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Can we give similar encodings for arbitrary tensor functors?
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Tensor categories and tensor functors 4/35

Let k be a field.

Definition

In this talk a tensor category is a k- linear abelian category with a structure
of rigid category (=monoidal with duals) such that:

@ (Cis locally finite (Hom’s are finite dim’l and objects have finite length)
@ ®is k-bilinear and End(1) =k

Cis finite if C ER mod for some finite dimensional k- algebra R.

Definition
A tensor functor F : C — D is a k- linear exact strong monoidal functor
between tensor categories.

A tensor functor F is faithful. It has a right adjoint iff it has a left adjoint; in
that case we say that F is finite.
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Let F: C — D be a tensor functor.

Question 1
Can one encode F by algebraic data in D (or IndD)?

Yes. But this data cannot be a Hopf algebra, as D is not braided. It is a
Hopf (co)monad.

Question 2
Can one encode F by an algebraic data in C (or IndC)?

Yes, if F is dominant.
This data is a commutative algebra in the center of C (or IndC).
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A algebra in a monoidal category C
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No braiding involved!
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(i) CT is rigid;
(i) T is a Hopf monad;
(iii) (older definition) T admits a left and a right (unary) antipode
sy T('TX) - X and s": T(TX") - X".

There is a similar result for closed categories (monoidal categories with
internal Homs).
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N sh: T('T(X)) - X
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The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra:
if you reverse the arrows in the definition, you obtain the notion of a Hopf
comonad. A Hopf comonad is a monoidal comonad such that the cofusion
operators are invertible.

All results about Hopf monads translate into results about Hopf comonads.
In particular, if T is a Hopf comonad on C,

@ the category Ct of comodules over T is monoidal,

Fr
L
\_/C
Ur
where Ur is the forgetful functor and Fr is its right adjoint, the cofree

comodule functor.

© we have a Hopf monoidal adjunction: D
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U

Let DCC be a comonoidal adjunction (meaning C, O are monoidal
F

and U is strong monoidal)
Then F is comonoidal and T = UF is a bimonad on C.
There are canonical morphisms:
@ F(ceUd) » Fcod
@ F(Udec) > d®Fc
and (F, U) is a Hopf adjunction if these morphisms are isos.

Proposition

If the adjunction is Hopf, T is a Hopf monad. Such is the case if either of
the following hold:

@ C, D are rigid;
@ C, D and U are closed.

A bimonad is Hopf iff its adjunction is Hopf!
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Hopf monads from Hopf algebras 16/35

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in B braided category with braiding v

~» T = H®? is a Hopf monad on 8B

The monad structure of T comes from the algebra structure of H
The comonoidal structure of T is

Axy=HRTHxQY)(A®X®Y): H®3XQY > HRX®H®Y
g=counitof H: H—-> 1

We have 8™ =4 Mod as monoidal categories.

Can we extend this construction to non-braided categories?
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C monoidal category, (H, o) a Hopf algebra in Z(C) (which is braided)
~» a Hopf monad T = H®,? on C, defined by X — H® X. The
comonoidal structure of T is

Axy=(H®ox®Y)(A®XQ®Y)
& = counitof H

Moreover T is equipped with a Hopf monad morphism

e=(e®7): T - ide

Theorem (BVL)
This construction defines an equivalence of categories

{{Hopf algebras in Z(C)}} = {{Hopf monads on C}} / id¢

If His a Hopf algebra and T = H® we recover Sweedler's Theorem.
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Let C be a rigid category, with center Z(C).

Using duality, interpret a half-braiding oy : X® Y — Y ® X as a dinatural
transformation 'Y@ X® Y —» X

We say that C is centralizable it Z(X) = fyec Y @ X ® Y exists for all

X € C (note that Z(1) is the coend of C). Then a half braiding o
corresponds with &: Z(X) - X

Theorem (BV)

If C is centralizable, then Z : X — Z(X) is a quasitriangular Hopf monad
on C and we have a braided isomorphism of categories

Z(C) - C?
(X,0) - (X,5)

Remark: In general the Hopf monad Z is not augmented, i e. not
representable by a Hopf algebra: e. g. C = {{G-graded vector spaces}},
for G non abelian finite group.
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Let C be a monoidal rigid category
A Hopf monad T: C — C is centralizable if

YeC
Zr(X) = f ‘T(Y)®X® Y exists for all X € Ob(X)

Proposition (BV)

If T is a centralizable Hopf monad, Zr: X — Z7(X) is a Hopf monad
called the centralizer of T.

In particular the monad Z of the previous slide is the centralizer of 1.
In a sense the centralizer plays the role of the dual of the Hopf monad T.
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Let R be a unitary ring ~» a monoidal category (gModg, ®r.r RR)-

Facts
@ linear bimonads on g Modgr with a right adjoint is are bialgebroids in
the sense of Takeuchi [Szlachani]
@ linear Hopf monads on gModg with a right adjoints are a Hopf
algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated
axioms ~» a Hopf adjunction ~» a Hopf monad (much easier to
manipulate). Using Hopf monads one shows:

Theorem (BVL)

A finite tensor category C over a field k is tensor equivalent to the category
of A-modules for some bialgebroid A.

: . k L .
Given a k- equivalence C =g mod for some finite dimensional k- algebra
R, one constructs a canonical Hopf algebroid A over R.
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Outlook of General Theory of Hopf monads 22/35

Tannaka dictionary

Hopf modules and Sweedler decomposition theorem

Existence of universal integrals (with values in a certain
autoequivalence of C)

@ Semisimplicity, Maschke criterion

@ The drinfeld double of a Hopf monad
@ Cross-products

@ Bosonization for Hopf monads

Q

Applications to construction and comparison of quantum invariants
(non-braided setting)
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Hopf modules and Sweedler’'s Theorem for Hopf
Monads 23/35

T Hopf monad on C ~» T1 is a coalgebra in C (coproduct Ay 1, counit &)
~ lifts to a coalgebra € = FT(1) in CT. Moreover we have a natural
isomorphism

o:Ce? >0 C.

Proposition (BVL)

o is a half-braiding and (C, o) is a cocommutative coalgebra in Z(CT)
called the induced central coalgebra of T.

A (right) T-Hopf module is a (right) C-comodule in C7, i. e. a data (M, r,0)
with (M, r) a T-module, (M, d) a T1-comodule + T-linearity of 9.
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Under suitable exactness conditions (T is conservative, C has
coequalizers and T preserves them):

Theorem (BVL)

The assignment X — (TX, ux, Ax1) is an equivalence of categories

Q:C— {{T- Hopf modules}}

with quasi-inverse the functor coinvariant part.

Moreover if C has equalizers and T preserves them, Q is a monoidal
equivalence, the category of Hopf modules (i.e. C- comodules) being
endowed with the cotensor product over C.
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Proof of Sweedler’s theorem for Hopf monads 25/35
An adjunction F( )u ~sacomonad T = (FU, F(ny). €) on D.

Denoting D4 the category of T- comodules we have a cocomparison
D

A The adjunction (F,U) is
functor K: comonadic if K equiva-
C - D5
K

lence.

If T is a monad on C, its adjunction is comonadic under suitable exactness
assumptions (descent), i. e. K: C — (CT)f is an equivalence.
For T Hopf monad, we have an isomorphism of comonads on CT

¢:7'L>?®é

defined by ¢y = (r®idra)) Tmz: TM - M ® T1.
Hence CT s — {{right T- Hopf modules}} o
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We now consider tensor categories over a field k.

If C is a tensor category, its Ind-completion IndC is a monoidal abelian
category containing C as a full subcategory and whose objects are formal
filtering colimits of objects of C. For instance Ind vect = Vect, and

Ind comodH = ComodH. Note that these are no longer rigid.

Theorem

Let F : C — D be a tensor functor. There exists a k- linear left exact
comonad on IndC such that we have a commutative diagram:

C

F
vect
~g /

Dr

where C7 is the category of T-comodule whose underlying object is in C.
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Proof 28/35

The functor F : C — D extends to a linear faithful exact functor

IndF : IndC — IndD which preserves colimits and is strong monoidal.
IndF has a right adjoint, denoted by R.

It is also a monoidal adjunction, which is Hopf. Its comonad T = IndFR is
a Hopf comonad on IndC.

IndF being faithful exact, the adjunction (IndF, R) is comonadic by Beck,
hence the theorem.

If D = vect, a linear Hopf comonad on Vect is of the form H®? for some
Hopf algebra H, so we recover the classical tannakian result.
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Let F: C — D be a tensor functor. We say that F is dominant if the right
adjoint R of IndF is faithful exact.

Then applying the classification theorem for Hopf modules in its dual form
we obtain:

Theorem

If F is dominant, there exists a commutative algebra (A, o) in Z(IndC) -
the induced central algebra of T - such that we have a commutative
diagram

C i

A- mod ¢
x Af
D

where A- mod is the category of ‘finite type’ A-modules in IndC
(=quotients of A ® X, X € C), with tensor product ®4 -, and Fp is the
tensor functor X —» A ® X.

If © = vectk and C, F are symmetric, then A is Deligne’s trivializing
algebra.
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An exact sequence of Hopf algebras in the sense of Schneider is a
sequence

K—>H-LsH
of Hopf algebras such that
@ p'(0) is a normal Hopf ideal of H;

@ H is right faithfully coflat over H';
© i is a categorical kernel of p.

We extend this notion to tensor categories.
Let F: C — D be a tensor functor. We denote by kr the full tensor
subcategory of C
kr = {X € C| F(X)is trivial}
Note that F induces a fiber functor K¢ — vect, X — Hom(1, F(X).
We say that F is normal if the right adjoint R of IndF satisfies
R(1) € Ind(KF).
This means that the subcategory < 1 > of IndC generated by 1 is stable
under the Hopf comonad T = UR which encodes F.
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An exact sequence of tensor categories is a sequence

f [F
B

C/ L C C/I

of tensor categories such that:
@ F is normal and dominant;
@ finduces a tensor equivalence C’ — KF.
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An exact sequence of tensor categories is a sequence

c—t-c—Lt.c”

of tensor categories such that:
@ F is normal and dominant;
@ finduces a tensor equivalence C’ — KF.

If H - H — H" is an exact sequence of Hopf algebras, then
comodH” — comodH — comodH"”

is an exact sequence of tensor categories, and, if H is finite dimensional,
mod H” - mod H— mod H’

is also an exact sequence of tensor categories.
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Exact sequences of tensor categories are classified by certain Hopf
(co)-monads.
A linear exact Hopf comonad T on tensor category C is normal if
T(1) e< 1 >. We have < 1 >= Vect, so if T is normal it restricts to a Hopf
algebra H on Vect. If in addition T is faithful, we have an exact sequence
of tensor categories

comodH - Ct - C

and ‘all extensions of C by comodH’ are of this form up to tensor
equivalence [one has to be more precise].
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Examples 34/35

Equivariantization
Let G be a finite group acting on a tensor category C by tensor
automorphisms (Tg)geg. Then we have an exact sequence

repG — C% - C

where C¢ — C is the equivariantization functor.

The endofunctor T = €p T4 admits a structure of Hopf comonad TC (it
admits also a structure of Hopf monad), and C€ is just CT°. The Hopf
comonad T€ is normal faithful exact, and its associated Hopf algebra is
k€. It has a certain commutativity property. These conditions characterize
Hopf comonads corresponding with equivariantizations (at least over C).
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24. More on Hopf monads 35/35

BV1. Hopf Diagrams and Quantum Invariants, AGT 5 (2005) 1677-1710.

Where Hopf diagram are introduced as a means for computing the Reshetikhin-Turaev
invariant in terms of the coend of a ribbon category and its structural morphisms.

BV2. Hopf Monads, Advances in Math. 215 (2007), 679-733.

Where the notion of Hopf monad is introduced, and several fundamental results of the
theory of finite dimensional Hopf algebras are extended thereto.

BV3. Categorical Centers and Reshetikhin-Turaev Invariants, Acta Mathematica
Vietnamica 33 3, 255-279

Where the coend of the center of a fusion spherical category over a ring is described, the
modularity of the center, proven, and the corresponding Reshetikhin-Turaev invariant,
constructed.

BV4. Quantum Double of Hopf monads and Categorical Centers, arXiv:0812.2443, to
appear in Transactions of the American Mathematical Society (2010)

Where the general theory of centralizers and doubles of Hopf monads is expounded.
BLV. Hopf Monads on Monoidal Categories, arXiv:1003.1920.

Where Hopf monads are defined anew in the monoidal world

BN. Exact sequences of tensor categories, arXiv:1006.0569.

See also: http://www.math.univ-montp2. fr/~bruguieres/recherche.html
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