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1. Introduction

These lectures concern the topology of braids and knots in the cylinder: we construct polyno-
mial invariants generalizing the Jones invariant of links in S3, using (some explicitly given) tensor
representations of the generalized (cylinder) braid group ZBn (see section 3 for a definition). This
approach is also formalized into a categorical framework, thus it parallels the combinatorial real-
izations of representation categories of quantum groups by colored and oriented tangle categories,
as presented in [Tu].

We use in an essential manner quantum algebra, so the reader is assumed to be familiar with
the basic objects and constructions in this domain. We refer to [Kas] or [CP] for more information.

The details of the construction are to be found at the beginning of each section. We sometimes
quote results without proofs, but we give some references where full details may be found.

2. Quantum algebra

First we introduce quantum objects, such as q-exponentials and q-deformed algebras (q being
usually an invertible element in a commutative ring). We deduce from their very definition a ”twist
identity” in the quantum group Uq(sl2), that will give in section 5 a fundamental property of the
category of integrable modules over Uq(sl2), denoted by U − Int, by mean of the existence of a
”twist morphism” inside Hom(Uq(sl2) − Int).
In this way, we follow the philosophy behind the use of quantum algebra in low dimensional
topology: we extract and realize abstract rules from geometric categories (here we consider the
category of braids in the cylinder), such as tensor product or gluing in cobordism categories,
into linear categories: roughly speaking, (generic) one-parameter deformations of representation
categories of Lie algebras are given by representation categories of quantum groups, and the rigidity
properties of the spaces of morphisms of these linear categories provide a powerful tool to obtain
non-trivial functors from cobordism categories to them.
Moreover, quantum algebra presents itself as a very natural algebraic approach to non commutative
geometry, where spaces have to be interpreted in terms of ring of operators (see 2.4 and 6.2), and
geometrical assertions into ring theoretical assertions.

Let k be a commutative ring, k× the set of invertible elements in k and q ∈ k×.

2.1. the q-exponential function. Let x, y be q-commuting variables: xy = qyx, q being of a
sufficiently large order (e.g. of infinite order) in k×, and set:

(n; q) =
1 − qn

1 − q
, (n; q)! = (1; q)(2; q) . . . (n; q),

(
n

k; q

)

=
(n; q)!

(k; q)!(n − k; q)!
.

Then, one can show by induction [Kas, ch. 4] that:

(1) (x + y)n =

n∑

k=0

(
n

k; q

)

ykxn−k
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(
n

k; q

)

=

(
n − 1

k − 1; q

)

+ qk

(
n − 1
k; q

)

This gives clearly a q-deformed Pascal formula; note that the q-binomial coefficients

(
n

k; q

)

are

polynomials in Z[q].
We shall also need, in section 5, the symbols:

[n] = [n; q] =
qn − q−n

q − q−1
, n ∈ Z

[n]! = [n; q]! = [1][2] . . . [n], n ∈ N, [0]! = 1

Now define the following formal power series in Z[q][[z]], where q is a ”generic” parameter, i.e.
(q|q)n ∈ k× (z does not necessarily lives in C):

(x|q)n =

n−1∏

j=0

(1 − qjx)

(2) eq(z) =

∞∑

n=0

zn

(q|q)n
, Eq(z) =

∞∑

n=0

qn(n−1)/2 zn

(q|q)n

Proposition 1. : The following formal identities hold in Z[q][[z]]:

eq(z) =

∞∏

j=0

1

(1 − qjz)
, Eq(z) =

∞∏

j=0

(1 + qjz)

eq(z)Eq(−z) = 1, eq(qz) = (1 − z)eq(z)

(3) eq(z)eq(−z) = eqz(z
2)

proof: the functional equation f(qz) = (1− z)f(z) admits a unique formal power series in z as
solution, and we verify immediately that both sides of the first identity satisfy this equation (the
left one by induction).
The same proof is valid for the second identity, and these two equalities imply directly the others.
Note that eq(z) = (z|q)−1

∞ . 2

Consider now a pair x, y of q-commuting variables and the associated polynomial ring Pq[x, y] =
k[x, y]/{xy − qyx} (which is also called the quantum plane).
We can choose a basis in the form (yixj)i, j∈N for it, and complete Pq[x, y] with respect to this
basis into a ring Pq[[x, y]] of power series in x, y, whose coefficients may be calculated from the
q-commuting relation.

Proposition 2. : Let xy = qyx be q-commuting variables. Then the following formal identity
holds in Pq[[x, y]]:

(4) eq(x + y) = eq(y)eq(x)

proof: identifying the coefficients in a basis {ykxl}k, l∈N on both sides, we obtain the identity
(1). 2
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2.2. The Heisenberg algebra, its q-deformations and the exponential operator. Consider
the 3-dimensional nilpotent Lie algebra H over k generated by 3 variables X, P, W , with relations:

[X, W ] = [P, W ] = 0, [X, P ] = W

It is called the Heisenberg algebra, or the oscillator algebra. One can realize H, over k = R, as
the Lie algebra of the Lie group T of real upper triangular (3, 3)-matrices with unit diagonal, the
exponential map H → T, A 7→ expA being a diffeomorphism. Now, deform the commutator of H
into a q-commutator :

[A, B]q = AB − qBA

Then the defining relations of H may be turned into the followings:

xp − qpx = w, wx = q−1xw, wp = qpw

and we define the q-deformed Heisenberg algebra (or q-oscillator algebra), Hq, as the k-algebra
with generators x, p, w and the preceding relations.

In view to simplify the presentation of the next result, we now consider a version of Hq, with
generators x, y and v and relations:

(5) xy − qyx = (1 − q)v, xv = q2vx, yv = q−2vy

Proposition 3. :The generators of Hq satisfy the formal identity:

(6) eq(x + y) = eq(y)eq2(v)eq(x)

proof: setting v = z2, one can verify that x − z and y + z are q-commuting variables. Hence:

eq(x + y) = eq(x − z + z + y) = eq(z + y)eq(x − z)

= eq(y)eq(z)eq(−z)eq(x) = eq(y)eq2(v)eq(x)

using respectively the identities (4) and (3). 2

2.3. The deformed enveloping algebra and the exponential operator. In view to get a
more practical version of equation (6), we are going to embed it in an algebraic q-deformation of
the universal enveloping algebra of the Lie algebra sl(2).

Recall that the Lie algebra sl(2, C) over k = C may be realized as a matrix algebra with C-basis:

E =

(
0 1
0 0

)

, F =

(
0 1
0 0

)

, H =

(
1 0
0 −1

)

with the following bracket relations: [H, F ] = −2F, [H, E] = 2E, [E, F ] = H .

The universal enveloping algebra U of sl(2) is the associative unital k-algebra generated by
E, F, H with relations:

EF − FE = H, HF − FH = −2F, HE − EH = 2E.

Its q-deformation Uq = Uq(sl(2)) may be presented with generators K, K−1, E, F and relations:

KK−1 = K−1K = 1, KE = q2EK, KF = q−2FK, EF − FK =
K − K−1

q − q−1
,

where the ring k contains q as a unit such that q− q−1 is invertible. This presentation of Uq is not
convenient in order to see that the ”classical limit” of these relations when q → 1 gives U , and we
refer to [Kas, ch. 6] for the explicit proof of this fact.

There is the following Poincar-Birkhoff-Witt type k-basis for the algebra Uq: {EaKbF c; a, c ∈
N \ {0}, b ∈ Z}. The defining relations of Uq show that theses elements generate the algebra, and
the linear independence follows, for instance, from the action on the quantum plane (see [Kas, ch.
4]).
We can endow Uq with the structure of a Hopf algebra with invertible antipode, which means that
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the following maps µ, ε are homomorphisms of algebra and s is an antihomomorphism of algebra.
This structure is defined by:

µ(E) = E ⊗ 1 + K ⊗ E, µ(F ) = F ⊗ K−1 + 1 ⊗ F, µ(K) = K−1,

ε(K) = 1, ε(F ) = ε(E) = 0,

s(E) = −K−1E, s(F ) = −FK, s(K) = K−1.

Formula (6) may now be expressed as a formal identity in Uq ⊗ Uq: indeed, the ideals B+
q and

B−
q of Uq, respectively generated by E, K, K−1 and F, K, K−1 (the q-Borel subalgebras of Uq),

prove to be Hopf subalgebras of Uq, and the induced comultiplication gives:

(7) µ(E) = E ⊗ 1
︸ ︷︷ ︸

x

+ K ⊗ E
︸ ︷︷ ︸

y

Then, setting v = −qKE ⊗ E, it is straightforward to verify the relations (5) for the elements
x, y, v ∈ Uq ⊗ Uq, with q−1 in place of q. Then equation (6) reads:

(8) eq−1(µ(E)) = eq−1(K ⊗ E)eq−2(−qKE ⊗ E)eq−1(E ⊗ 1)

This is the twist identity. A similar identity holds if we set

x = F ⊗ K−1, y = 1 ⊗ F, v = −qF ⊗ FK−1

All this has been done in a formal setting, but no ambiguity will arise when considering the
action of Uq on integrable modules (we shall define this representation category in 5.2).

Remark: Note that the formal limit of eq((1− q)z) when q → 1 is the exponential power series
expansion of exp(z). In fact, it is shown in [Ba-Re] that when we set q = exp(−τ), the singular part

in τ of the asymptotic of (x|q)∞ when τ → 0 is equal to (1−x)−1/2exp(−Li2/τ) (where Li2 denotes
Euler’s dilogarithm power expansion series). One can then ask what is the asymptotic behaviour of
all the preceeding identities when q tends to 1 or a primitive root of unity. In connection with the
representation theory of Hq (see 2.2), this problem has been thoroughly studied in mathematical
physics in view to understand a quantum analog to the dilogarithm function.

2.4. Comodule structures. Before giving some formal definitions, let us explain roughly a way
to see how comodule structures arise in quantum algebra.
The category of comodules over a cobraided bialgebra A, denoted by A − Comod, is by definition
endowed with a braiding (see 5.1). Moreover, for most of the usual quantum groups, such as
the quantum linear groups Uq(sln), there is a duality isomorphism between their modules and
comodules over their q-deformed coordinate rings, which are cobraided bialgebra (see 6.2 for the
example of SLq(2) and [Kas], chpt. 7, for more details). Since the FRT-construction (see 6.1)
produces from any solution to the Yang-Baxter equation a (unique) cobraided bialgebra, these
categories arise very naturally.

Fix a coalgebra (C, µ, ε). A left C-comodule is a pair (N, µN ) where N is a vector space and
µN : N → C ⊗N is a linear map, called the coaction of C on N , such that the following diagrams
commute:

N - C ⊗ NµN

?ε ⊗ id
k ⊗ N

µN
HHHj
∼=

N - C ⊗ NµN

??
C ⊗ N- C ⊗ C ⊗ N

id ⊗ µNµ ⊗ id
µN

If two left C-comodules (N, µN ) and (N ′, µN ′) are given, a linear map f from N to N ′ is a
morphism of C-comodules if (id ⊗ f) ◦ µN = µN ′ ◦ f .
Right C-comodules are defined in the same way, by twisting the factors in the target of µN .
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3. Braids in the cylinder

We define the generalized braid groups, and more specifically the generalized B-type braid group
(respectively B-type Weyl-group) ZBn (resp. CBn) and quote some relations with the classical
Artin braid group and the so-called affine Artin braid group. These relations yield a topological
realization of ZBn as the group of braids in the cylinder, and a graphical calculus for ZBn is
introduced. The latter makes clear, in a very simple way, the particular role of a certain ”twist”
element t in ZBn.
We shall see at the end of this section that representations for knot algebras such as Hecke or
Birman-Wenzl-Murakami type algebras, may be obtained from tensor representations of the braid
group ZBn.

3.1. Braid groups. Consider a finite set S with a symmetric map m : S × S → N ∪∞ satisfying
m(s, s) = 1, m(s, t) ≥ 2 for s 6= t. Then one can define the weighted Coxeter graph Γ(S, m) as the
graph with S as its set of vertices and with an edge weighted by m(s, t) between vertices s, t if and
only if m(s, t) ≥ 3 (often omitted in the notation in case of equality). Here are three important
examples (which are respectively the Dynkin diagrams of the classical Lie algebras su(n), so(2n+1)

and the affine Lie algebra Ãn−1):
An−1

• • • • •
g1 g2 g3 g4 gn−1

Bn

• • • • •
t g1 g2 g3 gn−1

4 3 · · · 3

Ãn−1, n ≥ 3

�
�

A
A

�

Q

•
•
•

•
g2

g1

gn

g3

The generalized braid groups are denoted Z(Γ(S, m)), or also

(9) Z(S, m) := 〈gs, s ∈ S| gs gt gs
︸ ︷︷ ︸

m(s, t)<∞ alternative factors

= gt gs gt
︸ ︷︷ ︸

idem

〉

The relations in this presentation of Z(S, m) are called the generalized braid relations. They
show that non connected vertices in the weighted Coxeter graph of Z(S, m) are commuting (since
m(s, t) = 2).
The n-th Artin braid group ZAn−1 is obtained from the graph An−1 (with n − 1 vertices) using
the presentation (9) for Z(S, m), and in the same way one may define the (n string-) cylinder
braids from the graph Bn, as the group generated by t and gs, s ∈ S, with ]S = n − 1 and with
the relations:

(10)







gigjgi = gjgigj , |i − j| = 1,
gigj = gjgi, |i − j| ≥ 2,
tgj = gjt, j ≥ 2,
tg1tg1 = g1tg1t.
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Note that the first two relations imply that ZAn−1 ⊂ ZBn; the fourth relation is the four braid
relation. Conversely, the map λ : ZBn → ZAn−1, λ(gi) = gi, λ(t) = 1 splits by gj 7→ gj, which
gives a semi-direct product by Kn = kernel(λ):

(11) Kn → ZBn → ZAn−1

In fact, one may prove that (see [TD3]):

Theorem 1. : The kernel k = kernel(λ) of λ is a free group generated by the following elements
of ZBn:

y0 = t, y1 = g1tg
−1
1 , . . . , yn−1 = gn−1 . . . g1tg

−1
1 . . . g−1

n−1

It is straightforward from the picture of the affine Coxeter graph Ãn−1 that the n-th affine braid

group ZÃn−1 generated by g1, g2, . . . , gn may be defined by the relations:

gigjgi = gjgigj, i ≡ j ± 1 (mod n),

gigj = gjgi otherwise.

Indeed, for n > 2, the vertices may be denoted by i ∈ Zn and we have m(i, j) = 3 if i ≡ j ± 1

(mod n) and m(i, j) = 2 otherwise (if n = 2 the single edge has weight ∞, i.e. Ã1 is the free group
generated by g1 and g2).

Consider the automorphism of Ãn−1 which permutes cyclically the vertices, and the induced au-

tomorphism s of ZÃn−1: s(gi) = gi−1, ∀ i (mod n). Form the semi-direct product ZÃn−1 os Z

where the group structure on the set ZÃn−1 × Z is given by (x, m) · (y, n) = (x · sm(y), m + n);
beware that sn is the identity.

Theorem 2. : ZBn is the semi direct product of ZÃn−1:

(12) ZÃn−1 → ZBn → Z

gi 7→ gi 7→ 0, 1 ≤ i ≤ n − 1
gn 7→ gtg1t

−1g−1

t 7→ 1

where g = gn−1gn−2 . . . g1.

3.2. Weyl groups of type A and B. A Coxeter group C(S, m) may be presented with generators
s, s ∈ S, with the generalized braid relations and s2 = 1. Then we have a surjective group
homomorphism

Z(S, m)
p→ C(S, m), gs 7→ s

Define the length l(x) of a word x = s1s2 . . . sr := (s1, . . . , sr) ∈ C(S, m), as the minimum of r
for all such expressions of x; when r = l(x), then x is called a reduced word. This combinatorial
invariant l : C(S, m) → N \ {0} allows to construct a partial section to the map p:

Proposition 4. : Suppose (s1, s2, . . . , sr) is a reduced expression of x ∈ C(S, m). Then the
product gx := gs1gs2 . . . gsr

∈ Z(S, m) is independent of the reduced expression and only depends
on x.

This is a fundamental fact: in particular, taking Z(S, m) = ZBn, define the elements

t0 = t, t1 = g1tg1, . . . , tn−1 = gn−1 . . . g2g1tg1g2 . . . gn−1

These elements of ZBn pairwise commute; see in 3.4 how we will use this property.

Examples of Coxeter groups are the symmetric groups Sn = CAn−1, associated with the graphs
An−1, where the length function on a permutation π is l(π) = ]{(i, j)|i < j, π(i) > π(j)}; the

longest element is of length
n(n − 1)

2
.

Let us introduce a graphical calculus for permutations: to any π ∈ S, associate n arcs in a
strip R × [1, 0], such that the j-th arc connects (i, 0) to (π(i), 1), two arcs have at most one
transverse intersection point and the whole figure has at most double points. Assume also that the
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intersection points have different heights.Notice that the number of double points is the length l
of π, which shows the lost in topology when looking at the length only.
A reduced expression can be read off such a diagram, by composing in an ascending order the
transpositions represented by horizontal substrips with at most one double point in the interior
and no double point on the boudary of each subtrip; every reduced expression arises in this way.
Then, the preceding theorem has the following geometrical meaning: take a reduced word in Sn,
and desingularize each double point of its diagram by an overcrossing. Do it so that the first arc
is over the others, etc ...You get an ”ascending” braid, independent of the reduced expression!
A picture for a transposition π ∈ CA3 is as follows:

The next example is the Coxeter group for the Coxeter graph Bn. It is the group of permutations
π of {±n} = {−n, −n + 1, . . . , −1, 1, . . . , n} such that π(−i) = −π(i), i ∈ [±n]. Define the
generator t by the transposition (−1, 1) and the generators gi by the products (i, i+1)(−i, −i−1).
There is a symmetry with respect to the axis {0}× [1, 0] of the strip R× [1, 0] in the corresponding
pictures.
Again, one can read off a reduced expression from a diagram in which two arcs have at most one
intersection point.

Now, the sequence (11) implies that CBn is isomorphic to a semi-direct product:

(13) 1 → (Z2)
n → CBn → CAn−1 → 1

Finally, we quote that there exists, aside of the usual length function, a graded length for these
equivariant permutations, given by a pair (a, b): b is the number of double points along the axis
{0} × [0, 1] and a is half the number of the remaining double points. The longest element has

length n2 = 2 × n(n − 1)

2
+ n = maxCBn

a + maxCBn
b.

Remark: the last two Coxeter groups CAn−1 and CBn are respectively the Weyl groups of the
compact Lie groups U(n), and SO(2n + 1) (or Sp(n)). In particular, one may think of CBn as
the Coxeter group with generators t, g1, g2, . . . , gn−1, where gj acts on the complex n-space C

n

by the transposition (j, j + 1) between coordinates and t acts by z1 → −z1. This interpretation
follows from the sequence (13), with Sn = CAn−1 acting on C

n by permutation of the coordinates
and (Z2)

n acting by sign changes

(z1, z2, . . . , zn) → (ε1z1, ε2z2, . . . , εnzn), εi ∈ {±1}
This representation of CBn is then generated by the reflections in the hyperplanes zi = ±zj, i 6= j
and zi = 0, i = 1, . . . , n.

3.3. Topology of braids. We use the reflection representation of the Weyl group CBn to derive
a geometric interpretation of the braid group ZBn. Let X be the complement of the previous
hyperplanes: zi = ±zj, i 6= j, zi = 0, i = 1, . . . , n; then, CBn acts freely on X , and

Theorem 3. : There is an isomorphism of groups between the fundamental group π1(X/CBn) of
the space of regular orbits of CBn and the braid group ZBn.
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Let us proceed now with a geometric construction of this isomorphism.
Removing the hyperplanes zi = 0, i = 1, . . . , n from C

n, we get the n-fold product of C
∗ = C\{0},

and removing the remaining reflection hyperplanes yields the space X of n-tuples in C
∗n with

pairwise different squares z2
j . Define the configuration space Cn(C∗) as the space of subsets of

cardinality n in C
∗; it is obviously the orbit space Y/Sn, where Y ⊂ C

∗n is the set of n-tuples with
pairwise distinct components and Sn acts by permutations.

Proposition 5. : The orbit space X/CBn is homeomorphic to Cn(C∗), hence we have an isomor-
phism of groups π1(C

n(C∗)) ∼= ZBn

proof: note that the quotient of X by the maps zj 7→ z2
j , j = 1, . . . , n is homeomorphic to

X/(Z2)
n ∼= Y , as an Sn equivariant homeomorphism. 2

Here is a geometric interpretation: a loop in Cn(C∗) lifts to a path

w : [0, 1] → Y, t 7→ (ω1(t), ω2(t), . . . , ωn(t))

about the ”axis” (0, 0, . . . , 0), starting for example from the base point

(1, ω, ω2, . . . , ωn−1), ω = exp(2iπ/n).

This path ends in (σ(1), σ(2), . . . , σ(n)), where σ is a permutation of the set of points {1, ω, . . . , ωn−1},
and there is no self intersection points on the strings Image(ωi) and between them.
Passing to the quotient by Zn = {1, ω, . . . , ωn−1}, this gives a well defined cylinder braid zω from
Zn × {0} to Zn × {1}, with n strings, in C

∗ × [0, 1]. Since homotopy classes of loops correspond
to isotopy classes of such braids and the multiplication of loops lifts to concatenation of braids, we
get:

Theorem 4. : The braid group ZBn is the group of n-string braids in the cylinder C
∗ × [0, 1].

The same proof implies that the Artin braid group is the group of braids in the strip C× [0, 1].
Alternatively, the map ZBn → ZAn corresponds to forgetting the axis: g1, g2, . . . , gn−1 7→
g1, g2, . . . , gn−1 respectively and t 7→ g2

0 .

By lifting a loop in X/CBn to a path w : [0, 1] → X , we obtain in the same manner an
isomorphism of groups between ZBn and the group of symmetric braids (with respect to an axis)
with 2n strings in C × [0, 1], i.e. braids that are Z2-equivariant under C

∗ × [0, 1] → C
∗ ×

[0, 1], (z, t) 7→ (−z, t).

The previous geometric realizations of ZBn allow a graphical calculus for ZBn: the generators t
and gi of the group of cylinder braids are respectively represented by a strand spinning around an
axis and the usual braid pictures on an arbitrary side of this axis. The group of symmetric braids
is obtained by substituing to the generator t two segments, which cross in a single point along
the axis, and to double the generators gi in a symmetric way with respect to the axis. Then the
geometric realization of t is a two fold ramified covering along the axis of this singular braiding.
Notice that we have a kind of generalized third Reidemeister move: consider the second figure
in 19, and forget the notations inside. Slide the lower strand along the axis upward, so that it
becomes the higher strand: this move is a geometric realization of the equation tg1tg1 = g1tg1t.
Beware that the symmetry is different from the reflection in the axis: the former corresponds to a
spatial rotation about the axis.

Here is finally an homotopy theoretic interpretation of the sequence (12).

The map C
∗n → C

∗, (z1, z2, . . . , zn) 7→ z1 · z2 · . . . · zn is Sn-equivariant, so it induces a map
α : Cn(C∗) → C

∗, and a homomorphism α∗ between fundamental groups.
Let us prove that α is a fibre bundle.

The set H = {(z1, . . . , zn) ∈ C
∗|

∏

j

xj = 1} is Sn-equivariant and the map γ : C
∗ ×Zn

H →

C
∗n, (z, z1, . . . , zn) 7→ (zz1, . . . , zzn) from the semi-direct product C

∗×Zn
H is an Sn-equivariant

homeomorphism. Hence it is a fibre bundle with fiber H , associated to the Zn-principal bundle
C

∗ → C
∗, z 7→ zn.
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Removing from C
∗n the set C of n-tuples where at least two components are equal, and setting

D = H∩C, the map γ induces an Sn-equivariant homeomorphism γ : C
∗×Zn

(H\D) → C
∗n\C = Y .

Then the following fibre bundle description of the configuration space is correct:

α : Cn(C∗) ∼= Y/Sn

γ−1

∼= C
∗ ×Zn

(H \ D)/Sn → C
∗

The homotopy exact sequence for this fibration reduces to a sequence for the fundamental groups:

1 → kernel(α∗) → ZBn → Z → 0

The 5-lemma applied to this sequence and to the sequence (12) proves that ZÃn−1 is the funda-
mental group of the fibre of α.

3.4. Tensor representations of ZBn. To conclude this section, let us see how to construct
representations of the braid group ZBn on tensor powers of a k-module V , with k an integral
domain.

Define a four braid pair (X, F ) as a pair of automorphisms of the modules V ⊗ V and V ,
respectively, such that:

(X ⊗ 1)(1 ⊗ X)(X ⊗ 1) = (1 ⊗ X)(X ⊗ 1)(1 ⊗ X) (Y B)
X(F ⊗ 1)X(F ⊗ 1) = (F ⊗ 1)X(F ⊗ 1)X (FBP )

The automorphism X is called an R-matrix, or Yang-Baxter Operator. The FBP relation shows
that we consider here, with a view towards the representation theory of braid groups, the solutions
of the more general four braid relation XY XY = Y XY X on V ⊗ V only when Y can be written
in the form F ⊗ 1 (see the proposition below).
Tensor representations of ZBn on V ⊗n are obtained by setting:

t 7→ F ⊗ 1 ⊗ . . . ⊗ 1
gi 7→ Xi = 1 ⊗ . . . ⊗ X ⊗ . . . ⊗ 1

where Xi acts by X on the factors i and i + 1. The main task of the remaining part of these
lectures is to investigate the algebraic and categorical structures in which the (FBP) relation may
live.

Let us display already at this point some identities to be used in the next sections. Set

t(1) = t, t(j) = gj−1gj−2 . . . g1tg1 . . . gj−1, tn = t(1)t(2) . . . t(n)

g(j) = gjgj+1 . . . gj+n−1,

xm, n = g(m)g(m − 1) . . . g(1).

By a remark in 3.2, the elements t(j) pairwise commute. If we denote by Tn : V ⊗n → V ⊗n and
Xm, n : V ⊗m ⊗ V ⊗n → V ⊗n ⊗ V ⊗m the operators induced by tn and by xm, n respectively, under
the preceding tensor representation of ZBn, we have

Proposition 6. : The following identities hold

Tm+n = Xn, m(Tn ⊗ 1)Xm, n(Tm ⊗ 1) = (Tm ⊗ 1)Xn, m(Tn ⊗ 1)Xm, n

proof: the element tn ∈ ZBn is sent in the Coxeter group CBn to a product of n2 generators
t, gj; but we have shown in 3.2 that the longest element of CBn, which is uniquely determined,

also have length n2: then it is equal to tn. Since the element xn, mtnxm, ntm of CBm+n has length

(m + n)2, it is equal to tm+n in CBm+n. Now, these identities lift to the corresponding elements
in ZBm+n by proposition 4. Applying the tensor representation to both sides, we obtain the first
equality. The second one follows from the symmetric procedure. 2

Proposition 7. : The element tn is contained in the center of ZBn.
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See 4.3 for a categorical interpretation.

proof: we know that t commutes with tn; the relation

gjt(j − 1)t(j) = t(j − 1)t(j)gj

comes directly from the definition of the elements t(j). Finally, the element gj commutes with t(k)
for k 6= j − 1, j. Then tn commutes with any element of ZBn. 2

Here are two examples of four braid pairs: fix a ground ring k and parameters α, β, ρ, p ∈ k;
define

θ = ρ − ρ−1, p2 = q, δ = q − q−1, δ∗ = q2 − q−2

µ = δ∗(1 − q−2), λ = q−1δ∗, ω =
√

q + q−1

The following matrices Fj (where an empty place carries a 0) act on a free module Vj over k, which
has to be thought of as an irreducible module for the quantum group Uq(sl2). With this in mind,
the R-matrices Xj are then the specializations onto Vj ⊗ Vj of the universal R-matrix of Uq(sl2).
Besides explicit calculations may show that the pairs (Xj , Fj) verify the four braid relation, it is
not yet clear what is the four braid pair analog of the FRT construction (see 6.2).

F2 = t(α, β, θ) =

(
0 β
α θ

)

, X2 = g(p) =







p
0 p−1

p−1 p − p3

p







X3 =

















q2

1
q−2

1 δ∗

1 λ
1

q−2 λ µ
1 δ∗

q2

















F3 =





0 0 −q
0 −q2 −p3ωθ
−q −p3ωθ 1 − q2 − q2θ2





Remark: We can factor the tensor representation of ZBn associated to the pair (X2, F2), to
a representation of a certain Hecke algebra associated to Bn (see 6.1.2); this is due to a quadratic
relation that is verified by (X2, F2). In the second case, the pair satisfies a cubic equation, so that
we can factor the representation to a representation of a B-type generalization of the algebras of
Birman-Wenzl [BW] and Murakami [M]; the cubic relations correspond to the algebraic counterpart,
in these respective knot algebras, to skein relations (see [TD1] and [TD2]).

4. Tensor categories with cylinder braiding

We now investigate categories that are related to the preceding algebra. A global point of view
for the understanding of representations of categories with a cylinder braiding emerges through
tensor representations of ZBn, with the introduction of a (oriented and colored) graphical calculus
in remark 4.5. But we first give a definition of tensor categories with cylinder braiding, which
clarify the properties of t in the representation category ZBn −Mod of ZBn, and we interpret the
resulting cylinder twist morphisms in the case of categories of modules over bialgebras.
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4.1. Tensor module categories. Consider a tensor category (A, ⊗, I, a, r, l): A is a category
endowed with a (tensor product) functor ⊗ : A×A → A and with a neutral object I for ⊗, and
natural isomorphisms

∀ X, Y, Z ∈ A
aX, Y, Z : (X ⊗ Y ) ⊗ Z → X ⊗ (Y ⊗ Z)

rX : X ⊗ I → X
lX : I ⊗ X → X

are given, satisfying respectively the Pentagon and the Triangle axioms. These axioms are con-
straints imposed on ⊗; one can present them by commutative diagrams, as shown below, replacing
all · symbols by ⊗ and α by a at every place they appear. We call a the associator of A, and r
(resp. l) the right unit (resp. the left unit).

Given a tensor category A as above and an arbitrary category B, we define a right action
(∗, α, ρ) of A on B as the 3-tuplet of maps

• a functor B ×A → B, (Y, X) 7→ Y ∗ X
• a natural isomorphism α, αU, V, W : (U ∗ V ) ∗ W → U ∗ (V ⊗ W ), where U ∈ Ob(B), V

and W ∈ Ob(A) (this map corresponds clearly to the above associator a, see the diagrams
below).

• a natural isomorphism ρ, ρX : X ∗ I → X, X ∈ Ob(B).

The last two maps satisfy the Pentagon and the Triangle axioms:

(U ∗ I) ∗ V- U ∗ (I ⊗ V )αU, I, V

?id ∗ lV
U ∗ V

PPPqρU ∗ id

((U ∗ V ) ∗ W ) ∗ X-(U ∗ V ) ∗ (W ⊗ X)αU∗V, W, X -U ∗ (V ⊗ (W ⊗ X))αU, V, W⊗X

?
6αU, V, W ⊗ idX idU ⊗ aV, W, X

(U ∗ (V ⊗ W )) ∗ X - U ∗ ((V ⊗ W ) ⊗ X)αU, V ⊗W, X

Such a pair (B, A) is called a right tensor A-module category B. Left actions are defined
similarly. Equivariant morphisms are easily defined between tensor module categories (see [TD2]).

4.2. Categories with cylinder braiding. Let us now be given two categories A and B such
that:

• (A, Z) is a braided tensor category, where

∀ M, N ∈ Ob(A), ZM, N : M ⊗ N → N ⊗ M

are the braiding morphisms for A (see [Kas, ch. 13]).
• (B, ∗, α, ρ) is a right A-module,
• A is a subcategory of B, with Ob(A) = Ob(B) (for example, extend A to B by adding

k-linear morphisms to the set of A-morphisms HomA, k being the ground ring).
• (α, ∗, ρ) restricts to (a, ⊗, r) on A×A.

A B-endomorphism of A consists of a family tX ∈ HomB(X, X) such that ∀ f ∈ HomA(X, Y ),
the following commutative diagram is valid:

X
tX−−−−→ X



yf



yf

Y
tY−−−−→ Y

Finally, a cylinder twist for (B, A) is defined as a B-endomorphism t of A such that

tX⊗Y = (tX ⊗ idY )ZY, X(tY ⊗ idX)ZX, Y

ZY, X(tY ⊗ idX)ZX, Y (tX ⊗ idY ) = (tX ⊗ idY )ZY, X(tY ⊗ idX)ZX, Y

The second identity is a categorical version of the FBP relation: the existence of a cylinder twist
specifies a strong property of the action of A on B.
A pair (B, A) with a cylinder twist is called a tensor module pair with cylinder braiding.

Let us anticipate on 4.5 with the following result:
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Proposition 8. : The first identity, which we call T , implies the second.

proof: Naturality gives

ZX, Y tX⊗Y Z−1
X, Y = tY ⊗X

hence tY ⊗X = ZX, Y (tX ⊗ idY )ZY, X(tY ⊗ idX) by the first identity. Now interchange X and Y
to find the result. 2

One may also show that a cylinder twist is compatible with the neutral object: TI = idI .

4.3. Categories of braids and cylinder braids. Define the categories of braids A and cylinder
braids B as follows:

• Ob(A) = Ob(B) = N \ {0}
• HomA(m, n) =

{
∅ if m 6= n
ZAn−1 if m = n

• HomB(m, n) =

{
∅ if m 6= n
ZBn if m = n

Tensor product between objects in the respective categories is given by the addition in N \ {0} :
m ⊗ n = m + n.
It is easy to verify that, using the graphical calculus introduced in section 3.3, the braiding xm, n

in A may be represented in ZAm+n−1 by:
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In view to find a cylinder twist in the pair (B, A), let us recall the definition (see 3.4) of the
family t(j), j = 1, . . . , n of elements of ZBn:

t(1) := t, t(2) := g1tg1, . . . , t(j) := gj−1gj−2 . . . g1tg1 . . . gj1 , . . .
tn = t(1)t(2) . . . t(n)

The elements t(j) are pictorially represented by

The figures make clear the following proposition (recall the concrete application in 3.4 and its
proof):

Proposition 9. : The following identity holds in HomB(m + n, m + n):

tm+n = xn, m(tn ⊗ 1)xm, n(tm ⊗ 1)

Moreover, the element tn is in the center of ZBn.

proof: In the symmetric picture for B-braids, we have for tm+n ∈ ZBm+n:
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And its image in CBm+n is
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Since there is one intersection point between any pair of arcs in the previous picture (this is a
reduced word for the longest element in CBn), we easily see that it may also be presented as the
image of xn, m(tn ⊗ 1)xm, n(tm ⊗ 1) in CBn. Then use proposition 4.
Moreover, an half twist gives (with a symmetric bloc at the middle of the picture):
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which is also
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2

Corollary: The element tn yields a cylinder braiding on the pair (B, A).

Remark: The wellknown universality of A for the braiding property extends naturally to the
category B for the cylinder braiding property (see 4.5).

4.4. Example. Consider a braided bialgebra (A, µ, ε) over a commutative ring k, with universal

R-matrix R =
∑

i

ai ⊗ bi ∈ A⊗A. Define A as the category of left A-modules and A-linear maps,

with braiding ZM, N : M ⊗ N → N ⊗ M, x ⊗ y 7→
∑

i

biy ⊗ aix, and B as the category of left

A-modules with k-linear maps.

Proposition 10. : The cylinder twists for (B, A, R) correspond bijectively to elements v ∈ A
such that

(14) µ(v) = (v ⊗ 1)R̂(1 ⊗ v)R

where τ(x ⊗ y) = y ⊗ x, τ(R) = R̂. Moreover we have ε(v) = 1.

sketch of proof: Given an element v ∈ A satisfying equation (14), define a k-linear morphism
in B by tX : X → X, x 7→ vx. It is a straightforward calculation to show that t verifies the FBP
relation; note that t is not in general A-linear (since v is not assumed to be central in A), hence v
is not a ribbon element in A (see [Tu] or [Kas, ch. 14] for a definition) .
Conversally, given a cylinder twist t ∈ HomB, the element v = tA(1) ∈ A satisfies the identity
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(14).
Finally, applying m(ε⊗ 1) on the left of both sides of (14) (m denotes the multiplication in A), we
obtain

v = ε(v) m(ε ⊗ 1)R̂ v m(ε ⊗ 1)R

which gives v = ε(v) v, since (see [Kas., ch. 8]) we have

m(ε ⊗ 1)R̂ = m(ε ⊗ 1)R = 1

2

4.5. Remark on a graphical calculus and the duality. We want to introduce in this section
an orientation and a coloration on cylindrical braids, by elements in Ob(B); the pair (B, A) is only
supposed to have a cylinder braiding and an extended duality (see below). Let us present briefly
how we do this.
Define the (geometric) category ORR of oriented rooted ribbons with generators all the possible
elementary cylindrical tangles that may be used to build (by concatenation) cylindrical braids.
The relations are the ”obvious” ones, that is they are all the relations that are induced by ambiant
isotopy of braids in the cylinder. It is clear that the category ORR is a natural extention of the
category T of oriented tangles.
It is shown in [TD2] how to construct a functor from ORR into any tensor module pair (B, A)
with cylinder braiding endowed with an extended notion of duality: in particular, the cylindrical
(upward oriented) tangles made of a segment with an extremity on the top or the bottom line of
the strip R × [1, 0] and the other extremity on the axis of the cylinder (in the graphical calculus)
are sent onto the so-called rooting and corooting morphisms of B (see below for their definition).
This rigid representation (i.e. rigid tensor functor) from the oriented category ORR to B produces
a graphical calculus for B based on the presentation of ORR by generators and relations. In other
words, a tensor module category with extended duality and with cylinder braiding can be presented
by generators and relations as a categorical quotient of ORR.
Since everything above is classical (except the definition of the (co-)rooting morphisms) we present
here only a few examples and we refer to [Tu, ch. 12] and [TD2] for more details.

Suppose that there exists a functor ∗ in A such that for any object V in Ob(A), ∗V : V → V ∗

is an involution and 1∗ = 1. Furthermore, we demand that ∗ is compatible with the monoidale
structure of A, that is ∀ a, b ∈ Ob(A) (resp. HomA) we have an isomorphism between (a⊗b)∗ and
b∗ ⊗ a∗. Notice in the diagrams below that an ascending arrow at any point on the boundary of
the strips indicates it has a non dual object as label. The transposed morphisms in B are obtained
by inversing the orientation.

Let X, Y be some objects in a tensor module category B endowed with a cylinder braiding.
The above discussion implies that we have for tX :
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and (tX ⊗ idY )ZY, X(TY ⊗ idX)ZX, Y is

Tensor product for t, over X and Y , implies juxtaposition (with proposition 8):

Indeed, a braid in the cylinder may be considered as a band, always looking to the axis, and
proposition 8 shows that the verification of the algebraic counterpart of this geometric property is
a sufficient condition to have a tensor module category category with cylinder braiding.

We define a left duality in A by the existence of a pair of morphisms b, d ∈ HomA, with
bV : I → V ⊗ V ∗, dV : V ∗ ⊗ V → I. We demand that these morphisms satisfy the following
composition rules:

V
bV ⊗idV→ V ⊗ V ∗ ⊗ V

idV ⊗dV→ V = idV (1)

V ∗ idV ∗⊗bV→ V ∗ ⊗ V ⊗ V ∗ dV ⊗idV ∗→ V ∗ = idV ∗ (2)

and are pictorially represented by the generators of the Temperley-Lieb category TA (see 6.1.1)
with the obvious orientation (from left to right).
A right duality is defined similarly with morphisms a, e with aV : I → V ∗ ⊗ V, eV : V ⊗ V ∗ → I,
satisfying versions (with the obvious modifications) of the identities (1) and (2) above.
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Proposition 11. : A cylinder twist t (∈ HomB) is always compatible with a duality (in A), i.e.
we have

which is formally
dX(tX∗ ⊗ id)ZX, X∗(tX ⊗ id)ZX∗, X = dX

and the corresponding formal ”upside-down” version:

ZX∗, X(tX∗ ⊗ idX)ZX, X∗(tX ⊗ idX∗)bX = bX

proof: we restrict to the case of a left duality. Since b, d are morphisms in A and t is a
B-endomorphism, we have

tX⊗X∗bX = bXtI = bX , dX tX∗⊗X = dX

But these identities are equivalent to the conditions of compatibility, in the statement of the
proposition. 2

The above identities allow, in particular, to write down an expression for tX∗ in terms of tX :

tX∗ = ((dXZ−1
X∗, X(t−1

X ⊗ id)Z−1
X, X∗) ⊗ id) ◦ (id ⊗ bX)

We now define an extended notion of duality for a pair C = (B, A) with cylinder braiding.

Let (b, d) be a left duality for A, and consider two morphisms (the rooting and corooting
morphisms)

βX : I → X∗, δX : X → I

in HomB, such that

dX(βX ⊗ idX) = δX , (δX ⊗ idX∗)bX = βX (1)
βX⊗Y = (βX ⊗ idY )βY , δX⊗Y = δY (δX ⊗ idY ) (2)

A left duality for (B, A), also called a rooted structure for the pair, is a left duality for A and a
pair of morphisms β, δ ∈ HomB as above.
It is graphically clear to see how a left duality for a pair (B, A) is compatible with a cylinder
braiding: recall that the rooting maps are represented by a segment with an extremity on the top
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or the bottom line of the strip, and the other extremity on the axis of the cylinder (in our graphical
calculus), oriented from left to right . Then the compatibility of the morphism t with the rooting
maps is graphically represented by spinning the free extremity of the segment once around the
axis.
The formula is δXtX = δX (and tXβX = βX for the upside down version) and tY (δX ⊗ idY ) =
(δX ⊗ idY )ZY, X(tY ⊗ idX)ZX, Y (and ZY, X(tY ⊗ idX)ZX, Y (βX ⊗ idY ) = (βX ⊗ idY )tY for the
upside down version, for the rooting).

Similar axioms hold with a right duality.

5. Universal cylinder twist

In this section we describe in concrete terms some pairs of categories with a cylinder braiding.
They are all representation categories for a quantum group (in each pair, one category is extended
by k-linear maps); in particular, the category of Uq(sl(2))-modules provides the highly non trivial
examples of four braid pairs we gave in 3.4.

5.1. Cylinder twist for comodules. Here is the dual formalism to the cylinder braiding property
in a braided category of modules.

Let A be a bialgebra over a ring k, with comultiplication µ and counit ε. Given a vector space
M , define a left A-comodule structure on M by the map

µM → A ⊗ M, x 7→
∑

x1 ⊗ x2

Given a k-linear form
r : A ⊗ A → k

consider the deformed flip morphism

ZM, N : M ⊗ N → N ⊗ M

x ⊗ y 7→
∑

r(y1 ⊗ x1)y2 ⊗ x2

The map r is called a braid form if and only if {ZM, N}M, N is a braiding in the category of left
A-comodules. When such an r exists, we say that (A, r) is a cobraided bialgebra.
¿From now on, we shall only refer to finite dimensional bialgebras. The multiplication in the dual
algebra A∗ (denoted by a convolution symbol) is defined by

∀ f, g : A → k, (f ∗ g)(a) =
∑

f(a1)g(a2)

where µ(a) =
∑

a1 ⊗ a2.

Moreover, we denote by m the multiplication in A and we define a tensor product for elements in
A∗ by

∀ f, g : A → k, f⊗̂g : A ⊗ A → k, (f⊗̂g)(a ⊗ b) = f(a)g(b)

Let (A, r) be a cobraided bialgebra. A map f : A → k ∈ A∗ is called a cylinder form if and
only if f is convolution invertible and

f ◦ m = (f⊗̂ε) ∗ rτ ∗ (ε⊗̂f) ∗ r

where τ is the canonical flip map; in formal notations with elements:

∀ a, b ∈ A, f ◦ m(a, b) =
∑

f(a1)r(b1 ⊗ a2)f(b2)r(a3 ⊗ b3)

where (µ ⊗ id)µ(a) =
∑

a1 ⊗ a2 ⊗ a3.

One may verify immediately that

Proposition 12. : Let f be a cylinder form. Define

tM : M → M, x 7→
∑

f(x1)x2

where M is a left A-comodule. Then {tM}M defines a cylinder braiding on the braided category of
left A-comodules. In particular, for each left A-comodule M , the pair (ZM, M , tM ) is a four braid
pair on M .
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Here is an example of braid form: let A = kG be the group algebra of an abelian group G, over
the ring k. Then, the explicit description of the cobraided structure of A (see [Kas, ch.4]) shows
that braid forms in A are in one-to-one correspondence with the bicharacters of G, i.e. with maps
r : G × G → k× such that

r(gh, k) = r(g, k)r(h, k)

r(k, gh) = r(k, g)r(k, h)

Then a k-linear map f : G → k yields a cylinder form if and only if

∀ a, b ∈ G f(ab) = f(a)f(b)r(a, b)r(b, a)

This last identity means that f is a quadratic form with associated bilinear form r (write it with
additive notations)!

5.2. The braided category of Uq(sl(2))-modules. Let us denote U = Uq(sl(2)), and recall that

in section 2 we used generators E, F, K, K−1 ∈ U . Define U − Int as the category of integrable
U-modules, i.e. vector spaces M such that

1) M = ⊕n∈ZMn, where Mn is an eigenspace of K with eigenvalue qn.
2) E and F act locally nilpotently, i.e. ∀ x ∈ M, ∃ N ∈ N : ENx = FNx = 0.

Remark: consider operators on U − Int (which commutes with U-linear maps). Each x ∈ U
gives an operator by left multiplication, but note that in this category, infinite sums of elements
of U are also interpretable in terms of operators.

Then, assume that k is a field, q1/2 ∈ k and q is not a root of unity. If H is the operator
Mm → Mm, x 7→ mx, then x = qH⊗H/2 acts on Mm ⊗ Nn by multiplication by qmn/2.
The infinite sum

(15) Ψ =

∞∑

n=0

qn(n−1)/2 (q − q−1)n

[n; q]!
Fn ⊗ En

is a well defined operator on U − Int × U − Int called a quasi-R-matrix. Indeed, the universal
R-matrix R for U is R = x ◦ Ψ (see [Lus]).

Proposition 13. : With δ = q − q−1, we have the equality Ψ = eq−2(
δ2

q
F ⊗ E).

proof: Rewrite the coefficients of Fn ⊗ En:

qn(n−1)/2 δn

[n]!
= qn(n−1)/2 δ2n

(q − q−1) . . . (q − q−n)
=

qn(n−1)/2 δ2n

qn(n+1)/2(1 − q−2) . . . (1 − q−2n)

The definitions of eq and (q−2|q−2)n in (2) gives the result. 2

5.2.1. The quantum Weyl group for U −Int. We shall use in this section some material from [Lus.,
ch. 1] without proofs, and we refer to this book for more details. Roughly speaking, there is an
action of the braid group associated to any given Lie algebra on the category of its integrable
modules. This action is generated by some symmetries (in Lusztig’s book, they are refered as T ′

i,±
and T ”i,±), defined by automorphisms in this category, and there is an operator L on U − Int that
intertwines the action of these symmetries with the coproduct. We shall take a look at the action
of this operator on integrable modules, and see how it generates a cylinder twist.

The category U − Int is semi-simple, since any of its object M is the direct sum of simple
modules Mm, m ∈ N. The simple modules Vn may be presented with basis x0, . . . , xn and with
the action (x−1 = xn+1 = 0):

F (xi) = [i + 1]xi+1, E(xi) = [n + 1 − i]xi−1, K(xi) = qn−2ixi

Proposition 14. : There exists an operator L on U − Int which ver ifies on Vn:

xj 7→ (−1)jqj(n+j)xn−j
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In Lusztig’s book (chapter 1), the operator L is refered as T
′

i, ±1, T ”
i, ±1.

Let us denote, as usual, by µ(L) the operator that L induces when acting on tensor products
of modules (where µ is the comultiplication in U). We list in the next proposition a few essential
properties of L.

Proposition 15. : The above operator L has the following properties (as identities between oper-
ators):

LEL−1 = −KF, LFL−1 = −EK−1, LKL−1 = K−1(16)

µ(L) = (L ⊗ L) ◦ Ψ = τR ◦ (L ⊗ L) ◦ x−1(17)

x(L ⊗ 1) = (L ⊗ 1)x−1, x(1 ⊗ L) = (1 ⊗ L)x−1(18)

(L ⊗ L)Ψ(L ⊗ L)−1 = x ◦ τΨ ◦ x−1(19)

sketch of proof: (16) and (18) follow from a direct verification in Vn, and (19) by applying
(16) on each summand of the expansion of Ψ. Let us turn to (17): the second equality follows
from the first one by using (18) and (19). Now, by the quantum Clebsch-Gordan decomposition
(see [Kas], chpt. 7)

Vm ⊗ Vn = Vm+n ⊕ Vm+n−2 ⊕ . . . ⊕ V|m−n|

one can determine µ(L) on each module in the form Vm ⊗Vn; the action of Ψ on Vm ⊗Vn may also
be computed explicitly using the same fact. Applying finally L ⊗ L, we get the result . . . after all
these long calculations. 2

5.2.2. The universal twist for U − Int.

5.2.3. Generalities. A universal twist for U − Int is, by definition, a universal operator t such that
(as an identity between operators)

(20) µ(t) = τR ◦ (1 ⊗ t) ◦ R ◦ (t ⊗ 1)

When applied on the module M , we denote t as tM .
We shall now look explicitly at the form of tM (supposing that it exists).

1) If M
i→ N

p→ M and p◦ i = id, then tM = ptN i (by the naturality of the universal cylinder
twist). Hence tN determines tM for each direct summand M of N .

2) If M = M1 ⊕ M2, then obviously tM = tM1 ⊕ tM2 .
3) Let V = V1 be the fundamental 2-dimensional U-module. Then each finite dimensional U-

module is a direct summand of some tensor power V ⊗N (by the Clebsch-Gordan formula).
For example, Vn appears with multiplicity 1 in V ⊗n. Hence the operator t is determined
by the endomorphisms tV ⊗n .

4) The twist identity

tV ⊗(m+n) = ZV ⊗n, V ⊗m(tV ⊗n ⊗ 1)ZV ⊗m, V ⊗n(tV ⊗m ⊗ 1)

implies that tV ⊗n is determined inductively by tV .

In conclusion t is uniquely determined by the fundamental four braid pair on V , which has neces-
sarily the form already seen in section 3.4 (unless F2 is a multiple of the identity):

F2 = t(α, β, θ) =

(
0 β
α θ

)

, X2 = g(p) =







p
0 p−1

p−1 p − p3

p







Let us precise this result:

5) Denoting by V0 the trivial module, the decomposition V ⊗2 = V2⊕V0 and the computation
of tV ⊗2 implies that tV0 = id ⇔ αβ = −q.

6) An inductive computation of tVn
using all the above remarks shows that its matrix has a

bottom-right triangular form (i.e. with 0 coefficients above the codiagonal).
7) In case where (α, β) = (1, −q), the codiagonal is given by Lusztig’s operator L.
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Now observe that some parameter transformations on a general F suffice to put it in the form
(

0 −q
1 θ

)

. So, up to these transformations on F (this is the only restriction we put on the

general form of t for U − Int) we can set

t = L ◦ T

where T acts on Vn as an upper triangular matrix with unit diagonal.

Therefore, if there is such a universal twist operator t for U−Int, then T has the form

∞∑

n=0

αnEn,

i.e. it lives in the Borel subalgebra B+
q of U .

5.2.4. Construction of the twist. The properties of L listed above allow us to simplify the conditions
on T under which t is indeed a universal cylinder twist.

Proposition 16. : T induces a universal twist if and only if:

(21) µ(T ) = x(1 ⊗ T )x−1 ◦ (L−1 ⊗ 1)Ψ(L ⊗ 1) ◦ (T ⊗ 1)

proof: Rewriting
µ(t) = τR ◦ (1 ⊗ t) ◦ R ◦ (t ⊗ 1)

with t = LT and R = x ◦ Ψ, we get

µ(T ) = µ(L−1)τR ◦ (1 ⊗ LT ) ◦ xΨ ◦ (LT ⊗ 1)

But µ(L−1) = x(L−1 ⊗ L−1)(τR)−1, hence the latter identity is equal to

x(1 ⊗ T )(L−1 ⊗ 1)xΨ(L ⊗ 1)(T ⊗ 1)

which is the result (using (18)). 2

Continuing to assume that T =
∑

k

αkEk, we get directly from the definitions the following

facts:

x(1 ⊗ T )x−1 =
∑

k

αk(K ⊗ E)k, (L−1 ⊗ 1)Ψ(L ⊗ 1) = eq−2(−δ2

q
KE ⊗ E)

where δ = q − q−1.
Define a formal power series in z with coefficients in Z[θ, q1/2, q−1/2] by the identity

(22) τq, θ(z) =
∞∏

j=0

1

1 − θ√
qzq−2j + z2q−4j

Theorem 5. : The operator T = τq, θ(
δ√
q
E) on U − Int yields a universal cylinder twist.

Remark: Consider a quadratic extension of Z[θ, q1/2, q−1/2] in λ, such that
θ√
q

= λ + λ−1.

The denominators in (22) factor into linear factors, giving

(23) τq, θ(z) = eq−2(λz)eq−2(λ−1z)

proof of the theorem: set x =
δ√
q
E ⊗ 1 and y =

δ√
q
K ⊗ E; then yx =

δ2

q
KE ⊗ E and x, y

are q−2-commuting variables. If we change q−2 to q, the verification of the twist identity (21) is a
particular case of the following lemma:

Lemma: Let x, y be q-commuting variables. Then the following formal identity holds:

eq(λ(x + y))eq(λ
−1(x + y)) = eq(λy)eq(λ

−1y)eq(−yx)eq(λx)eq(λ
−1x)

proof of the lemma: Since x, y are q-commuting, we have

eq(λ
±1x + λ±1y) = eq(λ

±1y)eq(λ
±1x)
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See section 2.1 for details. Hence the identity reads

eq(λ
−1y)eq(−yx)eq(λx) = eq(λx)eq(λ

−1y)

Now, choosing as new variables λx, λ−1y, we have to prove that

eq(x)eq(y) = eq(y)eq(−yx)eq(x)

Recall that in 2.3 we found that (up to
δ√
q
), our q−2-commuting variables x, y satisfy the identity

eq(x + y) = eq(y)eq2(−qyx)eq(x). Inserting the (always verified) relation eq2(z)eq2(qz) = eq(z)
between formal power series on both sides, this gives

eq2(x + y)eq2(q(x + y)) = eq2(y)eq2(qy)eq2(−qyx)eq2(x)eq2(qx)

The change of variables qy 7→ y, q2 7→ q finally yields the lemma. 2

In conclusion, we see that the only possible obtruction to find a cylinder twist morphism in the
braided category U − Int was to verify twist identity in Uq(sl(2)).

6. Applications and further results

We first describe some facts in the representation theory of Temperley Lieb categories, and then
we discuss the integrability of the defining equation of a Four Braid Pair in a given representation
category.

6.1. Temperley-Lieb categories of type A and B, representations of knot algebras.

This section presents algebraic models for two linear categories, the Temperley Lieb categories of
type A and B, through the braiding and the cylinder braiding properties in the representation
category of Uq(sl(2)). Moreover, the Kauffman functor from the category of unoriented tangles to
both categories may be used to induce representations of some well known knot algebras, and an
extension of the Jones polynomial to links in the cylinder is finally obtained. Details may be found
in [TD1] and [TD2].

6.1.1. Temperley Lieb category of type A. An (m, n) bridge (m + n = 2k, k ∈ N) is a collection
of k arcs in a strip R× [0, 1] without double points and with end points in {1, 2, . . . , n} × {0} ∪
{1, 2, . . . , n} × {1}.
Given a (m, n)-bridge S and a (n, p)-bridge P , one may define a new (m, p)-bridge T ∧ S by
concatenation and elimination of the circles produced (T is over S). The number of such circles is
denoted by k(T, S).

Let k be a commutative ring, d ∈ k an invertible parameter. We define the Temperley Lieb
category of type A as the k linear category with objects the set N\ {0}, and with set of morphisms
HomTA(m, n) the free k-module on the set of (m, n)-bridges.
The following composition rule on bridges

T ◦ S = dk(T, S)T ∧ S

is a k-bilinear map, with which the juxtaposition in the plane endow TA with the structure of a
tensor category. The generators of TA as a tensor category are respectively denoted by p and i:

Their relations are (id⊗p)◦ (i⊗ id) = (p⊗ id)◦ (id⊗ i) = id which correspond diagrammatically
to the torsion of a single free strand in the plane. Notice that, as suggested in section 4.5, these
relations between morphisms in any tensor category endow it with a duality.

Clearly, the Temperley Lieb algebra TnA with n generators g1, . . . , gn and relations gigi±1gi =
gi, g2

i = dgi and gigj = gjgi if |i − j| > 1, may be identified with HomTA(n, n).
The interest in Temperley Lieb categories for topology is that their representations (functors into
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modules) can be viewed as categorical quotients of the representations of the category T ′ of unori-
ented tangles, by mean of functors providing powerful families of link invariants. For example, the
Kauffman tensor functor K from T ′ to TA is obtained by (we denote by X ∈ T the elementary
geometric braiding ):

with d = −A2 − A−2 (K being the identity on the other generators). It may be extended to
colored tangles endowed with an orientation: one may then verify that K still gives a tensor functor
between categories with duality.

Before stating the main result of this section, let us now present an interpretation of HomTA(m, n)
through representation theory. Let, as before, the basic 2-dimensional Uq(sl(2))-module be denoted
by V , and define a tensor functor by

Φ : n ∈ Ob(TA) 7→ V ⊗n

Φ(p) : V ⊗ V → k,

Φ(i) : k → V ⊗ V.

The generators of HomTA are sent by Φ respectively to the multiple of the projection to the
trivial summand V ⊗ V → k and to the multiple of the injection of the trivial summand k →
V ⊗ V , in the Clebsch-Gordan decomposition of V ⊗ V = V4 ⊕ V2 ⊕ V0 (with V0

∼= k as Uq(sl(2))
modules). Note that the projection and the injection of the only one-dimensional summand in a
block diagonalization of the Yang-Baxter operator yield these maps. Now extend Φ by K:

Φ ◦ K(X) = AΦ(id) + A−1Φ(p ◦ i)

For example, setting A = q, the defining relation of Φ for the braiding X on V ⊗ V gives:

X := Φ ◦ K(X) =







q 0 0 0
0 0 1 0
0 1 q − q−1 0
0 0 0 q







=



QUANTUM ALGEBRA AND CYLINDER TOPOLOGY 27

q







1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1







+ q−1







0 0 0 0
0 −q 1 − q 0
0 1 − q −q−1 0
0 0 0 0







We state the main result of this section without proof:

Theorem 6. : The tensor functor Φ:

(24) Φ : HomTA(m, n) → HomUq(sl(2))(V
⊗m, V ⊗n)

is an isomorphism between categories with duality.

Remarks:

1) The theorem gives a combinatorial description of the representation category Uq(sl(2)) −
Mod, since the Clebsch-Gordan injection and projection homomorphisms onto a summand
allow to reconstruct any module over Uq(sl(2)).

2) The ”representation” version of the quantum trace (evaluation of any oriented link, de-
composed into oriented tangles, under the functor Φ ◦ K) in the second set is the Jones
polynomial of oriented links (which is an invariant of ambiant isotopy of oriented links in
the three-sphere).

6.1.2. Temperley Lieb category of type B. All is similar to the construction of the previous section:
the objects of TB is again N \ {0}, but the set of morphisms HomTB(m, n) is the symmetric
(m, n)-bridges, that is bridges with a symmetry with respect to the axis {0} × [0, 1] in the strip
R × [0, 1].
Composition and tensor product between objects and morphisms are as before: they are obtained
by concatenation and juxtaposition of diagrams. We add a parameter D to d: the latter evaluates
two symmetric circles while the former evaluates a circle which intersect the axis, in the graphical
calculus, in two points.
A symmetric concatenation of diagrams show that TB is a tensor module over TA, with generators
(the symmetry in the axis allows to consider only one side in each diagram) those of TA plus a
segment with both extremities on the top or the bottom line, but in a symmetric position with
respect to the axis. Thus, we obtain the diagrammatics we used for the rooting maps in section
4.5.

The set HomTB(n, n) is called the nth Temperley Lieb algebra of type B, and it is denoted by
TBn: it is easily seen that it may be realized with generators e0, e1, . . . , en−1 and relations

e2
0 = De0

e1e0e1 = Fe1

e2
j = dej , j ≥ 1

eiejei = ei, |i − j| = 1, i, j ≥ 1
eiej = ejei, |i − j| ≥ 2

With generic parameters, TBn is a semi-simple algebra, with n+1 irreducible modules M0, . . . , Mn

of dimension dim(Mj) =

(
n
j

)

(see [TD2]). The total dimension of TBn is

(25)

(
2n
n

)

=

n∑

j=0

(
n
j

)2

We see from the procedure explained in 3.4 and the above defining relations of TBn that the
representation theory of TB is based on R-matrices satisfying quadratic relations.

As an interesting example, consider the Hecke algebra HnB(q, Q)) of type B:

HnB(q, Q) = 〈t, g1, . . . , gn−1| B − type braid relations (11),

t2 = (Q − 1)t + Q, g2
j = (q − 1)gj + q, ∀ j = 1, . . . , n − 1〉
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It appears, in particular, in the skein theory of polynomial knots invariants.

One may show that (see [TD1] and [TD2])

Theorem 7. : The B-type Temperley Lieb algebra TBn(d, D) with parameters d, D is a quotient

of the B-type Hecke algebra HnB(q, Q), with d = q1/2 + q−1/2 and D = Q1/2 + Q−1/2.
More precisely, setting q = p2, d = p + p−1, D = a(1 + Q), F = a(p + p−1Q), there is a surjective
homomorphism

HnB(q, Q) → TBn(d, D, F )
t 7→ a−1e0 − 1
gj 7→ pej − 1

We have seen in 3.4 that a tensor representation of the braid group ZBn on a tensor power V ⊗n

gives a four braid pair (X, F ). If (X, F ) satisfies the relations

X2 = (q − 1)X + q, F 2 = (Q − 1)F + Q

we then obtain a tensor representation of HnB(q, Q). Such a pair is provided by the standard
example (X2, F2) on the fundamental Uq(sl(2))-module V (see 3.4), after a suitable normalization
of F2. Furthermore,

Proposition 17. : This tensor representation of HnB(q, Q) factors over TnB(d, D, F ), by
setting d = p + p−1, D = a + y, F = pa + p−1y and

e0 7→ E0 ⊗ 1 ⊗ . . . ⊗ 1
︸ ︷︷ ︸

n−1times

ej 7→ 1 ⊗ . . . ⊗ E
︸︷︷︸

ith

⊗ . . .⊗ 1

where

E0 =

(
a b
x y

)

, E =







0 0 0 0
0 p −1 0
0 −1 p−1 0
0 0 0 0







Conclusion: the Uq(sl(2))-decomposition of the module V ⊗n into irreducible direct summands
is an irreducible HnB(q, Q)-decomposition and a direct sum of irreducible TnB(d, D, F )-modules,
for suitable parameters d, D, F . One can consequently ask what is the analog in TB of the
isomorphism Φ.

Here is an algebraic model for TB, answering the previous question.

The functor Φ is an isomorphism from TA onto the category of Uq(sl(2))-linear maps over
tensor powers of the fundamental 2-dimensional Uq(sl(2))-module V . Since the category TB is an
extension of TA in the set of morphisms, the set of intertwinners would have to become smaller
in any extension of Φ to TB. Indeed, let Homt(V

⊗n, V ⊗m) denote the set of k-linear maps from
V ⊗n to V ⊗m which commute with the cylinder twists t⊗n on V ⊗n and t⊗m on V ⊗m, obtained
from the fundamental four braid pair (X2, F2) on V . Then we have

Theorem 8 (TD2). : There is an isomorphism, which extends Φ from TA to TB, and compatible
with the composition of morphisms:

L : HomTB(n, m) → Homt(V
⊗n, V ⊗m)

This isomorphism yields also a representation of the (unoriented) category of rooted cylinder ribbons
RRB (see 4.5), which factor over the extension of the Kauffman functor from T to the (unoriented)
category RRB.
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elements for the proof: One may prove (although it is rather long and difficult) that the
eigenspaces of t⊗n on V ⊗n are the irreducible modules of the tensor representation of TB in-
duced by the tensor representation of the braid group ZBn (see the conclusion above). Since t
comes from a central element in the braid group, the eigenspaces are invariant under elements in

Homt(V
⊗n, V ⊗m). But there are n+1 different eigenspaces with multiplicities

(
n
0

)

,

(
n
1

)

, . . . ,

(
n
n

)

.

This makes the dimension of the target of L equal to

(
2n
n

)

, with the help of (25).

The functoriality between tensor module categories with rigidity comes from an analysis of the
quantum trace in TnB. 2

Let us now turn to the Kauffman functor K. As suggested in Theorem 8, it may be extended
naturally to a functor K̄ from the symmetric (unoriented) tangles in the cylinder to the category
TB, defined with an additional rule (depending on parameters a and b) of the type

For example, the choice of the pair (a, b) = (A2, D−1(1−A2)) may be shown to turn K̄ into an
extension of K that gives, as in remark 6.1.1, 2), the extension of the Jones polynomial to knots
and links in the cylinder. Furthermore, the rooting maps defined in 4.5 are compatible with the
preceding functors: hence K̄ extends over the unoriented version of the category ORR (which itself
extends T ).
Here is an example, where we use the fact that one may equally view links in the cylinder as framed
closed braids, or ribbons always looking to the axis: an unknotted component linked with the axis
may be distinguished from the unknot, since, when taking (a, b) = (A2, D−1(1 − A2)), its value
under Φ ◦ K̄ is −A3(A + A−1) or −A−3(A + A−1), depending on the sign of the linking number

with the axis. With the same parameters for K̂, the root map is (
D

1 − a2
)1/2(ia, 1) and the coroot

map is (
D

1 − a2
)1/2

(
ia
1

)

.

Then, one may show that the extension of the Jones polynomial to links in the cylinder is given
by the following proposition:
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Theorem 9. : Let L be a link obtained as the closure of an (n, n)-ribbon with value αL : V ⊗n →
V ⊗n under L. Then the Kauffman functor K̄ maps L to the linear algebra trace of αL ◦u⊗n, where
u is the diagonal matrix Diag(−A−2, A2).

6.2. The FRT-construction. Let V be a free module over the ring k, with basis v1, v2, . . . , vn,
and

X : V ⊗ V → V ⊗ V

a Yang Baxter operator on V . The following construction, called the FRT-construction, associates
to the pair (X, V ) a unique cobraided bialgebra (A(X), r); for more details, see [Kas, ch. 8].

Let En = Hom(V ⊗n, V ⊗n), and Ã = ⊕∞
n=0En be the graduate sum of homogeneous k-

intertwinners; define the endomorphisms

T j
i : vm 7→ δm

i vj ∈ E

The canonical isomorphism Em ⊗k En
∼= Em+n shows that the family {T j

i }i, j induces a basis

T j
i = T j1

i1
⊗ . . . ⊗ T jn

in
for En, i = (i1, . . . , in), j = (j1, . . . , jn) and the braiding morphisms

X = Xm, n on V ⊗m ⊗ V ⊗n may be written in multi-index notation as:

X(vi ⊗ vj) =
∑

a, b

Xa b
i j va ⊗ vb

It is then clear that we may define a braid form over Ã by setting r(T a
i ⊗ T b

j ) = Xa b
i j .

One may show that the quotient of Ã by the relations

Ck l
i j =

∑

α, β

Xα β
i j T k l

α β −
∑

α, β

T α β
i j Xk l

α β

is a cobraided bialgebra A(X), in which r appears as a canonical element in A∗.

Suppose now that we have a four braid pair (X, F ) on V ; the twist operator t⊗n ∈ En, expressed

in the basis {vi} (in multi-index notation) as tn(vi) =
∑

j

F j
i vj (in multi-index notation), induces

a linear form T j
i → F j

i . It is clear that, as we saw in section 5, this linear form yields a cylinder
form on the cobraided bialgebra (A(X), r) obtained from the FRT-construction. Therefore, given
a four braid pair (X, F ) on V , the category of A(X)-comodules has a cylinder braiding.
Since the pair (X, id) is nothing more than a solution of the Yang Baxter equation, we may expect
that the FRT-construction is a particular case of a more general construction, which would produce
universal four braid pairs as special elements in a more general structure than cobraided bialgebra.

Question: What is the simplest algebraic structure supporting universal solutions to the (FBP)
relation ?

Remark: The FRT-construction is dual to the approach of the preceding sections. In fact, the
cobraided biagebra A(X) corresponds merely to a q-deformation of the coordinate ring Oq over a
Lie algebra (see [CP] or [Kas.]), rather than to a q-deformation of its universal algebra.
For example, in the case of sl2, the FRT-construction produces directly a cylinder form on the
category of SLq(2)-comodules (see below the definition of SLq(2)), starting with the fundamental
automorphism F2 of the pair (X2, F2) on V . To get the existence of the cylinder twist in Uq(sl2)−
Int, in section 5, we worked with the braiding and the cylinder braiding characterizations for
Uq(sl(2)). The duality between these approachs is hidden in the isomorphism between SLq(2) −
comodules and Uq(sl(2)) − modules (see 2.4). This remark is the heart of what is called the
quantum duality principle, and it shows by the FRT-construction the usefulness of comodules
structures, which behaves better than modules over quantum enveloping algebras.

We finish this lecture by an application of the FRT-construction to the sl(n)-theory, n ≥ 2.
Given a matrix

P = ({pi, j}, 1 ≤ i, j ≤ n| pi, i = q; pi, jpj, i = 1, i 6= j)

we can construct a Yang Baxter operator

X(vi ⊗ vj) =

{
pi, jvj ⊗ vi, i ≥ j
pi, jvj ⊗ vi + δvi ⊗ vj , i < j
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The FRT-construction associates to X a multi-parameter version Oq(Mn) of the coordinate algebra
of the group of n × n-matrices Mn (obtained in the special case pi, j = 1, i 6= j).
There is a special element in Oq(Mn), the quantum determinant Detq, which is a q-deformation
of the classical determinant for operators. Then, the q-deformed coordinate algebra Oq(sln) is
obtained by setting Detq equal to 1 (we denoted Oq(sl2) in the previous paragraph by SLq(2)).
Finally, consider an automorphism

F : V → V, F (vj) =

{
βjvn+1−j if 2j ≤ n + 1
βjvn+1−j + wvj if 2j > n + 1

where w is an arbitrary parameter in k.

Lemma: One may find a family of elements {βj}1≤j≤n in k, depending on w and a further
parameter z ∈ k, such that the pair (X, F ) is a four braid pair over V .

Then, verifying that F defines a cylinder form f over Oq(sln), i. e. that f(Detq)=1, one proves
that

Theorem 10. : There is a cylinder braiding on the category of Oq(sln)-comodules.
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