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Chapter 1

Introduction

This work is a modified version of a work I presented during my exams for the
obtention of the DEA of Pure Mathematics in Toulouse in June 1997.
It contains a detailed presentation of the invariants of knots and 3-manifolds that
intervene in the proof of theorem 6.3 of [KM1], and their relation to Spin structures.
Since the proof of this theorem contains all the material that is necessary to read the
other results of [KM1] concerning homology spheres (extended by Ohtsuki with the
help of its polynomial invariants of rational homology spheres, cf. [Oh]), I decided
to restrict my attention to this proof only in this version.

The reader is supposed to know the construction of the quantum sl(2,C) Reshetikhin-
Turaev invariants (RT-invariants), e.g. their treatment by Kirby and Melvin in
[KM1] and Kirby’s calculus for framed links in S3 [K] for the reading of section
6.The reader will find in [Saw] an extensive bibliography on the subject ... up to
1995. Moreover, some definitions and classical results from fiber bundle and char-
acteritic classes theories are used from the beginning; see [MS] for more details.
The rest is a matter of basic algebraic topology and low dimensional geometry, that
the reader will find in [H] and [GH] for example.

The exhaustive treatment I give here to Pin-structures and characteristic sur-
faces in 4-manifolds is due to their constant appearance as a topological background
for the splitting formulas of the RT-invariants (τr)r∈N into refined invariants that are
in [KM1]. All involve Pin-structures, or the formalism of even and characteristic
links in a 3-manifold.In particular, τ3 appears as a (kind of) ”trivial” factor of τr for
r odd, whose complement has a representation-theoretic interpretation by quantum
groups as shown in [BHMV].
This is also shown in the work of Justin Roberts [Rob] where the refined Spin in-
variants are presented in the framework of skein theory and furnish a global relation
with refinements of the Turaev-Viro invariants and quantum invariants of compact
oriented 4-manifolds of Broda (which are in fact classical invariants). In particular,
the cup Product of 2-cohomology classes,the signature and Pontrjagin squares of
such manifolds may be determined with the help of these refined invariants. More-
over, the Spin-TQFT presented in [BlM] appears to bring new informations both
on the topological viewpoint and on the categorical viewpoint.

I would like to thank Claude Hayat-Legrand for guiding me enthousiastically and
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with a constant disponibility into geometry, and for having pointing out to me the
difference between intuition and proof.
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Chapter 2

Embeddings of non orientable
surfaces in closed 3-manifolds

2.1 Geometric background

We will denote by (τr)r∈N the family of Uq(sl(2, C))-invariants of closed orientable
3-manifolds, defined by Reshetikhin and Turaev in [RT], where each element τr
corresponds to the specialization q = exp(2iπ/r) of the deformation parameter of
the quantum group Uq(sl(2, C)).
Let M be a closed orientable 3-manifold. Recall (see [KM1, 8.9] and [BHMV,
remark 1.17]) that for odd r, there is a splitting formula:

τr(M) = { τ3(M) τ ′r(M) if r ≡ 3 (mod 4)

τ3(M) τ ′r(M) if r ≡ 1 (mod 4)
,

where τ ′r is the rth Uq(SO(3))-invariant of closed oriented 3-manifolds obtained
by the same procedure as in [RT]. This formula has been generalized by Kohno
and Takata in [KoTa, 4.2.3] into a splitting formula for the Uq(sl(n, C))-invariants,
which factor into quantum PSU(n)-invariants and an invariant obtained in [MOO]
that generalizes τ3.
Besides these results, we have the following theorem of Kirby and Melvin [KM1, p.
522] (from now on denoted by KM1):

Theorem KM1:We have τ3(M) = 0 if and only if one of the following condi-
tions is verified :

i) There exists two Spin structures for M whose µ-invariants are distincts (mod 4);

ii) There exists an embedded non orientable closed surface F in M with odd Euler
characteristic;

iii) There exists α ∈ H1(M, Z2) such that α ∪ α ∪ α 6= 0 (mod 2);

Otherwise we have τ3(M) =
√

2
b(M)

cβ(M), where b(M) = |H1(M, Z2)|, and
c = exp(−(iπ)/4) and β(M) is the Brown invariant of M (see Appendix).
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The aim of this chapter is to discuss the existence of a closed non orientable
surface in a given orientable 3-manifold, such as involved in condition ii) above, and
to give a somewhat elementary proof of the equivalence ii)⇐⇒ iii) .

Let us denote by RP3 the real 3-dimensional projective space. We have:

iii)⇐⇒ ii)⇐⇒ iv) There exists a degree one map f : M → RP3.

The abstract point of view of [BW], p. 88, which uses Thom’s L-equivalence, is
sufficient to prove iii) ⇐⇒ ii), but we add a geometric counterpart learned from
[HWZ1].

Sketch of proof:
iii)⇐⇒ ii): Given an embedded surface F 2 inM representing a class α ∈ H1(M3, Z2),
the reduction (mod 2) of its Euler characteristic χ(F ) is the non oriented cobor-
dism class of F 2 ( recall that the non oriented cobordism group in dimension 2 is
generated by RP2) .
Consider the element φ ∈ H2(M, Z2) which sends the homology class of F in M
to its non oriented cobordism class. A characteristic class calculus in [BW, p. 88],
proves that φ is a homomorphism since all the Stiefel Whitney numbers of M3 van-
ish; moreover it shows that (denoting by DP the Poincar duality isomorphism) we
have Ker(φ) = {[F ] ∈ H2(M,Z2) s.t. DP ([F ])3 = 0}.
Then χ(F ) is even (φ([F ]) = 0) if and only if α ∪ α ∪ α = 0.

ii) ⇐⇒ iv): Suppose with the same datas as above that χ(F ) ≡ 1 (mod 2);
then we have F = F ′#P2 = F0 ∪∂F0=∂MM where F’ is closed , the symbol M
denotes a Möbius band and F0 = F ′ \

◦

B
2

(where
◦

B is an open disk in F ′).
Take a regular neighborhood N (F ) of F: it is a product over F0 and it is twisted over
M. Considering the standard embedding of the projective plane RP2 = B2∪∂B2=∂M

M in RP3 and a regular neighborhood N (RP2) of it, we can construct a proper
degree one map (d1m) :

f : N (F )→ N (RP 2)

as follows. First send N (F )|M homeomorphically to the standard neighborhood
N (M) of the Möbius band M ⊂ RP2 ⊂ RP3. Since we can always find a d1m
(that ”pinchs some handles”) from a closed surface F1 to another one F2 when the
genus of F1 is not inferior to that of F2 [Ed], send F0× I onto B2× I ⊂ N (RP2) by
taking the cartesian product of a map from F0 to B2 induced by such a d1m (from
F ⊂M to a sphere S2 ⊂ RP3 with the identity on I.
This is a proper degree one map, in particular on the boundary. It may be extended

to the exterior M \
◦

N (F ) of F by mapping a collar of ∂N (F ) in M to the 3-Ball

B3 = RP3\
◦

N (RP2); this may be done by filling the holes of the collar. The rest is
sent onto the center of B3. The local behaviour of the degree of a map implies that
this extended map f is still a degree one map, from M to RP3.

Conversally, suppose that an f as in iv) exists: we can deform f : M → P3 so
as it is transverse to P2 ⊂ P3 and the surface F = f−1(P2) is connected. Note that
deg(f |N (F )) = deg(f |∂N (F )) = 1, and the boundary of N (P2) ⊂ P3 is a 2-sphere.
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Suppose that N (F ) = F × I: then the degrees of the maps f |F × {0} : F × {0} →
∂N (RP2) and f |F×{1} : F×{1} → ∂N (RP2) have the same absolute values since
they are sent onto S2 as the two leaves of the non-connected oriented 2-covering of
F . This implies that deg(f |∂N (F )) ≡ 0 (mod 2). By contradiction with the degree
of f, the surface F is non orientable.

Now, if χ(F ) ≡ 0 (mod 2), F is a connected sum of a Klein Bottle Kl and an
orientable closed surface F ′ and N (F )|F ′ is a product. Moreover N (F )|Kl is twisted
over ”the” reversing orientation curve of Kl: there is only one isotopy class β of such
a curve in Kl, which runs twice around the S1 longitude and bounds a Möbius band.
Consider both generators α and β of π1(Kl) , and their images (still denoted by α
and β) in H1(Kl,Z2) when injected in H1(M,Z2). Move slightly F away from itself
so that F ∩ F is α; notice that α can be remoted out of F since N (F )|α is a trivial
I-bundle: then α·F = 0. But this is in contradiction with iii) (where α ∈ H1(M,Z2)
must be seen as the Poincar dual to the homology class of F in M) which is by the
first step equivalent to ii). �

Remark: Suppose that there is an embedded surface F ⊂ M3 with DP ([F ]) 6=
0 ∈ H1(M, Z2): it does not separate in M and we can connect its different compo-
nents without changing the homology class [F ] ∈ H2(M, Z2). Furthermore we can
glue a non orientable handle to F inside M , by thickening an arc, going through
the complement of F ⊂M3, with a single intersection point with F . Again this op-
eration does not alter the homology class [F ] ∈ H2(M, Z2). It follows that any non
zero class α ∈ H1(M, Z2) may be dually represented by an embedded connected non
orientable surface in M , and F is a connected sum of an odd (resp. even) number
h of RP2 if and only if DP ([F ])3 = α3 6= 0 (resp. = 0) by the proof of iii)⇐⇒ ii).
Now recall that adding an orientable handle to F (which is always possible inside
M) is the same as adding a non orientable one. Then we can embed the surface
F]Kl in M , and h may be increased by two in the homology class of F .
Therefore the geometric representation problem of a fixed homology class inH2(M,Z2)
reduces to the embedding problem of a connected non orientable surface in M , and
it breaks into the two cases h even or h odd (with the above notations). Moreover,
the determination of the minimum h for which Uh

∼= RP2] . . . ]RP2 can be embed-
ded in M within a fixed homology class arises naturally, as shown in the preceeding
discussion. There is obviously a relative version of this problem, which relies heavily
on the norm on the homology of a 3-manifold, as defined in [S] for instance.

Here is a simple result which illustrates our interest in this problem : recall
[H] that an incompressible, connected, compact, properly embedded (or included in
∂M) surface in a 3-manifold is a surface that is neither :

• 1) a 2-sphere bounding an homotopy 3-cell;

• 2) nor a 2-cell F 2 with either F 2 ⊂ ∂M , or there is an embedded homotopy
3-cell X in M with ∂X ⊂ F ∪ ∂M .

• 3) nor there exists a 2-cell D2 ⊂M with D∩F = ∂D and ∂D not contractible
in F .
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Lemma: let M be a 3 dimensional orientable manifold with an embedded closed
surface whose Euler characteristic is odd. Take such an F with minimal genus. Then
F is incompressible. If F = P2, then π1(M) is a free product π1(M) ∼= Z2 ?G (where
G could be trivial).

Proof: Suppose on the contrary that F is compressible, then a surgery on a
compression 2-cell B2 would either give a surface F ′ with χ(F ′) = χ(F ) + 2 or two
distinct surfaces F ′ and F ′′ with χ(F ′) + χ(F ′′) = χ(F ) + 2, which depends on the
fact that ∂B2 separates F or not. But in both cases it contradicts the hypothesis.
The second claim is obtained by noticing that NM(RP2) ∼= S2. �

Incompressible surfaces embedded in a 3-manifold are representative of its ho-
motopic and geometric properties. For basic results about the two sided case and
Haken manifolds, we refer the reader to [H] or [Jaco]. Our case is the one sided,
lesser well-known, references being [Rub] (and [BW]). As exemples of the results
you could find there, let’s cite the followings:

1) Given two closed orientable 3-manifolds M1 and M2 with connected non ori-
entable embedded surfaces Fi ⊂ Mi, i = 1, 2, one obtains an embedding
F ′ := F1]F2 ⊂ M1]M2 in standard position by taking the connected sum
of M1 and M2 at points on these surfaces; this operation is well defined up
to homeomorphisms on the pair (M1]M2, F

′). Conversally, if M1 and M2

are closed orientable 3-manifolds and if a non orientable connected surface
F ⊂ M1]M2 (:= M) is given, then there exists a surface F ′ ⊂ M in standard
position such that F ′ ∼= F and [F ′] = [F ] ∈ H2(M,Z2) (see [BW, 5.1]). In
particular it follows that, with the notations of the preceeding remark, the
surface Uh embeds in M1]M2 if and only if there exists non negative integers
h1, h2 with h = h1 + h2 and Uhi

embeds in Mi. If F and F ′ were orientable
surfaces, this result turns out to be true but still with Z2 coefficients.
Consequently, one can reduce the embedding problem of one-sided surfaces in
a 3-manifold M to the case when M is irreducible, since the case of lens spaces
and manifolds of the type M2 × S1 (M2 being a closed orientable surface) is
completely solved in [BW, 4.8].

2) Let F be a non orientable surface in a closed orientable manifoldM . The image
of π1(F ) into π1(M) under the inclusion homomorphism is its own normalizer
(see [BW, 4.3]); in particular it contains the center of π1(M).Recall that in
the two sided case π1(F ) injects into π1(M).

3) Given any class 0 6= α ∈ H2(M, Z2) there is a one sided Heegaard splitting
(OSHS) (M, K) with [K] = α, which means that the closed non orientable
embedded surface K ⊂ M homologically represents α and M −K is an open
handlebody. /break Obviously two OSHS (M, K) and (M, K ′) are distinct
as soon as [K] 6= [K ′] ∈ H2(M, Z2).
Conversally, let (M, K)](S3, L) be the connected sum of a OSHS (M, K)
of M with the standard Heegard splitting (S3, L) of genus 1 of S3, at points
on K and L (see 1)). Then we have:
Suppose that (M, K) and (M, K ′) are OSHS with [K] = [K ′]. Then they are
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stably equivalent, i.e. (M, K)] n(S3, L) is equivalent to (M, K ′)] m(S3, L)
[Rub, p.196].

4) Let’s say that (M, F ) is an incompressible OSHS (denoted by IOSHS) if F
is incompressible in M . Suppose that M is an irreducible closed orientable
3-manifold with an IOSHS: then the map i∗ : π1(F )→ π1(M) induced by the
embedding of F in M is onto, and there is no incompressible orientable surface
in M which is disjoint from F (see [Rub, p.189]).

5) Suppose thatM is irreducible and not sufficiently large; then there is an IOSHS
associated with any non zero class in H2(M,Z2).

6) The preceeding equivalence relation may be strongered by requiring that (M, K)
is equivalent to (M, K ′) if and only if K is isotopic to K ′. Then it is shown
in [Rub,p.193] that in lens spaces written as L(2k, q), two embedded incom-
pressible surfaces are isotopic: so two incompressible OSHS are isotopic;

7) Let f : M ′ → M be an odd degree map between closed orientable 3-manifolds.
If (M, K) is a OSHS of M , there is a OSHS (M ′, K ′) of M ′ and a map f ′

homotopic to f such that f ′−1(K) = K ′. In case f is a degree one map, one
can chose f ′ and K ′ so that f ′ : M ′ \ intN (K ′)→M \ intN (K) is a standard
mapping between handlebodies and f−1(N (K)) = N (K ′), where the symbol
N denotes a tubular neighborhood. Recall that a standard mapping between
two handlebodies H and K is a proper degree one map such that there exists
an embedded disk in H that separates it into two handlebodies H ′ and H ′′,
with H ′ being sent onto a disk in ∂K and with f|H̄′′ being a homeomorphism
onto K.

8) Suppose that M has an incompressible OSHS; Then M is irreducible. Indeed,
take an embedded 2-sphere S inM transverse to a one sided Heegaard splitting
surface K of M ; since M \ K is irreducible, an induction on the number of
curves of S ∩K shows that S bounds a 3-cell.

Let M be a closed orientable (irreducible) 3-manifold; properties 4), 5) suggest
that OSHS are useful to study M when it is small, and properties 6), 7) suggest that
considering degree one maps from M onto lens spaces might help to find obstructions
to the existence of IOSHS in M . Now, KM1 can be considered as a first step in
the effective recognition of such obstructions, using quantum invariants of closed
orientable 3-manifolds.

2.2 Let’s see a little bit further

Let us denote by (Cq)q∈Z a cellular decomposition of the closed orientable 3-dimensional
manifold M ; recall the definition of the n-Bockstein:

Bn = µn ◦ β ◦ jn : H1(M, Zn)→ H2(M, Zn)
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given by the following composition of group homomorphisms:

H1(M, Zn)
jn→ H1(M, Q/Z)

β→ H2(M, Z)
µn→ H2(M, Zn)

x+ nZ 7→ x/n + Z 7→ B(x/n) 7→ B(x/n) mod nZ

where B is the Bockstein operator of the short exact sequence of abelian groups:

0→ Z→ Q→ Q/Z→ 0

defined by:
Hq(M, Q/Z)→ Hq+1(M, Z) : [φ]→ [∂φ̂]

where φ ∈ Hom(Cq, Q/Z) and φ̂ is the lift of φ in Hom(Cq, Q). One can easily
see that B2(α̂) = α̂ ∪ α̂.

Recall the definition of the (non degenerate) linking pairing:

TorHq(M, Z)× TorHn−q−1(M, Z)→ Q/Z

(α, β) 7→ α� β = 1/a (c · β)

where c ∈ Cq+1, ∂c = a α′ (where α′ is a cycle that represents α in TorHq(M, Z))
and · is the intersection form:

Hq(M,Z)⊗Hn−q(M,Z)→ Z

We then have the following relation between the cup product and the linking
pairing:

Theorem[SZ, §14]: Given an n-dimensional orientable manifold M , and two
classes α ∈ TorHq(M, Z), β ∈ TorHn−q−1(M, Z), k 6= 0, 1 such that kα = kβ = 0,
there exists α′ ∈ Hn−q−1(M, Zk) and β ′ ∈ Hq(M, Zk) such that the Poincar duals
of B ◦ jk(α′) and B ◦ jk(β ′) are respectively equal to α and β. We then have the
relation:

α� β = jk ◦ < β ′ ∪ βk(α
′), [M ] >

We can then deduce the following formula for the condition iii) in KM1:

1/2 〈α̂ ∪ α̂ ∪ α̂, [M ]〉 = α� α

Generalizing this remark we have (denoting by [r/s] the class in Q/Z of the rational
number r/s):

Theorem [HWZ1] Let M be a closed orientable 3-dimensional manifold.

• 1) If there exists α ∈ H1(M, Z) of order n¿1 with α � α = [r/n] where r is
prime to n, then there exists a degree one map

f : M → L(n, s)

where rs ≡ 1 mod n.
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• 2) If there exists a degree one map f : M → L(n, m) we can find α ∈
TorHq(M, Z) such that:

α� α = [m−1/n]

where m−1 denotes an m′ ∈ Z verifying m′m ≡ 1 (mod n), n is the order of
α and α generates a direct summand of H1(M, Z).

The main feature of this work was to understand the topological background of
KM1 in view to answer the question: is it possible to generalize theorem KM1 by
detecting some geometric properties (as discussed in 2.1) of 3-manifolds with degree
one maps onto lens spaces, using quantum invariants and the above characteriza-
tions?
Beware that we are not interested only in homotopy invariants such as the linking
pairing: we know for example that the invariant ZN(M, q) of a closed orientable
3-manifold M constructed in [MOO], which depends on the choice of a N th-root of
unity q, is a homotopy invariant. Moreover, it is equal to zero if and only if there
exists an x in H1(M,Z) of order 2m with x� x = c/2m, where N = 2mb, with odd
integers b and c. We would like to go further than these results, keeping track of
geometric properties that are not homotopy invariant: for instance, could we dis-
tinguish the lens spaces L(7, 1) and L(7, 2), which are already different from the
point of view of the existence of degree one maps onto them ?

Following [HWZ2], consider now the partial order relation between 3-manifolds
M and N induced by the existence of a degree one map:

f : M → N

where M is non homeomorphic to N . Then we say that M > N ; M is minimal if
the existence of such an f towards N implies that N ≈ S3. One can effectively list
the minimal Seifert fibered spaces, particularly minimal lens spaces [HWZ2], and
P3 is one of them. Could we explain this minimality property in a geometric way,
and detect it with quantum invariants ?
Notice that this relation between 3 manifolds dominates lots of known geometric
and algebraic invariants: e. g the number of disjoints non parallel embedded incom-
pressible surfaces (as shown in [W2]), the order and the rank of the homology and
of the fundamental group, or the simplicial volume of Gromov.

In view to these remarks the condition τ3(M) = 0 gives an explicit lower bound
for all of these invariants of M by calculating those of RP3.

We will now turn to Spin structures which will naturally introduce geometric
methods to catch the linking pairing.
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Chapter 3

Spin and Pin structures

In this section we will develop some caracterizations of Spin structures (and their
Pin generalization) on low dimensional manifolds, and their algebraic formulation.
We start with very general definitions from homotopy and obstruction theories, then
we slide towards a more geometric viewpoint.

We will often refer to arbitrary CW-decompositions of manifolds without giving
any precisions, since the structures we define here do not depend on their explicit
choices. All 4-manifolds we consider are smooth.

3.1 Definitions

A principal SO(n)-bundle ζ
π→ X on a CW-complex X is a Spin bundle if its total

space E(ζ) can be 2-covered (denoting the 2-sheeted covering space by Ẽ(ζ)) with
a Spin(n)-action, commuting with the action of SO(n) on E(ζ); in other words, the
following diagram is required to commute:

Ẽ(ζ)× Spin(n) - Ẽ(ζ)
Z

ZZ~

π′

? ? ?
p λ p

E(ζ)× SO(n) - E(ζ) -π X

where p : Ẽ(ζ)→ E(ζ) verifies:

p(ag) = p(a)λ(g) ∀ g ∈ Spin(n), ∀a ∈ Ẽ(ζ)

and λ is the non trivial Z2-covering of SO(n) by the group Spin(n) (see Appendix
B).
This double covering ζ̃ of ζ is consequently asked to be non trivial onto the fibers
of X, and conversally, every double covering of ζ which is non trivial onto the fibers
arises as a Spin bundle. Indeed, using the previous notations, given λ and p we can
set π′ = π ◦ p and one can extend the action of SO(n) on E(ζ) to an action of

Spin(n) (which is 1-connected) on Ẽ(ζ) using the relation (?) above. Defining a
Spin structure on ζ as the choice of a 2-covering such as ζ̃ above, we have therefore
a bijective (non canonical) correspondance:

{Spin structures on ζ} ←→ {σ ∈ H1(E(ζ), Z2) s. t. 〈σ|SO(n)〉 = H1(SO(n), Z2)}
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Notice that this definition is parallel to that of the orientation of an O(n)-principal
bundle; but here we don’t reduce the structural group O(n) to SO(n), we rather
Z2-cover SO(n) by the simply connected Lie group Spin(n). Since a 1-connected Lie
group G is contractible as soon as π3(G) = 0, and π2(G) is always 0 (see [B-TD]),
a Spin structure on a fibre bundle looks like a stiffening of its structural group in a
way that removes most of its homotopy.

Now, the fibration:

SO(n)
i→ E(ζ)

π→ X

induces the following (Leray-Serre) long exact sequence of the fibration [W]:

0→ H1(X, Z2)
π?

→ H1(E(ζ), Z2)
i?→ H1(SO(n), Z2)

δ→ H2(X, Z2)

The class δ(1) may easily be identified with the second Stiefel Whitney class
ω2(ζ) of the oriented bundle ζ . Indeed this definition of ω2 is natural (by naturality
of the sequence !), that is ω2(f

?ζ) = f ?ω2(ζ), and it gives the non zero element in
H2(BSOn,Z2) ∼= Z2 when ζ is the universal oriented n-plane bundle γn over the
classifying space BSOn (which is the infinite Grassmanian of oriented n-planes in
R∞). The last claim follows from the exactness of the sequence and the fact that
γn is contractible (see [MS]).

As for the existence of a Spin structure on ζ , we can therefore write:

ω2(ζ) = 0⇐⇒ there exists σ ∈ H1(E(ζ), Z2) such that i∗(σ) = 1

and moreover, there is a (still non canonical) bijective correspondance between the
set of Spin structures on ζ and H1(X, Z2); more precisely the group H1(X, Z2)
acts in a simply transitive manner on the set of Spin structures.

A Spin manifold X is, by definition, a manifold for which the tangeant bundle
TX is a Spin bundle.

Using the last equivalence, obstruction theory tells us that a Spin structure on ζ
bijectively corresponds to a homotopy class of trivializations of ζ over the 2-skeleton
of X (see 3.2 and [St]); note that when X is an orientable 2-manifold (which is
always Spin, since ω2(TX) ≡ χ(TX) (mod 2) ≡ 0 (mod 2)), this condition must
be turned into a homotopy class of trivializations of TX ⊕ ρk over the 2-skeleton of
X, where ρk is a Rk-trivial bundle that ”stabilizes” TX. Otherwise, only the torus
could be considered as a Spin surface from the point of view of obstruction theory.

Now we give the parallel results for Pin structures (see Appendix B). Let us
denote by B the classifying space of a fiber bundle ζ over a CW-complex Y . Suppose
that you want to deal with an O(n)-principal bundle ζ , arising for example as the
restriction of a SO(n) bundle.
Considering the two non trivial central extensions p± : Pin(n)± → O(n) of O(n)
by Z2 one may wish to get, as above, corresponding structures on ζ .

Then we say that ζ : E → B has a Pin(n)± structure provided that there exists
a Pin(n)±-bundle ζ ′ : E ′ → B that may fit into the above commutative diagram,
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where Ẽ(ζ), the group Spin(n) and the covering map λ are respectively replaced by
E(ζ ′), the groups Pin(n)± and the covering maps p±.

In view to give criteria for the existence and the classification of the set of
Pin(n)±-structures on a given fiber bundle, we will take an alternative approach
rather than considering a Leray-Serre spectral sequence; then we need to recall
some more definitions and basic results from bundle theory, generalizing what we
have just constructed. Given Lie groups H and G, a continuous homomorphism
Ψ : H → G, a manifold X and an atlas Ui with its transition functions rij for a
H-principal bundle ζ with projection π : E(ζ) → X, consider the G-bundle over
X obtained by applying Ψ to rij. Let us denote it by πΨ : E(ζ) ×H G → X. We
say that a G-bundle π : E(ζ) → X has an H-structure provided that there exists
an H-bundle π′ : E(ζ ′) → X with an associated G-bundle π′

Ψ : E(ζ ′) ×H G → X
equivalent with ζ . Moreover, two H-structures on a G-bundle ζ are equivalent if the
equivalences of their associated G-bundles with ζ only differ by an equivalence of
H-bundles. Then we have (see [KT, §2] and [Hus] for more details):

Fact: Given a continuous homomorphism Ψ : H → G between Lie groups,
there is an induced map BΨ : BH → BG between their classifying spaces. It can be
deformed, without changing the homotopy type of BH , into a fibration; then, given
a G-bundle ζ with a classifying map f : B → BG, the set of H-structures on ζ are
in 1− 1 correspondance with lifts of f to BH .

Consider the ”cocycle presentation” ({Ui}, {rij}) of a G-bundle on X, where
U = {Ui} is an open covering of X which has the continuous maps rij : Ui∩Uj → G
for transition functions. It is by its very definition a Cech 1-cocycle with coefficients
in the sheaf of germs of continuous maps to G: we will consequently denote the set
of equivalence classes of cocycle presentations of G-bundles over X with atlas U by
H1(U , G). It is a standard result that we can consider the direct limit H1(X, G)
(induced by refinements on the coverings) of the sets H1(U , G). Therefore, the set
of equivalence classes of G-bundles is naturally represented by H1(X, G).

When G is abelian H1(X, G) is the well-known first Cech cohomology group of
X with coefficients in G, but in general H1(X, G) is not even a group, besides it has
the trivial G-bundle as a distinguished element. However, given an exact sequence

1→ K
i→ G

j→ G′ → 1

of topological groups, where K is abelian the arguments used in the construction of
Cech cohomology theory allow us to write the exact sequence:

→ H1(X,K)
i?→ H1(X,G)

j?

→ H1(X,G′)→ H2(X,K)

since H2(X,K) is well defined. Note that we don’t care about the smoothness of
X and of the G-bundles, since one may show that there is a 1 − 1 correspondance
between the sets H1(X,G) in the two cases.

In a similar way, the short exact sequence:

0→ Z2 → Pin±(n)
p±→ O(n)→ 1
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gives an exact sequence

H0(X,O(n))
δ0

→ H1(X,Z2)→ H1(X,P in±(n))
(p±)?

→ H1(X,O(n))
δ→ H2(X,Z2).

We could define ω2(ζ) = δ([ζ ]) as above in the Spin(n) situation, but we rather make
the link with the homotopy theoretic preceding Fact.
Recall both the definitions of principal bundles by classifying spaces and the (ob-
struction theoretic) interpretation of the group H2(X,Z2) as the set of homotopy
classes of maps from X to the Eilenberg Mac-Lane space K(Z2, 2). The last exact
sequence induces the fibration

BPin±(n)
Bp±→ BO(n)

ω→ K(Z2, 2)

where the symbol B denotes a classifying space. Now the classifying map fζ : X →
BO(n) of anO(n)-bundle ζ has a lifting toBPin±(n) if and only if ω◦fζ is homotopic
to zero. Since [X, K(Z2, 2)] ∼= H2(X,Z2), this is true when the pull-back classes by
f of the generators of H2(BO(n),Z2) in H2(X,Z2) are zero. By the very definition
of characteristic classes, these pull-back classes are ω2(ζ) and ω2

1(ζ) + ω2(ζ).

Consequently, if there is a Pin±-structure on our O(n)-bundle ζ over X, then
H1(X, Z2) acts on the set of Pin± structures in a simply transitive manner (see
the exact sequence above). Furthermore, the obstruction to the existence of such a
structure is either ω2(ζ) or ω2(ζ) + ω1

2(ζ).
We will be only interested in Pin− structures, thus we now consider an example to
determine to which of these two classes corresponds the group Pin±. Denoting by λ
a line bundle over X, the transition functions of ⊕3

i=1λ are given by taking transition
functions for λ and composing with the homomorphism O(1) → O(3) which sends
±1 to ±id ∈ O(3). Clearly this homomorphism lifts through O(1) → Pin−(3)
(see Appendix B for some similar calculus), and also equivalent O(1) bundles give
equivalent Pin−(3) bundles. Then ⊕3

i=1λ has a canonical Pin− structure. Since
we always have ω2(⊕3

i=1λ) = ω1
2(⊕3

i=1λ) (see [MS]), we can find examples where
ω2(⊕3

i=1λ) 6= 0, but ω2(⊕3
i=1λ)+ω1

2(⊕3
i=1λ) = 0. A simple one is the canonical (line)

bundle over P2.

It follows that the obstruction to having a Pin− structure on a fiber bundle ζ is
ω2(ζ) + ω1

2(ζ).

3.2 The Wu formula, geometric consequences

3.2.1 Preliminaries

Given a smooth closed manifold X, the Wu formula relates the homotopic and al-
gebraic definitions of the Stiefel Whitney characteristic classes ωk(TX) [MS, chapt.
11]; in particular, they depend only on the homotopy type of X (beware that dif-
ferent Spin structures are in general not equivalent under homotopy equivalences !).
The Wu formula may be written as follows:

ωk =
∑

i=j=k

Sqi(vj)
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where Sqi is the ith-Steenrod Square automorphism on the cohomology ring of X.
The total Wu class v = 1 + v1 + v2 + . . . of X is defined by

〈v ∪ x, [X]〉 = 〈Sq(x), [X]〉

with x, v = 1+v1+v2+. . . . . . . . . ∈ H∗(X, Z2), the symbol Sq = id+Sq1+Sq2+. . .
is the total Steerod square automorphism and [X] denotes the fundamental class of
X.
Since Sqi(a) = 0 if i > deg(a), we get vk = 0 if k > [dim(X)/2].

When X is a 3-manifold, we then have v = 1+v1 = 1+w1, so ω2 = ω1
2: it follows

that when X is orientable, X has Spin structures (and then Pin− structures).

When X is a closed smooth 4-manifold and ω1 = 0, the equation v = 1 + v1 =
1 + w2 implies:

∀a ∈ H2(X, Z2), 〈ω2 ∪ a, [x]〉 = 〈a ∪ a, [X]〉

Using the intersection pairing on X we will deal on this result later. Recall [MS, §
12] that when dim(X) = n and k < n is even, then ωk(TX) ∈ Hk(X, πk−1(V (n, n−
k+1)) is the obstruction to find n−k+1 independant vector fields on the k-skeleton
of X (where V (n, k) is the (n, k)-Stiefel manifold consisting of all k frames in Rn);
if k is odd or k = n, then ωk(TX) is only the (mod 2) reduction of this obstruction.

When X is a closed smooth 4-dimensional manifold, we thus have:

• k = 1: X is orientable ⇐⇒ ω1 = 0

• k = 2 : ω2 is the sole obstruction to find 3-framings on the 2-skeleton (i.e.
fields of 3 independant vectors in the tangeant bundle); choosing a 4th one on
the 2-skeleton (take an orientation field for instance), it is then also the sole
obstruction to get 4-framings on the 2-skeleton. If ω2 6= 0 and F is the Poincare
dual to ω2, then TX can be trivialized on X \ F (we will see another way to
get this result in §4; this will notably allows us to fix the trivialization of F).
Notice that the Spin structure corresponding to the trivialization of TX over
the 2-skeleton X(2) is easy to determine: if σ0 = (0, 1) ∈ H1(X(2),Z2)⊕ Z2

∼=
H1(X(2)×SO(n),Z2) and φ : E(TX|X(2)

)→ X(2)×SO(n) is the trivialization,
just take σ = φ?σ0.

• Finally, ω3 = 0 since π2(SO(4)) = 0 (as a Lie group); hence every Spin 4-
manifold admits a trivialization of the tangeant bundle over the 3-skeleton,
and consequently also a so-called almost framing over the 4-skeleton minus
an arbitrary point (whose extension obstruction is ω4). Indeed, a celebrated
theorem of Whitehead says that a 4-manifold may be presented as a CW-
complex with a single 4-cell (glued without torsion).

Following [Lic], every closed oriented connected 3-manifold can be obtained by
surgery on a framed link L embedded in S3, which means that it is the boundary of
a 4-manifold W 4 constructed by adding 2-handles to ∂B4 along the components of
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L, with the corresponding framings.
Since we now deal with compact 4-manifolds with boundary, we see in the same way
as above that the sole obstruction to extend a given Spin structure on M3 onto a
simply connected 4-manifold W 4 is the relative Stiefel-Whitney class ω2(WL, ML);
see [Ka] for some explicit constructions to remove it. Notice that the index and
the Euler class of W 4 are also obstructions to turn an almost framing of W 4 into a
genuine one, see [K1, p. 43].

The geometry of Pin− structures on compact (smooth) 4-manifolds bounded by
a given orientable 3-manifold is much more hackward, except in the case where we
consider only orientable 4-manifolds. Then it restricts to the preceding situation.
From now on we will consider only this case.

3.2.2 The relation with the intersection form

Let V be a free Z-module and Φ an integral unimodular symetric bilinear form (i.
e. we have det(Φ(xi, xj)i, j) = ±1). The form Φ admits the following 3 remarkable
invariants:

• its rank r = dimZV ,

• its parity defined by: Φ is even iff Φ(x, x) : = x · x = 0 mod 2 and odd
otherwise,

• its index σ(Φ), which is defined as the number of positive entries minus the
number of negative entries in a Q-diagonalization of a matrix representing Φ.

The form Φ is said to be positive (resp. negative) definite if ∀x ∈ V, we have x ·x >
0 (resp. x · x < 0), and indefinite otherwise. It is well-known (see e. g. [MH]
or [HNK]) that if Φ is indefinite, then it is determined by the preceding list of 3
invariants.

We say that ω ∈ V is a characteristic element for Φ if

∀x ∈ V, ω · x ≡ x · x (mod 2).

If we take a closed orientable 4-manifold M , we set V = H2(M
4, Z) and the inter-

section form is identified with Φ, a characteristic element ω for Φ is an integral dual
to ω2(M

4), and to ω2(M
4, ∂M4) if M4 has a boundary with a fixed Spin structure.

Let us now turn to the choice of characteristic elements in a general free Z-module
V .

First note that the characteristic elements are well defined (mod 8). Indeed,
consider the Z2-vector space V which is spanned by the (mod 2) reduction of the
elements of V : the (mod 2) reduction Φ of Φ onto V is well-defined, and Φ is a
definite bilinear form. Then its adjoint homomorphism ad(Φ) : V → Z2 may be
written as:

∀ x ∈ V , ∃ w ∈ V : ad(Φ)(x) = Φ(x, ω).
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If ω ∈ V verifies ω mod 2 = ω ∈ V , we now get (denoting by · the maps Φ and Φ):

x · ω ≡ x · x (mod 2).

Moreover, if ω′ is a characteristic element distinct from ω, then:

ω′ · ω′ = (ω + 2x) · (ω + 2x) = ω · ω + 4(ω · x) + 4(x · x).

Thus ω is well-defined (mod 8).

Now we prove that: σ(Φ) ≡ ω · ω (mod 8).
Indeed an elementary linear algebra calculus shows that every odd indefinite form

decomposes into a direct sum Φ =
p
⊕ (+1)

q
⊕ (−1), where (±1) denotes the two

(normalized) non trivial bilinear forms on one-dimensional vector spaces. Then
σ(Φ) = p− q = ω · ω , where ω is the sum of the generators of each factor.
But an arbitrary Φ may be turned into an odd indefinite form Φ⊕ (+1)⊕ (−1), then
finally:

σ(Φ) = σ(Φ⊕ (1)⊕ (−1)) ≡ (ωΦ + α + β) · (ωΦ + α + β) (8) ≡ ωΦ · ωΦ (mod 8)

where α and β respectively generate the summands (1) and (−1), and ωΦ is charac-
teristic for Φ. This formula proves our claim.

Hence when Φ is even, we can set ω = 0 and σ(Φ) ≡ 0 (mod 8). A theorem of
Rohlin will precise this result (see the following chapters).

WhenM4 is a closed connected oriented smooth 4-manifold withH1(M
4, Z) = 0,

we have an epimorphism H2(M, Z)→ H2(M, Z2); then ω2(M) may be lifted to an

integral class ˆω(M) ∈ H2(M, Z) such that

∀ x̂ ∈ H2(M, Z), ω̂(M) ∪ x̂ = x̂ ∪ x̂ (mod 2)

and dually:
∀x ∈ H2(M, Z), ω · x = x · x (mod 2),

where ω is the Poincar dual to ω̂ and · is the intersection product over H2(M, Z).
We deduce that

if H1(M, Z) = 0, then ω2 = 0⇐⇒ · is an even intersection form.

Notice that the converse is wrong without the condition H1(M, Z) = 0, as shows
the following example of N. Habegger, quoted in [K], §2: take M = S2 × S2/Z2.
Since we have χ(M) = 2, the rank of H2(M,Z) is 0. But the diagonal embed-
ding of the 2-sphere in S2 × S2 is turned into an RP2 under the Z2 action, with
self intersection 1. Now its dual in H2(M,Z2) forces ω2(M) to be different from zero.

In view to define the Rohlin invariant of a given closed oriented 3-manifold M ,
we will mainly consider oriented smooth 4-manifolds W with (oriented) boundary
M , for which this formalism may be applied. The obstruction to the extension of a
chosen Spin structure on M onto the whole of W will be represented by an orientable
surface called ”characteristic”, whose properties will be studied in §4.
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3.3 A ”descent” theorem

Next consider an arbitrary smooth oriented 4-manifoldW 4 with (oriented) boundary
M3. We will try to understand the relationship between the geometry of 2-manifolds
embedded in W 4 and the obstruction for W to be Pin−. All what follows may be
easily transposed to SO(n) (and then to Spin structures).

Let us denote by TO(k) the Thom space of the universal bundle over BO(k).
If W is a n-manifold , the Pontrjagin-Thom construction shows that an element
a ∈ Hk(W, Z2) is dual to a (properly embedded) (n − k)-submanifold F ⊂ W
if and only if the map W → K(Z2, k) that represents a may be lifted to a map

W
t→ TO(k).

The geometric meaning of the lift is the identification of the universal bundle over
BO(k) with the normal bundle of F in W , in such a way that the Thom class
u ∈ Hk(BO(k),Z2) pulls back to a = t∗(u). The map (W, W \ F ) → (TO(k), ∗)
associated to this identification not only induces a monomorphism on Hk( , Z2)
by excision, but the Thom isomorphism theorem shows that we have Hk(W, W \
F ; Z2) ' H0(F ; Z2) (see [bf MS, § 10]).
Then a restricts to the product of the generators, by the very definition of the Thom
class u. Furthermore we have a|M\F = 0 and a|F is the Euler class of the normal
bundle of F in W .
Notice that besides any integral 2-cohomology class has a dual submanifold with
oriented normal bundle (since TSO(2) = CP 2 = K(Z, 2)), the preceding theory is
of interest for the map TO(2) → K(Z2, 2), which is not a homotopy equivalence.
We quote in a general context:

Theorem [KT, 2. 4]: Let M be an oriented paracompact manifold, with or without
boundary, and F a codimension 2 properly embedded submanifold with finitely many
components. Then F is Poincar dual to ω2(M) if and only if there is a Pin− structure
on M \F which does not extend across any component of F. Furthermore H1(M, Z2)
acts simply transitively on the set of Pin− structures of M \ F which do not extend
across any component of F.

Proof: Denote the disk, sphere bundle tubular neighborhoods to each component
Fi of F in M by (D(νi), S(νi)); moreover, set i : M ↪→ (M, M \ F ) the inclusion.
Suppose that M \ F has a fixed Pin− structure which does not extends across
any component of F . In general, one may easily show that there is an equivariant
correspondance

Pin−(ζ)→ Pin−(ζ ⊕r
i=1 ε

1)

which commutes with the action of H1(B, Z2), where ζ is any vector bundle over a
CW-complex B and ε1 a trivial line bundle over B. Since M \ (qD(νi)) ⊂ M \ F
inherits the Pin− structure of M \ F by restriction, the last remark shows that we
get a Pin− structure on qS(νi) considered as the boundary of M \qD(νi) (see also
the following sections).

We now want to define a cohomology class forM , associated with the normal bun-
dle to F , that extends ω2(M). Let b ∈ H2(M, M\F ; Z2) ' ⊕H2(D(νi), S(νi); Z2) '
⊕Z2 be equal to 1 on each summand Fi if the Pin− structure on S(νi) extends across
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D(νi), and −1 if it does not. Consider the embedding j : G → M of a surface G,
such that j(G) either misses F or intersects it transversally in a collection of points
(pl) with neighborhoods in j(G) some disks that are fibres in qD(νi).
The Pin− structure on the normal bundle νj(G)⊂ M restricted to j(G) \qiDi, which
is induced by the Pin− structure of M \F , does not extend over the 2-disks Dl that
lie over the points pl. However, j(G) will have a globally defined Pin− structure if
there are an even number of such disks. This follows from the equality:

〈ω2(M), [j(G)\qiDi]〉 = 〈ω2(M), [j(G)\qi6=j, kDi]〉+ 〈ω2(M), Dj〉+〈ω2(M), Dk〉 =

= 〈ω2(M), [j(G) \ qi6=j, kDi]〉
Now the definition of b implies that we have:

〈i∗(b), j∗[G]〉 =

{
1 if TM|j(G) has a Pin− structure,
−1 otherwise.

But this is the defining property of ω2, so we conclude that i∗(b) = ω2(M) ∈
H1(M,Z2).
Since the Pin− structure of M \F does not extend across any component of F , the
class b is equal to −1 over each of them and it is the image t∗(u) of the Thom class
u (see the preceding discussion). Therefore i∗t∗(u) = i∗(b) = ω2(M); hence F is dual
to ω2(M).

Conversally, suppose that F is dual to ω2; then M \ F has a Pin− structure.
Fix one of them: we can alter the corresponding i∗(b) (in the above construction)
by the action of a class c ∈ H1(M \ F,Z2), so that b + δ∗(c) is the image of the
Thom class (where δ is the coboundary operator of the long exact sequence of the
pair (M \F, M)). In other words, we can alter the Pin− structure on M \F by the
action of c, so that we get a new Pin− structure which does not extend across any
component of F (by the argument of the preceding paragraph). �

3.4 Splittings of Pin−-bundles, other geometric

characterizations, examples

Extension lemma: If an O(n)-principal bundle ζ on a CW complex X has a Pin−

structure σ and Y is a subset of X with H1(X, Z2)
∼→ H1(Y, Z2), then a Pin−

structure on ζ is determined by the choice of a Pin− structure τ on ζ |Y .

Indeed, we can define a 1-cochain c on Y with values in π1(SO(n)) = Z2 by
sending a closed curve l ⊂ Y on 0 (resp. 1) if σ and τ (defined respectively on ζ and
ζ |Y ) are equal ( resp. different) on l. Then c determines a class γ ∈ H1(Y, Z2) '
H1(X, Z2) and σ + τ determines a Pin− structure on Y equal to τ . �

Stability lemma [ML, p. 85]: Given 3 vector bundles ζ ′, ζ ′′ with ζ ' ζ ′ ⊕ ζ ′′
on a manifold X, a choice of Spin structures on two of them determines a unique
Spin structure on the third.
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Notice that this lemma implies directly the counterpart of the descent theorem in
the case where the ambiant bundle splits. Let F be a smoothly embedded orientable
surface F with trivial normal bundle ν in a Spin smooth oriented 4-manifold M :
then the simply transitive action of the group H1(F,Z2) on the set of trivializations
of ν implies that any Spin structure on F is obtained from the Spin structure on M
and the adequate choice of trivialization of ν.
In the generality of the hypothesis of the lemma, the unicity is not easy to obtain.
But for our purposes (aside of the preceding remark and the descent theorem) it
suffices to see that given a codimension-1 submanifold N of a manifold M , such
that M, N and the normal line bundle ν of N ⊂ M are coherently oriented, we
have (using the canonical Spin structure of ν):

{Spin structures on TM|N} ←→ {Spin structures on TN}.
For example we can complete a framing inN by the normal vector field that coincides
with the orientation.

In the context of Pin− structures, the restriction of structures with not neces-
sarily trivial normal bundle ν can be formulated as follows:

Restriction lemma: Let N denote a codimension one submanifold of an ori-
entable manifold M with a Pin− structure and with normal line bundle ν; if the
determinant line bundle ν = det(TN) is not trivial, then there is a Pin− structure
on N inherited from the Pin− structure of M.

Indeed, TN ⊕ det(TN) is naturally oriented, so identifying ν and det(TN) we
have the natural isomorphism TN ⊕ ν = TM|N . Then N gets a Pin− structure from
M . �

Next we want to relate the triviality of the normal bundle to any embedded or
immersed surface in a given manifold and Pin− structures:

First characterization: A given vector bundle ζ of rank ≥ 3 on an oriented
manifold M is Pin− if and only if for every compact surface F and any continuous
map f : F → M , the pullback bundle f ∗(ζ) is trivial. If furthermore M is simply
connected (resp. and dimM > 4), the bundle ζ has a Pin− structure if and only if
the restriction of ζ to any immersed (resp. embedded) 2-sphere is trivial.

It suffices to see that H2(M, Z2) is generated by maps f : F → M , where F
denotes any compact surface. Then we have:

ω2(ζ) = 0⇐⇒ ∀ f as above : f ∗ω2(ζ) = ω2(f
∗(ζ)) = 0

⇐⇒ ∀f as above f ∗(ζ) is trivial.

Now an oriented bundle of rank ≥ 3 on a surface is trivial if and only if its second
Stiefel-Whitney class is zero. Moreover, if dimM > 4, any immersion of a surface
may be deformed into an embedding (by the Whitney trick), and if π1(M) = 0
then H2(M, Z2) is generated by maps of the 2-sphere into M (by the Hurewicz
isomorphism). �

Let us precise this result:

Second characterization : IfM is an oriented n-manifold such that H2(M, Z)→
H2(M, Z2) is an epimorphism, then:
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• i) if n ≥ 5, M is Spin if and only if every embedded compact orientable surface
in M has a trivial normal bundle in M .

• ii) if n = 4, M is Spin if and only if the normal bundle of any embedded
compact orientable surface in M has an even Euler class.

The proof is similar to the preceding one: the hypothesis implies thatH2(M, Z2) '
H2(M, Z)⊗Z2 so H2(M, Z2) is generated by inclusion maps of compact orientable
surfaces. But any map from a surface into M is homotopic to an embedding if n ≥ 5,
and to a transverse immersion if n ≥ 4. In the last case one may drop a little 2-cell
from the surface in a neighborhood of each self-intersection point, and add an em-
bedded handle. This induces an embedded surface in the same homology class (the
last argument will be explained in more details later). Then H2(M, Z2) is generated
by smooth embeddings of compact orientable surfaces. If i : F ↪→ M is such an
embedding and ν still denotes the normal bundle to F in M , we have:

i∗ω2(M) := i∗ω2(TM) = ω2(i
∗TM) = ω2(TF ) + ω2(ν) = ω2(ν).

This equality induces:

〈ω2(M), i∗[F ]〉 = 〈ω2(ν), [F ]〉.

If ω2(M) = 0, it follows that ω2(ν) = 0; the converse is true because H2(M, Z2) is
generated by such compact embedded orientable surfaces.
Moreover ν is orientable, which implies that if dim(ν) ≥ 3 ( i. e. if n ≥ 5) the nullity
of ω2(ν) is equivalent to the fact that ν is trivial.
When dim(ν) = 2, then we know that ω2(ν) is the mod 2 reduction of the Euler
class.
Notice in particular that every 1-connected manifold M of dimension n ≥ 5 is Spin
if and only if any embedded 2-sphere in M has a trivial normal bundle in M . �

Some other examples:

i) any 2-connected manifold has a unique Spin structure : homology (or homo-
topy) spheres, Stiefel manifolds, simply-connected Lie groups.
ii) any manifold whose tangeant bundle is stably parallelizable is Spin: examples are
the inverse image of regular values of a smooth map f : Rn+p → Rp, Lie groups
and orientable manifolds of dim ≤ 3.

Remark The restriction lemma permits not only to frame (by a field of inde-
pendant lines (resp. vectors)) the pullback of the tangeant bundle of a Pin− (resp.
Spin) 3-manifold on a non orientable (resp. orientable) embedded surface F , but also
to get an induced Pin− (resp. Spin) structure on F ; the choice of a framing in the
ambiant manifold is a necessary addition of structure to turn the linking pairing into
a quadratic form, and to develop the associated theory of invariants of cobordism
class of surfaces (see the next chapter).
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3.5 Spin cobordism

We say that the manifold Xn is a Spin boundary of the manifold W n+1 if X is
diffeomorphic to ∂W n+1 and the diffeomorphism makes the Spin structure of X and
the Spin structure of ∂W n+1 correspond (this relation goes up in the Spin category).
We note ΩSpin

n the equivalence classes of Spin manifolds, where Mn
1 and Mn

1 are
equivalent Spin manifolds if M1

∐−M2 is a Spin boundary for some Spin manifold
W n+1. Let us now take a look at the low dimensional Spin and Pin− cobordism
groups.

In the one dimensional case, note that a trivialization of a bundle is the
same thing as an orientation for it. Hence there are 2 Spin structures on S1. They
correspond respectively to the trivial and the twisted Z2-bundles over S1.
Explicitely, denote by σ ∈ H1(S1, Z2) the class corresponding to the chosen Spin
structure of TS1. We have:
i) for σ = 0 we get the ”Lie group Spin structure”, that is the translation-invariant
trivialization of TS1 ⊕ ζ1 (where ζ is a trivial line bundle stabilizing TS1).
ii) for σ = 1 we take the trivialization of R2 restricted to S1.
The last trivialization makes S1 bounds the disk B2, respecting the Spin structures
of both manifolds.

Now the 2-disk has an orientation reversing involution that gives an equivalence
between S1 with Lie group Spin structure and S1 with the reversed orientation and

the Lie group Spin structure. Hence ΩSpin
1 and Ωpin−

1 are each 0 or Z2.
Suppose that S1 is the boundary of an orientable surface F : all Spin structures on
F induce the same Spin structure on S1, as follows from the stability lemma and
the simply transitive action of H1(F, Z2) on the set of Spin structures of F (notice
that the same argument works with Pin− structures in case F is a non orientable
surface). But any Spin (resp. Pin−) structure on F extends uniquely to one on
F̂ = F ∪ D2, and then the structure induced on S1 is the one which extends over
the 2-disk. So S1 with the Lie group Spin structure does not bound, and we get:

ΩSpin
1 ' Ωpin−

1 ' Z2

The same arguments show that we have 4 Spin structures on T 2, determined
by the cyclic decomposition of the group H1(T 2, Z2) into Z2 ⊕ Z2. Only extend
those which are non zero for both standard longitude-meridian generators, and give
S1 × B2 (where B2 is glued to a circle S1 on which σ 6= 0).
Then any connected sum of k tori with the so-called non-everywhere Lie framings
bounds a Spin compatible manifold. When we have the Lie framing on p of them,
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say the p first tori Ti, i = 1, . . . , p (i.e. those where the Spin structure affinely
corresponds to a class σ = (0, 0) ∈ H1(T 2,Z2)), this connected sum clearly bounds

(
p

]i=1 (T 2
i \B2

i )
k

]j=p+1 T
2
j )× I and the Spin structure on this 3-manifold extends to

the Lie framing when restricted to the boundary. Then ΩSpin
2 ' Z2.

This isomorphism can be viewed as follows (see Appendix A for more details): let
q : H1(F

2, Z2) → Z2 be a quadratic enhancement of the intersection form, where
F 2 is a compact oriented surface with a given Spin structure τ , such that:

q(x) : =

{
0 if τ(F 2)|x is the bounding Spin structure
1 otherwise

Then q is equal to 1 on the generators of T 2 with the Lie Spin structure, and we get
an isomorphism:

ΩSpin
2

Arf→ Z2

We will deal with this isomorphism in more details in the next chapter, extending
it to Pin− structures on arbitrary 2-dimensional manifolds. The isomorphisms will
still be realized by quadratic invariants.

It is wellknown that a connected Spin 3-manifold M bounds a Spin 4-manifold
W with only handles of indices 0 and 2 (see [K1, p. 47]). Moreover one can control
the rank of H2(W 4, Z) and the index of W 4, using for exemple Kirby’s calculus
and a clever elimination of characteristic surfaces, which are dual to ω2(W, M) (see
[Ka]).

Finally, we notice that we are able to compute the cyclic decomposition of ΩSpin
4

without even the determination of a generator for it, supposing only the knowledge
of the (non elementary) following fact: suppose that a closed smooth oriented 4-
manifold M has a Spin structure and that p1(M) = 0, then there exists a Spin
5-manifold W with M as a Spin boundary (cf. [K1, §8]). We refer to §4 for details.
Given a smooth closed connected oriented 4-manifold M , we have Hirzebruch ’s
formula (see [K1] or [MS]) p1(M) = 3σ(M) (where p1(M) is the first Pontrjagin
class of M and σ is its index). .
Since σ(CP 2) = 1, the index of intersection forms then induces a map ΩSpin

4
σ−→ Z.

Moreover, in case M4 is Spin, its intersection form is even (as we have already
seen), so σ(M) ≡ 0 (mod 8). Consequently σ/8 is a monomorphism into Z or Z2.
We can now state a theorem of Rohlin:

ΩSpin
4

σ/16−→ Z

This will follow in the next chapter as an easy corollary of a more general result
for smooth oriented 4-manifolds, in the form of an extension of the Guillou-Marin
formula.
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Chapter 4

Characteristic surfaces and
quadratic forms

.

Let M be a smooth oriented 4-manifold; recall that a properly embedded surface
F 2 ⊂ M4 is called a characteristic surface if it is an obstruction cycle to the triv-
ialization of TM over the two skeleton: as we saw above, for a given trivialization
t of TM over M \ F , the obstruction to the extension of the field of frames t over
a disk D transverse to F is the non zero element of π1(SO(4)) = Z2, where SO(4)
plays the role of the structural group of TM . This geometric point of view gives
us the Wu formula,seen as an equality between indices of vector fields (cf. [GM]) :
∀Σ ∈ H2(M, Z2), we have Σ · Σ ≡ F · Σ (mod 2), where · denotes the intersection
product on H2(M,Z2).

The classical Rohlin theorem we cited at the end of chapter 3 aims at under-
standing the problem of the realization of quadratic forms as intersection pairings
H2(M, Z)×H2(M, Z)→ Z of a smooth orientable compact or closed manifold M4.
It is completed by Wall’s version of the h-cobordism theorem in dimension 4 (see
[K, §10] and the recent and much more hackward theories of M. Freedman [F-Q]
and S. K. Donaldson [D-K], which in particular tell us that:
1) Given an even (resp. odd) quadratic form, there exists exactly one (resp. two)
closed topological simply connected 4-manifold(s) that realizes it as its intersection
pairing. In the odd case, the PL-invariants of Kirby and Siebenmann [KS] can dis-
tinguish the two manifolds.
2) When considering smooth simply connected 4-manifolds, the only realizable def-
inite forms are the trivial ones: ± ⊕p

i=1 (+1), and by Friedman’s theorem we know
that it represents ±]pi=1(CP

2).

Let us denote by σ(M) the index of M ; we saw in Chapter 3 that algebra
adds to the preceding results the formula σ(M) − ω · ω ≡ 0 (mod 8), where ω is a
characteristic element. Now, Rohlin’s theorem states that a closed smooth Spin and
simply connected 4-manifold verifies σ(M) ≡ 0 (mod 16); hence half of the even
form cannot be represented by such manifolds. This section deals with the proof of
an extension of this formula, and with its geometric meaning.
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4.1 Characteristic pairs

We say that a pair (M, F ) of manifolds is a characteristic pair if M is oriented, F is
properly embedded in M and is dual to its second Stiefel Whitney class ω2(M). The
pair is said to be characterized provided we have fixed a Pin− structure on M \ F
which does not extend across any component of F . We have already seen that such
Pin− structures are in one to one correspondance with H1(M, Z2). We denote by
Char(M, F ) the set of characterizations of the pair (M, F ).
Following [KT], we say that two characterized pair (Mm

1 , F
m−2
1 ) and (Mm

2 , F
m−2
2 )

characteristically cobound if there exists a smooth characteristic pair (Wm+1, Y m−1)
and a fixed Pin− structure on Wm+1 \Y m−1 which does not extend over Y m−1, such
that ∂(W, Y ) = (M1, F1) − (M2, F2) (as an oriented boundary) and the Pin−

structures are coherent. This is an equivalence relation between characteristic pairs
( the choice of fixed structures is necessary to show transitivity), that induces the
mth-cobordism group of Guillou and Marin, denoted by Ωchar

r .

First we generalize the descent theorem of the preceding section showing geo-
metrically how to descent the structure of an ambiant manifold.

Descent Theorem [KT, 6. 2]: Let Mn be an oriented manifold with a codimen-
sion two submanifold which is dual to ω2(M). There exists a function

Char(M, F )
Ψ→ Pin−(F )

The group H1(M, Z2) acts on Char(M, F ), the group H1(F, Z2) acts on Pin−(F )
and the map Ψ is equivariant with respect to these actions and to the map i? induced
on H1( , Z2) by the inclusion i : F ⊂ M ; precisely we have, denoting by θ a
characteristic pair in Char(M, F ):

∀a ∈ H1(M,Z2), Ψ(a.θ) = i?(a)Ψ(θ)

Sketch of proof: We may restrict our attention to the case where E is the total
space of the normal bundle ν of F ↪→ M and F is connected, since there is an obvi-
ous restriction map of structures from the general case to this one. We generically
denote by the symbol ν? a normal bundle, the index indicating its base.
Suppose that n 6= 3 and that we have defined Ψ on a set U of disjoints embedded
tubular neighborhoods of embedded curves, such that H1(U, Z2)

∼→ H1(F, Z2).
Then we may extend uniquely our Pin− structure on U to all of F by the extension
lemma. But is this structure independent of the choice of U ?
To see this, consider a tubular neighborhood V in F of an embedded circle c in F ,
with normal bundle ν ′ := νc⊂M in M : we can either restrict the Pin− structure of
ν := νF⊂M on ν ′, or define the Pin− structure of ν ′ directly with the help of the
geometry of F ⊂ M . Let us explain this construction: chose a section ε1 of ν ′ (it
always exists because V has the homotopy type of a circle), and write ν ′ = λ ⊕ ε1,
where we orient the trivial line bundle ε1 and use it to embed V in ∂E (the total
space of the sphere bundle of F ↪→ M). This orientation plus the orientation of E
(hence of ∂E) induce a preferred isomorphism between the determinant line bun-
dle det(TV ) of the tangeant bundle to V and the normal bundle to the embedding
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V ↪→ ∂E, that we have called λ; using the Restriction lemma, V inherits a Pin−

structure from the one of ∂E.
Here are now the problems:
1) to show that this construction for V is independent of the section we chose,
2) if yes, to show that this direct geometric construction of the Pin− structure on
V and the induced one (from ν) does correspond.

The second statement is easy to prove: suppose first that n− 2 > 2; take an em-
bedded surface W 2 in F which has for Pin−-boundary components the core circle
c of V and some of the cores of U as the others; consider also a tubular neighbor-
hood X of W 2 ⊂ F . The bundle ν restricted to X (which has the homotopy type
of a wedge of circles) has a section and, using it as an embedding, we can induce a
Pin− structure on X from the Pin− structure on ν. In particular, it does have to
correspond to the Pin− structures constructed directly on V (a construction that
we suppose to be well defined by 1)).
Hence in this case, these two constructions coincide and every normal bundle νc⊂F

of a circle c in F has a well defined Pin− structure induced by the Pin− structures
over a set U as above. Moreover, the Pin− structure of F is independent of the
choice of U since Pin− structures can be detected by restriction to circles, using the
extension lemma.
If n − 2 = 2, take a section over F \ pt (pt denotes a point in F ), embed F \ pt in
∂E and give as above a Pin− structure on F \ pt which extends uniquely to a Pin−

structure on F (this is possible since we have the bounding Pin− structure on the
boundary S1 of F \ pt !). In case F has a boundary, the section already defined for
V (in the above direct construction) may be taken for the section on the boundary.
Now the restriction of this last structure on F to a neighborhood of an embedded
circle gives a structure that we have supposed to be independant of the section (by
1)), so the structure on the whole of F is independent of the section, and the argu-
ment of the preceding paragraph finish that case.

Now we prove 1). Suppose that the bundle ν ′ is trivial: it contains the case n = 3
since we have V = S1 and the bundle has oriented total space. Let us deal with this
case first.
We have ∂E = T 2 and this induces the meridian m as a preferred generator of
H1(T 2, Z2) . Let x be another generator. The Spin structure of ν on V , i. e. its
chosen trivialization, is determined by the number q(V ) of twists (mod 2) that the
homological image of V in H1(T 2, Z2), which is either x or x + m, makes in a
complete traverse of V . As the Spin structure does not extend over disk transverse
to S1 (by the hypothesis of the theorem) we have q(m) = 1, so obviously q(x+m) ≡
q(x) + q(m) + x ·m (mod 2) ≡ q(x) (mod 2).
In the higher dimensional case, we consider an embedded S1 ↪→ V with a trivial
normal bundle. There is an embedded T 2 in ∂E over this circle, and we can identify
the normal bundle to T 2 in ∂E with the normal bundle to S1 ↪→ V by the bundle
projection p. The Spin structure on ∂E restricts to one on T 2, and we can use p to
put a Spin structure on one of the normal bundles if we have already fixed a Spin
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structure on the other. As the Pin− structure we want to put on V is determined
by using a section over S1, we are brought back to the preceding case.
Finally we turn to the non trivial case: since V is the total space of a bundle over
S1 it is necessarily of dimension ≥ 2. We can reduce the case dim(V ) ≥ 2 to the
case dim(V ) = 2, because in the higher dimensional case, νF⊂M |S1 is isomorphic to
det(ν) ⊕ ε (where ε is a trivial bundle over S1), which is the form of bundles over
a Möbius band (since also E is oriented). We then have a Klein bottle K2 over our
S1 and the normal bundle to K2 in ∂E is the pullback of ν. As for the torus, we
can see that there is an induced Pin− structure on K2, so that the Pin− structure
we want to put on V is determined with the help of the section applied to S1 as a
longitude of K2. We have proved 1).

Let us finally summerize what we have shown: first, we can construct canonically
a Pin− structure on a tubular neighborhood V of any embedded circle in E. Given
a characterization of (E, F ), this allows us to get a canonical Pin− structure on
any embedded circle in F (part 1)) which does coincide with the Pin− structure
on V induced from the Pin− structure on F (part 2)). Using the remark that
the Pin− structure on F is determined by any immersed collection of circles in F
homologically equivalent to F , we get the result. �

The function Ψ defined in the above theorem commutes with taking bound-
ary, as follows from the naturality of the descent of structure in the stability lemma.
Then we get a well defined homomorphism :

β : Ωchar
r → ΩPin−

r−2

Note that the Pin− structure on a codimension 0 subset X ⊂ F depends only on
the Pin− structure on the circle bundle lying over X.

All this discussion is clear in the particular case of Spin structures defined on
an orientable pair (M4, F 2): the normal circle bundle ν to F in M inherits a Spin
structure from M \ F . We can push a neighborhood of the generating circles of
H1(F, Z2) with any section of ν to get a Spin structure on it, hence on F by
H1-isomorphism. The independence of the section follows from the fact that any
normal circle to F has the Lie Spin structure σ = 0, and the difference between
two sections is a multiple of a normal circle. The same argument could be applied
to a bordism(W 5, Y 3), and we would obtain a Spin structure on Y 3 bounding the
previous ones. So the element of Ω2

Spin represented by F ⊂M does only depend on
the class of (M4, F 2) in Ω4

char.

Now that we have seen how to get well defined Pin− structures from character-
ized pair, we will formalize the algebraic tools in the preceding proof to get direct
informations about embedded surfaces.

4.2 Pin− structures on surfaces and quadratic forms

What follows is the ”axiomatization” of methods mostly used in [GM], [T] and
[Tu2]. Recall that a quadratic enhancement of the intersection form of a surface is
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a function :
q : H1(F

2, Z2)→ Z4

satisfying :

∀x, y ∈ H1(F
2, Z2) : q(x+ y) = q(x) + q(y) + 2x · y,

where · is the intersection pairing on F 2. Fixing a Pin− structure on F , we want to
get a quadratic enhancement of its intersection pairing. The core of this problem is
the following description of sufficient conditions of existence:

Lemma [KT 3. 4]: Let q̂ be a function which assigns an element in Z4 to each
embedded disjoint union of circles in a surface F and is subject to the following
conditions:
(a) q̂ is additive on disjoint union,
(b) In case of transversal intersection of two embedded collections of circles L1 and L2

in r points, then we can get a third embedded collection L3 of circles in F obtained
from L2 and L3 by surgery on each crossing, and we then require that q̂(L3) =
q̂(L1) + q̂(L2) + 2 · r;
(c) q̂ is zero on any single embedded circle which bounds a disk in F.
Then q̂(L) depends only on the underlying homology class of L, and the induced
function q : H1(F, Z2)→ Z4 is a quadratic enhancement.

The second condition is the property we are looking for and the others give the
necessary invariance of the quadratic enhancement.

Sketch of proof: The following drawings show how to replace a given L by a
single embedded circle K with the same homology class in H1(F, Z2), by drawing
an arc between some components, and with the same value under the map q̂:

The corresponding equation is: q̂(K)
(a)
= q̂(KqK2qK3)

(b)
= q̂(L)+ q̂(K1)

(c)
= q̂(L);

The isotopy invariance follows once we notice that choosing a neighborhood
W of K in F , a small perturbation of K by an isotopy ht does not remove it
out of W , and Kt = ht(K) represents the core in (mod 2) homology either of an
embedded annulus or a Möbius band (resp. denoted by A and M). Then if q̂(Kt)
is constant on each such small perturbation, then by connectedness we should have
{t ∈ [0, 1]|q̂(Kt) = q̂(K)} ' [0, 1], which would imply the invariance under isotopy.
Suppose then thatK0 is the core of an embedded annulus A ⊂ F with boundaryK2q
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K1; by applying the arguments of the above drawings (smoothing the intersection
points of a connecting arc between components so that we obtain two new bounding
disks) we have q̂(K2) = q̂(K1) = q̂(K0); hence q̂ does not depend on the representant
of the isotopy class of the core.
Furthermore q̂(K) is even, so any curve in F with trivial normal bundle has even q̂.
Indeed, let C be a copy of K pushed off itself in the annular structure, then (a) and
(b) give (where the third equality is obtained again using the splitting procedure)
2q̂(K) = q̂(K) + q̂(C) = q̂(K q C) = 0.
Finally, taking two different representants K1 and K2 of the homology class [K] ∈
H1(A,Z2) of K, intersecting each other transversally, we see that (b), when applied
to K1 and K, gives: r is even since q̂(K) and q̂(K1) are even; hence q̂(K) = q̂(K1).
Similarly q̂(K) = q̂(K2), so q̂(K2) = q̂(K1)
The proof for an embedded Möbius band M is similar: take representing curves K0

of the core, and K1 and K2 in the same homology class in H1(M,Z2), intersecting
each other transversally in distinct points. Applying (b) to the three pairs of circles
gives:

∀0 ≤ i, j ≤ 2, i 6= j : q̂(Ki) + q̂(Kj) = 2.

Adding these equations and comparing with the initial ones shows that q̂(K2) =
q̂(K1) = q̂(K0) and each is odd, hence whenever the normal bundle to K is non
trivial q̂(K) is odd.
Now the condition b) applied as in the proof for an annulus gives q̂(K) = q̂(K1).

The homology invariance in F is a bit more complicated. Given transversally
intersecting (by isotopy) links L1 and L2 representing the same class in H1(F,Z2),
(b) implies the existence of a null homologuous link L3 such that q̂(L3) = q̂(L1) +
q̂(L2) + 2 · r; since the parity of q̂ is preserved for links in the same homology class,
we have only to show that q̂(L3) = 0. But L3 (that we suppose to be connected) is
null-homologuous, hence L3 has trivial normal bundle in F so that q̂(L3) is even,
and there exists a 2-manifold W ⊂ F with ∂W = L3. If W is not a disk, write

W = W1

∂∪ V , where V is either a twice punctured torus or a punctured Möbius
band and W1 has larger Euler characteristic than W . Denoting the boundary of V
by ∂lV = ∂0V q ∂1V , an induction on the Euler characteristic implies that we are
done if we show q̂(∂0V ) = q̂(∂1V ). But it follows respectively (using (b) and (c))
from q̂(∂0V ) = q̂(∂1V ) = q̂(m1) + q̂(m2) (where m1 and m2 are meridians on either
sides of the holes) in the toral case, and from q̂(∂0V ) + q̂(∂1V ) = 0 in the Möbius
band case. Hence the induced q : H1(F, Z2)→ Z4 inherits the quadratic properties
of q̂. �

Description of q̂: we use some facts stated in the preceding chapter. Let K
be an embedded circle in a surface F , and embed F as the zero section of a line
bundle λ with ω1(λ) = ω1(F ) over F . The total space E(λ) is a Spin 3-manifold.
Fix a homotopy class of trivialization of τ = TE(λ)|K = TS1 ⊕ νK⊂F ⊕ νF⊂E(λ),
where ν denotes normal bundles. Since TS1 is trivial, an orientation of τ picks
out a trivialization, hence we orient each line bundles in a point p ∈ K so that
the orientation on τ agrees with that coming from the Spin structure. Note that
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the framing of νK⊂F ⊕ νF⊂E (a 2-plane bundle) corresponding with this chosen
orientation is acted on by π1(S0(2)) ' Z although the framings of a 3-plane bundle
corresponds to π1(SO(3)) ' Z2: consequently we will say that τ picks out an even
set of framings of τ ′ = νK⊂F ⊕ νF⊂E.
Now the obstruction to extend a given vector field on K to τ ′ as a subline bundle
can be measured by the number of right half twist that νK⊂F makes in a complete
traverse of K; it is only well defined (mod 4) as we have seen in the proof. Choose
an odd framing on τ ′ and use it to compute this number: this is q̂(K). Another
choice of odd framing will change the count by a multiple of 4, so the specific choice
of odd framing is irrelevant. It is elementary to verify that q̂ does not depend on
the point p or on the local orientations made at p. Finally, we have to verify that q̂
satisfy the conditions (b) and (c) in the lemma. As for (c), the framing of the three
trivial line bundles (given by the local orientations at p) induces the stable Lie group
framing over K; so it is an odd framing. To show (b), it suffices to see that we can
remove a crossing without changing the count in the framing coming from a small
disk neighborhood of it. Hence the choice of an odd framing (which introduces a full
twist) gives a contribution of 2, and this end the construction of q̂.

Consequences: Let us denote by Quadr(·) the set of quadratic enhancements
of the intersection form on H1(F, Z2); we have defined a function:

φ : {Pin− structures on F} → Quadr(·)

We can act simply transitively by H1(F, Z2) on the set of quadratic enhancements
by defining γ · q(y) = qγ(y) = q(y) + 2 · γ(y) ∈ Z4, ∀γ ∈ H1(F,Z2).
Note that acting on Pin− structures by γ ∈ H1(F, Z2), we reverse even and odd
framings on embedded circles K ⊂ F for which γ(K) = −1. Since the effect is
to add 2 to q(x) if γ(x) = −1, the induced action on Quadr(·) gives exactly the
definition of qγ , hence φ is natural for the action of H1(F,Z2).
Notice that φ is canonical; this is different from the 1− 1 correspondance between
H1(F, Z2) and the set of Pin− structures, which requires the choice of a base point
in the first set. Then we have proved:

[Theorem KT, 3. 2]: There is a canonical 1 - 1 correspondance between Pin−

structures on a surface F and quadratic enhancements of the intersection form.

Now we can use Brown’s work on the generalization of the Kervaire invariant to
get the structure of ΩPin−

2 : Brown [Br] establishes a method for constructing func-
tions on the homology of a manifold M2n endowed with some structure, satisfying:

φ : Hn(M, Z2)→ Z2, φ(u+ v) = φ(u) + φ(v) + (u ∪ v)(M)

where ∪ denotes the cup product on the cohomology ring of M . In case M ⊂ W
is a boundary, Brown shows that every such map verifies the following property: if
i : M ↪→ W is the inclusion, then φi∗ = 0. It allows him (with a lot of algebraic
machinery) to define an homomorphism K : Ω2n(G) → Z8, where Ω2n(G) denotes
the cobordism group based on orientable G-manifolds (manifolds endowed with an
action of the group G). ForG ' Pin− and surfaces, we then have an homomorphism:

31



β : ΩPin−

2 → Z8. It is the ”usual” Brown invariant that we shall use, and which is
defined in Appendix A. Then

Theorem: We have an isomorphism:

β : ΩPin−

2
∼→ Z8

The (mod 2) reduction of β is the (mod 2) reduction of the Euler characteristic
and hence determines the unoriented bordism class of the surface.

Proof: the two trivial enhancements ±γ of the reduction (mod 2) of the inter-
section form of RP2 generates the Witt group W(Z2, Z4), which is isomorphic to
Z8; see Appendix A. Moreover β(±γ) = ±1 ∈ Z8, hence β is an epimorphism. But
the reduction (mod 2) of the induced homomorphism from the Witt group is the
dimension (mod 2) of the underlying vector space (see Appendix A); whence the
second result. �

Here is a simple geometric construction to see the injectivity of the map β.
Suppose that, given a surface F , we have β(F ) = 0: the 2-manifold F is an unoriented
boundary of a 3-manifoldW 3. We are going to look after a more simpler representant
of the Pin− bordism class of F in W 3: consider the Poincare-dual circle K ⊂W \F
of the obstruction class in H2(W, ∂W ; Z2) to the extension of the Pin−structure
of F across W , and take the boundary of a neighborhood in W of K. Then F is
Pin− bordant to this surface S, a torus or a Klein bottle, with β(S) equal to zero.
The obstruction to extend the Pin− structure of W \ K across a neighborhood of
K translates into a non zero value of q on H1(S,Z2).
In the Klein bottle case, the obstruction must lie over a curve l whose self intersection
is even, that is a preserving orientation curve ( RP1 is a Pin− boundary): but
this contradicts the fact that an enhancement q on a Klein bottle with such an
obstruction has non zero Brown invariant (q does not split, with the terminology
of the Appendix). Thus the boundary of K must be a torus. But for a torus β is
zero if and only if q vanishes on the remaining classes of H1(T,Z2) \ l, and a Pin−

boundary is obtained by filling the disk bundle of the torus with the help of the two
generating sections.

Next we investigate how is the behaviour of β under change of Pin− structures.
With the usual notations, let qa be the image of the quadratic enhancement q under
the action of a ∈ H1(F, Z2). We have:

Lemma : β(qa) = β(q) + 2 · q(a)
Proof: We can check this formula for the two generators of the Witt group, and

the result follows from the additivity of the Brown invariant. �

In view to obtain the most general extension of Rohlin ’s theorem, we need to
investigate the structure of the characteristic cobordism group in dimension 4.
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4.3 Calculus of Ω
char
4

Following the lines of [GM], we aim at showing that there is a short exact sequence:

0→ Ωchar
4

χ→ Z⊕ Z⊕ Z8
π→ Z16 → 0

0 7→ (M, F, F) 7→ (σ(M), F · F, β(M, F, F)) 7→ σ(M)− (F · F + 2β(M, F, F)

Here we denote by F the choice of a trivialization of TM|M\F which does not
extend over F . This sequence imply in particular that the map

(M, F, F) 7→ (σ(M), F · F )

is an isomorphism onto a subgroup of index 2 of Z ⊕ Z defined by {(x, y) ∈ Z ⊕
Z/x− y ≡ 0 (mod 2). The proof will give the generators.

Proof:
1) Consider the pair (CP 2, CP 1): we have σ(CP 2) = CP 1 ·CP 1 = 1 and obviously
(with the single trivialization CP1 that is possible) β(CP 2, CP 1) = 0 (mod 8).
Hence one can bring the study of

{(x, y, z) ∈ Z⊕ Z⊕ Z8 such that x = y + 2z (mod 16)}

back to
{(0, y, z) ∈ Z⊕ Z⊕ Z8 such that y = −2z (mod 16)},

by the disjoint sum of the given pair (M, F ) with some (CP 2, CP 1).

2) Consider the pair (S4, RP2
±), where we note RP 2

± the two distinct embeddings
of the projective plane in R4, which correspond to the two distinct writhes of the
Möbius trip M ⊂ R4. We have σ(S4) = 0, and β(S4, RP 2) = ±1 (mod 8) (see
below the proof of the Guillou-Marin formula) and RP2

± ·RP2
± = ∓2.

Indeed, consider RP2
+, and M+ (the positive Möbius trip) where RP2

+ is obtained
by gluing a disk ∆+ in R4

− = {(x, y, z, t)/t ≥ 0} perpendicularly along the central
circle of M+. Under a widering of M+ ⊂ R4 (which gives M ′) and a slight vertical
move, we obtain a vertical annulus ∂M ′×[0, r] ⊂ R3×[0, r] whose sides are parallel
closed curves to ∂M+.
Attach a disk ∆′ ⊂ R4 to ∂M ′ × {0}, isotopic to ∆+ and intersecting it in general
position. Finally, let RP ′ = M ′ ∪ (∂M ′ × [0, r]) ∪∆′. Now we have RP 2 ·RP 2 =
RP ′ ·RP 2 = ∆′ ·∆+ = −lk(∂∆′, ∂∆+) = −lk(∂M ′ × {0}, ∂M+) = −2; the minus
sign in the third equality results from the fact that the orientation of R4

− (where lie
both ∆ and ∆′) is induced from R4 = R3×{last coordinate} and is opposite to the
orientation that makes R3 a boundary.

Since any non degenerate bilinear symmetric form on Z2 decomposes in a direct
sum of factors [HNK] of the type:

(1) or

(
0 1
1 0

)
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(whose characteristic elements are respectively 1 and 0), we have

F · F ≡ dim(H2(M, Z2)) ≡ σ(M) (mod 2).

Consequently, if σ(M) = 0, then F · F is even. Summing disjointly z times the
result of the preceding operation 1) with the pair (S4, RP2

±) shows that π is an
epimorphism.

Next we show that χ is a monomorphism. First note that we may obtain
a 1-connected manifold (M1, F, F) from (M, F, F) by adding handles of index
2 with even surgery coefficients on circles disjoints from F (then we do not modify
characteristic elements), so that the resulting bordism between the two pairs is
characteristic; then we can turn F into an oriented characteristic surface in the
same homology class.

Let us give another way to define the quadratic enhancement q defined above
(this is the initial treatment of [GM)]:
We want to set another way to get a well-defined ”even” framing of the normal
bundle of the characterized surface F ⊂ M4

1 , when i?(H1(F,Z2)) = 0, the map
i : F ⊂M1 being the inclusion. Take an embedded curve k in F and cap it off with
a surface B (not necessarily orientable nor embedded) in M1.
The normal bundle νB⊂M1 to B in M1 splits off a trivial line bundle since B is
a punctured surface, with bundle complement the determinant line bundle for the
tangeant bundle of B. The sections are acted on by H1(B, Zω1

2 ) where Zω1 denotes
Z cofficients twisted by ω1(νB⊂M1). Then the restriction νk of νB⊂M1 to the boundary
circle k inherits an ”even” framing. Recall that we defined it as follows in §4.2: it
is the Pin− structure of the total space of the normal bundle that gives the Pin−

structure of M4
1 restricted to k, when added to the Pin− structure on S1 = k which

makes it into a Spin boundary. Now we have to verify that the quadratic enhance-
ment of the intersection pairing on F may be calculated with the help of B: in other
words, we have first to verify that these two ways to construct even framings are the
same?
Suppose that B ⊂ M1 does not intersect F except along ∂B. The total space of
the determinant line bundle of the tangeant bundle to B is a Spin 3-manifold W
embedded in M1, in which k bounds B. Consider then the following general prob-
lem: given a Spin 3-manifold W with a knot k which class is zero in H1(W,Z2), any
Spin structure on W induces the same Spin structure in a neighborhood of k. Hence
the notion of even framing does not depend on the ambiant Spin structure for these
classes. Is it true that any surface in W with boundary k selects a longitude for it
that represents an even framing ? Let T 2 be the boundary of a tubular neighborhood
of k ⊂ W : the image of H1(T

2, Z2)→ H1(W \ k, Z2) is generated by the meridian,
and the kernel contains a unique element, the (mod 2) longitude. More generally,
we say that l ∈ T 2 is an even longitude if its homological (mod 2) reduction is the
(mod 2) longitude. Now, any embedded surface B ⊂ W such that ∂B = k can be
chosen so that it intersects T 2 transversally in a given even longitude. Moreover, the
restriction to k of the normal bundle to B in W is trivial, so that the surface frames
the normal bundle to k in W . The stability lemma assigns a Pin− structure to B
from that of W , and the Spin structure on W restricted to k is the sum of the Spin
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structure on k coming from the restriction of the Pin− structure on B plus the Spin
structure on the normal bundle νk∈W coming from the framing induced by B. Since
the boundary circle receives the non-Lie structure, we get the previous definition of
the even framing in § 4.2.
Hence we finally see that in our initial situation, the framing on ∂B is an even one
in the sense of §4.2.

Remark also that if B also intersects F away from k (assumed transversally),
the punctured surface B̂ = B q D2 lies in M1 \ F so each circle of this transverse
intersection has the non bounding Spin structure. Then, the only way to have an
even framing on ∂B is that the (mod 2) intersection number of F and B is zero.
Moreover, the number of right half twists mod 4 that νk⊂F makes in a complete
traverse of k is just the obtruction to extending the section given by νk⊂F over all
of B. Then the enhancement of the intersection pairing of F defined in §4.2 and
above are the same. But notice that in §4.2 we did not need the condition that
i?(H1(F,Z2)) = 0, since we did not use any membrane to select the Pin− structure
on k.

This setup allows us to define the quadratic enhancement q in § 4.2 as:

∀x ∈ H1(F, Z2) q(x) = o+ 2B · F (mod 4)

where o is the obstruction to extend the normal line bundle to a representant of
x in F to a rank one subbundle of the normal bundle in M1 of any B such as
above. It gives a convenient way to visualize and to calculate q. Note that each
connected components of ∂B has an annulus as tubular neighborhood if and only if
the obstruction o is even. In particular, if the characteristic surface F is orientable
we have :

q(x) = 2(o(v) +B · F ) (mod 4)

where o(v) is the obstruction to extend a normal vector field to ∂B in F into a
normal vector field to ∂B in B without zero (the factor two comes from the fact
that the natural row S1 → RP1 has degree 2).

Let us suppose that we have already done a surgery on the pair (M, F ) to the
characteristically bordant one (M1, F ). Denote the new pair as the former one.

Lemma [GM], p. 111: Let c be a simple closed curve of F ; the result (M ′, F ′)
of a surgery of pair on (M, F ) along c is a characterized pair if and only if q(c) is
equal to 0

Proof: Notice that c · c ≡ 0 (mod 2) since the surgery is possible. Take a mem-
brane P for c and the 2-disk D2 that is the core of the surgery (i. e. the core of the
handle attached to B4 along S3 along c) to form the closed 2-cycle Σ. Then we have
q(c) ≡ 2(o(v)+P ·F ) ≡ 2(Σ ·Σ+Σ ·F ′) (mod 4) with the above notations. the Wu
formula concludes.
Conversally, let Σ be a 2-cycle of M ′ supposed to intersect transversally the co-core
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of the surgery in n points. then we can deform Σ so as it is the union of n disjoints
translated cores of the surgery and a membrane P for nc in M . Then we have:

2(Σ · Σ + Σ · F ′) ≡ 2(o(v) + P · F ) ≡ q(nc) ≡ nq(c) ≡ 0 (mod 4)

Hence F ′ is characteristic in M ′. �

Proposition: With the same setup, if c is a simple closed curve in F , we have
q(c) = 0 if and only if the bordism of a surgery of pair on (M, F, F) along c is
characteristic.

Proof: If q(c) = 0, the preceding lemma shows that the result (M ′, F ′) of
the surgery on (M1, F ) along c admits F ′ as a characteristic surface in M ′. We
need to verify that it preserves the trivialization of TM1|M\F which does not extend
across F through the bordism. The complement (W, N) of a neighborhood of c in
(M1, F ) is the complement of the dual sphere of the attaching sphere of the handle
of surgery. The difference of two trivializations of T (W \ N)|2−skeleton(W\N) coming
from trivializations of T (M1 \ F ) and T (M ′ \ F ′) over their two skeletons is an
x ∈ H1(W \ N, Z2). But W is 1-connected so H1(W \ N, Z2) is generated by the
meridians of F ∩N , hence the difference is zero on the meridians of F ∩N = F ′∩N .
Then the two trivializations over the two skeletons are homotopic, and the bordism
between (M1, F ) and (M ′, F ′) is characteristic. Transitivity concludes with the
characteristic bordism between M and M1. �

The converse is the following lemma:

Lemma: Let (M4, F 2) be a characteristically bounding pair of (V 5, G3), let
∆2 ⊂ G3 be a surface and P be a membrane of F in M such that c := ∆ ∩ F =
∂∆ = ∂P ; then q(c) = 0.

Sketch of proof: The point is to find an appropriate characteristic surface H2

for N4 = ∂(V \
◦

W ), where
◦

W is a tubular neighborhood of ∆2 in V 5. Suppose that
∂∆2 is connected.
Denoting by o(v) the obstruction to extend a normal vector field v to ∂P in F in
a normal vector field to P without zero, and using the Wu relation, we then try to
show that o(v) + P · F = 0 (mod 2) since the self-intersection of ∂∆ in F (which is
the boundary of the self intersection of ∆ in G3) is 0 (mod 2). Take two transverse
(with each other and with ∆2) sections s and s′ of νG3⊂V 5 |∆2 and consider a section
t of µ∆2⊂G3 which is identical to v on ∂∆ and without zero on a neighborhood of
∆2 ∩ (s(∆2) ∪ s′(∆2)). Use it to push P 2 out of itself with the help of ∆2.

Set Σ2 = (P\
◦

W )∪(s⊕ρt)(∆2), where ρ will be an adequatly chosen smooth function

(see the end of the proof); take also H2 = N4 ∩ G3 = (F\
◦

W ) ∪ ∂U , where U is
a tubular neighborhood of ∆2 in G3. Finally, take a section of the normal bundle
νP⊂M which coincide with v on ∆; Move slightly any of the preceeding objects to
get transversality.
Then

Σ · Σ = ((P\
◦

W ) ∪ (s⊕ ρt)(∆2)) · (u(P\
◦

W ) ∪ (s′ ⊕ (ρ′)t)(∆2),

where ρ′ is a function as above. Since P · u(P ) ≡ o(v) (mod 2), we get

P · u(P ) + s(∆2) · s′(∆2) = o(v) + s(∆2) · s′(∆2) (mod 2)
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Finally, the relation Σ·H = ((P\
◦

W )∪(s⊕ρt)(∆2))·((F\
◦

W )∪∂U) = P ·F+s(∆2)·∆2

(mod 2)with the Wu formula gives the result.
If ∂∆2 is not connected, make tunnels along disjoints arcs from G3 to connect the
components of ∂V , iterate this consecutively to modify G3 (in a neighborhood of
connecting embedded arcs in ∂V ) into a properly embedded G3 with connected
boundary and to the pair (G3, ∆2) to connect ∆2. �

Let us return to the proof of the injectivity of χ. First, (M, F, F)
characteristically cobounds (N, S2, G) if and only if β(M, F, F) = 0. Indeed, this
last condition imply that the associated quadratic form on H1(F, Z2) splits by an
isotropic half dimensional subspace which may be seen as generated by disjoints
simple closed curves in F . But a surgery along these curves is characteristic, and
the obtained surface verifies H1(F

′, Z2) = 0; so F = S2.
The converse follows also from the proposition. Adding the condition that F ·F = 0,
we see that we have a characteristic bordism with (N, ∅, G) since S2 ·S2 = 0 implies
that we can glue an handle to S2 without changing the characteristic element. The
condition σ(M) = 0 plus Ω4 ≡ Z and the inclusion ΩSpin

4 ↪→ Ω4, with this discussion
give that (M, F, F) ∈ Ωchar

4 is zero. The following paragraph sketch how to do this
in an even more general situation.

An argument of desingularization in Knesser’s manner shows that if M4 is a
closed oriented 4-dimensional manifold and σ(M) = 0 = F · F , then (M, F ) =
∂(V, G) where V 5 is a 5-dimensional compact oriented manifold and G3 is a charac-
teristic submanifold. The point is to modify a characteristic relative 3-cycle (mod 2)
denoted G3 (given by the obstruction theory) such that ∂G = F into an (mod 2)
homologuous submanifold G3 relative to the boundary ∂G3.
There we use the fact that the property F · F = 0 is transfered (when V is
orientable) to bordant singular surfaces L (= link(singular tree) in G3) in S4

(= link(singular tree) in V 5) which will consequently bound; indeed there is a
non zero section s of the normal disk bundle E of L in S4 that we can twist so that
s(L) bounds in S4\

◦

E ;hence also L = ∂W . But this gives the possibility to smooth
G3 in its (mod 2) homology class, by the desingularization of the singular tree of
G3 with the help of W . For more details, we refer to [GM], p. 109.

In conclusion we have sketched that Ωchar
4 ' Z ⊕ Z, with generators (S4, RP2)

and (CP2, CP1).�

4.4 Guillou-Marin formula

.

All the needed material has already been done to give the more general extension
of the Rohlin characteristic theorems, called the Guillou-Marin formula. Note that
the version given here is different from [GM], p. 98 in that we do not need the
nullity of Im(i?), where i? : H1(F

2, Z2) → H1(M
4, Z2), i. e. their condition of

existence of a well-defined quadratic form on F induced by the characterization of

37



the pair (M4, F 2). It has been observed in [KT], using Pin− structures and the
descent theorem in § 3.

Theorem [KT, 6. 3]: Let M4 be an oriented 4-manifold, and suppose we have a
characteristic structure on the pair (M, F ). The following formula holds:

2 · β(F ) = F · F − σ(M) (mod 16)

where the Pin− structure on F is the one induced by the characteristic structure on
(M, F ) as in the ”Descent Theorem”.

Proof: The formula is trivially verified for (CP2, CP1) and (S4, RP2), using
the values of the self intersection and the Brown invariants for both pairs. Note that
we can either do as follows: the right-handed RP2 can be constructed by capping off
the ”positive” Möbius trip Mb in the equatorial S3 of S4 with a ball in the northern
hemisphere, our vector field is the north-pointing normal and so the even framing
on the bundle νMb⊂S3 |k is the one given by the 0-zero framing of S3 (where k is the
core of the Möbius band). The number of half twists may consequently be counted
in S3, and it is 1.�

We list some corrollaries:
1) The first Rohlin theorem (1952): A smooth oriented Spin 4-manifold verifies:
σ(M4) ≡ 0 (mod 16).

2) Let M4 be a Spin 4 manifold and F 2 a characteristic surface then: F · F ≡
−2β(M, F ) (mod 16).

This is a generalization of a theorem of Whitney: if F 2 is a surface in S4 then
we have: F · F ≡ −2χ(F ) (mod 4).
3)In case F 2 is an orientable surface in M4, we use β(M, F ) ≡ 4 Arf(M, F )
(mod 4) (see Appendix A and the following chapter) to get: Arf(M, F ) ≡ (σ(M)−
F · F )/8 (mod 2), where Arf(M, F ) is the Arf invariant of the quadratic enhance-
ment q on F induced by (M, F ).

In view to link this theorem to the so called Rohlin invariant, we will now give
a brief account of invariants of knots deduced from the Brown invariant, and then
deal with relations between linking pairing, quadratic enhancements and the Brown
invariant.
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Chapter 5

Some classical invariants of knots
and surfaces in 3-manifolds

Otherwise stated, all manifolds are supposed to be smooth.

5.1 Generalization of Robertello’s invariant

Consider a 3-manifold M3 with a given Spin structure, and L : qS1 ↪→ M3 a dual
link to ω2(M) = 0. Note that 0 = [L] ∈ H1(M, Z2). Let us fix a characterization L
of (M, L), i. e. a Spin structure over M \L which does not extend to any component
of L.
In view to associate the Brown invariant of a surface to L, we need to define with-
out ambiguity a Pin− structure on a ”spanning surface” of L, determined by the
characterization L.

1) We say that L is characterized if each component of L inherits from L the
Pin− bounding structure on his normal bundle.
2) (M, L) is said to be characterized if and only if there exists an element λ ∈
H1(M \ L, Z2) that, when acting on the fixed Spin structure L of M \ L, gives the
restriction of the one on M (δ∗γ ∈ H2(M, M \ L, Z2) hits every generator by the
Thom isomorphism (for a proof, see the preceding chapter)).

3) There is an embedded surface F in M such that γ is dual to F
embedding
↪→ M \ E,

where E is the total space of an open normal disk bundle to L. Then ∂F ∩S, where
S = ∂E, is a longitude in the peripheral torus of each component of L. It will be
called an even longitude (in coherence with the definition of γ, which gives an even
framing on νL⊂M ( see chapter 3).

How can we distinguish the characterizations of (M, L) ? A characterization
will be called even if the Pin− structure induced on each component of L by the
Descent Theorem is the bounding one. It is easy to verify that L is an even link (i.e.
is endowed with an even characterization): since L is characterized, any K ⊂ L has
an even framing on νK which selects a (mod 2) longitude on the peripheral torus.
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Hence L is even if and only if the sum of these even longitudes is 0 ∈ H1(M \L, Z2).
For exemple the Hopf link in S3 is not even; and you can have [L] = 0 althought L
is not even.

The difference between having even characterizations and having L characterized
is that the first condition selects a set of even longitudes in the peripheral torus lying
over each component K ⊂ L. The second one only precise the (mod 2) chosen
longitudes, which have a whole set of even longitudes lying over them. For exemple,
two surfaces homologically dual to γ induce the same (mod 2) longitude, but acting
on a component K0 of L by even integers we can find infinitely many dual surfaces to
γ, each selecting another even longitude over K0, but with the same set of (mod 2)
longitudes. Any set of even longitudes is induced as a boundary by an embedded
surface in M \ L.

Let us take a spanning surface F for L. We have νF⊂M ' det(TF ) (the
determinant line bundle of the tangeant bundle to F), so that the orientations of
the total spaces agree; note that the total space of the determinant line bundle is
naturally oriented, and the total space of νF⊂M is oriented by the orientation on
M . The stability Lemma implies that F inherits a Pin− structure from the Spin
structure on M . If we had considered the Spin structure on M \ L besides the Spin
structure on M to define the one on F , the Pin− structure on F would have differred
by the action of γ|F = ω1(F ).
In any case the induced Pin− structure on any component of L is the bounding
one, since this is obviously the case when we consider the Pin− structure on F
induced by the one of M \ L, and this property is equivariant under the action of
ω1(M) ∈ H1(M,Z2). Hence we have on any spanning surface F of L a well defined
Pin− structure which extends uniquely to its embedded closure F ⊂M .

Given a characterized pair (M, L) with a set of even longitudes l, pick a spanning
surface for L which induces l. We define:

β(L, l, M) = β(F )

where F is F with a disk added to each component of F , the Pin− structure is
extended over each disk, and β is the usual Brown invariant.

Remarks: We do not require our link to be oriented; to see what happens in
this last case, consider an integral homology 3-sphere Σ with an oriented embedded
link L. Denote by li the linking number of the ith component with the rest of the
link: it corresponds to a longitude since the 0-linked pushed off of Li is a preferred
longitude, determined by the kernel of the map: H1(Σ \ L,Z)→ H1(Σ,Z).
Now we would like to know when L is even. We saw that a knot is even if and only
if it is homologically (mod 2) trivial. if ∀k ⊂ L, [k] = 0 ∈ H1(M, Z2) (in particular
when M is a Z2-homology sphere), the (mod 2) linking number of a component
K ⊂ L with the rest of the link is well defined. Taking an embedded spanning
surface F for L, we see that the longitude picked out for a component of L is even
if and only if its (mod 2) linking number with the rest of the link is 0.
In particular the link L ⊂ Σ is even iff each li is even: this is Robertello’s condition
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to define its Arf invariant β(L, −l, Σ) of a link L in an integral homology sphere.
Note that the Spin structure on Σ is unique as in any Z2-homology sphere, and
there is a unique way to characterize an even link. Here is a simple way to calculate
Arf(L): take a Seifert surface for L (i. e. an orientable spanning surface) and Let
q : H1(F

2, Z2) be the quadratic enhancement of the (mod 2) intersection pairing
of F (q(γ) = the (mod 2) number of full twists of a push off of an embedded circle
c representing γ in a neighborhood νc⊂F of c in F ). Then Arf(L) = Arf(q) is the
sum over the generators γi of H1(F

2, Z2) of q(γi)q(γi+1).

We end this section by a statement showing how the invariant depends upon the
characterizations: it is the ”knot” counterpart to the result in chapter 3 concerning
the effect on the Brown invariant of the action of H1(F,Z2 on Quadr(·) We refer
for the proof to the original source, and to the next sections for the definition of
Rohlin’s µ invariant:

Theorem [KT], 8. 2: Let Li be a characterized link, with li a collection of even
longitudes, in a 3 manifold Mi supposed to have a given Spin structure. Let (W 4, F 2)
be a Spin bordism between (M1, L1) and (M2, L2), with W 4 oriented. Pick one
section of the normal bundle νF⊂W on every non closed component of F (which
splits a trivial line bundle) so that the longitudes li selected for each component Li

are even. With the Pin− structure on F inherited from (M, F ), each component of
∂F bounds, and hence F has a Brown invariant, as we saw above.
Orient W so that M1 receives the reverse Spin structure; then we have:

β(L2, l2, M2)− β(L1, l1, M1) = −β(F )− σ(W )− µ(M2) + µ(M1)

Let us precise first what do we mean by ”reversing the Spin structure” (similarly,
reversing the orientation, with SO(n) in place of Spin(n) and O(n) in place of
Pin±(n)) on a given vector bundle ζ . Suppose that ζ is given by transition functions
gi, j defined into Spin(n) and based on a numerable cover {Ui} of the base space.
recall that as a set Pin±(n) = Spin(n) q Spin(n), and chose maps hi : Ui →
Pin±(n) \ Spin(n). Consider the bundle with transition functions hi ◦ gi, j ◦ h−1

i : it
is, by definition, the bundle obtained by reversing the Spin structure over ζ . The
choice of the maps hi is obviously not unique but any two choices yield equivalent
Spin(n) bundle, and these maps yield a Pin± equivalence with the original bundle.

Theorem [KT], 8. 3: Let L ⊂ M3 be a characterized link with two sets of even
longitudes l and l′. Let 2r be the sum of the integers which act on the set of longitudes
l to give l′ (there is one even integer for each component). Then we have:

β(L, l′, M) = β(L, l, M) + r (mod 8)

Proof: We can construct a spanning surface for l′ given a spanning surface F1

for the longitudes l. Take a neighborhood W = T 2 × [0, 1] of the peripheral torus ,
and embed a surface V in W , which intersects T 2× 0 in l and T 2 × 1 in l′ and with
no boundary components in the interior of W . We want also that it induces the zero
map H2(V, ∂V, Z2)→ H2(W, ∂W, Z2). The restriction on W of the Spin structure
on M is the stabilization of one on T 2, i. e. it has enhancement 0 on the longitude
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and the meridian (since l is even). Since the Pin− structure can be locally evaluated
(due to the Extension Lemma in chapter 2), we see that the invariant β evaluated
on F2 = F1 ∪ V is equal to β(F1) + β(V ); but β(V ) depends only on the geometry
of the surface V and the Spin structure in W , and these are independant of the link
L. So we may calculate the difference between the β ′s using the unknot.
Then we have only to see what happens when you go from the zero longitude to the
2 longitude (2 twists added to the zero longitude), since the effect on β of successive
addition of kinks to a given longitude is additive. The 2 longitude is given by the
Möbius band, which inherits a Pin− structure that extends uniquely to one on RP 2,
and β(RP2) = 1. �

As for Robertello’s link invariant, β is a link concordance invariant; it will allow
us to drop the (non canonical) choice of even longitudes:
Recall that a link concordance between characterized links L0 ⊂ M and L1 ⊂ M
is an embedding of (qS1) × [0, 1] ⊂ M × [0, 1], with (qS1) × i being Li for i =
1, 2. The concordance picks out a set of longitudes l1 on L1 from a given even
one l0 on L0, since there is a unique way to extend the initial even framing of
νL0⊂M to a framing of ν(qS1)×[0,1] ⊂M × [0, 1]. By the same argument, we state the
uniqueness of the extension of a characterization of L0 ⊂ M to a Spin structure on
M × [0, 1] \ (qS1) × [0, 1], and hence to M \ L1. Note that (qS1) × [0, 1], when
capped off with disks, is a union of spheres, so β((qS1)× [0, 1]) = 0.
We conclude that:

Corollary: Let L0 and L1 be concordant links in M . Suppose L0 is characterized
and that l0 is a set of even framings (i.e. even longitudes). Then the transport of
even framings and Spin structures, described above, along the concordance gives a
characterization of L1,and a set l1 of even framings. Furthermore β(L0, l0, M) =
β(L1, l1, M).

We will use later these results in view to remove the set of even longitudes, and
postpone any comments on their use by Kirby and Melvin as a geometric background
for the splitting formulas of the quantum invariants τr.

5.2 Rohlin invariant

.

Let us see how it works with an embedded link L in an integral homology 3-
sphere Σ.
First consider Σ = S3; the invariant β reduces (mod 2) to the Spin bordism class
of the orientable spanning surface selecting the unique set of even longitudes.
This can be seen as follows: consider S3 × [0, 1] and add an 2-handle along L with
odd index. The union F̂ = F ∪ B2, where B2 is the core of the 2-handle, is a char-
acteristic surface. Then fill S3 × −1 by a 4-Ball B4 and kill the boundary with an
orientable Spin 4-manifold: the new manifold is denoted by M4. Then β(L, S3)
(mod 2) ≡ Arf(L, S3) ≡ Ψ(M4, F̂ ) (with the notations of the preceding chap-
ters).
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We see in this particular case that β is independant of the chosen Seifert surface F ,
since 2 Seifert surfaces F and F ′ for L are bordant in S3×[0, 1], and are to be identi-
fied when considered as characteristic pairs (M4, F̂ ) and (M4, F̂ ′) in Ωchar

4 (using the
above construction). Moreover, it shows that the bordism class Arf(L, S3) ∈ ΩSpin

2

is obtained when doing surgery on L with an odd integral framing.
If we had taken L in an arbitrary Z-homology sphere Σ, the above equality must
be corrected by adding the characteristic bordism class Arf(L′) , where L′ is a
framed link in S3 such that Dehn surgery on L′ gives Σ: Arf(L,Σ) = Arf(L, S3) +
Arf(L′, S3) ∈ Z2.

The Rohlin theorems takes place in this setup: in particular we have

Arf(L, Σ) = Arf(L, S3) + Arf(L′, S3) = σ(M4)/8 + σ(M ′4)/8 (mod 2).

Note that if we consider a pair (M4, F 2) with M4 a 1-connected manifold and the
dual homology class to ω2 may be represented by a smooth embedded 2-sphere, then
(F ·F−σ(M))/8 ≡ 0 (mod 2). This is a way to prove a version of the Guillou-Marin
formula where F is oriented.

Next we define the Rohlin invariant for the 3-manifold N . This invariant is de-
rived from the characterizations of the 1-connected characteristic pairs that have
N as a boundary. It aims at determinating ”how” behaves the Spin structure of N
when extended to a Spin 4-manifold bounded by N .
First note that a Z-homology sphere Σ only bounds 4-manifolds M4 with even and
unimodular intersection forms, since we can represent any x ∈ H2(M, N, Z) by an
absolute class in M so that the (mod 2) intersection form has zero diagonal; hence
σ(M4) ≡ 0 (mod 8). Moreover, we have a unique Spin structure on Σ, so we can
set:

ρ(Σ) = σ(M4)/8 (mod 2)

where M4 is Spin with boundary Σ. It is not possible to extend this definition to
Z2-homology sphere Σ′, for which we lose the congruence between the index of 4-
manifolds bounded by Σ′ and 8.
So we set, for an arbitrary closed oriented connected 3-manifold N with a given Spin
structure θ:

ρ(Nθ) ≡ σ(M4) (mod 16)

where M4 is a smooth, oriented, compact and Spin manifold with boundary N3.

Theorem: Let M4 be a closed oriented 4-manifold with a smooth embedded char-
acteristic surface F 2 except in n points where the embedding is locally homeomorphic
to the cone (S3, Ki) of a knot Ki ⊂ S3, for i = 1, 2, . . . , n.
Then surgery in the 4-dimensional characteristic bordism class induced from (S3, Ki)
as above gives:

(K ·K − σ(M))/8 +

n∑

i=1

Arf(Ki) ≡ Ψ(M, F ) (mod 2)
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Proof: this theorem is an immediate consequence of the preceeding discussion;
note that K ·K = F̂ · F̂ . This generalizes the oriented version of the Guillou-Marin
formula. �

Suppose that F 2 is only smoothly immersed in M4 with n double points, then
F 2 looks locally like the cone of the Hopf link near these double points, that is two
transverse 2-disks D1 qD2 that we can smooth into an annulus by a surgery. This
surgery may be done on a linking torus of the double point, which may be visualized
as follows. Consider a parametrization of a small neighborhood of a double point in
the form (0, 0) ∈ R2 × R2: then the linking torus T 2 is S1 × S1 and the surgery
(0, e2iπθ) 7→ (e2iπθ, e2iπθ), θ ∈ [0, 1], turns D1qD2 into the annulus. The generator
γ of H1(T

2,Z) corresponding to the core of the annulus has a twist, so we have
q(γ) = 1.
However, a complementary generator of H1(T

2,Z) corresponds to an arc leaving the
double point on a leaf and returning to the other leaf: its twist must be calculated
with the help of the description of F 2 (cf. [AK] and [KM2]).

We can translate immediatelly the last theorem for the Rohlin invariant in the
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form of the Guillou-Marin formula:

Theorem: Let N3 be an oriented 3-manifold which bounds a compact oriented
M4, and let F 2 be an oriented surface in M4 dual to the obstruction to the extension
of the Spin structure of N to M ; then:

µ(N3) ≡ σ(M4)− F · F (mod 16)

If F is smoothly embedded;
otherwise we correct for n singular points by 8

∑n
i=1Arf(Ki).

Note that this statement has a particular interest, out of the Guillou-Marin for-
mula, since it gives a 3-manifold invariant, for the determination of which we don’t
need to care about the chosen characteristic pair-so we can restrict to an adequate
one to apply the theorem (e. g. when M4 is simply connected). Using Kirby’s cal-
culus for links in S3, we will see later how to work with this formula.

For example: given a Z2-homology 3-sphere Σ obtained by surgery on a link
L, extract a sub-link K with the following property: it links any other component
K ′ with the same parity as the framing of K ′. Take the band connected sum of the
components of K to get a knot still denoted by K. We have:

µ(Σ) = σ(lk(L))− framing(K) + 8Arf(K) (mod 16)

where lk(L) is the linking matrix of the link L (obtained by choosing an arbitrary
orientation of L).
To see this, it suffices to apply the last theorem with M4 constructed by gluing
handles to B4 along the components of L with the corresponding framing, F 2 being
the closure of a Seifert surface of the characteristic link K by the cores of the
corresponding handles. then we do not add intersection in F that we did not have
before.
Consequently, µ(L(p, p − 1)) = 1 − p (mod 16) since L(p, p − 1) is obtained by
surgery on the trivial knot with framing p and bounds for odd p the even (since
1-connected) following 4-manifolds:

and for an homological lens space L′ obtained by p-surgery on an arbitrary knot
K, we have µ(L′) = 1− p+ 8Arf(S3, K).
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5.3 Characteristic links

This section deals with formalism equivalent to that of the characteristic pairs in
Ωchar

4 , especially for the study of oriented 3-manifold. Recall that a framed link
L ⊂ S3 determine a compact oriented simply connected 4-manifold obtained by
adding 2-handles to B4 along L with the corresponding attaching framing. If L is
oriented, each component Li ⊂ L lifts to [Fi] ∈ H2(WL, Z), where Fi can be chosen
as an oriented Seifert surface in S3 for Li capped off with the core of the associated
2-handle. The set of homology classes of these surfaces Fi generate H2(WL, Z);
note that we have a non degenerate intersection pairing over H2(WL, Z) (since
WL is 1-connected), which coincide with the linking pairing of L: i. e. we have
Fi · Fj = lk(Li, Lj) ∀i 6= j.
Next we turn to the calculation of the (mod 4) reduction of the self intersection of
the surfaces Fi, as it appears in the demonstration of the Theorem KM1. Denote
by FE ∈ H2(WL, Z) the class corresponding to a sublink E of L: FE · FE (mod 4)
is independant of any fixed orientation on L (since we have (A + B) · (A + B) ≡
(A − B) · (A − B) (mod 4)). Moreover, denoting by Ei ⊂ E any component of E,
we have Ei · Ei ≡ 0 (mod 2) since this is equal to the intersection of Ei with a
characteristic submanifold of S3 (by definition), that is a dual link to ω2(S

3) = 0.
Denote by θ ∈ H1(M, Z2) a one dimensional cohomology class verifying θ(µ) 6= 0,
where µ is the homology class of a meridian of Ei (a Z2-reduced Hom-dual to Ei in
M3). The following formula holds:

FE · FE ≡ E ·E ≡ 2θ3 (mod 4)

Indeed, we can modify (cf. [Ka]) the sublink E ⊂ L by sliding and blowing up and
down using Kirby moves so that E turns into an unknotted knot with framing E ·E.
Then, the Poincare dual class to θ can be represented by a Seifert surface for E,
disjoint from L \E, and capped off with a connected sum of e = E ·E/2 projective
plans (remember that RP 2

± ·RP 2
± = ∓2) in the surgery solid torus. But the triple

intersection of this surface is e.

We may in fact induce from this particular construction a general method for
the computation of the triple self intersection of an immersed surface Poincare dual
to a class θ ∈ H1(M, Zn) (see [MOO] or [Tu]). This triple self intersection is then
equal to half of the self intersection of a Hom-dual to θ.

Define a sublink C ⊂ L as a characteristic sublink if and only if for any com-
ponent Li ⊂ L, we have the Wu formula: C · Li ≡ Li · Li (mod 2); then (L, C) is
called a characteristic pair.

Theorem: There is a one to one correspondance between the Spin structures on
ML and the characteristic sublinks of L.

Proof: Fix a Spin structure on ML and let us associate to any θ ∈ H1(ML, Z2)
the sublink C ⊂ L, where the Spin structure that corresponds affinely to θ does not
extend to the 2-handles glued over C. To show that C is characteristic, it suffices to
verify the Wu formula. Consider the surface F̂ = F ∪B2 ⊂ WL, obtained by capping
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off an immersed Seifert surface F for C by the cores B2 of the 2-handles attached to
B4 along C, which gives WL. Then F̂ is the Poincare dual to ω2(WL,ML), hence it
verifies the Wu formula (see chapter 2). Since any closed surface in WL is obtained
by such a capping off procedure, we get ∀[Σ], [Σ′] ∈ H2(WL,Z2), ∃K, K ′ ⊂ L :
[Σ] · [Σ′] ≡ K · L; the result follows. A direct topological proof can be found using
[GM, ”Characteristic surfaces”].

This correspondance is a monomorphism since two Spin structures on M3
L that

induce the same characteristic sublink K ⊂ L agree on the core L′ = f(q(S1×{?}))
of the surgery along L in S3, where f : q(S1×B2 → S3 ⊂ B4 is the embedding that
defines the attachment of the handles on B4 along L. Now H : = H1(ML, Z2) has L′

for support, so theory of obstruction concludes, by defining from θ, θ′ ∈ H1(ML,Z2)
the same vector fields (up to homotopy) over the 2-skeleton of ML, i.e. the same
Spin structures.
It is an epimorphism: since the (mod 2) reduction of the linking matrice is a pre-
sentation matrix for H , we have |Ker(A)| = |H|. But C is characteristic if and only
if, written as a vector in the basis of definition ofA, it preserve the framing: AC = D,
whereD is the diagonal matrix extracted fromA. Then ]{characteristic sublinks C ⊂
L} = |Ker(A)| = |H|. �

Let us denote (ML)θ = ML, C . There is a calculus for characteristic pairs of links
as follows.
ML, C = ML′, C′ iff (L′, C ′) is obtained from (L, C) by isotopy or by a finite se-
quence of moves of the following forms:

• 1) Add (or extract) an unknotted disjoint component with framing ±1 and
replace C by C ±K (such as we keep the characteristic property);

• 2) ∀i 6= j, let Li slides over Lj to give L′
i = Li + Lj , and C turns into:

{
C if Li is not a component of C
C − (Li + Lj) + L′

i if Li, Lj ⊂ C
C − Li + (Lj + L′

i) if Li ⊂ C and Lj is not a component of C

For example, after applying the second move to L when Li ⊂ C, Lj * C, the
linking matrix A of L verifies: C ′ · L′

i ≡ L′
i · L′

i ≡ Ai, i + Aj, j ± 2Ai, j (the sign
depends upon the orientation of the band connected sum of Li and Lj).

We can change the orientation of Lj after a sliding: the second move becomes
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L′
i = Li + Lj and L′

j = −Lj . Then, in case S is a link of S3 containing Li but not
Lj , we have [S ′] = [S]− [Li] + [(L′

i + L′
j)] = [S].

We can turn these moves into a single local move, as in [FR]:just add to the Fenn-
Rourk move the following: if C ·K is even, take C ′ = C +K.

Set µL, C = σ(ML, C)−C ·C+8Arf(C) mod 16, where Arf(C) exists since C is a
proper link (i.e. C is characteristic for itself) and the (mod 2) reduced intersection
form of a Seifert surface for C has an Arf invariant.

Theorem [KM1, p. 543]: µL, C is an invariant of ML, C and it is equal to
µML, C

.

Proof: The prove the invariance needs only elementary calculations with the
preceeding generalized Kirby moves, and properties of the Arf invariant. Note that
we can turn a given pair (L, C) into (L′, ∅) with theses moves, hence the definitions
gives the second claim. �

Appendix C of [KM1] shows how to get an elementary proof of the first ”char-
acteristic” Rohlin theorem with the help of this formalism.

5.4 More on the linking form

Let M3 be a 3-manifold with a given Spin structure. We shall define a map that lift
all quadratic enhancements of the intersection form on embedded surface in M3 and
is a quadratic enhancement of the linking pairing.

Given any surfaces Fy, Fx ⊂ M3 in general position, with respective homology
classes y, x ∈ H2(M, Z2), take the Poincare dual α ∈ H1(M, Z2) of Fy and restrict
it to Fx. This gives an element αx ∈ H1(Fx, Z2). Let ŷ be an embedded collection of
circles Poincare dual to αx, and consider the quadratic enhancement qx associated
to the Pin− structure on Fx induced by the Spin structure of M . Then we set:

f(Fx, Fy) = qx(ŷ)

In other words, f is defined by counting the number (mod 4) of half twists of (a
section of) the normal bundle νŷi

of each ŷi ⊂ Fx ∩ Fy = ŷ in Fx. We may use the
Spin structure of M to put even framings on ŷ; this is an embedded collection of
circles in M , so no correction has to be added to the above definition of f - see the
construction of q in chapter 3. We could define νx̂i

in the same manner, and this
definition is obviously symmetric.

This definition of f shows that it only depends on the homology class of Fy,
as for qx, and by symmetry on the homology class of Fx. Then we have defined a
symmetric map:

f : H2(M, Z2)×H2(M, Z2)→ Z4

This is not a bilinear map, but we can transfer the properties of qx, x ∈ H2(M, Z2)
to f , so that we get:

qx( ˆy + z) = qx(ŷ) + qx(ẑ) + 2 · ŷ ·x ẑ
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where ·x denotes the (mod 2) intersection pairing on Fx. Then f(x, ) is a quadratic
enhancement of the map:

τx : H2(M, Z2)×H2(M, Z2)→ Z

(y, z)→ ŷ ·x ẑ
and the equality ŷ ·x ẑ = x ∩ y ∩ z[M ] shows that the trilinear symmetric map:

τ : H2(M, Z2)×H2(M, Z2)×H2(M, Z2)→ Z2

(x, y, z) 7→ x ∩ y ∩ z[M ]

allows us to write the preceeding equation as :

f(x, y + z) = f(x, y) + f(x, z) + 2 · τ(x, y, z)

Let us postpone the discussion about τ , in view to link the properties of f to the
Brown invariant.

If we act on the Spin structure of M (which intervene explicitely in the definition
of q) by the element α ∈ H1(M, Z2), we get a new map fα:

fα(x, y) = f(x, y) + 2 · τ(x, y, a)

where a ∈ H2(M, Z2) is Poincare dual to α. This formula follows directly from
qx, α(ŷ) = qx(ŷ) + 2 · τ(x, y, α), a fact we noted in chapter 3. This can also be
written as 2-difference equation:

fα(x, y) = f(x, y + a)− f(x, a)

We now may recover one of the main formula that appears in the theorem of
Kirby and Melvin.
Define a map β : H2(M, Z2)→ Z8 as follows: given any x ∈ H2(M, Z2), take the
Pin− bordism class (induced by the Spin structure of M) of an embedded surface
that represents x, and using the Brown map identify it with an element of Z8. This
is clearly well defined since the Brown invariant is a Pin− bordism invariant, and
a bordism W 3 ⊂ M × [0, 1] between two boundary components F, F ′ ⊂ M with
[F ] = [F ′] ∈ H2(M,Z2) inherits a Spin structure from M compatible with the Pin−

structure on the extremities.

Theorem [KT, 4. 11]: Let M be a Spin 3-manifold with the induced Rohlin µ
invariant and the function β. Let α ∈ H1(M, Z2) act on the Spin structure, and let
µα be the new invariant. Then:

µ− µα = 2 · β(a) (mod 16)

where a ∈ H2(M, Z2) is the Poincare dual to α.

Proof: We put on M×[0, 1] the original Spin structure on M×0 and the altered
one to M × 1. We can capp off the boundary components of M × [0, 1] by adding
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Spin 4-manifolds to M × 0 and M × 1, and the resulting closed 4-manifold W has
the index µα − µ (mod 16). Consider F 2 ⊂ W 4 with [F ] = a ∈ H2(M, Z2). Then
F × 1/2 is a Poincare dual to ω2(W ) and F · F = 0 since F lives in a product. The
enhancement of the intersection pairing on F used in the Guillou Marin formula
is the same as the one we put on F to calculate β, so the Guillou Marin formula
applies directly. �

If we act on the Spin structure of M by α ∈ H1(M, Z2), the Pin− structure of F
is equivariantly acted on by αF . The formula (see chapter 3) β(qa) = β(q)+ 2 · q(a),
a being a Poincare dual to α, implies:

βα(x) = β(x) + 2 · f(x, a)

Combining two equations µα− µ = 2 · β(a) and µ− µα1 = 2 · β(a1) with µα− µα1 =
2 · βα(a1 − a), we get βα(a1 − a) = β(a1)− β(a). Setting a1 = x+ a and we find:

∀x, y ∈ H2(M, Z2) β(x+ y) = β(x) + β(y) + 2 · f(x, y)

In particular we have f(x, x) = −β(x) (mod 4) and β(x + y) = β(x) + β(y) + 2 ·
τ(x, x, y) (mod 4).

As promissed, we now investigate the map τ . First we define a bilinear symmetric
map λ : H2(M, Z2)×H2(M, Z2)→ Z2 as a kind of dilatation of the linking pairing:
take as above two embedded surfaces Fx and Fy, in general position, that represent
respectively x, y ∈ H2(M, Z2); then λ(x, y) is defined to be the number of embedded
circles ci ⊂ Fx ∩ Fy with non trivial normal bundle νci⊂Fx

)to the surface Fx. But
[qici] = x∗ ∪ y∗ ∩ [M ], so it suffices to evaluate ω1(Fx) of the normal bundle νFx⊂M

on these circles to compute λ(x, y).
In general, given a ∈ H1(M,Z2), where M is a n-dimensional manifold, and i :
F n−1 ↪→ M a (mod 2) Poincare dual submanifold to a, we have i∗(a) = ω(νF⊂M).
Then ω1 = x∗, and consequently λ(x, y) = x∗∪x∗ ∪y∗[M ] = τ(x, x, y). This proves
the bilinearity of λ, and the symmetry follows from the symmetry of f (for example).
Moreover f is clearly an enhancement of λ.

The map λ is a dilatation of the linking pairing; we have already used this fact
in chapter 1. In fact we have, denoting the Bockstein operator by B:
If x ∈ H1(M, Zn), then x2 = (n/2) B(x) and Poincare duality followed by the
universal coefficient formula sends B(x) ∈ H2(M, Zn) to x ∈ H1(M, Zn). Then
∀x, y ∈ H1(M, Zn) we have:

Ψ(τn(x, x, y)) = Ψ((x2 ∪ y)([M ])) = n/2 Ψ((B2(x) ∪ y)([M ]))

Hence:
Ψ(τn(x, x, y)) = n/2 Ψ(y(x)) = n/2 x� y

where Ψ denotes the inclusion k (mod n) 7→ k/n, and the last equality follows from
the definition of the linking pairing.
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5.5 Quadratic enhancements of the linking form

The aim of this section is to show that we can deduce the whole set of quadratic
enhancements of the linking form from the set of Spin structures of M ; we shall
also give their relationship with the Rohlin invariant. First of all, here is a general
method of construction of such quadratic forms.

LetM be a Spin 3-manifold. The finitely generated abelian group Tors(H1(M, Z))
is the torsion part of the cokernel of the mapH2(V, Z)→ H2(V, ∂V ; Z), where V 4 is
an arbitrary compact orientable Spin 4-dimensional manifold such that H1(V, Z) =
H1(V, ∂V, Z) = 0, and ∂V 4 = M3 as a Spin boundary. Then H2(V, Z) '
H2(V, ∂V ; Z) is a free abelian group. The adjoint of the intersection form A
in H2(V, Z) is defined as:

ad(A) : H2(V, Z)→ Hom(H2(V, Z), Z)

The composition of ad(A) with the Hom duality, followed by the Poincare dual-
ity isomorphism gives the inclusion H2(V, Z) ↪→ H2(V, ∂V ; Z). Thus the groups
Tors(Coker(ad(A))) and Tors(H1(M, Z)) are canonically isomorphic.

Now take a look at the linear extension of ad(A):

a := ad(A) : H2(V, Z)⊗Q→ Hom(H2(V, Z), Q)

Set K = Hom(H2(V, Z), Z) ∩ Im(ad(A)). It is clear that

K/im(ad(A)) = Tors(Coker(ad(A))).

Then the linking pairing can be defined by the formula (with values in Q/Z):

∀x, y ∈ K, LA(x+ Im(ad(A)), y + Im(ad(A))) = −x(a−1(y)) (mod Z)

If A is an even intersection form (which is the case here since we have chosen V 4

to be a Spin 1-connected manifold), this last formula gives the following quadratic
enhancement on Q/Z of the linking pairing �:

ηA(x+ Im(ad(A))) = −1/2x(a−1(x)) (mod Z)

It can be shown that η only depends on the Spin structure on M , see the paragraph
before the remarks.
There is a simple geometric interpretation of the rational numbers whose class in
Q/Z is a self linking pairing: it describes the framings of the normal bundle to an
embedded circle k in M with torsion homology class x, and gives a direct geometric
interpretation to η.

Fact:The framings on the normal bundle to k are in one-to-one correspondence
with rational numbers q such that the class of q in Q/Z is x� x.

Proof: Let r be the order of x in H1(M, Z). Choose r copies of the longitude
selected in the peripheral torus of k by the choice of a framing of νk⊂M , and count
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the intersection number of k with an oriented surface F bounded by the r copies of
k. If one gets p ∈ Z, we assign the rational number p/r to this framing. To see that
this is independant of the choice of the embedding of the r copies of k in M and
of the choice of F , take an oriented surface F ′ embedded in M × [0, 1], such that
∂F ′ = (qr

i=1S
1)q S1 and these two sets of boundary components lie respectively in

M × 0 and M × 1. The normal bundle to F ′ is trivial, so once we fix the sections of
the normal bundle of the embedding qn

i=1S
1 → M × 0, there is only one choice of

sections on the normal bundle νk⊂M×1 which come from sections of νF ′⊂M×[0, 1]. This
shows the independance of p/r in the choice of the embedding of the r copies of k,
and in the same manner we prove the independance from the choice of F . Then p/r
is well defined once the framing is fixed, and p/r (mod Z) ≡ l(x, x) follows from
the definition of the linking pairing. Finally, a full right-twist of the initial framing
gives r new intersections between F and k, hence the correspondance is one-to-one
from Q/Z to the framings. �

This induce naturally an order on the framings of νk⊂M (k a knot), where [k] ∈
H1(M,Z) is torsion, that is useful to simplify the generalized Robertello’s invariant
of Section 1: indeed, we can remove the longitudes in its very definition.
Take the minimal rational number qi for the ith component Li ⊂ L so that it gives
an even framing, and call it a minimal longitude; then 0 ≤ qi ≤ 2. We may orient
arbitrarily Li, since the orientation does not intervene in the calculus below. Then
we set:

Let L be a link in M so that each component Li ⊂ L represents a torsion class
in H1(M, Z).
Suppose L is characterized; we define β̂(L, M) = β(L, l, M), where l is the set of
even longitudes of l such that each one is minimal.

It is still a concordance invariant. Recall that an even framing on νk⊂M is framing
which, when added to the bounding Spin structure of k gives the restricted Spin
structure of M over k. In case L is a torsion link as above, the given Spin structure
on M picks out half of the rational number for which the longitude gives a framing
compatible with the Spin structure on the normal bundle. Hence:
q/2 ∈ Q/Z determinates the class of compatible framings on νk⊂M , using the fact
above.
But this is the definition we took above for the quadratic enhancements of the linking
form denoted γ. Note that we have allready defined (see Section 4.1) the notion of
even framing for knots k such that [k] = 0 ∈ H1(M, Z2), but there it is independant
of the Spin structure of M , since they all induce the same Spin structure in the
neighborhood of k.

Remarks: 1) In S3 with its unique Spin structure, the framing on a knot k
designed by an even number in a surgery presentation a la Kirby, defines also an
even framing in the above meaning. If the class in H1(M,Z) represented by k has
odd (non zero) order, then l(x, x) = p/r with r odd; the framings of νk⊂M that the
Spin structure of S3 will produce as even framings are the ones with even numerator.
Finally, here is a simple way to see the relationship between the framings q ∈ Q
for νk⊂M , where [k] is a torsion class, and the signature of a 4 manifold W 4 con-
structed from M3 and k. Consider M3 as the boundary of a 4-manifold constructed
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by attaching handles along the link L ⊂ S3 ⊂ B4, such that the resulting boundary
ML 'M , and attach another 2-handle along k ∈M3. We get a 4-manifold W 4 with
H2(W, M, Z) ' Z, and there is a unique class x ∈ H2(W, Q) which hits the gen-
erating relative class (e.g. represented by the embedded surface F̂ = F ∪ (qr

i=1B
2
i ),

where F ⊂M3 and ∂F = r∂k and B2
i is a copy of the core of the attached handle).

If the framing of the attached handle is q ∈ Q, x � x = q and sign(W 4) = ±1
depending upon the sign of q.
2) The first definition of a quadratic enhancement of the linking form did not ex-
plicitely referred to the Spin structures on M : it is hidden in the choice of the
1-connected Spin 4-manifold V with even intersection form that is Spin bounded by
M .

The only role of the Spin structure in the definition of γ is to determine a non
zero section (i. e. a framing) of νk⊂M , where k is a knot with torsion homology.
Hence if we have two Spin structures on M3 (denoted θ1 and θ2) which determine
the same Spin structure in a neighborhood U of k, γ1([k]) = γ2([k]), where γi has
been constructed as above from θi. This equality between the γi|U ’s corresponds to
(θ1 − θ2)([k]) = 0.
Conversely, if (θ1−θ2)([k]) 6= 0, we have different Spin structures on U , so there is a
switch of Spin structures in νk⊂M (used in the definition of γi to get even framings);
this imply that γ1(k) = γ2(k)+1/2. Define ψ = γ1−γ2 : Tors(H1(M, Z))→ Q/Z:
this is a linear map, and ψ([k]) = ψ(−[k]). Hence ψ lands in {±1}, and conversely,
given such a ψ on a Spin 3-manifold M3

θ , we may recover a quadratic linking form
associated to θ′ by taking γθ + ψ.
Hence we have a bijective correspondance between quadratic linking forms and
Hom(Tors(H1(M, Z)), Z2). An element h ∈ Hom(Tors(H1(M, Z), Z2) acts
on q by the formula:

∀a ∈ Tors(H1(M, Z)), (q + h)(a) = q(a) + Ψ(h(a))

where Ψ : Z2 ↪→ Q/Z.

We have proved that:

Theorem: Let M be a closed compact oriented 3-manifold; consider the epi-
morphism Ψ : H1(M, Z2) → Hom(Tors(H1(M, Z)), Z2) , which is natural for
the action of H1(M, Z2) on itself (when Hom(Tors(H1(M, Z)), Z2) acts on the
quadratic enhancements of the linking form as above). Given two Spin structures θ1
and θ2 on M with associated quadratic enhancements γ1 and γ2 of the linking form
on Tors(H1(M, Z)), we have:

Ψ(θ1 − θ2) = γ1 − γ2

Hence any quadratic enhancement of the linking form on T = Tors(H1(M, Z))
comes from a Spin structure by the above construction, and in case M is a Z2-
homology 3-sphere, the set of quadratic enhancements, denoted Quadr(�), deter-
mine the Spin structure canonically.
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In view to link the Rohlin invariant with the quadratic enhancements of the link-
ing form, we have to look at the Gauss-Brown sum formula. We will see later that
it is the more general algebraic connection between the Rohlin invariant and the
enhancement of a quadratic linking form of a Spin 3-manifold that is possible.

Recall that the Gauss-Brown map (cf. Appendix) β : Quadr(�)→ Z8 associates
to a form q the residue β(q) ∈ Z8 such that:

exp((β(q)πi)/4) = (card T )−1/2
∑

a∈T

exp(2πiq(a))

where T = Tors(H1(M, Z)), as above. Now, we follow the lines of the construction
of η in the preceeding pages, but we start with a Q-bilinear symmetric pairing, i.

e. the linear extension âd(A) (with the preceeding notations). Except this, all is
identical.

Suppose we have a bilinear symmetric non-degenerate pairing A : S × S → Q,
where S is a finite dimensional Q-vector space, and that A is even on a restricted Z-
lattice L. The dual lattice L] ' {s ∈ S|A(s, l) ∈ Z, ∀l ∈ L} contain L, and L]/L
is a finite abelian group. Then the function:

Â : L]/L→ Q/Z

x 7→ 1/2 η(y, y) ∈ Q/Z

where y ∈ L], x ∈ L]/L, and η is defined at the beginning of this Section. This is a
quadratic linking form on L]/L. Moreover, the Gauss-Brown map gives:

exp((σ(A)πi)/4) = (β(Â)πi)/4) = (cardT )−1/2
∑

a∈T

exp(2πiq(a))

where σ(A) is the index of the even intersection form A. The first equality follows
from [vdB]. Let us apply this construction:

Theorem [Ta, 4. 5], [TU2, th5]: Let M be a compact oriented 3-manifold without
boundary, and let θ be a Spin structure on M . Denote the resulting quadratic linking
form on T by γ. Then µ(M ; θ) = −σ(γ) (mod 8)

Proof: We first suppose that M is a rational homology sphere; if not, chose a
basis for the torsion free part of H1(M,Z) and do surgery to kill the circles, so that
you get a resulting Spin coherent bordism W 4 from M to N with H1(N, Q) = 0.
Then (Tors(H1(M, Z)), γ) is isomorphic to (H1(N), γ). Moreover σ(W 4) ≡ 0
(mod 8), and if we change both Spin structures on the two boundary components
of W 4 by an element of H1(W 4, Z2) they are obviously still equal. Now any Spin
structure on M may be obtained by acting on a fixed one with an element of the form
x+y, where x is induced fromH1(W, Z2) and y ∈ H1(M, Z); but this second kind of
elements does not change the (mod 8) µ-invariant or the quadratic enhancement of
the linking form. So we can suppose that H1(M, Q) = 0 without loss of generality.
Take a 1-connected Spin 4-manifold V with ∂V = M , so that the unique Spin
structure on V restricts to θ on M . Let A denote the intersection pairing:

H2(V, ∂V ; Q)⊗H2(V, ∂V ; Q)→ Q
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The 1-connectedness of V shows that it is non degenerate; consider L = H2(V, Z)
inside H2(V, ∂V ; Q) and denote L] = i?((H2(V, ∂V ; Z)), where we note the in-
clusion: i? : (H2(V, ∂V ; Z) → (H2(V, ∂V ; Q), its Poincare dual lattice. We have
easily: L]/L ' H1(M) (see the beginning of the Section).
The discussion preceeding this proof imply the result once we show that −γ = Â. In
fact, the adjunction of structure in the geometry, due to the choice of a framing on
M3, allow us to enhance the whole linking form on M (that gives γ) to the quadratic
linking form Â on (V, ∂V ) (this method seems to have been inaugured in [Mil] and
[MO-Su]). We want to lift x ∈ H1(M,Z) to x H2(V, ∂V ;Z) and then calculate
x � x = 1/r x · y with the help of an absolute class y ∈ H2(V,Z) which lift rx.
We proceed as follows: take an embedded oriented surface F 2 ⊂ V with boundary
a representative for x; using the Spin structure on M3 and another arbitrary Spin
structure on F 2, fix a section of νF⊂V that pushes F into a disjoint copy F̂ ⊂ V ,
so that we get an even framing on νF 2⊂V 4. Now glue an embedded surface K2 ⊂M3

,bounded by r parallel copies of ∂F̂ 2, to r∂F̂ : the resulting closed surface represents
a class y = rx ∈ H2(V,Z). It is now clear that x · x = −x� x (the sign comes from

the opposite orientations induced on the circles by K2 and F̂ 2). �

As easy corollaries, we have that the (mod 8) reduction of the Rohlin invariant is
a homotopy invariant, and the linking form of a Z2-homology sphere determines the
Rohlin invariant (since H1(M

3, Z) is an odd torsion group). In [Ta], a generalization
of this result to relative Rohlin invariants can be found.

5.6 Determination of the set of algebraic relations

between the linking pairing, µ and the coho-

mology ring

Before starting with the proof of KM1, we want to exhaust all relations between
the linking pairing, the Rohlin invariant, and the cohomology ring of a 3-manifold
M . It is useful to point out the informations that the family of invariants τr may
produce. We first want to prove that the (mod 2) cohomology ring of a 3-manifold
is determined by its Rohlin invariant. Denote by Spin(M) the set of Spin structures
of M :

Theorem [TU, th. 3]:Let M3 be a closed oriented 3-manifold, α ∈ Spin(M)
and x1, x2, x3 ∈ H1(M, Z2); then we have :

(?) 8 τ2(x1, x2, x3) (mod 16) ≡ µ(Mα) −
∑

1≤i≤3

µ(Mα+xi
) +

∑

1≤i<j≤3

µ(Mα+xi+xj
)−

−µ(Mα+x1+x2+x3)

For exemple, the Rohlin invariant of the 3-torus, which is invariant by transla-
tion, is equal to 8.
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Remarks: If we apply the relation of the theorem to α and α + x4, where
x4 ∈ H1(M, Z2), we see that the fourth difference of the Rohlin invariant is zero:
in other words, it is of degree ≤ 3:

µ(Mα)−
∑

1≤i≤4

µ(Mα+xi
) +

∑

1≤i<j≤4

µ(Mα+xi+xj
)−

∑

1≤ij<k≤4

µ(Mα+xi+xj+xk
)+

−µ(Mα+x1+x2+x3+x4) = 0

To simplify the notations, denote µ(Mα) = µ(α). In general, maps µ(M) : S → Z16

of degree ≤ 3, defined on a Z2-affine space S, are determined by their values on the
elements α, α + xi, α + xi + xj , α + xi + xj + xk, where i < j and i < j < k
respectively, α ∈ S is (arbitrarily) fixed and {xl}l is a basis of the associated linear
space. Substituting x1 = x2, x1 = x2 = x3, x1 = x2 = x3 = x4 in the above
equation, we get the following relations:

µ(α)− µ(α + xi) ≡ 0 (mod 2)

µ(α)− µ(α + xi)− µ(α+ xj)− µ(α+ xi + xj) ≡ 0 (mod 4)

µ(α)−µ(α+xi)−µ(α+xj)−µ(α+xk)+µ(α+xi+xj)+µ(α+xi+xk)+α(α+xj+xk)−
−µ(α + xi + xj + xk) ≡ 0 (mod 8)

We see in theorem KM1 that the obstruction to have: ∀α ∈ Spin(M), ∀x ∈
H1(M,Z2) : µ(α)− µ(α+ xi) ≡ 0 (mod 2) is geometric.

Proof: Recall that given a surface F 2 ⊂M3, we have:

(?) ∀a ∈ H1(F
2, Z2), ∀x ∈ H1(M, Z2), qα+x(a)− qα(a) = 2x(a)

where qα is the quadratic enhancement of the intersection pairing of F induced by
α|F , and 2 : Z2 → Z4 denotes the inclusion.
Note that, when we consider directly the link l embedded in M3 instead of embedded
in a surface F 2, we may substitute the data of a one dimensional subbundle ν of
νl⊂M to the data of the embedding F 2 ⊂ M3. The theory of membranes and of
characteristic pairs is convenient to give a geometric view of the formula (?), a view
that will be useful later in the proof:
Consider V, V ′ two 1-connected compact orientable 4-manifolds with boundary M3,
over which the two Spin structures α and α + x over M extends respectively. Take
two membranes L ⊂ V and L′ ⊂ V ′ with boundary an embedded link l of M , and
glue (V, L) and (V ′, L′) along their common boundary (M, l). The resulting pair
is denoted (W 4, N2). The left-hand-side (LHS) of (?) is the (mod 4) reduction of
the obstruction to the existence of a subline bundle of rank 1 of νW 4(N2). Hence
it is 2ω2(W

4, M3)[N2] = 2[N2] ∩ [C2] = 2[l] ∩ [C2] = 2x[l], where C2 ⊂ M3 is a
closed embedded surface dual to x ∈ H1(M3,Z2), i. e. C2 represents a class dual to
ω2(W

4, M3).
To continue the proof, we need:

Let W 4 be endowed with an orientation compatible with the orientation of V 4;
using the Guillou-Marin formula and the fact that [F ] · [F ] = O, we get µ(α)−µ(α+
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x) = 2β(qF ) (mod 16) (the LHS is σ(W 4) (mod 16), by additivity of the signature).
Note that we have allready obtained this formula. We now have to prove:

Lemma [Tu, p. 72]: Suppose that F 2 and (F ′)2 are oriented closed surfaces of
M3 which intersect transversally in a link l; denote by x, x′ ∈ H1(M, Z2) the dual
classes to F and F ′ in M3. Then:

∀ α ∈ Spin(M), µ(α)− µ(α+ x)− µ(α + x2) + µ(α+ x+ x2) = 4qα([l])

Proof of the lemma: We can suppose that l is connected, by surgery of index
1 on F and F ′ (this does not modify qF ([l])). Setting α′ = α+x′, the LHS turns into
2β(qα)−2β(qα′): so the problem is now to show that β(qα)−β(qα′) = 2qα([l]), where
qα denotes the quadratic enhancement of the Z2-intersection form on F induced by
α ∈ Spin(M).
The preceeding discussion in the proof shows it is trivially verified when [l] = 0 ∈
H1(F 2, Z2). When l is a non-orientable curve in F 2, setting C for a tubular neigh-
borhood of l in F 2 (a Möbius band) and D for F 2 \ C , we have qα = qα|C ⊕ qα|D
and qα′ = qα′ |C ⊕ qα′ |D. The preceeding discussion shows that qα|D = qα′ |D. By
additivity of the Brown invariant we have β(qα) − β(qα′) = β(qα|C) − β(qα′|C) =
2β(qα|C) = 2qα|C([l]), since qα′ |C([l]) = qα|C([l]) + 2 and H1(C,Z2) = Z; this con-
cludes. If l is a non-zero orientable curve in F 2, we use the same argument with a
punctured torus containing l in place of C. �

End of the proof of the theorem: Now take two embedded surfaces F1 and F2

which intersect trasversally in a link l and which represent dual classes to x1, x2 ∈
H1(M, Z2). Substracting β(qα+x3) − β(qα′+x3) = 2qα+x3([l]) to β(qα) − β(qα′) =
2qα([l]) (where α′ = α + x2), we get the RHS of the theorem equal to 4qα([l]) −
4qα+x3([l]) = 8x3([l]) = 8(x1 ∪ x2 ∪ x3)([M ]). �

Remark: if the kernel of an homomorphism x : H1(M, Z) → Z2 contains
Tors(H1(M, Z)), the relation β(γM) ≡ −µM (mod 8) implies that:

∀α ∈ Spin(M), µM(α) ≡ µM(α+ x) (mod 8)

With the theorem we get: if µM takes the value k (mod 16) and if there exists
x1, x2, x3 ∈ H1(M, Z) such that(x1 ∪ x2 ∪ x3)([M ]) ≡ 1 (mod 2), then µM also
takes the value k + 8. We already get an exemple with the 3-torus, for which this
value corresponds to the 3 Lie Spin structures on its generic fibers. This fact was first
noted by Kaplan in [Ka] and will later be used when discussing the first point of
theorem KM1. Moreover, The third difference of the Rohlin function is a homotopy
invariant, just as its (mod 8) reduction.

Next we turn to the relations between the cohomology ring of a closed oriented
3-manifold and its linking pairing. We list some results proved in [Tu], p. 73-77.
Denote un(M) : {(x, y, z) 7→ (x ∪ y ∪ z)([M ]) : H1(M, Zn)3 → Zn}n, where [M ]
is the fundamental class of the 3-manifold M .
Given an abelian group H , we denotes its Zn-adjoint Hom(H,Zn) by H?. Then
we say that a sequence of forms {un : (H?

n)3 → Zn} is compatible if we have the

57



following condition: ∀m, n, n1, . . . , n4 ∈ N, ∀ηi ∈ Hom(H,Zni
)(i = 1, 2, 3, and

for any commutative diagram:

Zn1 × Zn2 × Zn3

α1 × α2 × α3 β1 × β2 × β3

(Zm)3 (Zn)3

Zm
α4→ Zn4

β4← Zn

where the vertical arrows are induced by the multiplication on the quotient rings
and α1, . . . , α4 and β1, . . . , β4 are linear (not necessarily ring) homomorphisms, the
following identity holds:

α4(um(α1 ◦ η1, α2 ◦ η2, α3 ◦ η3)) = β4(un(β1 ◦ η1, β2 ◦ η2, β3 ◦ η3))

This compatibility reflects the fact not only the forms {un(M)}n≥0 (with M a com-
pact orientable closed 3-manifold) are related to one another by homomorphisms of
the coefficients, but also to the maps:

H1(M,Zn1)×H1(M,Zn2)×H1(M,Zn3)→ Zn4

that corresponds to the various trilinear forms:

Zn1 × Zn2 × Zn3 → Zn4

Given a finitely generated abelian group H with a skew-symmetric trilinear form
u : (H∗

n)3 → Zn, n ≥ 0; if n = 0 or if n is odd, then there is a compact orientable
3-manifold M such that (H, u) and (H1(M, Z), un(M)) are isomorphic in a natural
way. If n is even and n ≥ 2, there exists such an M3 if and only there exists a non
degenerate symmetric bilinear pairing L : (Tors(H))2→ Q/Z such that:

(1) (??) ∀x, y ∈ H∗
n, Ψ(u(x, x, y)) = n/2 L(x, y)

where Ψ : Zn → Q/Z is the inclusion and z ∈ Tors(H) is the element for which
L(z, a) = Ψ(z(a))∀a ∈ Tors(H).

In fact, [KaKo] proved that if T is a finite abelian group, then an arbitrary non
degenerate symmetric bilinear form T × T → Q/Z can be realized as the linking
form Tors(H1(M, Z2))

2 → Q/Z of a compact closed oriented 3-manifold M . Then
there is no obstruction to find an adequate L, except that it does not necessarily
verify condition (1). Precisely we have:

The condition (1) for all n ≥ 2 and n even (with un in place of u) is a nec-
essary and sufficient condition to realize (H, L, un), where un : (H?

n)3 → Zn is a
compatible sequence of skew symmetric trilinear forms, as (H1(M, Z), �, un(M)).
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Note that (1) imply that un(x, x, y) = un(y, y, x), a fact we already used when
n = 2 in Section 2, in view to define τ . We also allready saw that (1) is necessary
at this stage.
Consequently, the above relation is the more restrictive that we can find between �
and un(M), given any M as above.
Note that un and H1(M, Z), determine the cohomology ring of M .

Adding to the hypothesis an affine H∗
2 -space S and a map R : S → Z16:

We can realize (H,L, S,R) as above as (H1(M, Z), �, Spin(M), µM) for a
compact closed oriented M3 if and only if degR ≤ 3 and the Brown-Taylor relation
β ◦ φ = −R (mod 8) is verified, with a map φ : S → Quadr(L), equivariant under
the action of H∗

2 on Quadr(L) by:

∀q ∈ Quadr(L), ∀h ∈ H?
2 , ∀a ∈ Tors(H), (q + h)(a) = q(a) + Ψ(h(a))

where Ψ : Z2 → Q/Z is the inclusion.

Looking in details the abstract construction we did of the quadratic enhance-
ments of the linking pairing, you can see that the canonical isomorphism (with the
natations we adopted there) Coker(ad(A))→ H1(M,Z) carries η to a quadratic �
form, which depends only on the Spin structure α we fixed on M (this dependance
being equivariant under H1(M,Z2) as above). Then φ in the preceeding fact does
indeed corresponds canonically to η.
Finally, we have:

Theorem [Tu, p.70]:Let H, S, L and R be as above and let {un : (H?
n)3Zn}

be a compatible sequence of trilinear skew symmetric forms. Then there exists a
closed oriented 3-manifold M such that (H, L, S, R, {un}n≥0) is isomorphic to
(H1(M,Z), �, Spin(M), µM , {un(M)}n≥0) if and only if condition (1) holds for
all even n ≥ 2 (with un in place of u), relation (?) in the first theorem of the Section
holds ∀α ∈ S, ∀x1, x2, x3 ∈ H?, and there exists an H?

2 -map φ : S → Quadr(L)
such that β ◦ φ = −R (mod 8)

The proof of the first and the second assertion follows from this theorem. The
proof of this theorem uses subtle manipulations with the Kirby operations and some
transformations on a surgery presentation l of a 3-manifold M (which modify M)
that preserves the ”Milnor residue” over all 3-uplets of components of l. This allows
to put un(M)(x, y, z) in a kind of canonical form, in which un can always be
written. The identification of R is a bit more complicated. For more details, see
[Tu], p. 76. Let us finally note a direction in which we could try (and use) to extend
the theorem, in view to exclude other invariants. Let M be a closed orientable 3-
manifold, and M̃ → M be an m-sheeted cyclic cover of M . If f : H1(M,Z) is the
corresponding homomorphism, the total Atiyah-Singer invariant

∑m−1
r=1 σr(M, f) of

the cover (in the notations of [CG]) is an integer whose (mod 1)6 reduction is equal
to mµMθ

− µM̃
θ̃
, where θ is an arbitrary Spin structure on M and θ̃ its lift to M̃ .
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Chapter 6

Proof of theorem KM1

6.1 Stable equivalence and quadratic forms

The stable equivalence between integral matrices specify (from our geometric point
of view) the class of the 4-manifolds for which the intersection forms are represented
by the matrices we consider, modulo connected sums with copies of ±CP 2. Given
a 3-manifold M3

L obtained by surgery on a framed link L in S3 with linking matrix
A, consider the 4-manifold W 4

Ls. t. ∂W
4
L = M3

L obtained by attaching handles along
L ⊂ S3 ⊂ B4 with the corresponding framing.
Any element in the class (defined just above) of WL has the same intersection pairing
as WL, when restricted out of some 4-balls of WL, since the equivalence relation may
be geometrically interpreted as overtaking supports of vector fields in the neighbor-
hood of isolated non-zero index points over W 4

L (or also as the places of blowing up
or blowing down of isolated singular points). We formalize it as follows:

B ∼ B′ ⇐⇒ ∃S unimodular, B′ = StBS or B′ = B ⊕ (±1)orB = B′ ⊕ (±1)

This is a little bit stronger than the linking pairing, since we have the following well
known result [KaKo]:

Theorem:Stable equivalence classes of linking matrices of framed links are de-
termined by:
1) the first Betti number of the manifold M obtained by surgery on the link,
2) the isomorphism class of the pair (Tors(H1(M, Z), �).

Note that the stable equivalence classification of 3-manifolds induced by this
theorem dominates the existence of degree one maps onto lens spaces, and that ho-
motopy equivalent manifolds have the same stable equivalence class.
This relation between linking pairings is an algebraic counterpart of the Kirby moves.
Indeed:

• 1) A blowing up or a blowing down, i. e. adding or removing an isolated
unknotted component k with framing ±1 from a link L, may be viewed on the
linking matrix of L as the above second condition;
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• 2) a handle-slide of Li over Lj , i. e. transforming Li into L′
i = Li]bfj (where

fj is a framing curve for Lj and ]b means band connected sum), corresponds
to the transformation of A = (λij) into A′ = (λ′ij), with the relations:

λ′ii = λii + λjj ± 2λij

λ′ki = λki ± λkj(i 6= k)

λ′il = λil ± λjl(l 6= i)

λ′kl = λkl(k, l 6= i)

Then A′ = T tAT where Tkk = 1, Tki = ±1, Tkl = 0 elsewhere.

6.2 A simplification of the expression of τ3

Formula 1. 7 of [KM1] is written as:

τr(M) = αL

r−1∑

k=1

[k]JL, k

where M3 is a closed oriented manifold obtained by surgery on the framed link L
with nL components, σL is the signature of the linking pairing A of L, and:

αL :=
√

2/r sin π/rnL

︸ ︷︷ ︸

b

× exp 2iπ(2− r)3/8r
σL

︸ ︷︷ ︸

c

Taking r = 3 we have b = 1/
√

2 and c = (1− i)/
√

2; furthermore, in case k ≤ r− 1,
JL, k = JS, 2 = iS·S.
Here we use corollary [KM1], th. 4. 14 to extract from the colored link (L, k) a
colored sublink S by elimination of the one-colored components (this keeps JL, k

unchanged) and [KM1], p. 4. 11 expressing JL, 2 in function of the conjugate of the
Jones polynomial Ṽ by:

JL, 2 = [2] exp(iπ/2r)3L·LṼL

Remember that the quantification is over q = exp(2iπ/r), [k] = [1][2] . . . [k] and
[k] = sin(πk/r)/ sin(π/r); moreover ṼL(exp(2iπ/3)) = VL(exp(−2iπ/3) = 1.
Denoting S < L when S is a sublink of L, we then have:

τ3(ML) = (1/
√

2)nL((1− i)/
√

2)σ(L)
∑

S<F

iS·S

where ∅ · ∅ ≡ 0 (mod 4).

Murakami, Ohtsuki and Okada showed in [MOO] how to get a family of quantum
3-manifold invariants out of τ3 using the preceeding remarks about stable equiva-
lence classification of 3-manifolds; their definition is:

ZN(M, q) = (GN(q)/|GN(q)|)−σ(L)|GN(q)|−n
∑

l∈(Zn)n

qltAl
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where q = exp(dπi/N) with d + N odd, N ≥ 2, d ≥ 1, (d, N) = 1 and GN(q) =
∑

h∈Zn
qh2

.
Note that the quadratic form l 7→ ltAl must be viewed as a Z2N -quadratic form to
be well defined when q is an 2N th root of unity. These invariants generalize τ3 for
which q = exp(2iπ/r), N = r, d = 1, and are invariant under stable equivalence for
A, as it is easily seen by applying the above matricial form of the Kirby moves.
It is shown in [Ko-Ta] that the splitting formula for τr, with r odd, in τ3 and τSO(3)

generalizes to the case of PSU(N) in place of SO(3) and ZN(M, q) in place of τ3.

6.3 Proof of KM1

Consider the reduction (mod 4) of the linking matrix A of L along the diagonal and
(mod 2) out of the diagonal. Besides it does not necessarily represent a Z4-quadratic
form on a Z2-vector space, it is Witt equivalent to a diagonal matrix (still denoted
A) with nj entries congruent to j (mod 4). This follows easily from the extension
of the results shown in the Appendix.
The above formula for τ3 splits in 3 parts due to the multiplicativity of iS·S under
the block sum decomposition of A, induced by (nj). Denoting ω = τ3((1−i/

√
2)σ(L),

we have:
ω = q3

j=0 ω
nj

j

where ω0 = 1/
√

2 (i0 + i0) =
√

2, ω1 = 1/
√

2 (i0 + i1) = ((1− i)/
√

2), ω2 =
1/
√

2 (1− 1) = 0 and ω3 = (1− i)/
√

2.Then:

τ3(ML) = cσ(A)+n3−n1
√

2
n0

if n2 = 0

τ3(ML) = 0 otherwise

Now if n2 = 0, A is the matrix representation of a Z4-quadratic form, since the
(mod 2)-linking of L is well defined. It is associated to a spanning surface F for L,
capped off with the cores of the surgery that gives M .
Set as in the appendix β(A) ≡ n1 − n3 (mod 8) ≡ σ(A (mod 4)) (mod 8) for
the Brown invariant of A; β(ML) = σ(A) − β(A) (mod 8) is an invariant of ML,
since σ(A) and β(A) modify identically under blowing up and down. Note that
|H1(M,Z2)| ≡ n0 + n2 (mod 4) since A is a presentation matrix for H1(M,Z).
Then if n2 = 0, we get the expected formula.

In case n2 6= 0, there exists a surface F ′ ⊂ F over 2-framing components, hence
with a RP2 inside. Any characteristic link C ⊂ L contains all components with
odd framing since by choice of a representant of the Witt class of A we have ∀ i 6=
j Li · Lj ≡ 0 (mod 2).
Furthermore, C · C ≡ β(A) (mod 4) if C contains an odd number of 2-framing
components, but C · C ≡ β ± 2 mod 4 otherwise.
Using µL, C = σ(A) − C · C + 8 Arf(C) (mod 16) and the 1 − 1 correspondance
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between characteristic links and Spin structures of ML, we see that the µ invariants
of ML have all the same (mod 4) reduction if and only if n2 = 0:

n2 = 0⇐⇒ µL, C ≡ σ(A)− β(A) (mod 4)

Finally, taking two Spin structures θ1 and θ2 with distincts (mod 4)-µ invariants,
the formula µMθ1

−µMθ2 = 2β(a) (mod 16), where a ∈ H2(M,Z2) is a Poincare dual

class to θ1 − θ2 ∈ H1(M,Z2 (see chapter 4), shows that there exists an embedded
surface in ML, e.g. the above surface F ′, whose Pin− class generates ΩPin−

2 .It has
obviously odd Euler characteristic since β (mod 2) ≡ χ.

Remarks

• With the notations of the preceeding chapters we have: β(F ′) = β(C), where C
is by definition the even link on which F ′ is capped off, and the even longitudes
are selected by the choice of F ′.The link between all these objects is: the
Poincare dual to F ′ is the difference Spin structure considered in i) of KM1,
and the Hom dual to the last one is C.

• In case τ3(ML) 6= 0, the square of its modulus and a surgery presentation
(in fact it suffices to have the index of WL) of M = ML gives the (mod 4)
reduction of µθ for any Spin structure θ of ML.
Using the last remark of Chapter 4 about a theorem of [Ka], we may complete
condition i) as follows: if all µ invariants are distincts (mod 8), there does not
exists an embedded surface in ML with odd Euler characteristic since then:

6 ∃ x1, x2, x3 ∈ H1(ML,Z) s.t. (x1 ∪ x2 ∪ x3)([M ]) ≡ 1 (mod 2)

It is possible to interprete the non zero reduction (mod 4) of µθ1 − µθ2 as a
normal surgery data of f : ML → RP3 towards L(6, 1) [Ta].

• The splitting theorem [KM1],§8, between τ
SU(2)
r and τ

SO(3)
r shows that τ3 = O

represents a somewhat geometric trivial obstruction.
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Appendix A

Some invariants of quadratic forms

For more details,we refer to [MH] or [GM].

A.1 Arf invariant

This Z2-quadratic invariant aims at showing for any Z2-quadratic form q if more of
an half of the elements of V are sich that q = 1; in that case Arf(q) is equal to 1.
Let V be a finite dimensional Z2-vector space with a given inner product x · y ∈ Z2

and a linear map :
λ : V → Z2

for which there exists y ∈ V such that:

λ(x) = x · y ∀ x ∈ V
We get a Z2-quadratic space on V by adding the datum of a map defined by:

q(x+ y) := q(x) + q(y) + x · y
A geometric application is for the (mod 2) reduced self linking of a knot.

Combining the duality and q, we easily obtain an hyperbolic decomposition of
(V, q) = ⊕n

i=1Hi,where Hi = 〈x, y〉 belongs to one of the following class:
i) either q = 1 on the three element x, y, x+ y of Hi

ii) or q = 0 on two of them.
We denote an element of the first (resp. second) class by H1 (resp. H0).
We have an isomorphism H0 ⊕ H0 ' H1 ⊕ H1 by sending xi, yi on the 4 maximal
linear combinations of them; so our decomposition reduces to:
i) either (V, q) = ⊕n−1

i=1 H
0 ⊕H1,

ii) or (V, q) = ⊕n
i=1H

0.
In other words, there are 22n−1 + 2n− 1 terms on which q is zero in the first case
and 22n−1 − 2n− 1 in the second case. We set:

Arf(q) := { 1 if i) is verified
0 otherwise

This furnishes our algebraic invariant,which is obviously additive.
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A.2 Brown invariant

See [Br]

More than a simple extension of the Arf invariant, it will support most of our
geometric background in being able to deal with the specificities of the intersection
pairing on nonorientable surfaces. Just start as before, but chose a Z4-quadratic
form q : V → Z4 as follows:

q(x+ y) = q(x) + q(y) + 2 · x · y

where we note 2 : Z2 → Z4 the homomorphism sending 1 to 2. Any Z4-quadratic
space can be decomposed into a direct sum of indecomposable direct summands
taken in the following list:

P+ = (Z2a, ·, q) where a · a = 1, q(a) = 1
P− = (Z2a, ·, q) where a · a = 1, q(a) = −1
T0 = (Z2b+ Z2c, ·, q) where b · b = 0, c · c = 0, b · c = 1, q(b) = q(c) = 0
T4 = (Z2b+ Z2c, ·, q) where b · b = 0, c · c = 0, b · c = 1, q(b) = q(c) = 2

Now H ⊂ (V, q) is said to be isotropic (and then (V, q) is split) if there exists H ⊂ V
such that q(H) = 0, H · H = 0, and dim(H) = 1/2dim(V ); for exemple P+ ⊕ P−

and T0 contain isotropic subspaces.
Let us define the Witt group of Z4-quadratic form on Z2-vector spaces by:

W := WQ(Z2,Z4) = {Z4 − quadratic spaces}/{X ⊕ S1 ≡ X ⊕ S2}

where Si is split. Then [T0] ∈W is zero and we easily see that:

{
P+ ⊕ T4 ' P− ⊕ P− ⊕ P−

P− ⊕ T4 ' P+ ⊕ P+ ⊕ P+

Finally [T4] = 4[P−] and [T4] = 4[P+], so W is generated by [P+] and is isomorphic
to Z8 as follows from: 8[P+] = 4([P+] + [P−]) = 0.

In view to classify the isometric (i.e. equivalence) classes of Z4-quadratic form
viewed as quadratic enhancements of a fixed bilinear pairing (for us : the intersection
pairing),we are going to define an invariant of linear isomorphisms T : (V1, q1) →
(V2, q2) preserving q1 and q2.

A Monski sum associated to a Z4-quadratic space X = (V, ·, q) is written as:
λ(X) =

∑

x∈V i
q(x).

The operator λ clearly verifies λ(X ⊕ Y ) = λ(X)λ(Y ) and P+ is sent onto 1 + i.

Consequently λ(X) =
√

2
dim(V )

(1 + i/
√

2)2, where m ∈ Z. The multiplicativity of
the Monsky sum and this well defined integer (mod 8) gives us our Brown invariant:
β(X) = m ∈ Z8.
It is shown in [Br], th.1.20, that when X is split, it is sent to zero, and β(P+) = 1
implies that β is an isomorphism between the Witt group W and Z8.
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Here is a list of properties of β,extracted from [Br], th.1.20:
1) If (V, ·, q) is a Z2-quadratic space, then (V, ·, 2q) is a Z4-quadratic space and
β(V, ·, 2q) = 4Arf(q), where we set 4 : 1 ∈ Z2 → 4 ∈ Z8.
2) For every X = (V, ·, q), we have β(X) ∼= dim(V ) (mod 2).
3) β is additive and multiplicative.
4) Suppose that U is a finitely generated abelian group, with Θ : U ⊗ U → Z a
unimodular symetric bilinear form; denote by Ψ(u) = Θ(u, u) and define ϕ(u) :
U/2U → Z by ϕ(u) = Ψ(u) (mod 4). Then Φ is quadratic and β(Φ) = σ(Ψ)
(mod 8).

An application of the last property is in considering the (mod 4) reduction of
the linking matrix of the simple closed curves generating H1(F 2,Z), for an ori-
entable surface F 2: its Brown invariant is the (mod 8) reduction of the index of
the intersection pairing of F 2.
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Appendix B

Pin groups

The main reference is [KT].

Given a real vector space V of dimension n with basis {ei}1≤i≤n and a given
inner product 〈 , 〉, consider its universal algebra generated (as a vector space) by
the free products eI = ei1ei2 . . . eik , 1 ≤ ij ≤ n, j ∈ N, I = (i1, . . . , ik), the unity e∅
and either relations:

(+) vw + wv = 2〈v, w〉
or

(−) vw + wv = − 2〈v, w〉
This algebra will be called the Clifford algebra Cliff±(V ), depending on the choice
of the relation above.
Define Pin±(V ) as the set of elements of Cliff±(V ) which can be written in the
form v1v2 . . . vk, where each vi is a unit vector in V ; this is a compact Lie group,
and when k is even these elements generate the famous 2-sheeted covering Spin(V )
of SO(V ). This can be seen as follows.

We can represent geometrically the multiplication by a vector v ∈ V in the
algebra by the action of the reflexion rv in O(V ) across the non oriented (n−1)-plane
v⊥ perpendicular to v. Since the reflection in v⊥ has the form x 7→ x− 2 〈x, v〉 v, a
product (±v1)(±v2) . . . (±vk) of basis vectors of V may be thought of as either the
homomorphism rv1 ◦ . . . ◦ rvk

∈ O(V ) or the image of vk under rv1 ◦ . . . ◦ rvk−1
.

Now, the elements of Pin±(V ) act on V by choosing an orientation on v⊥ ∈ V .
Hence we consider arbitrary products of vectors of V , in the form v1 . . . vk. In
particular, when we restrict to even numbered products of vectors, we have an action
of Spin(V ) onto V which may be seen as a 2-sheeted covering of SO(V ) (generated
by products of even numbers of reflexions in V ). Moreover this is a non trivial
double covering for n ≥ 2, since for orthonormal vectors v1, v2 ∈ V the invertible
arc:

t 7→ cos(t) + sin(t)v1 v2, 0 ≤ t ≤ π

connects 1 and−1 inside Spin(V ). Considering the long exact sequence of homotopy
groups for the principal bundle SO(n)→ SO(n+1)→ Sn with π1(SO(3)) ∼= Z2, we
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see that for n ≥ 3 the group Spin(V ) is in fact the universal covering of the group
SO(V ).

How does this representation of Spin(V ) onto SO(V ) generalizes to the action
of Pin±(V ) onto V ?

Define a transposition on Cliff±(V ) by extending linearly over V the obvious
transposition of vectors:

(vi1 . . . vik)
t := vik . . . vi1

In the same manner, define another algebra homomorphism by α(eI) = (−1)Card(I)eI ;

There are representations ρ± : Pin±(V )→ O(V ), given by:

ρ−(w)(v) = wvwt

ρ+(w)(v) = α(w)vwt

where the left and right action of elements of Pin±(V ) correspond, as stated above,
to composition with their images in O(V ).
Let us denote by r, id ∈ O(V ) the reflexion across an arbitrary (n − 1)-plane e⊥1 in
V and the identity element of O(V ); then it is easy to see that (ρ±)−1{r, id} =
{±e1, ±1}. Furthermore we have e21 = ±1 ∈ Pin±(V ), hence:

(?) (ρ+)−1{r, id} ' Z2 ⊕ Z2

(??) (ρ−)−1{r, id} ∼= Z4

Clearly the elements 1, −1 ∈ Pin±(V ) are the whole center Z2 of Pin±(V ) if n > 1
and the above constructions show that Pin±(V )/{±1} = O(V ). Notice that since
O(V ) has a non trivial center, the groups Pin±(V ) are non trivial central extensions
of O(V ), which restrict to Spin(V ) over SO(V ).

The two groups Pin±(V ) are Spin(V ) q Spin(V ) as spaces, but the group
structure is different in the two cases, as is clear from the equations (?) and (??).
We can think of −1 ∈ ρ−1(id) as a rotation of V by 2π about any axis, for the
following reason: for θ ∈ [0, 1], the arc θ → ±e1 · (cos(θ)e1 + sin(θ)e2) in Pin±(V )
goes from 1 to −1 and is sent by ρ onto a loop in O(V ) that generates π1(O(V )).
It is the group theoretic reason for which Pin± may be used to distinguish an odd
from an even number of geometric full twists: for instance, a section s of the normal
bundle ν to an embedded curve C in a 3-manifold describe a loop l in O(2) under
the identification of all the fibers to R2. The class of l in π1(O(2), id) is different
from zero if the image curve of s in the total space of ∂ν (which is a torus or a Klein
bottle) describes an odd number of twists about C.

Let us finally give the construction of a Pin−(2)-structure on the tangeant bundle
of RP2.
Take two vector fields e1 and e2 in the tangeant bundle to RP2

|Mb, where RP2 is

considered as B2∪∂B2RP1 andMb is the Mobius band neighborhood of RP1 ⊂ RP2,
such that e1 is parallel to the core circle RP1 and e2 is normal to it. Consider the
trivialization of TRP2

|Mb over two coordinate charts U1 and U2, with transition
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functions U1 ∩ U2 → Pin−(2) that send the two components of U1 ∩ U2 to 1 and e2
respectively.
The induced R2-bundle TRP2

|∂Mb over S1 = ∂Mb is trivialized by the transition
functions 1 and e22 = −1. This means that we add a rotation by 2π to the framing
(e1, e2), which is then turned into the opposite one, after a complete traverse of
∂Mb = S1. But this trivialization of TRP2

|S1 is exactly the one that extend over
B2. Notice that RP2 does not support a Pin+ structure, as follows from the same
argument (with e22 = 1).
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