hence the actions of ψ and ψ′ on Lη are the same.
Finally, in any fixed trivialization sq : Lη → C the action of an element g of the center
Z(G) on Lη is multiplication by cY (q∗η, g) = 1. This proves (ii).

(iii) First we have to specify the tangent spaces to moduli spaces. Fix a G-bundle
R → Z. Recall that we denote by Rg the adjoint bundle, and by AiZ(Pg) the forms
of degree i on Z with values in Pg. We have already seen that for any connection
η ∈ AR, any tangent vector η̇ ∈ TηAR belongs to A1

Z(Rg). Also, the infinitesimal
gauge transformations, that is, the Lie algebra of G, clearly coincide with A0

Z(Rg).
Assuming that η is flat the covariant derivative d0

η = dη = d+adη on Rg satisfies d2
η = 0

(see (27)). Then we can consider the cohomology groups H i(Z,Rg(η)) of the complex

(56) C∗(Rg(η)) : 0 → A0
Z(Rg)

d0η→ A1
Z(Rg)

d1η→ . . .

For any ξ ∈ A0
Z(Rg), we have dηξ = dξ + ad−ξη = 0 if and only if ξ is parallel. Hence

(57) H0(Z,Rg(η)) = Lie(Stab(η)).

Also, by differentiating the relation dη+ [η ∧ η] /2 = Ω = 0 in the direction of a vector
η̇ ∈ TηAR which is tangent to the space of flat connections, we find dηη̇ = dη̇+[η ∧ η̇] =
0. For any path ϕt of gauge transformations we have d(ϕ∗tη)t=0 = − [ϕ̇ ∧ η]+dϕ̇ = dηϕ̇.
Hence

T flatη AR = Z1(Z,Rg(η)) , TηG∗η = B1(Z,Rg(η)).

Therefore, the tangent space at a smooth equivalence class of flat irreducible connec-
tions η ∈ Airr

R is given by

(58) T[η]MZ = H1(Z,Rg(η)).

We wish to compute the dimension of this vector space for Z = Y a closed oriented
surface. The key ingredient is the De Rham isomorphism for local systems, which
allows to define the cohomology groups H∗(Z; , Rg(η)) in terms of simplicial or singular
cohomology (see eg. [Ra], [BT]). In particular, the Euler characteristic of the complex
(56) is a topological invariant; by using the trivial connection η we see that it is given
by

(59) χ(C∗(Rg(η)) = dim(G)χ(Y ).

Then, take a non-degenerate Ad-invariant symmetric bilinear pairing 〈 , 〉′ : g×g → C,
and an arbitrary flat connection η ∈ AR. Consider the composition of the natural cup
product on H∗(Z; , Rg(η)) followed by this coefficient pairing and evaluation on the
fundamental class:

〈 ∪ 〉′ : H i(Z; , Rg(η))×Hn−i(Z, ∂Z; , Rg(η))
∪−→

Hn(Z, ∂Z; , Rg ⊗Rg)
〈 , 〉′−→ Hn(Z, ∂Z;C)

∩[Z,∂Z]−→ C.

where n is the dimension of Z and Rg ⊗ Rg the tensor product of the adjoint bundle
by itself, with its natural covariant derivative (obtained from dη via the Leibniz rule).



38 STÉPHANE BASEILHAC

Since 〈 , 〉′ is non degenerate, 〈 ∪ 〉′ → C is non degenerate. Hence we have a Poincaré
duality isomorphism

PD : H i(Z; , Rg(η)) −→ Hn−i(Z, ∂Z; , Rg(η))
∗

µ 7−→ 〈µ ∪ ·〉′.
For instance, when Z = Y is a closed oriented surface we have H0(Z; , Rg(η)) ∼=
H2(Z; , Rg(η)). From (59) we deduce

(60)
dim(H1(Y,Rg(η))) = −χ(C∗(Rg(η)) + 2dim(H0(Y,Rg(η)))

= −dim(G)χ(Y ) + 2dim(Lie(Stab(η))).

This is minimal at flat irreducible connections, and (58) gives at smooth points

(61) dim(MY ) = dimT[η]MY = −dim(G)χ(Y ).

When 〈 , 〉′ = 〈 , 〉, the De Rham isomorphism (58) identifies the cup product

(62) 〈 ∪ 〉 : H1(Y ; , Rg(η))×H1(Y ; , Rg(η)) −→ C

with the two-form

(63) Ξ̄ : T[η]MY × T[η]MY −→ C.

Hence the latter is non-degenerate. It remains to show that rx is Lagrangian. Poincaré
duality and the exact sequence of the pair (X, ∂X) give for any connection η ∈ AP a
commutative diagram

H1(X;Rg(η))
rX //

PD
²²

H1(∂X;Rg(η))

PD
²²

δ // H2(X, ∂X;Rg(η))

PD
²²

H2(X, ∂X;Rg(η))
∗ δ∗ // H1(∂X;Rg(η))

∗ r∗X // H1(X;Rg(η))
∗

where δ∗ and r∗X denote the adjoint maps of δ and rX . We have Im(δ) ∼= Im(r∗X), and
Ker(δ) = Im(rX) is the annihilator of Ker(r∗X). Hence

dim(H1(∂X;Rg(η))) = dim(Ker(δ)) + dim(Im(δ)) = 2dimIm(rX).

This concludes the proof. 2

6. The Chern-Simons line bundle, II

Here we propose to define the Chern-Simons line bundle directly from volumes of
representations (see Corollary 4.7). Though very direct, this approach will have to
wait for the results of Section 9 to be usable, for instance to recover the variation
formulas obtained in Section 7 via gauge theory.

First we need to recall some fundamental results on character varieties. We present
them via a discussion which will be formalized in Theorem 6.7.

6.1. A very brief review on character varieties. We restrict to the case of G =
(P )SL(2,C), though for surfaces most of the results could extend to other Lie groups
having an Ad-invariant bilinear form on their Lie algebra. References are [CuSh],
[Go1, Go2], [BZ], and [S].



CHERN SIMONS THEORY IN DIMENSION THREE 39

6.1.1. The case of a closed oriented surface Y . Fix a base point y ∈ Y , and put
π = π1(Y, y). We assume that the genus g of Y is ≥ 2. The case g = 1 is detailed in
Section 7.

Since SL(2,C) and PSL(2,C) ∼= SO(3,C) are affine algebraic groups, the space of
representations Hom(π,G) is an irreducible affine algebraic set. The group G acts
algebraically on Hom(π,G) by conjugation.

Proposition 6.1. (Goldman [Go1, Prop. 1.2-3.7] and Culler-Shalen [CuSh, Prop.
1.5.2]) The simple points of Hom(π,G) are the representations ρ such that

(64) dim(Z(ρ)/Z(G)) = 0

where Z(ρ) is the centralizer of ρ and Z(G) the center of G. The action of G/Z(G)
on simple points is locally free, but it is proper only on the subset Hom(π,G)irr of
irreducible representations.

For G = (P )SL(2,C) the representations satisfying equation (64) are all the non
abelian representations: the irreducible ones, which have no fixed point on CP1 under
the projective action by fractional transformations, and also the reducible connections
fixing a unique point on CP1. Note that Hom(π, SU(2)) is a real analytic G-invariant
subspace of Hom(π, SL(2,C)). The smooth points of Hom(π, SU(2)) are the irreducible
representations.

Exercise 5. Take Y of genus two and a standard presentation of its fundamental group

π = 〈γ1, µ1, γ2, µ2 | [γ1, µ1] [γ2, µ2] = 1〉.
Consider a sequence of representations ρn : π → SL(2,C) such that ρn(γ1) = ρn(µ2) is
a fixed diagonal element g with eigenvalues a, a−1 (a > 1), and

ρn(µ1) = ρn(γ2) =

(
(1 + a−2n)1/2 a−2n

1 (1 + a−2n)1/2

)
.

Hence ρn is completely determined. Check that ρn (resp. gnρng
−n) converges to a

lower (resp. upper) triangular representation when n→∞. Hence the G-orbits of the
limit representations do not have disjoint open neighborhoods in Hom(π,G), though
they are distinct.

Since the action of G is in general not proper, the quotient Hom(π,G)/G is not
Haussdorff. Then one usually considers a further quotient, the character variety
XY = Hom(π,G)//G, which is defined as the variety whose coordinate ring is the
ring

C [XY ] = C [Hom(π,G)]G

of regular functions on Hom(π,G) invariant under the action of G. The ring C [XY ] is
generated by a finite set of characters

(65)
χγ : Hom(π,G) −→ C

ρ 7−→ Trace(ρ(γ)), γ ∈ π.
Hence, points in Hom(π,G) are identified in XY when they have the same characters.
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Proposition 6.2. The quotient space X irr
Y = Hom(π,G)irr/G is a smooth complex

submanifold of the variety XY , of dimension

dim(X irr
Y ) = (2g − 2)dim(G).

When G = SL(2,C) or SU(2) the manifold X irr
Y is connected and simply-connected,

and π2(X irr
Y ) ∼= Z.

Since characters do not distinguish between Abelian representations and representa-
tions into a Borel subgroup, XY can be identified with the set of orbits of both Abelian
and irreducible representations, and X irr

Y is a Zariski open subset of XY . The real
part of Hom(π, SL(2,C))irr/SL(2,C) is Hom(π, SU(2))irr/SU(2), and similarly for
PSL(2,C).
The computation we give of the first homotopy groups can be adapted for PSL(2,C)
and higher homotopy groups.

Proof. The first claim follows directly from the fact that G/Z(G) acts freely and prop-
erly on Hom(π,G)irr (Proposition 6.1). The dimension is computed in equation (70)
below.
We compute the first homotopy groups of X irr

Y as follows. Consider the case of G =
SL(2,C). Denote by Ra−irr the G-orbit of the manifolds of Abelian and non Abelian
reducible representations in Hom(π,G). At each point it has complex codimension
≥ 6g − ((2g − 1)2 + 3) = 2g − 1 in R = G2g. Hence for g ≥ 2 we have the homotopy
groups

(66) π0(R \Ra−irr) = π1(R \Ra−irr) = π2(R \Ra−irr) = 0.

Consider the map

R : R \Ra−irr −→ G
ρ 7−→ [ρ(γ1), ρ(µ1)] . . . [ρ(γn), ρ(µn)]

where the γi and µi are standard generators of π, as in Exercise 5. The map R is a
proper submersion (see eg. [Go1, Prop 3.7] where it is used to show that the action of G
on Hom(π,G)\Rab is locally free). Hence it defines a fibration, with fiber Hom(π,G)irr

at the identity. From (66) and the exact sequence in homotopy we deduce

π0(Hom(π,G)irr) = π1(Hom(π,G)irr) = 0 , π2(Hom(π,G)irr) ∼= Z.
Since the projection Hom(π,G)irr → Hom(π,G)irr/G = X irr

Y is a locally trivial fibra-
tion with fiber PSL(2,C) we get π0(X irr

Y ) = π1(X irr
Y ) = 0 and π2(X irr

Y ) ∼= Z. The same
computation works for SU(2). 2

Tangent spaces and dimensions. It is classical that the Zariski tangent space
TρHom(π,G) is the linear space Z1(π; gAdρ) of 1-cocycles u : π → gAdρ (see eg. [Ra]
and Exercise 6). Recall that these are the maps to the Lie algebra g considered as a
module for the Adjoint action of ρ(π), and satisfying

u(αβ) = u(α) + Adρ(α)u(β).

We have [Go1, Prop. 1.2-3.7]

(67) dim(Z1(π, gAdρ)) = (2p− 1)dim(G) + dim(Z(ρ)).
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On another hand, the Zariski tangent space Tρ(G · ρ) of the G-orbit coincides with
the linear subspace B1(π; gAdρ) of 1-coboundaries, which are the cocycles u : π → gAdρ
satisfying u(α) = Adρ(α)a− a for some a ∈ g. Hence

(68) dim(G · ρ) = dim(B1(π; gAdρ)) = dim(G)− dim(Z(ρ)).

These dimensions are minimal when dim(Z(ρ)/Z(G)) = 0; it is achieved at the simple
points of Hom(π,G). Also, it follows from (68) that the action of G/Z(G) is locally
free at the simple points.

By definition the quotient vector space is the first cohomology group of π with coeffi-
cients in the ρ(π)-module gAdρ (see eg. [Br]):

Z1(π; gAdρ)/B
1(π; gAdρ) = H1(π; gAdρ).

Hence

(69) T[ρ]XY = H1(π; gAdρ)

and

(70) dim(T[ρ]XY ) = (2g − 2)dim(G) + 2dim(Z(ρ)).

The reader should compare this computation with (60).

Exercise 6. Prove the above description of Zariski tangent spaces in terms of group
cocycles. Namely, show that if ρt is a differentiable path in Hom(π,G) which is written
as ρt(γ) = exp(tu(γ) + o(t))ρ(γ) at first order, then the homomorphism condition
implies that u ∈ Z1(π, gAdρ). Show that if ρt(γ) = g−1

t ρ(γ)gt with gt = exp(ta + o(t))
for some a ∈ g, then the cocycle corresponding to ρt is u(γ) = Adρ(γ)a− a.

For each ρ ∈ Hom(π,G) there is an identification

(71) H1(π; gAdρ) = H1(Y ;Pg(ρ))

where the right-hand side is the singular first cohomology group of Y with coefficients
in the bundle Pg(ρ) [Br, Ch. 2]. In particular the pairing (62) defines a non degenerate
skew-symmetric bilinear form

(72) 〈 ∪ 〉π : T[ρ]XY × T[ρ]XY −→ C.

As it is, this definition is only ponctual, given at each [ρ] ∈ XY . However, 〈 ∪ 〉π
can be defined directly via the cup product in group cohomology, and since Y is an
Eilenberg-MacLane space (71) extends to an identification of rings with cup products.
By using Fox calculus Goldman proved the following:

Proposition 6.3. (Goldman [Go1, §3.10]) 〈 ∪ 〉π defines an algebraic, whence holo-
morphic, two-form on X irr

Y , which is continous on all of XY .

6.1.2. The case of compact oriented 3-manifolds X. The character variety XX is defined
in the same way, but is in general a much more complicated object than for surfaces.
By [CuSh, Prop. 1.5.2] the action of G on irreducible representations is still proper,
but their characters may be non smooth points of XX , depending on their behaviour
along ∂X. Moreover XX can have an arbitrary number of irreducible components, of
arbitrary dimensions.
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In fact, the identifications (69)-(71) hold true also for X. Then the arguments at the
end of the proof of Theorem 5.9 imply that

dim(T[ρ]XX) =
1

2
dim(H1(∂X;Pg(ρ)) + dim(Im : H1(X, ∂X;Pg(ρ)) → H1(X;Pg(ρ))).

In particular, when X contains a closed incompressible surface we can expect to find ir-
reducible components of XX of dimension ≥ 2 by deforming representations on one side.
In general the irreducible components of XX containing the character of an irreducible
representation have dimension ≥ t − χ(X), where t is the number of incompressible
torus components of ∂X [CuSh, Prop. 3.2.1]. In the other direction, if X contains no
closed incompressible surface and its boundary is a single torus, then every component
of XX has dimension 1 [CCGLS, Prop. 2.4].
Except for the case of graph manifolds, where XX is in principle computable, there is
a large variety of situations coming from hyperbolic geometry where more can be said.
Here are two main examples.
Assume that the interior of X supports a finite volume complete hyperbolic metric.
By Mostow rigidity, this metric is unique up to orientation preserving isometry (see
eg. [BP]). It corresponds to a conjugacy class of faithful and discrete representations
χdf ∈ XX(PSL(2,C)). If X is not closed then ∂X is a disjoint union of, say, n tori.
Assume that n = 1.

Theorem 6.4. (Dunfield [Dun]) Let X0 be a component of XX containing χdf . The
restriction map rX : X0 → X∂X is a birational isomorphism onto its image.

We will prove this result in Section 7. In general, when X has boundary a single torus,
the algebraic set rX(XX) is closed and defines a plane curve which has been extensively
studied since the work [CCGLS]. This plane curve is known to be non trivial for all
knot complements.
More in general, assume that ∂X is a disjoint union of n tori, and there is a representa-
tion ρ ∈ Hom(π1(X), PSL(2,C)) that gives the interior Int(X) a structure of smooth
but not necessarily complete hyperbolic manifold, whose metric completion is a closed
manifold and the completed metric has cone-like singularities along a link with cone
angles at most 2π. The following extends a well-known result of Thurston for cusped
hyperbolic manifolds:

Theorem 6.5. (Hogdson and Kerckhoff [HK]) Under the above hypothesis XX is
smooth of complex dimension n near [ρ]. Moreover, if µ1, . . . , µn are homotopy classes
of meridian curves of ∂X, then the complex length maps

L : XX −→ Cn
[ρ] 7−→ (L(ρ(µ1)), . . . , L(ρ(µn))

where 2 cosh(L(γ)) = Trace(γ), is a local diffeomorphism near [ρ].

6.2. Moduli spaces and character varieties. Consider a G-bundle R → Z over a
compact oriented manifold Z (in any dimension). Fix a base point z ∈ Z. As above
put π = π1(Z, z). In Proposition 4.6 we defined for any r ∈ Rz a holonomy map

h̃ol : Aflat
R −→ Hom(π,G)
w 7−→ ρw,r : γ 7−→ g−1, γ̃r(1) = r · g
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where γ̃q is the horizontal lift of γ through r for the flat connection w. We have a
commutative diagram

Aflat
R

fhol//

/G
²²

Hom(π,G)

//G

²²
MZ

hol // XZ(G).

Any smooth family of flat connections wm on AR is equivalently given by a smooth

family4 of horizontal foliations of R. The image by h̃ol of wm is then a continuous family
of holonomy representations ρm ∈ Hom(π,G), which is smooth at simple points. By
Proposition 4.6 (5) the quotient map hol is a bijection. Hence it is a homeomorphism,
and a diffeomorphism on each smooth stratum of MZ mapping to a smooth stratum
of XZ .

Remark 6.6. (A canonical smooth structure on MX ?) The above observation may
seem really surprising, since the complex structure of XZ(G) is canonical. In fact we
never had to specify the smooth structure of MX because topological structures on
compact oriented 3-manifolds X can be smoothed in a unique way, so that the smooth
structure of principal G-bundles P → X, as well as that of their spaces of connections,
is canonically determined. The same is true for surfaces. Hence the diffeomorphism
types of the moduli spaces MX and M∂X are canonical, and the above identification
with XX is canonical. This is no longer true in higher dimensions.

The Chern-Simons action of flat connections also depends only on the homeomorphism
type of X, together with the identification of ∂X as a submanifold of X up to isotopy
(see Theorem 5.1 (b)). Indeed, by Lemma 4.4 (iii) pseudo-isotopies of ∂X induce the
identity map on M∂X , and thus preserve the restriction map rX : MX →M∂X . The
diffeomorphism invariance of the Chern-Simons action (Proposition 5.4, functoriality
property) then proves our claim.

Summing up the above discussion and the results of Section 6.1.1-6.1.2 we get (see eg.
(72)):

Theorem 6.7. The holonomy map hol provides:

(i) a canonical identification of the Chern-Simons line bundle as a smooth line
bundle (LY → XY , ϑ) over the (smooth strata of) the character variety.

(ii) a canonical identification of the Chern-Simons action as a parallel section
e2iπSX(·) : XX −→ r∗XL∂X .

In particular, the closed two-form Ξ̄ on MY is equal to the algebraic two-form 〈 ∪ 〉π
on XY , which consequently defines a complex holomorphic symplectic structure on X irr

Y ,
continuous on all of XY .

Note that it is not clear a priori that 〈 ∪ 〉 is closed. By definition, it is invariant under
the natural action of mapping classes on Hom(π,G) by precomposition, ρ 7→ ρ ◦ f−1,
but this follows also from the fonctoriality of the Chern-Simons action.

4We will not bother here with technicalities regarding smooth infinite dimension manifolds; for our
purpose it is enough to take families of connections wm parametrized by a finite dimensional manifold
M
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Remark 6.8. The moduli spaces MY have a very rich Hamiltonian geometry. The
trace functions (65) provide Darboux coordinates on XY where this geometry is trans-
parent. They define complex Hamiltonian flows extending the classical Fenchel-Nielsen
flows on Teichmüller space (see eg. [JW], [Go2] and the references therein).

6.3. Chern-Simons invariants of marked cobordisms. In this section we refor-
mulate in purely topological terms the line bundle (LY → XY , ϑ) and the parallel
section e2iπSX(·) : XX −→ r∗XL∂X . In particular we will loose all informations coming
from the right-hand side of the commutative diagram (55).

Let X be a compact oriented 3-manifold with a base point x ∈ X. Given a rep-
resentation ρ ∈ Hom(π1(X, x), G) consider the associated G-bundle X̃ ×ρ G → X
with its canonical flat connection, as defined before Corollary 4.7. For any section
s : X → X̃ ×ρ G, put

SX(ρ, s) =

∫

X

−(1/6)s∗〈θ ∧ [θ ∧ θ]〉.

We call (X, ρ, s) a represented cobordism; we define represented surfaces (Y, ρ, s) in the
same way. The following is easy.

Lemma 6.9. The Chern-Simons action SX(ρ, s) is invariant under conjugation of ρ
and homotopy of s rel(∂). Moreover we have:

(i) (Diffeomorphism invariance) For any orientation preserving diffeomorphism ϕ :
X ′ → X, representation ρ′ ∈ Hom(π1(X

′, x′), G) and section s′ : X ′ → X̃ ′×ρG,
we have

SX(ρ′ ◦ ϕ−1
∗ , ϕ̃s′ϕ−1) = SX′(ρ

′, s′).

(ii) (Gluing) Any two represented cobordisms (X1, ρ1, s1), (X2, ρ2, s2) with a same
represented boundary component (Y, ρ, s) can be glued to form a represented
cobordism (X1 ∪Y X2, ρ1 ∗ ρ2, s1 ∪ s2) satisfying

SX1∪YX2(ρ1 ∗ ρ2, s1 ∪ s2) = SX1(ρ1, s1) + SX2(ρ2, s2).

(iii) (Rigidity) SX(ρt, s) is constant along any path ρt ∈ Hom(π1(X, x), G) which is
constant on the peripheral subgroups.

Denote by Γ(Q) the set of sections of the G-bundle Ỹ ×ρ G → Y . The group GYρ of

bundle automorphisms ϕ : Ỹ ×ρ G→ Ỹ ×ρ G acts naturally on Γ(Q) on the left.

Lemma 6.10. For any representation ρ ∈ Hom(π1(Y, y), G), bundle automorphism
ϕ ∈ GYρ and section s : Y → Ỹ ×ρ G, the number

zY (ρ, ϕ, s) = exp (SX(ρ̃, s̃)− SX(ρ̃, ϕ̃ · s̃))
does not depend on the choice of represented cobordism (X, ρ̃, s̃) with boundary (Y, ρ, s),
and G-bundle X̃ ×ρ G → X and automorphism ϕ̃ ∈ GXρ restricting to Ỹ ×ρ G → Y
and ϕ on (Y, ρ, s).

Proof. 2

For any ρ ∈ Hom(π1(Y, y), G) define

Lρ = {f : Γ(Q) → C | ∀ϕ ∈ GYρ , f(ϕ · s) = zY (ρ, ϕ, s)f(s)}
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and
LY = {(ρ, f) |ρ ∈ Hom(π1(Y, y), G), f ∈ Lρ}/G.

Proposition 6.11. The natural projection LY → XY defines a hermitian line bundle
which is smooth at characters of irreducible representations.

Proof. 2

Definition 6.12. A marked cobordism is a compact oriented 3-manifold X with a base
point x ∈ X, and for each basepoint on ∂X a fixed homotopy class of path to x. We
consider marked cobordisms up to orientation preserving diffeomorphism isotopic to
the identity on ∂X.

Lemma 6.13. Any marked cobordism X determines a section

exp(2πiSX(·)) : XX −→ r∗XL∂X
lifting the restriction map rX : XX → X∂X .

Proof. 2

The next result is the key to prove the existence of a canonical connection on the line
bundle LY → XY (it may be used also as an alternative argument in Proposition 5.6).

Proposition 6.14. Let π : L→M be a smooth hermitian line bundle over a manifold
M (in any dimension, possibly infinite), such that for any path l : [0, 1] →M we have
an isomorphism

PTl : Ll(0) −→ Ll(1)

depending smoothly on l and satisfying the following properties:

(i) (Diffeomorphism invariance) PTl1 = PTl2 for any two paths l1, l2 equal up to
reparametrization (ie. such that l2(t) = l1(s(t)) for some orientation preserving
diffeomorphism s : [0, 1] → [0, 1]);

(ii) (Multiplicativity) PTl1·l2 = PTl2PTl1 for any two paths l1, l2 with l1(1) = l2(0).

Then PT is the parallel transport of a unique connection on L. The connection is
unitary if and only if PTl is an isometry.

Note that when M is infinite dimensional, the set P(M) of smooth (parametrized)
paths is also a manifold: a tangent vector to a path l ∈ P(M) is a smooth function

v : [0, 1] 3 t→ v(t) ∈ Tl(t)(M).

Also, note that multiplicativity makes sense because of the diffeomorphism invariance
(the concatenation of paths can be reparametrized on [0, 1]), and that the two properties
imply PTl = id on constant paths.

Proof. Denote by P(L) the set of smooth paths in L. Any path l̃ ∈ P(L) projects to a

smooth path l = π(l̃) in M . Since PTl is an isomorphism the element PTl(l̃(0)) ∈ Ll(1)

differs from l̃(1) by a non zero complex number, which moreover depends smoothly on

l̃. Hence there exists a smooth function h : P(L) → C∗ such that

(73) PTl(l̃(0)) · h(l̃) = l̃(1)

where · is the multiplication in the fiber. The image of h is a simply connected domain.
Indeed, since h ≡ 1 on constant paths (this because of PTl = id), if there would be a
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non contractible loop in Im(h) based at 1, it would be the image of some loop in P(L)
based at a constant loop in L. This contradicts the fact that P(L) retracts onto the
space of constant paths in L. Hence we can define the logarithm of h,

g = log(h) : P(L) → C.

The function g is smooth. Like PT it is additive under concatenation of paths and
invariant under reparametrization.
We claim that these properties garantee the existence of a complex-valued one-form ϑ
on L such that

(74) g(l̃) =

∫

l̃

ϑ.

We define ϑ as a limit of Riemann sums, as follows. For any path l̃ ∈ P(L) and any

integer n ≥ 1, setting l̃i = l̃[(i−1)/n,i/n] we have additivity

(75) g(l̃) =
n∑
i=1

g(l̃i).

We would like to rewrite g(l̃i) as

(76) g(l̃i) =
1

n
ϑ

(
˙̃li

(
i− 1

n

))
+O

(
1

n2

)
.

Then, by taking the limit of (75) as n → ∞ we would get (74). Note that for each
point p ∈ L and each vector v ∈ TpL the map t 7→ tv defines a tangent vector to the
constant path lp at p. Hence it is natural to put

ϑ(v) = dg(i(v))

where
i : TpL −→ TlpP(L)

v 7−→ (t 7→ tv).

Clearly ϑ is smooth and linear for each p, and thus defines a one-form on L. Let us
check equation (76). First reparametrize l̃i as a path defined on [0, 1]. Namely, set

l̃i(t) = l̃

(
t+ i− 1

n

)
, 0 ≤ t ≤ 1.

Then consider the path γ in P(L) obtained by convex combination of l̃i and the constant

path l̃((i− 1)/n). That is,

γ : [0, 1] −→ P(L)

ε 7−→
(
l̃εi : t 7→ l̃

(
εt+ i− 1

n

))
.

We have (
dγ

dε

)

ε=0

: [0, 1] −→ Tl̃((i−1)/n)P(L)

t 7−→ t

n
˙̃l

(
i− 1

n

)
.
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Hence for n large enough the Taylor expansion of g between γ(0) = l̃((i − 1)/n) and

γ(1) = l̃i is

g(l̃i) = dg

((
dγ

dε

)

ε=0

)
+O

(∣∣∣∣
∣∣∣∣
(
dγ

dε

)

ε=0

∣∣∣∣
∣∣∣∣
2
)

=
1

n
ϑ

(
˙̃li

(
i− 1

n

))
+O

(
1

n2

)
.

This proves (76). To conclude the proof of the proposition, we have to check that the
one-form ϑ on L is invariant under the action of the gauge group C∗. In fact, the
equations (73) and (74) show that the restriction of ϑ to a fiber is the Maurer Cartan
form on C∗. Moreover, (74) implies that for any a ∈ C∗ we have

PTl(l̃(0) · a) · h(l̃ · a) = l̃(1) · a = PTl(l̃(0)) · h(l̃) · a = PTl(l̃(0)) · a · h(l̃)
= PTl(l̃(0) · a) · h(l̃).

Hence h(l̃ · a) = h(l̃). Therefore h, and thus ϑ, is invariant under the action of C∗. 2

Corollary 6.15. The line bundle with connection (LY → XY , ϑ) and the section
exp(2πiSX(·)) : XX −→ r∗XL∂X defined in Proposition 6.11-6.14 and Lemma 6.13
coincide with the Chern-Simons line bundle and parallel section of Theorem 5.1.

Proof. 2

7. Variation formulas and applications

In this section we will use again and again the following immediate consequence of
Corollary 4.2, its generalization Theorem 5.1 (b) for manifolds with boundary, and
Theorem 6.7 (ii), we have:

Corollary 7.1. Let X be a compact oriented 3-manifold, and XX the variety of char-
acters of π1(X) in G. The following holds:

(i) If ∂X = ∅, the Chern-Simons action of X is constant on connected components
of XX .

(ii) If ∂X 6= ∅, the variation of the Chern-Simons action of X along a path χt
in XX is independent of the choice of a trivialization of a G-bundle over ∂X,
and is computed as the parallel transport of the Chern-Simons connection ϑ on
L∂X → X∂X along the boundary trace of χt.

Recall Proposition 4.9. The following result shows that the Chern-Simons invariants
distinguish compact hyperbolic manifolds from Seifert-fibered manifolds:

Theorem 7.2. (A. Rezhnikov [Re]) The Chern-Simons invariants of characters of
closed oriented Seifert fibered 3-manifolds in PSL(2,C) are real rational numbers.

The proof uses, among other things, Corollary 7.1 (i). For explicit computations of
the Chern-Simons invariants of Seifert fibered manifolds, see [KK] and the references
therein.

In the rest of this section we give explicit formulas of the connection and curvature
of the Chern-Simons line bundles in the case of G = PSL(2,C), and apply this to
hyperbolic manifolds.
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7.1. The Chern-Simons line over a torus. Fix a meridian m and a longitude l of
the torus T 2. Denote by ∆ the set of diagonal representation of π1(T

2) in PSL(2,C).
We have an isomorphism

(77)
d : ∆ −→ C∗ × C∗

ρ 7−→ (µ(ρ)2, λ(ρ)2)

where µ(ρ) and λ(ρ) are the top left eigenvalues of ρ(m) and ρ(l), which are well-defined
up to sign:

(ρ(m), ρ(l)) =

(
±

(
µ(ρ) 0

0 µ−1(ρ)

)
,±

(
λ(ρ) 0

0 λ−1(ρ)

))
.

The conjugation action of G identifies representations of ∆ with the same trace, that
is, with the same pair of eigenvalues. Hence the following diagram is commutative:

(78) ∆
d //

/G

²²

C∗ × C∗
/τ

²²
XT 2 // (C∗ × C∗)τ

where τ is the algebraic, generically 2 : 1, map given by

τ : C∗ × C∗ −→ C∗ × C∗
(x, y) 7−→ (x−1, y−1).

The bottom map is thus an isomorphism of varieties; in particular, XT 2 is singular at
the character of the trivial representation. If we would have taken G = SL(2,C), we
would have removed the squares in the right-hand side of (77), and obtain four singular
points at the characters of (±Id,±Id).
We will use the following covering of X 2

T , which follows from the diagram (78) by taking
the log in (77):

(79)
Hom(π1(T

2),C) −→ X 2
T

(α(ρ̃), β(ρ̃)) 7−→ [
(e2πiα(ρ̃), e2πiβ(ρ̃))

]
.

Here ρ̃ ∈ Hom(π1(T
2),C), which we identify with C×C by using the meridian-longitude

basis (m, l) on T 2, and we denote by [(x, y)] the class of (x, y) ∈ C∗ × C∗ under the
involution τ .
The group of deck transformations of this covering is

(80) G = 〈x, y, b | [x, y] = bxbx = byby = b2 = 1〉.
The action of G on Hom(π1(T

2),C) is given by

(81) x · (α, β) = (α+
1

2
, β) , y · (α, β) = (α, β +

1

2
) , b · (α, β) = (−α,−β).

Next we wish to identify the Chern-Simons line bundle over XT 2 . First we compute
the Chern-Simons connection ϑ.
Fix a G-bundle Q → T 2, and a section q : T 2 → Q. The section q induces a trivi-
alization AQ

∼= Ω1
T 2 ⊗ sl(2,C). Give coordinates (x, y) to T 2 = S1 × S1 so that the

meridian-longitude are m = {(e2πix, 1)} and l = {(1, e2πix)}. In this basis, for any
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connection η ∈ AQ there are functions A(x, y), B(x, y) : T 2 → sl(2,C) such that q∗η
reads as

q∗η = A(x, y)dx+B(x, y)dy.

We know that MT 2 can be identified with XT 2 . Hence, by (78)-(79) it is enough to
consider sections q such that q∗η has A and B constant and diagonal. That is,

(82) q∗η =

(
2πiα 0

0 −2πiα

)
dx+

(
2πiβ 0

0 −2πiβ

)
dy.

In fact this can be seen directly: by conjugating we can put A(x, y) and B(x, y) simul-
taneously in Jordan form with constant diagonal, say

A =

(
2πiα a(x, y)

0 −2πiα

)
, B =

(
2πiβ b(x, y)

0 −2πiβ

)

for some functions a(x, y), b(x, y). Then, consider a path ηt in AQ which is in this
form. We have

q∗〈ηt ∧ η̇t〉 = − 1

2π2

(
Trace

((
2πiαt at(x, y)

0 −2πiαt

) (
2πiβ̇t ḃt(x, y)

0 −2πiβ̇t

)))
dx ∧ dy−

− 1

2π2

(
Trace

((
2πiβt bt(x, y)

0 −2πiβt

)(
2πiα̇t ȧ(x, y)

0 −2πiα̇t

)))
dy ∧ dx

= 4(αtβ̇t − βtα̇t)dx ∧ dy
where, as usual, α̇t is the derivative of α with respect to t, and so on. Note that this
expression depends only on the diagonal of At and Bt. Removing the t to simplify
notations, we get

(83) (θq)η(η̇)
def
= 2πi

∫

T 2

q∗〈η ∧ η̇〉 = 8πi(αβ̇ − βα̇)

That is,

(84) θq = 8πi(αdβ − βdα).

This is the lift on AQ of the Chern-Simons connection ϑ, given in the trivialization q.
Hence, the lift of the symplectic form on XT 2 is

(85) Ξ
def
=

i

2π
dθq = −8dα ∧ dβ.

We can now describe explicitely the Chern-Simons line bundle

LT 2 → XT 2 .

By construction, in the trivialization induced by q it is given by the diagonal action of
the gauge group G on AQ×C, where the action on C is the inverse of the corresponding
parallel transport onAQ, with respect to the connection θq (see (23)). We have just seen
that AQ can be reduced to the subspace of connections with coordinates (α, β) ∈ C2

as in (82), and that the gauge group action reduces to that of the discrete group G
defined in (80) on this subspace.
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For instance, take the path of connections ηt with αt = α + t/2, t ∈ [0, 1], and β
constant. Then the parallel transport along ηt from (α, β) to (α + 1/2; β) is

exp

(
−

∫ 1

0

(θq)ηt(η̇t)

)
= exp(−4πiβ).

By working similarly with the other generators of G we find that that

LT 2 = Hom(π1(T
2),C)× C/G,

where the G action is given by

(86)
x · (α, β; z) = (α +

1

2
, β; ze4πiβ) , y · (α, β; z) = (α, β +

1

2
; ze−4πiα)

b · (α, β; z) = (−α,−β; z).

Finally, consider a compact oriented 3-manifold X with boundary a single torus,
and a path of representations ρt : π1(X) → PSL(2,C), t ∈ [0, 1]. Fix a meridian
and longitude basis of ∂X, and let (αt, βt) be coordinates of a a lift of (ρt)∂X to
Hom(π1(T

2),C) ∼= C2 in this basis. Then the parallel section

e2πiSX(·) : XT 2 −→ r∗T 2LT 2

[ρt] 7−→ [(αt, βt; z(t))]

satisfies

(87) z(1)z(0)−1 = exp

(∫

(αt,βt)

θq

)
= exp

(
8πi

∫ 1

0

(
(αt

dβt
dt

− βt
dαt
dt

)
dt

)
.

The first Chern class of LT 2 → XT 2 is
[
Ξ̄
]

= −8
[
dα ∧ dβ] ∈ H2,orb(XT 2 ;Z)

Integrating over the fundamental domain [0, 1/4]× [0, 1/2] for the action of G we find
this is −1 times the generator.

These results generalize immediately to an arbitrary number of torus boundary com-
ponents.

7.2. Applications to cusped hyperbolic manifolds. Let X be a compact oriented
3-manifold with n boundary tori, such that the interior admits a smooth finite vol-
ume hyperbolic metric. By Mostow rigidity, this structure is unique up to orientation
preserving isometries; it corresponds to a unique conjugacy class of discrete and faith-
ful representations of π1(X) in PSL(2,C). Denote by χdf ∈ XX the corresponding
character. Recall the hermitian pairing in Proposition 5.4 (4).

Corollary 7.3. (see eg. [Ho], [Yo], [Ne0]) Let χ ∈ XX be the holonomy of a smooth
incomplete hyperbolic metric in a neighborhood of χdf , whose completion is a closed
smooth hyperbolic manifold X(χ) obtained by Thurston’s hyperbolic Dehn surgery the-
orem. Denote by γk the geodesic added to the k-th cusp of Int(X) to form X(χ), and
(D2 × S1)k a tubular neighborhood of γk in X(χ). We have
(88)
(
exp(2πiSX(χ)), exp(2πiS∪k(D2×S1)k(χ))

)
= e

2
π

(V ol(X(χ))+2πiCS(X(χ)))

n∏

k=1

elong(γk)+itors(γk).
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We have to recall some fundamental results of hyperbolic geometry that we need in
the sequel. For details we refer to [BP] (see also [PP] for Thurston’s hyperbolic Dehn
surgery theorem). Compare also with Section 6.1.2.

7.3. 1-dimensional representations of mapping classes of surfaces.

8. Chern-Weil theory and secondary characteristic classes

8.1. Construction of Cheeger-Chern-Simons classes. As usual, let G be our Lie
group and g its Lie algebra. For each integer k consider the k-th symmetric power
Sk(g∗) of the dual Lie algebra, that is, the linear space of multilinear symmetric func-
tions on g. For any P̃ ∈ Sk(g∗) put

P (a) = P̃ (a, a, . . . , a), a ∈ g.

Clealry, P is a homogeneous polynomial of degree k in the coefficients of a. In fact,
by expanding P (t1a1 + t2a2 + . . . + tkak) we see that P̃ (a1, . . . , ak) is 1/k! times the
coefficient of t1t2 . . . tk. Fixing basis elements ei ∈ g and writing a = x1e1 + . . . xnen
we thus get an isomorphism

˜ : C [x1, . . . , xn]
k −→ Sk(g∗)

P 7−→ P̃

where n = dim(g) (to simplify notations here and below we assume that g is complex,
so that P is complex valued; everything goes the same way by replacing with R). We
call P̃ the polarization of the polynomial P . Similarly as for differential forms we define
a product

◦ : Sk(g∗)⊗ Sk(g∗) −→ Sk+l(g∗)

by5

(89) (P ◦Q)(a1, . . . , ak+l) =
1

(k + l)!

∑
σ∈Sk+k

P (aσ(1), . . . , aσ(k))Q(aσ(k+1), . . . , aσ(k+l)).

It is immediate to check that ˜ extends to an isomorphism of graded algebras from
C [x1, . . . , xn] to S∗(g∗).

The Adjoint representation induces an action of G on Sk(g∗), given by

(90) (g · P )(a1, . . . , ak) = P (Ad−1
g a1, . . . ,Ad−1

g ak), g ∈ G, ai ∈ g.

Let I∗(G) denote the G-invariant part of S∗(g∗). Because of the isomorphism ˜ we call
I∗(G) the algebra of invariant polynomials on g. Beware that in general I∗(G) depends
on G, not only on its Lie algebra.

5the normalization factor corresponds to giving the volume 1 to standard simplices rather than to
unit cubes. This is convenient for characteristic classes, and differs from our preceeding conventions
regarding exterior derivative and exterior product of differential forms. Note there are no signatures
here !
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Example: symmetrized traces. Let G be a matrix group. Then g is a subalgebra
of Mn(C). Take P (a) = Trace(ak). Then

(91) P̃ (a1, . . . , ak) =
1

k!

∑
σ∈Sk

Trace(aσ(1) . . . aσ(k)).

Let π : E → M be a G-bundle over an oriented manifold M (in any dimension). We
extend the domain of invariant polynomials from g to g-valued differential forms on E

as follows: for any P̃ ∈ Ik(G) and w1, . . . , wk ∈ ApiE (g) with wi = ηi ⊗ ai (ηi ∈ ApiE (C),
ai ∈ g), we put

(92) P̃ (w1 ∧ . . . ∧ wk) = P̃ (a1, . . . , ak)η1 ∧ . . . ∧ ηk, ∈ Ap1+...+pk
E (C)

and then extend by linearity to arbitrary w ∈ ApiE (g). In particular, suppose w is a
connection on E → M with curvature form Ω ∈ A2

E(g). Then Ωk = Ω ∧ . . . ∧ Ω ∈
A2k
E (g⊗k), and

P (Ω) = P̃ (Ωk) ∈ A2k
E (C).

Since Ω is horizontal and equivariant (see (29)), and P is an invariant polynomial,
P (Ω) is the lift of a 2k-form on M which we also denote by P (Ω).

Theorem 8.1. (Chern-Weil) Let π : E → M be a G-bundle with connection w, and
P ∈ Ik(G). The following holds:

(i) P (Ω) is a closed form.
(ii) The cohomology class wE(P ) = [P (Ω)] ∈ H2k(A∗(M ;R)) is real and does not

depend on the choice of connection w, but only on the isomorphism class of E.
(iii) The map

wE : I∗(G) −→ H∗(A∗(M ;R))
P 7−→ [P (Ω)]

is an algebra homomorphism, called the Chern-Weil homomorphism.
(iv) For any differentiable map f̄ : N →M we have wf∗E = f̄ ∗wE.

The class wE(P ) is called the characteristic class of E corresponding to P . We stress
the fact that it is given in De Rham cohomology, and thus depends a priori on the
differentiable structure of E. As we will see later this is not the case.

Proof. (iii) is an immediate consequence of (89)-(92), and (iv) follows from f̄ ∗P (Ω) =
P (f ∗Ω)) for any curvature form Ω on E.
Let us prove (i). Since π∗ : A∗(M) → A∗(E) is injective it is enough to show that

dP (Ω) = 0 in A∗(E). Take P̃ ∈ Ik(G). Since Ω is a two-form, by symmetry of P and
the Bianchi identity (13) we have

dP (Ω) =
k∑
i=1

P̃ (Ωi−1 ∧ dΩ ∧ Ωk−i) = kP̃ ([Ω, w] ∧ Ωk−1).

Now for any a, b ∈ g and gt = exp(ta), the Ad-invariance and symmetry of P imply

d

dt
P̃ (Adgtb, . . . ,Adgtb)t=0 = kP̃ ([a, b] , b, . . . , b).

The two identities yield dP (Ω) = 0. The fact that [P (Ω)] is real follows from Remark
8.4 below.
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For the proof of (ii) we need the following lemma:

Lemma 8.2. Let h : Ak(M × [0, 1]) → Ak−1(M) (k = 1, 2, . . .) be the operator sending
w = ds ∧ α + β to

h(w) =

∫ 1

s=0

α ds,

where α = (∂/∂s)yw and β have no ds component. Here we integrate the coefficients
of α with respect to s ∈ [0, 1]. Then h is a cochain homotopy:

dh(w) + h(dw) = i∗1w − i∗0w

where i0(m) = (m, 0) and i1(m) = (m, 1) for all m ∈M .

Proof. Denote by dMα = dα− ds ∧ (∂α/∂s). Then

dw = −ds ∧ dMα + ds ∧ ∂β

∂s
+ . . .

where we have only written the terms involving ds. Hence

h(dw)m =

∫ 1

s=0

(
∂β

∂s
(m, s)− dMα(m,s)

)
ds = β(m,1) − β(m,0) − dh(w)m.

The result then follows from i∗0wm = β(m,0) and i∗1wm = β(m,1). 2

End of the proof of Theorem 8.1 (ii). Consider the pull-back G-bundle E × [0, 1] →
M × [0, 1] to the cylinder. For any two connections w0 and w1 on E with curvatures
Ω0 and Ω1, define w ∈ A1

E×[0,1] by

w(x,s) = (1− s)(w0)x + s(w1)x, (x, s) ∈ E × [0, 1] .

Since convex combinations of connections are connections, w is a connection on E ×
[0, 1]. Denote its curvature by Ω. Since i∗0w = w0 and i∗1w = w1 we have i∗0Ω = Ω0 and
i∗1Ω = Ω1. By (i) the form P (Ω) on E × [0, 1] is closed. Therefore by Lemma 8.2

(93) dh(P (Ω)) = i∗1P (Ω)− i∗0P (Ω) = P (Ω1)− P (Ω0).

Hence P (Ω1) and P (Ω0) represent the same cohomology class in H2k(A∗(M)). This
shows that wE(P ) does not depend on the choice of connection. 2

Exercise 7. (Poincaré’s Lemma) Replace in Lemma 8.2 the manifolds M × [0, 1] and
M by a subset U ⊂ Rn which is star-shaped with respect to u0 ∈ U . By considering
the retraction g : U × [0, 1] → U given by g(u, s) = (1 − s)u + su0 and the forms
g∗w = ds ∧ α+ β for w ∈ Ak(U), show that

h(d(g∗w))u =

{ −dh(g∗w)u − wu, if k > 0
wu0 − wu, if k = 0.

Deduce that Hk(A∗(U)) = 0 if k > 0, and R if k = 0.

Definition 8.3. Let G = GL(n,R). Then g = gl(n,R) = Hom(Rn,Rn) is the Lie
algebra of real matrices with Lie bracket [A,B] = AB −BA. For each positive integer
k the Pontrjagin polynomial pk/2 of A ∈ gl(n,R) is given by

det(λId− A

2π
) =

n∑

k=0

pk/2(A)λn−k, A ∈ gl(n,R).
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Similarly, for G = GL(n,C) the Chern polynomials ck are given by

det(λId− A

2πi
) =

n∑

k=0

ck(A)λn−k, A ∈ gl(n,C).

Since pk/2 and ck are homogeneous polynomials of degree k in the roots of the (rescaled)
characteristic polynomial of A, they are invariant under conjugation by G and define
invariant polynomials

pk/2 ∈ Ik(GL(n,R)) , ck ∈ Ik(GL(n,C)).

Note that the restriction of ck to gl(n,R) satisfies

(94) ikck(A) = pk/2(A), A ∈ gl(n,R).

By restricting to G = O(n) ⊂ GL(n,R), the Pontrjagin polynomials pk/2 with k odd
vanish. Indeed, o(n) is the Lie subalgebra of skew-symmetric matrices in gl(n,R), so
that

(95) det(λId− A

2π
) = det(λId− A

2π
)t = det(λId+

A

2π
), A ∈ o(n).

Also, the Chern polynomials are real-valued when restricted to G = U(n) ⊂ GL(n,C),
since u(n) is the Lie subalgebra of gl(n,C) of skew-hermitian matrices and so

(96) det(λId− A

2πi
) = det(λId− A

2πi
)t = det(λId− A

2πi
), A ∈ u(n).

Assume that A ∈ gl(n,C) is diagonalizable, and let (2π/i)xj, j = 1, . . . n, denote its
eigenvalues. For instance, take A ∈ u(n), so that A/2πi is a Hermitian matrix which
can be diagonalized by some matric g ∈ U(n). Then

det(λId− A

2πi
) =

n∏
j=1

(λ+ xj) = 1 + (x1 + . . .+ xn)λ+ (x1x2 + . . .+ xn−1xn)λ
2+

+ (x1x2 . . . xn)λ
n.

Hence

c0(A) = 1

c1(A) =
i

2π
Trace(A)

c2(A) =
1

2

(
i

2π

)2 (
Trace2(A)− Trace(A2)

)
(97)

...

cn(A) =

(
i

2π

)n

det(A).

Remark 8.4. (Reduction). Any GL(n,R)-bundle is isomorphic to an O(n)-bundle,
and similarly any GL(n,C)-bundle is isomorphic to an U(n)-bundle (we say that the
bundles are reduced). In fact, for any given trivializing atlas (Ui, τi) the Gram-Schmidt
process allows ont to define a gauge transformation ϕ : E → E such that ϕ∗E has
transition functions gij with values in O(n) (resp. U(n)). From (95)-(96) and Theorem



CHERN SIMONS THEORY IN DIMENSION THREE 55

8.1 (iv) we deduce that the Chern-Weil images wE(pk/2) vanish for k odd, and that
wE(ck) is real for all k.

Definition 8.5. For anyGL(n,R)-bundle E →M we call pk(E) = wE(pk) ∈ H4k(M ;R)
the k-th Pontrjagin class of E. For any GL(n,C)-bundle E → M we call ck(E) =
wE(ck) ∈ H2k(M ;R) the k-th Chern class of E.

There were some fundamental informations hidden at the end of the proof of Theorem
8.1. Let us extract them.
Consider the connection w = (1− s)w0 + sw1 on E × [0, 1]. As usual, let us denote by
Ωs the curvature of the connection ws on E. The curvature of w is

Ω = ds ∧ (∂w/∂s) + Ωs

= ds ∧ (w1 − w0) + (1− s)dw0 + sdw1+

+
1

2

(
(1− s)2 [w0 ∧ w0] + s2 [w1 ∧ w1] + 2s(1− s) [w0 ∧ w1]

)

= ds ∧ (w1 − w0) + (1− s)Ω0 + sΩ1+(98)

1

2

(−s(1− s) [w0 ∧ w0] + (s2 − s) [w1 ∧ w1] + 2s(1− s) [w0 ∧ w1]
)
.

Then we have

h(P (Ω)) =

∫ 1

0

kP̃ ((w1 − w0) ∧ Ωk−1).

In particular, let us apply this formula in the following situation. Fix a connection θ
on π : E → M . Denote its curvature by Ωθ. Consider the pull-back bundle π̄∗E → E
via the projection π:

π̄∗E
π̄ //

π̄∗π
²²

E

π

²²
E

π // M.

The bundle π̄∗E → E is trivial, with a canonical section i : E → π̄∗E. Hence there are
two natural connections on π̄∗E: the trivial flat connection w0 corresponding to the
canonical section i, and w1 = π̄∗θ. We consider the connection w = (1 − s)w0 + sw1

on π̄∗E × [0, 1], and its curvature Ω.
Since w0 is the trivial flat connection we have i∗w0 = 0. Also, i∗w1 = θ gives i∗Ω1 = Ωθ.
Then from (98) we find

i∗Ω = ds ∧ θ + sΩθ +
1

2
(s2 − s) [θ ∧ θ] ∈ A2k

E×[0,1](g)

and also

(99) h(P (i∗Ω)) =

∫ 1

0

kP̃ (θ ∧ ϕk−1
s ) ∈ A2k−1

E (C)

where we set

ϕs = sΩθ +
1

2
(s2 − s) [θ ∧ θ] .

Finally, by (93) and the fact that w0 is flat we get

dh(P (i∗Ω)) = i∗dh(P (Ω)) = i∗P (Ω1) = P (Ωθ).
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We have proved:

Proposition 8.6. For any G-bundle E → M with a connection θ and any invariant
polynomial P ∈ Ik(G), the form

TP (θ) =

∫ 1

0

kP̃ (θ ∧ ϕk−1
s )ds ∈ A2k−1

E (C)

is a canonical antiderivative of P (Ωθ). That is,

(100) dTP (θ) = P (Ωθ).

Definition 8.7. We call TP (θ) ∈ A2k−1
E (C) the Chern-Simons form of (E → M, θ)

associated to the polynomial P .

Remark 8.8. By naturality (Theorem 8.1 (iv)), [P (Ω)] is a characteristic class of the
bundle π̄∗E → E. Since the latter is trivial, by obstruction theory it vanishes (see eg.
[MiSt]). This ultimately justifies (100). Proposition 8.6 “just” provides a canonical
primitive of this 0 class.

Exercise 8. The form TP (θ) can be written without the integral. Show that when
P ∈ Ik(G) we have

TP (θ) =
k−1∑
i=0

ciP̃ (θ ∧ [θ ∧ θ]i ∧ Ωk−i−1)

where ci =
(−1)ik!(k − 1)!

2i(k + i)!(k − 1− i)!
. In particular, when θ is flat ci = 0 for i 6= k− 1, and

ck−1 = 1/(1)k−12k
(

2k − 1
k

)
.

Example: Chern-Simons 3-forms. Take G = SL(n,C). From (97) we get

Tc2(θ) =
1

4π2

∫ 1

0

Trace

(
θ ∧ (sΩθ +

s2 − s

2
[θ ∧ θ])

)
ds

=
1

8π2
Trace

(
θ ∧ Ωθ − 1

6
θ ∧ [θ ∧ θ]

)
.

For G = SO(n) we can use p1(θ) instead, which is given by −1 times the same formula.
Compare with Remark 3.12.

Since connections are not horizontal, the Chern-Simons forms are in general not hori-
zontal and do not lift forms on M .

Proposition 8.9. Let π : E → M be a G-bundle with connection θ, and P ∈ Ik(G).
Set n = dim(M). We have:

(i) If 2k − 1 ≥ n, then P (Ω) = 0. Hence the class [TP (θ)] ∈ H2k−1(E;C) is
defined.

(ii) If 2k − 1 > n, the class [TP (θ)] is independent of θ.
(iii) Assume that P (Ω) = 0 and P is integral. That is, for the Maurer-Cartan

form θMC on G → {pt} we have [TP (θMC)] ∈ H2k−1(G;Z). Then there exists

P̂ (θ) ∈ H2k−1(M ;C/Z) such that

[TP (θ)] = π∗(P̂ (θ)) mod(Z).
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Note that since the class [TP (θ)] depends on θ we cannot apply Remark 8.4. Hence,

when P is complex valued, the class P̂ (θ) ∈ H2k−1(M ;C/Z) is not not necessarily
real. The proposition shows also that for closed 3-manifolds and any Lie group G the
most interesting classes are obtained for k = 2. For matrix groups this corresponds to
P = p1 and P = c2.

Proof. (i) If 2k − 1 ≥ n then 2k > n. Since the horizontal distribution has dimension
n and P (Ω) is a horizontal 2k-form, it vanishes.

In order to prove (ii) we need the following lemma (compare with Proposition 4.1):

Lemma 8.10. For any smooth path of connections θt on E →M we have

(101)
d

dt
(TP (θt))t=0 = kP (θ̇ ∧ Ωk−1) + exact form

where θ = θ0 and θ̇ = (d/dt)(θt)t=0.

Proof. The symmetry of P and (100) give

d

(
d

dt
(TP (θt))t=0

)
=

d

dt
(dTP (θt))t=0 =

d

dt
(P (Ωt))t=0 = kP

(
d

dt
(Ωt)t=0 ∧ Ωk−1

)
.

On another hand, by using the Bianchi identity and the Ad-invariance of P we find

d(kP (θ̇ ∧ Ωk−1)) = kP (dθ̇ ∧ Ωk−1)− k(k − 1)P (θ̇ ∧ dΩ ∧ Ωk−2)

= kP (dθ̇ ∧ Ωk−1)− k(k − 1)P (θ̇ ∧ [Ω ∧ θ] ∧ Ωk−2)

= kP (dθ̇ ∧ Ωk−1) + kP (
[
θ̇ ∧ θ

]
∧ Ωk−2).

The identity (101) then follows from

dθ̇ = d((d/dt)(θt)t=0) = (d/dt)(dθt)t=0 = (d/dt)(Ωt − 1

2
[θt ∧ θt])t=0

=
d

dt
(Ωt)t=0 −

[
θ̇ ∧ θ

]
.

2

End of the proof of Proposition ??. The claim (ii) is a consequence of P (θ̇∧Ωk−1) = 0,

which follows, similalry as in (i) from the fact that this (2k − 1)-form is horizontal (θ̇
vanishes on vertical vector fields).

(iii)
2

Definition 8.11. We call P̂ (θ) ∈ H2k−1(M ;C/Z) the Cheeger-Chern-Simons class of
(E →M, θ) associated to the polynomial P .

8.2. The universal canonical cochain on BPSL(2,C)δ. Let X be a compact ori-
ented 3-manifold, and π : P → X a PSL(2,C)-bundle with a flat connection w. By
Proposition 4.6 (4) we can find a trivializing atlas U = {(Ui, τi)} such that w|π−1(Ui)

is the trivial connection. Up to refining U we can assume that the dual complex is a
triangulation T of X; such a triangulation may be singular, ie. the 3-simplices ∆U may
have multiple as well as self adjacencies; only the interiors of required to embed.
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Our aim is to show that there exists decompositions

SX(w, s) =

∫

X

s∗α(w) =
∑
∆U

∫

∆U
s∗α(w)

where all summands have a uniform expression, given in terms of some special, uni-
versal, function.

9. Simplicial formulas

10. Quantum Chern-Simons theories
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