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Abstract. A theorem of Müger asserts that the center Z(C) of a spherical

fusion category C over k is a modular fusion category if k is an algebraically
closed field and the dimension of C is invertible. We generalize this result to
the case where k is an arbitrary commutative ring, without restriction on the

dimension of the category. Moreover we construct a variant of the Reshetikhin-
Turaev invariant associated to Z(C), still defined when dim C is not invertible,

and give an algorithm for computing this invariant in terms of certain explicit
morphisms in the category C. Our approach is based on (a) Lyubashenko’s
construction of the Reshetikhin-Turaev invariant in terms of the coend of a

ribbon category; (b) an explicit algorithm for computing this invariant via Hopf
diagrams; (c) an algebraic interpretation of the center of C as the category

of modules over a canonical Hopf monad on C; (d) a generalization of the
Drinfeld double construction to Hopf monads which, applied to the canonical
Hopf monad of C, provides an explicit description of the coend of Z(C) in terms
of the category C.
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Introduction

In the early 90’s, two new ‘quantum’ invariants of 3-manifolds were introduced:
the Reshetikhin-Turaev invariant, and the Turaev-Viro invariant. The definition of
the Reshetikhin-Turaev invariant RTB [RT91, Tur94] involves a modular category B,
that is, a ribbon fusion category with invertible S-matrix (hence invertible dimen-
sion). The algorithm for computing its value on a 3-manifold consists in presenting
the manifold by surgery along a ribbon link, coloring this link by simple objects
of B to obtain scalars, and then forming a linear combination of these scalars.

Similarly, the definition of the Turaev-Viro invariant TVC [TV92], as revisited
by Barrett and Westbury [BW96], involves a spherical fusion category (that is,
a sovereign fusion category such that left and right traces coincide) with invert-
ible dimension. The algorithm for computing TVC(M) consists in presenting the
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3-manifold M by a triangulation, coloring the edges of the triangulation with simple
objects of C, and then evaluating the colored tetrahedra by means of the 6j-symbols
of C.

A modular category B is also a spherical category and, in this case, the Reshetikhin-
Turaev and Turaev-Viro invariants are related [Tur94, Ro95] by:

TVB(M) = RTB(M)RTB(−M)

for any 3- manifold M , where −M is the 3-manifold M with opposite orientation.
But in general a spherical category need not to be braided and so cannot be

used as input to define the Reshetikhin-Turaev invariant. However, spherical and
modular categories are related by a theorem of Müger [Mü03]: if C is a spherical
fusion category over an algebraically closed field k and has invertible dimension,
then its center Z(C) is a modular fusion category of dimension dimZ(C) = (dim C)2.
In this setting, Turaev conjectured that, for any 3-manifold M ,

TVC(M) = RTZ(C)(M).

This conjecture was shown to be true for some spherical categories C arising from
subfactors, see [KSW05]. The general case is still open.

In this context, a natural question is: how can we compute RTZ(C)(M)? Using
the algorithm given by Reshetikhin and Turaev is not a practicable approach here,
as that would require a description of the simple objects of Z(C) in terms of those
of C, and no such description is available in general. What we need is a different
algorithm for computing RTZ(C)(M), which one should be able to perform inside C,
without reference to the simple objects of Z(C). This is the primary objective of
this paper.

In order to fulfill this objective, it will be convenient to adopt an alterna-
tive approach for constructing RT-like quantum invariants of 3-manifolds, due to
Lyubashenko [Lyu95] and later developed in [KL01, Vir06], where the input data
is a (non-necessarily linear neither semisimple) ribbon category B which admits a

coend C =
∫ X∈B ∨X ⊗ X. This coend C is naturally endowed with a very rich

algebraic structure. In particular, it is a Hopf algebra in the braided category B
and comes equipped with a Hopf pairing ω : C ⊗ C → 1. Such a category B is
modular if the pairing ω is non-degenerate (this is the natural way of formulating
the invertibility of the S-matrix in this setting).

The construction of the Lyubashenko invariant consists in presenting the 3-man-
ifold by surgery along a ribbon link L, using the universal property of the coend C
to associate a form φL to the link, and then evaluating this form on an integral Λ
of the Hopf algebra C. Note that, more generally, one can evaluate the form φL

by a ‘Kirby element’ α of B to get other invariants τB(M ;α) of 3-manifold invari-
ants, see [Vir06]. In particular, up to normalization, τB(M ; Λ) is the Lyubashenko
invariant and, in the special case where B is a modular fusion category, τB(M ; Λ)
is the Reshetikhin-Turaev invariant.

In order to make this construction effective, we need an algorithm for computing
the forms φL which are defined by universal property. Such an algorithm, based
on an encoding of certain tangles by means of Hopf diagrams, is given in [BV05].
Thus the invariants τB(M ;α) can be expressed in terms of certain structural mor-
phisms of the coend C. Section 2 is devoted to these quantum invariants and their
computation.

Hence, when C is a spherical fusion category, we may compute τZ(C)(M ; Λ) pro-
vided we can describe explicitly the structural morphisms of the coend of Z(C). In
other words, we need an algebraic interpretation of the center construction. If C
is braided and has a coend A (which is a Hopf algebra), then the category Z(C)
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coincides with the category of A-modules in C. However the difficulty here is that
we do not want to assume C is braided. To bypass this difficulty, we use the notion
of Hopf monad introduced in [BV07].

Hopf monads generalize Hopf algebras in a non-braided setting. In particu-
lar, finite-dimensional Hopf algebras and their different generalizations (Hopf al-
gebras in braided autonomous categories, quantum bialgebroids, etc...) provide
examples of Hopf monads. If fact, any monoidal adjunction between autonomous
categories gives rise to a Hopf monad. It turns out that much of the theory of
finite-dimensional Hopf algebras extends to Hopf monads, see [BV07]. In Section 3,
we recall a few results on Hopf monads.

The whole point of introducing Hopf monads here is that they provide an al-
gebraic interpretation of the center construction [BV08a]. If C is a centralizable

autonomous category, meaning that the coend Z(X) =
∫ Y ∈C ∨Y ⊗ X ⊗ Y exists

for any object X of C, then Z is a quasitriangular Hopf monad on C and the cen-
ter Z(C) coincides, as a braided category, with the category of Z-modules in C. In
addition, Drinfeld’s double construction extends naturally to Hopf monads. This
theory provides a description of the coend of Z(C). In Section 4, we review a few
facts on the double of Hopf monads.

In Section 5, we apply the above results to spherical fusion categories. Firstly,
we obtain a generalization of Müger’s theorem on the modularity of the center of
a spherical fusion category C to the case where dim C is not necessarily invertible
and k is any commutative ring. Denoting by {Vi}i∈I a (finite) representative family
of scalar1 objects of C, we get:

Z(X) =
⊕

i∈I

∨Vi ⊗X ⊗ Vi,

Moreover Z(C) is centralizable and dimZ(C) = (dim C)2. The underlying object of
the coend of Z(C) is:

C =
⊕

i,j∈I

∨Vi ⊗
∨Vj ⊗

∨∨Vi ⊗ Vj ,

and all structural morphisms of C (including an integral Λ: 1 → C) can be written
down explicitly in C. Furthermore, Z(C) is always modular. When k is an alge-
braically closed field and dim C is invertible, Z(C) is a fusion category and so we
recover Müger’s theorem. However, when dim C is not invertible, Z(C) is a non-
semisimple ribbon category. Nevertheless, in this case, the version τZ(C)(M ; Λ) of
the Lyubashenko invariant is still defined and computable in terms of C.

1. Conventions and notations

1.1. Autonomous categories. Monoidal categories are assumed to be strict.
Recall that a duality in a monoidal category (C,⊗,1) is a quadruple (X,Y, e, c),

where X, Y are objects of C, e : X ⊗ Y → 1 (the evaluation) and c : 1 → Y ⊗ X

(the coevaluation) are morphisms in C, such that:

(e⊗ idX)(idX ⊗ c) = idX and (idY ⊗ e)(c⊗ idY ) = idY .

Then (X, e, c) is a left dual of Y , and (Y, e, c) is a right dual of X.
A left autonomous category is a monoidal category for which every object X

admits a left dual (∨X, evX , coevX). Likewise, a right autonomous category is a
monoidal category for which every object X admits a right dual (X∨, ẽvX , c̃oevX).

1An object X of C is scalar if EndC(X) ∼= k.
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An autonomous category is a monoidal category which is left and right au-
tonomous. Note that in an autonomous category, there are canonical isomorphisms:

∨
(X∨) ∼= X,

∨
(X ⊗ Y ) ∼= ∨Y ⊗ ∨X, ∨1 ∼= 1,

(∨X)
∨ ∼= X, (X ⊗ Y )

∨ ∼= Y ∨ ⊗X∨, 1∨ ∼= 1.
We will often abstain from writing down these isomorphisms.

1.2. Sovereign categories. A sovereign category is a left autonomous category
endowed with a strong monoidal natural transformation φX : X → ∨∨X. Such
a transformation is then an isomorphism. A sovereign category is actually au-
tonomous. Furthermore, in a sovereign category C, one can define the left and right
traces of an endomorphism f : X → X as:

trl(f) = evX(id∨X ⊗ fφ−1
X )coev∨X ∈ EndC(1),

trr(f) = ẽvX(fφX∨∨ ⊗ idX∨)c̃oevX∨ ∈ EndC(1),
and the left and right dimensions of an object X as diml(X) = trl(idX) and
dimr(X) = trr(idX). We have dimr(

∨X) = diml(X).

1.3. Braided categories. A braided category is a monoidal category endowed
with a braiding, that is, a natural isomorphism τX,Y : X ⊗ Y → Y ⊗X satisfying:
τX,Y ⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z).

1.4. Ribbon categories. A twist on a braided category B is a natural isomor-
phism θX : X → X satisfying: θX⊗Y = (θX ⊗ θY )τY,XτX,Y . If B is braided and au-

tonomous, a twist θ on B is self-dual if
∨
(θX) = θ∨X (or, equivalently, (θX)

∨
= θX∨).

A ribbon category is a braided autonomous category endowed with a self-dual
twist. A ribbon category is naturally equipped with a sovereign structure such that
the left and right traces coincide.

1.5. Coends. Let C, D be categories and F : Cop × C → D be a functor.
A dinatural transformation from the functor F to an object D of D is a family

d = {dX : F (X,X) → D}X∈Ob(C) of morphisms in D satisfying:

dXF (f, idX) = dY F (idY , f)

for every morphism f : X → Y in C.
A coend of F consists of an object C of D and a dinatural transformation i from

F to C which is universal, that is, for every dinatural transformation d from F to
an object D of D, there exists a unique morphism φ : C → D such that dX = φ◦iX .

If F admits a coend (C, i), then it is unique (up to unique isomorphism) and is

denoted C =
∫ X∈C

F (X,X). See [Mac98] for details.

1.6. Coends of autonomous categories. By coend of an autonomous cate-

gory C, we mean a coend C =
∫ X∈C ∨X ⊗ X of the functor F : Cop × C → C

defined by F (X,Y ) = ∨X ⊗ Y . The object C is then a coalgebra in C which coacts
universally on the objects of C via the (right) coaction:

δX = (idX ⊗ iX)(coevX ⊗ idX) : X → X ⊗ C.

Furthermore, when C is braided, C is a Hopf algebra in C (see [Maj93, Lyu94]).

1.7. Dimension of sovereign categories. Let C be a sovereign category which
admits a coend. The left and right dimensions of C are defined respectively as the
left and right dimensions of its coend. These dimensions are actually independent
of the choice of sovereign structure on C. If they coincide (for instance when C is a
ribbon category or C is a fusion category), they are called the dimension of C and
denoted dim C.
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1.8. Fusion categories. A fusion category over a commutative ring k is a k-lin-
ear autonomous category C endowed with a finite family {Vi}i∈I of objects of C
satisfying:

• HomC(Vi, Vj) = δi,j k for all i, j ∈ I;
• each object of C is a finite direct sum of objects of {Vi}i∈I ;
• 1 is isomorphic to some V0 with 0 ∈ I.

An object X of C is scalar2 if EndC(X) ∼= k. The family {Vi}i∈I is a represen-
tative family of scalar objects of C. The left or right dual of a scalar object is still
scalar. Moreover, in a fusion category, the left and right duals of a scalar object
are isomorphic.

Let C be a fusion category. The Hom spaces in C are free k-modules of finite
type. The multiplicity of i ∈ I in an objet X of C is defined as:

N i
X = rankk HomC(Vi,X) = rankk HomC(X,Vi).

Note there exist morphisms (pi,α
X : X → Vi)1≤α≤Ni

X
and (qi,α

X : Vi → X)1≤α≤Ni
X

such that:

idX =
∑

i∈I
1≤α≤Ni

X

q
i,α
X p

i,α
X and p

i,α
X q

j,β
X = δi,jδα,β idVi

.

A fusion category C admits a coend C =
⊕

i∈I
∨Vi ⊗ Vi with universal dinatural

transformation given by:

iX =
∑

i∈I
1≤α≤Ni

X

∨q
i,α
X ⊗ p

i,α
X .

Since diml(C) = dimr(C), the dimension of a sovereign fusion category C is:

dim C =
∑

i∈I

diml(Vi) dimr(Vi) ∈ k.

In a sovereign fusion category C, the dimensions diml(Vi) and dimr(Vi) of the
scalar objects are invertible. However dim C may be not invertible.

A fusion category C is spherical if it is sovereign and the left and right traces of
endomorphisms in C coincide. This last condition is equivalent to the equality of
left and right dimensions of the scalar objects Vi for i ∈ I. In a spherical category,
the left (and right) dimension of an object X is denoted dim(X).

2. Quantum invariants and Hopf diagrams

In this section, we review a general construction of quantum invariants (of
Reshetikhin-Turaev type) and a method for computing them via Hopf diagrams.

2.1. Constructing quantum invariants. Let B be a ribbon autonomous cate-

gory (B is not necessarily linear). Assume that B admits a coend C =
∫ Y ∈B ∨Y ⊗Y .

Let δY : Y → Y ⊗ C its associated universal coaction.
Let T be a ribbon n-string link with n a non-negative integer. Recall T is a ribbon

(n, n)-tangle consisting of n arc components, without any closed component, such
that the kth arc (1 ≤ k ≤ n) joins the kth bottom endpoint to the kth top endpoint.
We orient (each component of) T from bottom to top. Let Y1, . . . , Yn be objects
of B. Denote by:

TY1,··· ,Yn
: Y1 ⊗ · · ·Yn → Y1 ⊗ · · ·Yn

2Scalar objects coincide with simple objects if C is abelian and k is an algebraically closed field.
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the morphism in B obtained by coloring the kth component of T with the object Yk.
Then TY1,··· ,Yn

is natural in each variable Yk and so, by universality of the coend C,
there exists a unique morphism:

φT : C⊗n → 1
such that:

TY1,··· ,Yn
=

Y1

Y1

Yn

Yn

=

Y1

Y1

Yn

Yn

δY1
δYn

C
C

φT

Two natural questions arise in this context:

• How to evaluate the forms φT to get invariants of ribbon links3 and, further,
of 3-manifolds?

• How to compute the forms φT which are defined by universal property?

We address the first question in Section 2.2 and the second one in Section 2.3.

2.2. Kirby elements and quantum invariants. As in the previous section, let B
be a ribbon autonomous category admitting a coend C. In this setting, k = EndC(1)
is a commutative monoid.

Let L be a ribbon link in S3 with n components. There always exists a (non-
unique) ribbon n-string link T such that L is isotopic to the closure of T . For
α ∈ HomC(1, C), set

τB(L;α) = φT ◦ α⊗n ∈ k,

where φT : C⊗n → 1 is defined as above.
A Kirby element [Vir06] of B is a morphism α ∈ HomB(1, C) such that, for any

ribbon link L, τB(L;α) is well-defined and invariant under isotopies and 2-handle
slides of L. A Kirby element α of B is said to be normalizable if τB(©+1;α) and
τB(©−1;α) are invertible in k, where ©±1 denotes the unknot with framing ±1.

By universality of the coend C, the twist θY : Y → Y of B and its inverse lead
to morphisms θ±C : C → 1 such that:

θ±1
Y = (idY ⊗ θ±C )δY .

If α is a Kirby element of B, we have: τB(©±1;α) = θ±Cα, so that α is normalizable

if and only if θ±Cα are invertible in k.
Recall (see [Lic97]) that every (closed, connected, oriented) 3-manifold can be

obtained from S3 by surgery along a ribbon link L ⊂ S3. For any ribbon link L

in S3, we will denote by ML the 3-manifold obtained from S3 by surgery along L,
by nL the number of components of L, and by b−(L) the number of negative
eigenvalues of the linking matrix of L.

An immediate consequence of the Kirby theorem [Kir78] is that if α is a normal-
izable Kirby element of B, then:

τB(ML;α) = (θ+Cα)b−(L)−nL (θ−Cα)−b−(L) τB(L;α)

is an invariant of 3-manifolds. Furthermore these invariants are multiplicative under
the connected sum of 3- manifolds: τB(M#M ′;α) = τB(M ;α) τB(M ′;α).

Note that if α is a normalizable Kirby element and k is an automorphism of 1,
then kα is also a normalizable Kirby element. The normalization of the invariant
τB(M ;α) has been chosen so that τB(M ; kα) = τB(M ;α).

3A ribbon link with n components is always the closure of some ribbon n-string link.
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How to determine the (normalizable) Kirby element of B? A partial answer was
given in [Vir06]. Denoting by mC , ∆C , and SC respectively the product, coproduct,
and antipode of the Hopf algebra C, we have:

Theorem 2.1 ([Vir06, Theorem 2.5]). Any morphism α : 1 → C in B such that:

SCα = α and (mC ⊗ idC)(idC ⊗ ∆C)(α⊗ α) = α⊗ α

is a Kirby element of B.

For instance, the unit uC of C is a normalizable Kirby element (its associated
invariant is the trivial one).

A more interesting example of a Kirby element is an SC-invariant integral Λ of C,
that is, a morphism Λ: 1 → C such that SC(Λ) = Λ and mC(Λ ⊗ idC) = Λ εC =
mC(idC ⊗ Λ), where εC is the counit of C. For the existence of such integrals,
we refer to [BKLT00]. If Λ is normalizable, then the associated invariant is the
Lyubashenko’s one [Lyu95], up to a different normalization.

Note that other Kirby elements exist in general (see [Vir06]).

Remark 2.2. Assume B is a modular category in the sense of [Tur94], that is, a
ribbon fusion category with invertible S-matrix. Let {Vi}i∈I be a representative
family of simple objects of B. Then B admits a coend C =

⊕
i∈I

∨Vi ⊗ Vi. Let

φX : X → ∨∨X be the sovereign structure of B and set:

Λ =
∑

i∈I

dim(Vi) (id∨Vi
⊗ φ−1

i )coevVi
: 1 → C,

Then Λ is a SC-invariant integral of C. Furthermore it is normalizable and its
associated invariant is the Reshetikhin-Turaev one [Tur94], up to a different nor-
malization. More precisely, assuming dimB =

∑
i∈I dim(Vi)

2 has a square root D

in k (which is then invertible in this context), setting ∆− = θ−CΛ, and denoting by
b1(M) the first Betti number of M , we have:

RTB(M) = D−1
( D

∆−

)b1(M)

τB(M ; Λ).

We will see in Section 5 that, unlike RTB(M), τB(M ; Λ) may be still defined for
ribbon categories B with dimB = 0.

2.3. Hopf diagrams. For a precise treatment of the theory of Hopf diagrams, we
refer to [BV05]. Note that Habiro had comparable results in [Hab06].

A Hopf diagram is a planar diagram, with inputs but no output, obtained by
stacking the generators of Figure 1 (diagrams are read from bottom to top). Ex-
amples of Hopf diagrams with one and two inputs are depicted in Figure 2. Hopf
diagrams are submitted to the relations of Figure 3 (plus relations expressing that
τ is an invertible QYBE solution which is natural with respect to the other gener-
ators). In particular, the relations of Figure 3 say that ∆ behaves as a coproduct
with counit ε, S behaves as an antipode, ω± behaves as a Hopf pairing, and θ±
behaves as a twist form. The last two relations of Figure 3 are nothing but the
Markov relations for pure braids.

Hopf diagrams with the same number of inputs can be composed as in Figure 4.
This leads to the category Diag of Hopf diagrams. Objects of Diag are the non-
negative integers. For two non-negative integers m and n, the set HomDiag(m,n)
of morphisms from m to n is the empty set if m 6= n and is the set of Hopf diagrams
with m inputs (up to their relations) ifm = n. The identity of n is the juxtaposition
of n copies of ε.

The category Diag is a monoidal category: m ⊗ n = m + n on objects and the
monoidal product D ⊗ D′ of two Hopf diagrams D and D′ is the Hopf diagram
obtained by juxtaposing D on the left of D′.
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∆ = , ε = , ω+ = , ω− = ,

θ+ = , θ− = , S = , S−1 = ,

τ = , τ−1 = .

Figure 1. Generators of the Hopf diagrams

(a) A Hopf diagram with 1 input (b) A Hopf diagram with 2 inputs

Figure 2. Examples of Hopf diagrams

Let us denote by RSL the category of ribbon string links. The objects of RSL
are the non-negative integers. For two non-negative integers m and n, the set of
morphisms from m to n is the empty set if m 6= n and is the set of (isotopy classes)
of ribbon m-string links if m = n. The composition T ′ ◦ T of two ribbon n-string
links is given by stacking T ′ on the top of T (i.e., with ascending convention).
Identities are the trivial string links. Note that the category RSL is a monoidal
category: m⊗n = m+n on objects and the monoidal product T ⊗T ′ of two ribbon
string links T and T ′ is the ribbon string link obtained by juxtaposing T on the
left of T ′.

Hopf diagrams give a ‘Hopf algebraic’ description of ribbon string links. Indeed,
any Hopf diagram D with n inputs gives rise to a ribbon n-string link Φ(D) in
the following way: using the rules of Figure 5, we obtain a ribbon n-handle4 hD,
that is, a ribbon (2n, 0)-tangle consisting of n arc components, without any closed
component, such that the k-th arc joins the (2k−1)-to the 2k-th bottom endpoints.
Then, by rotating hD, we get a ribbon n-string link Φ(D):

D Hopf diagram  

hD
 Φ(D) =

h
D .

An example of this procedure is depicted in Figure 6.
This leads to a functor Φ: Diag → RSL defined on objects by n 7→ Φ(n) = n

and on morphisms by D 7→ Φ(D).

Theorem 2.3 ([BV05, Theorem 4.5]). Φ: Diag → RSL is a well-defined monoidal
functor and there exists (constructive proof) a monoidal functor Ψ: RSL → Diag
which satisfies Φ ◦ Ψ = 1RSL.

Note that by ‘constructing proof’ we mean there is an explicit algorithm that
associates to a ribbon string T a Hopf diagram Ψ(T ) such that Φ

(
Ψ(T )

)
= T

(see [BV05]). The key point is that such a functor Ψ exists thanks to the relations
we put on Hopf diagrams.

4Ribbon handles are called bottom tangles in [Hab06].
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, ,

, , , ,

, ,

, ,,

, ,

,

.

Figure 3. Relations on Hopf diagrams

DD D′

D′

◦

Figure 4. Composition of Hopf diagrams

We can now answer to the second question of Section 2.1. Let B be a ribbon
autonomous category which admits a coend C. Given a ribbon n-string link T , how
to compute the morphism φT : C⊗n → 1 which is defined by universal property?
Recall C is a Hopf algebra in B and denote its coproduct, counit, and antipode
by ∆C , εC , and SC respectively. The twist (and its inverse) of B is encoded by
morphisms θ±C → C → 1 (see Section 2.2). Furthermore, we can defined a Hopf
pairing ωC : C ⊗ C → 1 via:

ωC(iX ⊗ iY ) = (evX ⊗ evY )(id∨X ⊗ τ∨Y,XτX,∨Y ⊗ id∨Y ),

where τ is the braiding of B and iY : ∨Y ⊗ Y → C is the universal dinatural
transformation of the coend C. Finally, we set ω+

C = ωC(S−1
C ⊗ idC) and ω−

C = ωC .
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,,,

,,

,,,,

.

Figure 5. Rules for transforming Hopf diagrams to tangles

D =  hD =  Φ(D) = ∼

Figure 6. From Hopf diagrams to ribbon string links

Theorem 2.4 ([BV05, Theorem 5.1]). Let T be ribbon n-string link. Let D be
any Hopf diagram (with n entries) which encodes T , that is, such that Φ(D) = T

(recall there is an algorithm producing such a Hopf diagram). Then the morphism
φT : C⊗n → 1 defined by T is given by replacing the generators ∆, ε, ω±, θ±, S±1,
and τ±1 by ∆C , εC , ω±

C , θ±C , S±1
C , and τ±1

C,C respectively.

Remark that the product and unit of the coend C are not needed to represent
Hopf diagrams.

Let us summarize the above universal construction of quantum invariants, start-
ing from a ribbon category B which admits a coend C. Pick a normalizable Kirby
element α of B (for example as in Theorem 2.1). Recall it gives rise to an invariant
τB(M,α) of 3-manifolds. Let M be a 3- manifold. Present M by surgery along
a ribbon link L, which can be viewed as the closure of a ribbon n-string link T

where n is the number of components of L. Encode the string link T by a Hopf
diagram D:

M ≃ S3
L, L ∼ T with T = 7→D =

The morphism φT : C⊗n → 1 associated with T can be computed by replacing the
generators of D by the corresponding structural morphisms of the coend C. Then
evaluate φT with the Kirby element α and normalize to get the invariant:

τB(M ;α) =
α

θ+C

b−(L) − n

α

θ−C

−b−(L)

ω−
C ω+

C

SC τC,C

∆C∆C

αα
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In particular, to compute such quantum invariants defined from the center Z(C)
of a autonomous category C, one needs to give an explicit description of the struc-
tural morphism of the coend of Z(C) in terms of the category C. In Section 4, we
give such a description by using Hopf monads. This was our original motivation
for introducing Hopf monads.

3. Hopf monads

In this section, we give the definition and first properties of Hopf monads [BV07].

3.1. Monads. Let C be a category. Recall that the category End(C) of endofunc-
tors of C is strict monoidal with composition for monoidal product and identity
functor 1C for unit object.

A monad on C is an algebra in End(C), that is, a triple (T, µ, η), where T : C → C
is a functor, µ : T 2 → T and η : 1C → T are natural transformations, such that:

µXT (µX) = µXµT (X) and µXηT (X) = idT (X) = µXT (ηX)

for any object X of C.

3.2. Modules over a monad. Let T be a monad on a category C. An action of T
on an object M of C is a morphism r : T (M) →M in C such that:

rT (r) = rµM and rηM = idM .

The pair (M, r) is then called a T -module in C, or just a T -module.
Given two T -modules (M, r) and (N, s) in C, a morphism f ∈ HomC(M,N) is

said to be T -linear if fr = sT (f). This gives rise to the category T - C of T -modules,
with composition inherited from C.

We will denote by UT : T - C → C the forgetful functor of T defined by UT (M, r) =
M for any T -module (M, r) and UT (f) = f for any T -linear morphism f .

3.3. The philosophy. A monad T on an autonomous category C is a Hopf monad,
a quasitriangular Hopf monad, or a ribbon Hopf monad if the category T - C of
T -modules is respectively autonomous, braided, or ribbon (in such a way that the
forgetful functor UT : T - C → C is strict monoidal).

The cornerstone of the theory is that these categorical properties of T - C can be
encoded as structural morphisms of T . In the next sections, we give the definitions
of these structural morphisms. Their relations with the category T - C is summarized
in Theorem 3.1. For a complete treatment, we refer to [BV07].

3.4. Bimonads. A bimonad5 on a monoidal category C is a monad T on C endowed
with a natural transformation T2(X,Y ) : T (X⊗Y ) → T (X)⊗T (Y ) and a morphism
T0 : T (1) → 1 satisfying:

(idT (X) ⊗ T2(Y,Z))T2(X,Y ⊗ Z) = (T2(X,Y ) ⊗ idT (Z))T2(X ⊗ Y,Z);

(idT (X) ⊗ T0)T2(X,1) = idT (X) = (T0 ⊗ idT (X))T2(1,X);

T2(X,Y )µX⊗Y = (µX ⊗ µY )T2(T (X), T (Y ))T (T2(X,Y ));

T0µ1 = T0T (T0); T2(X,Y )ηX⊗Y = ηX ⊗ ηY ; T0η1 = id1;
for all objects X,Y,Z of C.

5This notion of bimonad coincides exactly with the notion of ‘Hopf monad’ introduced in
[Moe02]. However, by analogy with the notions of bialgebra and Hopf algebra, we prefer to

reserve the term ‘Hopf monad’ for bimonads with antipodes (see Section 3.6)



12 A. BRUGUIÈRES AND A. VIRELIZIER

3.5. Antipodes. Let T be a bimonad on a monoidal category C.
If C is left autonomous, then a left antipode for T is a natural transformation

sl = {sl
X : T (

∨
T (X)) → ∨X}X∈Ob(C) satisfying:

T0T (evX)T (∨ηX ⊗ idX) = evT (X)(s
l
T (X)T (∨µX) ⊗ idT (X))T2(

∨
T (X),X);

(ηX ⊗ id∨X)coevXT0 = (µX ⊗ sl
X)T2(T (X),

∨
T (X))T (coevT (X)).

Likewise, if C is right autonomous, then a right antipode for T is a natural
transformation sr = {sr

X : T (T (X)
∨
) → X∨}X∈Ob(C) satisfying:

T0T (ẽvX)T (idX ⊗ η∨X) = ẽvT (X)(idT (X) ⊗ sr
T (X)T (µ∨

X))T2(X,T (X)
∨
);

(idX∨ ⊗ ηX)c̃oevXT0 = (sr
X ⊗ µX)T2(T (X)

∨
, T (X))T (c̃oevT (X)).

If a left (resp. right) antipode exists, then it is unique. When both exist, the left
antipode sl and the right antipode sr are ‘inverse’ to each other in the sense that

idT (X) = sr
∨T (X)

T ((sl
X)

∨
) = sl

T (X)∨
T (

∨
(sr

X)) for any object X of C.

Moreover, as in the classical case, left and right antipodes are ‘anti-(co)multipli-
cative’ (see [BV07, Theorem 3.7]).

3.6. Hopf monads. A Hopf monad is a bimonad on an autonomous category
which has a left antipode and a right antipode.

Hopf monads generalize Hopf algebras to a non-braided (and non-linear) setting.
Furthermore: if C,D are two autonomous categories and U : D → C is a strong
monoidal functor which admits a left adjoint F : C → D, then T = UF is a Hopf
monad on C (see [BV07, Corollary 3.15]).

Many fundamental results of the theory of Hopf algebras (such as the decompo-
sition of Hopf modules, the existence of integrals, Maschke’s criterium of semisim-
plicity, etc...) can be generalized to Hopf monads (see [BV07]).

3.7. Quasitriangular Hopf monads. Let T be a Hopf monad on an autonomous
category C. An R-matrix for T is a natural transformation RX , Y : X ⊗ Y →
T (Y ) ⊗ T (X) satisfying:

(µY ⊗ µX)RT (X),T (Y )T2(X,Y ) = (µY ⊗ µX)T2(T (Y ), T (X))T (RX,Y );

(idT (Z) ⊗ T2(X,Y ))RX⊗Y,Z

= (µZ ⊗ idT (X)⊗T (Y ))(RX,T (Z) ⊗ idT (Y ))(idX ⊗RY,Z);

(T2(Y,Z) ⊗ idT (X))RX,Y ⊗Z

= (idT (Y )⊗T (Z) ⊗ µX)(idT (Y ) ⊗RT (X),Z)(RX,Y ⊗ idZ).

An R-matrix satisfies a QYB equation and is invertible for a convolution product
(see [BV07, corollary 8.7]).

A quasitriangular Hopf monad is a Hopf monad equipped with an R-matrix.

3.8. Ribbon Hopf monads. Let T be a quasitriangular Hopf monad T on an
autonomous category C. A twist for T is a central and ∗-invertible natural trans-
formation θX : X → T (X) satisfying:

T2(X,Y )θX⊗Y = (µXθT (X)µX ⊗ µY θT (Y )µY )RT (Y ),T (X)RX,Y .

Here central and ∗-invertible means central and invertible in the monoid Hom(1C , T )
of natural transformations from 1C to T . This monoid is endowed with the con-
volution product defined by: (φ ∗ ψ)X = µXφT (X)ψX = µXT (ψX)φX : X → T (X)
and with the unit η.

A twist of a quasitriangular Hopf monad on an autonomous category is said to
be self-dual if it satisfies:

∨θX = sl
Xθ∨T (X) (or, equivalently, θ∨X = sr

XθT (X)∨).
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A ribbon Hopf monad is a quasitriangular Hopf monad on an autonomous cate-
gory endowed with a self-dual twist.

3.9. Relations with modules. Bimonads, Hopf monads, quasitriangular Hopf
monads, and ribbon Hopf monads encode the expected structures on their category
of modules:

Theorem 3.1 ([BV07]). (a) Let T be a monad on a monoidal category C. If T
is a bimonad, then the category T - C of T -modules is monoidal by setting:

(M, r) ⊗T - C (N, s) = (M ⊗N, (r ⊗ s)T2(M,N)) and 1T - C = (1, T0).

Moreover this gives a bijective correspondence between bimonad structures
for the monad T and monoidal structures of T - C such that the forgetful
functor UT : T - C → C is strict monoidal.

(b) Let T be a bimonad on a left autonomous C. Then T has a left antipode sl

if and only if the category T - C of T -modules is left autonomous. In terms
of a left antipode sl, left duals in T - C are given by:

∨
(M, r) = (∨M, sl

MT (∨r)), ev(M,r) = evM , coev(M,r) = coevM .

(c) Let T be a bimonad on a right autonomous C. Then T has a right antipode
sl if and only if the category T - C of T -modules is right autonomous. In
terms of a right antipode sr, right duals in T - C are given by:

(M, r)
∨

= (M∨, sr
MT (r∨)), ẽv(M,r) = ẽvM , c̃oev(M,r) = c̃oevM .

(d) Let T be a bimonad on an autonomous C. Then T is a Hopf monad if and
only if the category T - C of T -modules is autonomous.

(e) Let T be a bimonad on a monoidal category C. Any R-matrix R for T yields
a braiding τ on T - C as follows:

τ(M,r),(N,s) = (s⊗ t)RM,N : (M, r) ⊗ (N, s) → (N, s) ⊗ (M, r).

This assignment gives a bijection between R-matrices for T and braidings
on T - C.

(f) Let T be a quasitriangular Hopf monad on an autonomous category C. Any
twist θ for T yields a twist Θ on T - C as follows:

Θ(M,r) = rθM : (M, r) → (M, r).

This assignment gives a bijection between twists for T and twists on T - C.
Moreover, in this correspondence, θ is self-dual (and so T is ribbon) if and
only if Θ is self-dual (and so T - C is ribbon).

4. Quantum double of Hopf monads

In this section, we review the construction of the double of a Hopf monad and
its relations with the center construction (see [BV08a] for details).

4.1. The center of a monoidal category. Let C be a braided category. Recall
that the center of C is the category Z(C) defined as follows: the objects are pairs
(M,σ), whereM is an object of C and σY : M⊗Y → Y ⊗M is a natural isomorphism
verifying σY ⊗Z = (idY ⊗σZ)(σY ⊗ idZ). A morphism f : (M,σ) → (M ′, σ′) in Z(C)
is a morphism f : M → M ′ in C which satisfies (idY ⊗ f)σY = σ′

Y (f ⊗ idY ). The
composition and identities are inherited from that of C.

The category Z(C) is monoidal with unit object (1, idM ) and monoidal product
defined by (M,σ) ⊗ (N, γ) =

(
M ⊗ N, (σ ⊗ idN )(idM ⊗ γ)

)
. Furthermore, if C is

autonomous, so is Z(C).



14 A. BRUGUIÈRES AND A. VIRELIZIER

4.2. The centralizer and the double of a Hopf monad. An endofunctor T of
an autonomous category C is centralizable if the coend:

ZT (X) =

∫ Y ∈C
∨
T (Y ) ⊗X ⊗ Y

exists for every object X of C. Denote by iX,Y :
∨
T (Y ) ⊗X ⊗ Y → ZT (X) the as-

sociated universal dinatural transformation. By the parameter theorem for coends,
ZT is an endofunctor of C, called the centralizer of T , and iX,Y is natural in X and
dinatural in Y .

Let T be a Hopf monad on an autonomous category C. In [BV08a], we construct
an explicit Hopf monad structure on ZT , inherited from that of T . Since T preserves
colimits and so coends (see [BV07, Remark 3.13]), T (i) is a universal dinatural
transformation. Therefore we can define a natural transformation Ω: TZT → ZTT

by:

ΩXT (iX,Y ) = iT (X),T (Y )

(
∨µY s

l
T (Y )T (∨µY ) ⊗ T2(X,Y )

)
T2(

∨
T (Y ),X ⊗ Y ),

where µ and sl denote the product and left antipode of T .

Theorem 4.1 ([BV08a]). The natural transformation Ω: TZT → ZTT is a como-
noidal distributive law6.

The distributive law Ω is called the canonical distributive law of T over ZT .
Since Ω is a comonoidal distributive law, DT = ZT ◦Ω T is a Hopf monad on C. We
call DT the double of T .

Theorem 4.2 ([BV08a]). Let T be a centralizable Hopf monad on an autonomous
category C. Then the forgetful functor U : Z(T - C) → C, given by

(
(M, r), σ

)
7→M ,

is monadic with monad the double DT of T . Hence an equivalence:

Z(T - C) ∼= DT - C.

This is an equivalence of braided categories when the Hopf monad DT is equipped
with the R-matrix:

RX,Y = (uT (Y ) ⊗ ZT (ηX)
)
(idT (Y ) ⊗ iX,Y )(coevY ⊗ idX),

where η and u the units of T and ZT respectively.

Remark 4.3. Let C be an autonomous category which is centralizable, that is, such
that the trivial Hopf monad 1C is centralizable. In that case, the centralizer Z = Z1C

and the double D1C
of 1C coincide. Then, by Theorem 4.2, Z is a quasitriangular

Hopf monad on C such that Z(C) ∼= Z- C as braided categories. In Section 5.1, we
explicitly describe Z in terms of C when C is a fusion category.

Example 4.4. Let H be a finite-dimensional Hopf algebra over a field k. Then
the Hopf monad T =? ⊗k H on vectk is centralizable. We have: ZT =? ⊗k H

∗ and
DT =?⊗kH⊗kH

∗. From Theorem 4.2, the vector space D(H) = H⊗kH
∗ inherits

a quasitriangular Hopf algebra structure from the quasitriangular Hopf monad DT .
In particular the algebra structure on D(H) is a twist of that of H ⊗ H∗ by an
isomorphism H∗⊗H → H⊗H∗ coming from the distributive law Ω: TZT → ZTT .
This quasitriangular Hopf algebra D(H) is precisely the Drinfeld double of H.
Furthermore, since T - vectk = repH and DT - vectk = repD(H), one recovers that
Z(repH) ∼= repD(H) as braided categories.

6A comonoidal distributive law Ω: TP → PT between two Hopf monads P and T makes their

composition PT a Hopf monad denoted by P ◦Ω T .
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The previous example may be generalized to Hopf algebras in braided categories.
Let B be a braided autonomous category which admits a coend:

C =

∫ Y ∈B
∨Y ⊗ Y.

Recall C is then a Hopf algebra in B (see Section 1.6). Let A be a Hopf algebra
in B. Then the Hopf monad ? ⊗A on B is centralizable and we have:

Z?⊗A =? ⊗ ∨A⊗ C, D?⊗A =? ⊗A⊗ ∨A⊗ C.

From Theorem 4.2, we get that the object D(A) = A ⊗ ∨A ⊗ C is a quasitriangu-
lar Hopf algebra in B, whose structure is inherited from the quasitriangular Hopf
monad D?⊗A. Here D(A) quasitriangular means that there exists a R-matrix:

R : C ⊗ C → D(A) ⊗D(A)

verifying axioms generalizing the usual ones (when B = vectk, we have C = k).
This R-matrix defines a braiding on the category repD(A) of D(A)- modules in B
and Z(repA) ∼= repD(A) as braided categories.

In particular Z(B) ∼= repC (since D(1) = C), that is, the center of a braided
category is the category of modules over its coend.

4.3. The coend of a category of modules over a Hopf monad. Let T be a
centralizable Hopf monad on an autonomous category C. Denote by ZT its central-
izer, iX,Y :

∨
T (Y ) ⊗ X ⊗ Y → ZT (X) its universal dinatural transformation, and

Ω: TZT → ZTT the canonical distributive law of T over ZT . Then:

Theorem 4.5 ([BV08a]). The category T - C of T -modules admits a coend:

(
ZT (1), ZT (T0)Ω1) =

∫ (M,r)∈T - C
∨
(M, r) ⊗ (M, r),

with I(M,r) = i1,M (∨r ⊗ idM ) :
∨
(M, r) ⊗ (M, r) →

(
ZT (1), ZT (T0)Ω1) as universal

dinatural transformation.

If, in addition, T is quasitriangular, the coend
(
ZT (1), ZT (T0)Ω1) of T - C is a

Hopf algebra in the braided category T - C (see Section 1.6).

Remark 4.6. Let T be a centralizable Hopf monad on an autonomous category C.
Then Z(T - C) admits a coend if and only if the double DT of T is centralizable. If
such is the case, we obtain via Theorems 4.2 and 4.5 an explicit description of the
coend of the braided category Z(T - C) ∼= DT - C in terms of the monad T .

5. Reshetikhin-Turaev invariants from categorical centers

In this section, we treat in details the case of the center Z(C) of a spherical
fusion category C. This leads to an explicit algorithm for computing invariants of
Reshetikhin-Turaev type defined using Z(C) as input.

5.1. On the center of a fusion category. Fix a commutative ring k. Let C be
a fusion category over k (see Section 1.8). Remark that any k-linear endofunctor T
of C is centralizable with centralizer:

ZT (X) =
⊕

i∈I

∨T (Vi) ⊗X ⊗ Vi

and universal dinatural transformation iX,Y : ∨Y ⊗X ⊗ Y → Z(X) given by:

iX,Y =
∑

i∈I
1≤α≤Ni

Y

∨T
(
q

i,α
Y

)
⊗ idX ⊗ p

i,α
Y .
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Z2(X,Y ) =
∑

i∈I

ViVi

ViY

Y

X

X

∨Vi

∨Vi
∨Vi

, Z0 =
∑

i∈I Vi
∨Vi

,

µX =
∑

i,j,k∈I

1≤α≤Nk
i,j

Vi Vj

Vk
∨Vk

∨Vj
∨Vi X

X

∨q
k,α
i,j p

k,α
i,j

, ηX =

V0X

X

∨V0

,

sl
X =

∑

i∈I
∨Vi Vi

∨Vi Vi
∨X

∨X

, sr
X =

∑

i∈I Vi V ∨
iVi V ∨

i X∨

X∨

,

RX,Y =
∑

i∈I
1≤α≤Ni

Y

ViV0
∨V0

∨Vi X

X Y

Y

pi
Y

qi
Y

, θX =
∑

i∈I
1≤α≤Ni

X

∨Vi
∨∨Vi

X

X

pi
X

qi
X

φVi

.

Figure 7. Structural morphisms of Z

In particular, the trivial Hopf monad 1C is centralizable with centralizer Z = Z1C

given by:

Z(X) =
⊕

i∈I

∨Vi ⊗X ⊗ Vi.

By Remark 4.3, Z is a quasitriangular Hopf monad and Z(C) ∼= Z- C as braided
categories. Furthermore, if C is spherical, then Z is a ribbon Hopf monad and
so Z(C) is a ribbon category.

The structural morphisms of Z can be described in terms of the category C, that
is, only using the p, q’s (see Section 1.8), the duality morphisms, and the sovereign
structure φX : X → ∨∨X. They are depicted in Figure 7. The dotted lines in the
figures represent idV0

= id1 and can be removed without changing the morphisms.
We depicted them in order to remember which factor of Z(X) is concerned. In the

pictures, we simplify the notations as follows: pi,α
k∨, l,∨∨m,n denotes pi,α

V ∨

k
⊗Vl⊗

∨∨Vm⊗Vn
.

Using the Maschke theorem for Hopf monads which characterize semisimplicity
(see [BV07, Theorem 6.5]), we have:

Proposition 5.1. [BV08b] Let C be a spherical fusion category. Then the (ribbon)
Hopf monad Z is semisimple if and only if dim C is invertible.

Since Z(C) ∼= Z- C, a consequence of Proposition 5.1 is:

Corollary 5.2. Let C be a spherical fusion category over an algebraic closed field.
Assume dim C is invertible. Then Z(C) is a ribbon fusion category.

5.2. The coend of the center of a fusion category. Let C be a fusion category
over a commutative ring k. Let Z be the centralizer of 1C as in Section 5.1. Since Z
is k-linear and C is fusion, it is centralizable, and so Z(C) ∼= Z- C admits a coend.
By Theorem 4.5, the underlying object of this coend is:

C =
⊕

j∈I

∨
Z(Vj) ⊗ Vj =

⊕

i,j∈I

∨Vi ⊗
∨Vj ⊗

∨∨Vi ⊗ Vj .

An immediate consequence of this is: dimZ(C) = (dim C)2.
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∆C =
∑

i,j,k,m,n∈I

1≤α≤Nk
k,m

1≤β≤Nn
∨k,j,k

∨Vi
∨Vj

∨∨Vi

Vj

Vj

∨Vm
∨Vn

∨∨Vm Vn
∨Vk

∨Vj
∨∨Vk

∨p
n,β
∨k,j,k

∨q
n,β
∨k,j,k

∨p
i,α
k,m

∨∨q
i,α
k,m

, εC =
∑

j∈I
∨V0

∨Vj
∨∨V0 Vj

,

SC =
∑

i,j,k,l∈I

1≤α≤Ni
j,∨k,j∨

1≤β≤N l
∨j,∨i,∨j,∨∨i,j

∨Vi
∨Vj

∨∨Vi Vj

p
l,β
∨j,∨i,∨j,∨∨i,j

∨q
l,β
∨j,∨i,∨j,∨∨i,j

q
i,α

j,∨k,j∨

∨p
i,α

j,∨k,j∨

∨Vk
∨Vl

∨∨Vk Vl

,

ωC =
∑

i,j,k,l∈I

1≤α≤Nk
i∨,j∨,i

1≤β≤Ni
∨k,∨l,∨∨k

∨q
k,α
i∨,j∨,i

q
i,β
∨k,∨l,∨∨k

∨∨p
k,α
i∨,j∨,i

p
i,β
∨k,∨l,∨∨k

∨Vi
∨Vj

∨∨Vi Vj
∨Vk

∨Vl
∨∨Vk Vl

,

θ+C =
∑

i∈I

φ∨Vi

∨Vi
∨Vi

∨∨Vi Vi

, θ−C =
∑

i∈I

φ∨Vi

∨Vi
∨∨Vi

∨∨Vi
∨Vi

,

τC,C =
∑

i,j,k,l,a,b,m∈I
1≤α≤Nm

∨k,∨l,∨∨k,l

1≤β≤Nb
∨m,j,m

1≤γ≤Ni
m,a,m∨



∨p
i,γ
m,a,m∨

∨∨q
i,γ
m,a,m∨ p

m,α
∨k,∨l,∨∨k,l

q
m,α
∨k,∨l,∨∨k,l

∨q
b,β
∨m,j,m p

b,β
∨m,j,m

∨Vi
∨Vj

∨∨Vi Vj
∨Vk

∨Vk

∨Vl

∨Vl

∨∨Vk

∨∨Vk

Vl

Vl
∨Va

∨Vb
∨∨Va Vb

,

Λ =
∑

j∈I

dim(Vj)
φ−1

Vj

∨V0
∨Vj

∨∨V0 Vj

.

Figure 8. Structural morphisms of the coend of Z(C)

The structural morphisms of C can be expressed using only the category C.
Those needed to represent Hopf diagrams are depicted in Figure 8.

Theorem 5.3 ([BV08b]). The morphism Λ: 1 → C of Figure 8 is a SC-invariant
integral of the coend of Z(C) ∼= Z- C.

Following [Lyu95], a braided autonomous category B is said to be modular if it
admits a coend C whose Hopf pairing ωC : C⊗C → 1 is non-degenerate. Note that
this extends the usual notion of modularity to the non-semisimple case (when B is a
ribbon fusion category, B is modular in the above sense if and only if the S-matrix
is invertible).
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Corollary 5.4 ([BV08b]). The center of a spherical fusion category is modular.

Remark 5.5. Let C a spherical fusion category over an algebraic closed field with
dim C invertible. By Corollaries 5.2 and 5.4, the center Z(C) of C is a modular
ribbon fusion category. This last result was first proved in [Mü03] using a different
method.

5.3. Computing RTZ(C)(M
3) from C. Let C be a spherical fusion category over

a commutative ring k. As explained in Sections 5.1 and 5.2, the center Z(C) of C is
a ribbon category and admits a coend C whose structural morphisms are explicit
(see Figure 8).

By Theorem 5.3, the morphism Λ: 1 → C of Figure 8 is a Kirby element.
Moreover we have: θ+CΛ = 1 and θ−CΛ = 1. Therefore Λ is a normalizable Kirby
element , hence the 3-manifold invariant τZ(C)(M,Λ) (see Section 2.2). Note that
the normalization coefficient in the expression of τZ(C)(M ; Λ) is equal to 1.

For example, we have:

τZ(C)(S
3; Λ) = 1 and τZ(C)(S

2 × S1; Λ) = dim C.

Since we have an explicit description of the structural morphisms of the coend C
(see Figures 8), we have a way to compute this invariant by using Hopf diagrams
(see Section 2.3).

Note that the invariant τZ(C)(M,Λ) is defined even if dim C is not invertible.
When dim C is invertible and k is an algebraic closed field, so that Z(C) is a modular
fusion category (see Remark 5.5), the invariant τZ(C)(M,Λ) coincides with the
Reshetikhin-Turaev invariant RTZ(C)(M) (up to normalization, see Remark 2.2).
Hence a way to compute RTZ(C)(M) in terms of the structural morphisms of C
(recall one cannot use the original algorithm of Reshetikhin-Turaev since the simple
objects of Z(C) are not known in general).
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