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Introduction

Motivation : Tannaka theory 2 / 35

Over k field:

H Hopf algebra −→
a tensor category C = comodH
+ a fiber functor C → vect

Reconstruction: given C tensor category + ω : C → vect fiber functor

 H = Coend(ω) =

∫ X∈C

ω(X) ⊗ ω(X)∗ Hopf algebra

with commutative diagram:

C
ω //

'⊗ $$

vect

comodH

99

A fiber functor is encoded by a Hopf algebra (in Vect)
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Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G).

Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor

 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra,

G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme

and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.

Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

G affine group scheme/k = commutative Hopf algebra H = O(G). Then
C = comodH = repG and the fiber functor C → vect are both symmetric.

Converse: C symmetric tensor category + ω symmetric fiber functor
 H = Coend(ω) commutative Hopf algebra, G = SpecH affine group
scheme and C ' repG as symmetric tensor categories.
Then there exists a commutative algebra A in C (or its Ind-completion)
satisfying

∀X in C, A ⊗ X
∼
−→ An as left A - modules

Hom(1,A) = k

and we have
ω(X) = Hom(1,A ⊗ X).

The proof of Deligne’s internal characterization of tannaka categories
consists in constructing such a trivializing algebra.

A symmetric fiber functor is encoded by a certain commutative algebra in
C (or IndC)

Can we give similar encodings for arbitrary tensor functors?



Introduction

Tensor categories and tensor functors 4 / 35

Let k be a field.

Definition
In this talk a tensor category is a k- linear abelian category with a structure
of rigid category (=monoidal with duals) such that:

C is locally finite (Hom’s are finite dim’l and objects have finite length)

⊗ is k- bilinear and End(1) = k

C is finite if C
k
'R mod for some finite dimensional k- algebra R.

Definition
A tensor functor F : C → D is a k- linear exact strong monoidal functor
between tensor categories.

A tensor functor F is faithful. It has a right adjoint iff it has a left adjoint; in
that case we say that F is finite.
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Examples
1 vect is the initial tensor category

2 A fiber functor for C is a tensor functor C → vect
3 A Hopf algebra morphism f : H → H′ induces a tensor functor

f∗ : comodH → comodH′

Tannaka duality asserts that we have an equivalence of categories

{{Hopf Algebras}} ' {{Tensor categories}} / vect

But many tensor categories do not come from Hopf algebras!
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Let F : C → D be a tensor functor.

Question 1
Can one encode F by algebraic data in D (or IndD)?

Yes. But this data cannot be a Hopf algebra, as D is not braided. It is a
Hopf (co)monad.

Question 2
Can one encode F by an algebraic data in C (or IndC)?

Yes, if F is dominant.
This data is a commutative algebra in the center of C (or IndC).
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Examples
Some aspects of the general theory
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Hopf Monads - a sketchy survey Definition

Monads 9 / 35

Let C be a category. The category EndoFun(C) is strict monoidal
(⊗=composition, 1 = 1C)

A monad on C is an algebra (=monoid) in EndoFun(C) :

T : C → C, µ : T2 → T (product), η : 1C → T (unit)

A T -module is a pair (M, r), M ∈ Ob(C), r : T(M)→ M s. t.

rµM = rT(r) and rηM = idM .

 CT category of T -modules.

Example
A algebra in a monoidal category C
 T =? ⊗ A : X 7→ X ⊗ A is a monad on C and CT = Mod- A

T ′ = A⊗? is a monad on C and CT ′ = A - Mod
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A monad T on a category C an adjunction

CT

UT

��
C

FT

GG

where UT (M, r) = M and FT (X) = (T(X), µX ).

An adjunction
D

U
��
C

F

GG

 a monad T = (UF , µ := U(εF ), η) on C

where η : 1C → UF and ε : FU → 1D are the adjunction morphisms
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K : D 7→ (U(D),U(εD))
(the comparison functor)

The adjunction (F ,U) is
monadic if K equivalence.
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Bimonads [Moerdijk] 11 / 35

C monoidal category, (T , µ, η) monad on C

 CT , UT : CT → C

T is a bimonad if and only if CT is monoidal and UT is strict monoidal. This
is equivalent to:

T is comonoidal endofunctor
(with ∆X ,Y : T(X ⊗ Y)→ TX ⊗ TY and ε : T1→ 1)

µ and η are comonoidal natural transformations.

Axioms similar to those of a bialgebra except the compatibility between µ
and ∆:

T2(X ⊗ Y)

µX⊗Y

��

T∆X ,Y// T(TX ⊗ TY)
∆TX ,TY // T2X ⊗ T2Y

µX⊗µY

��
T(X ⊗ Y)

∆X ,Y

// TX ⊗ TY

No braiding involved!
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For a bimonad T define the (left and right) fusion morphisms
Hl(X ,Y) = (idTX ⊗ µY )∆X ,TY : T(X ⊗ TY)→ TX ⊗ TY ,
Hr(X ,Y) = (µX ⊗ idTY )∆TX ,Y : T(TX ⊗ Y)→ TX ⊗ TY .

A bimonad T is a Hopf monad if the fusion morphisms are isomorphisms.

Proposition
For T bimonad on C rigid, equivalence:

(i) CT is rigid;

(ii) T is a Hopf monad;

(iii) (older definition) T admits a left and a right (unary) antipode
s l

X : T(∨TX)→ ∨X and sr : T(TX∨)→ X∨.

There is a similar result for closed categories (monoidal categories with
internal Homs).
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There is a Tannaka dictionary relating properties of a monad T on a
monoidal category C and properties of its category of modules CT .

T CT Structural morphism

bimonad monoidal ∆X ,Y : T(X ⊗ Y)→ T(X) ⊗ T(Y)

Hopf monad
(C rigid)

rigid
s l

X : T(∨T(X))→ ∨X
sr

X : T(T(X)∨)→ X∨

quasitriangular braided RX ,Y : X ⊗ Y → T(Y) ⊗ T(X)

ribbon ribbon θX : X → T(X)

(M, r) ⊗ (N, s) = (M ⊗ N, (r ⊗ s)∆M,N) ∨(M, r) = (∨M, s l
MT(∨r))

τ(M,r),(N,s) = (s ⊗ r)RM,N Θ(M,r) = rθM
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The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra:
if you reverse the arrows in the definition, you obtain the notion of a Hopf
comonad. A Hopf comonad is a monoidal comonad such that the cofusion
operators are invertible.

All results about Hopf monads translate into results about Hopf comonads.
In particular, if T is a Hopf comonad on C,

1 the category CT of comodules over T is monoidal,

2 we have a Hopf monoidal adjunction: D
UT

77C
FT
vv

where UT is the forgetful functor and FT is its right adjoint, the cofree
comodule functor.
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Let D
U
''
C

F
hh be a comonoidal adjunction (meaning C, D are monoidal

and U is strong monoidal)

Then F is comonoidal and T = UF is a bimonad on C.
There are canonical morphisms:

F(c ⊗ Ud)→ Fc ⊗ d
F(Ud ⊗ c)→ d ⊗ Fc

and (F ,U) is a Hopf adjunction if these morphisms are isos.

Proposition

If the adjunction is Hopf, T is a Hopf monad. Such is the case if either of
the following hold:

C, D are rigid;

C, D and U are closed.

A bimonad is Hopf iff its adjunction is Hopf!
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Hopf monads from Hopf algebras 16 / 35

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in B braided category with braiding τ
 T = H⊗? is a Hopf monad on B
The monad structure of T comes from the algebra structure of H
The comonoidal structure of T is

∆X ,Y = (H ⊗ τH,X ⊗ Y)(∆ ⊗ X ⊗ Y) : H ⊗ X ⊗ Y → H ⊗ X ⊗ H ⊗ Y

ε = counit of H : H → 1

We have BT =H Mod as monoidal categories.

Can we extend this construction to non-braided categories?
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The Joyal-Street Center 17 / 35

C monoidal category
Joyal-Street

Center
//
Z(C) braided category

Objects of Z(C) = half-braidings of C :

pair (X , σ) with σY : X ⊗ Y
∼
→ Y ⊗ X natural in Y s. t.

σY⊗Z = (idY ⊗ σZ )(σY ⊗ idZ )

Morphisms f : (X , σ)→ (X ′, σ′) in Z(C) are morphisms f : X → X ′ in
C s. t. σ′(f ⊗ id) = (id ⊗ f)σ

(X , σ) ⊗Z(C) (X ′, σ′) =
(
X ⊗ X ′, (σY ⊗ id)(id ⊗ σ′)

)
Braiding: c(X ,σ),(X ′,σ′) = σX ′
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Representable Hopf monads 18 / 35

C monoidal category, (H, σ) a Hopf algebra in Z(C) (which is braided)
 a Hopf monad T = H⊗σ? on C, defined by X 7→ H ⊗ X . The
comonoidal structure of T is

∆X ,Y = (H ⊗ σX ⊗ Y)(∆ ⊗ X ⊗ Y)

ε = counit of H

Moreover T is equipped with a Hopf monad morphism

e = (ε⊗?) : T → idC

Theorem (BVL)

This construction defines an equivalence of categories

{{Hopf algebras in Z(C)}}
'
−→ {{Hopf monads on C}} / idC

If H is a Hopf algebra and T = H⊗ we recover Sweedler’s Theorem.
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Monadicity of the center 19 / 35

Let C be a rigid category, with center Z(C).

Using duality, interpret a half-braiding σY : X ⊗ Y → Y ⊗ X as a dinatural
transformation ∨Y ⊗ X ⊗ Y → X
We say that C is centralizable if Z(X) =

∫ Y∈C ∨Y ⊗ X ⊗ Y exists for all
X ∈ C (note that Z(1) is the coend of C). Then a half braiding σ
corresponds with σ̃ : Z(X)→ X

Theorem (BV)

If C is centralizable, then Z : X 7→ Z(X) is a quasitriangular Hopf monad
on C and we have a braided isomorphism of categories

Z(C)→ CZ

(X , σ) 7→ (X , σ̃)

Remark: In general the Hopf monad Z is not augmented, i e. not
representable by a Hopf algebra: e. g. C = {{G-graded vector spaces}},
for G non abelian finite group.
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Let C be a monoidal rigid category

A Hopf monad T : C → C is centralizable if

ZT (X) =

∫ Y∈C
∨T(Y) ⊗ X ⊗ Y exists for all X ∈ Ob(X)

Proposition (BV)

If T is a centralizable Hopf monad, ZT : X 7→ ZT (X) is a Hopf monad
called the centralizer of T .

In particular the monad Z of the previous slide is the centralizer of 1C.
In a sense the centralizer plays the role of the dual of the Hopf monad T .
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Hopf monads as ‘quantum groupoids’ 21 / 35

Let R be a unitary ring a monoidal category (RModR ,⊗R ,R RR).

Facts
linear bimonads on RModR with a right adjoint is are bialgebroids in
the sense of Takeuchi [Szlacháni]

linear Hopf monads on RModR with a right adjoints are a Hopf
algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated
axioms a Hopf adjunction a Hopf monad (much easier to
manipulate). Using Hopf monads one shows:

Theorem (BVL)

A finite tensor category C over a field k is tensor equivalent to the category
of A -modules for some bialgebroid A .

Given a k- equivalence C
k
'R mod for some finite dimensional k- algebra

R, one constructs a canonical Hopf algebroid A over R.
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Hopf modules and Sweedler’s Theorem for Hopf
Monads 23 / 35

T Hopf monad on C T1 is a coalgebra in C (coproduct ∆1,1, counit ε)

 lifts to a coalgebra Ĉ = FT (1) in CT . Moreover we have a natural
isomorphism

σ : Ĉ⊗?→? ⊗ Ĉ .

Proposition (BVL)

σ is a half-braiding and (Ĉ , σ) is a cocommutative coalgebra in Z(CT )
called the induced central coalgebra of T .

A (right) T - Hopf module is a (right) Ĉ-comodule in CT , i. e. a data (M, r , ∂)
with (M, r) a T - module, (M, ∂) a T1- comodule + T - linearity of ∂.
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A (right) T - Hopf module is a (right) Ĉ-comodule in CT , i. e. a data (M, r , ∂)
with (M, r) a T - module, (M, ∂) a T1- comodule + T - linearity of ∂.



Hopf Monads - a sketchy survey Some aspects of the general theory

Hopf modules and Sweedler’s Theorem for Hopf
Monads 23 / 35

T Hopf monad on C T1 is a coalgebra in C (coproduct ∆1,1, counit ε)
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Under suitable exactness conditions (T is conservative, C has
coequalizers and T preserves them):

Theorem (BVL)

The assignment X 7→ (TX , µX ,∆X ,1) is an equivalence of categories

Q : C
'
−→ {{T - Hopf modules}}

with quasi-inverse the functor coinvariant part.
Moreover if C has equalizers and T preserves them, Q is a monoidal
equivalence, the category of Hopf modules (i.e. Ĉ- comodules) being
endowed with the cotensor product over Ĉ.
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Proof of Sweedler’s theorem for Hopf monads 25 / 35

An adjunction
D

U
��
C

F

GG

 a comonad T̂ = (FU,F(ηU), ε) on D.

Denoting DT̂ the category of T̂ - comodules we have a cocomparison

functor K̂ :

D

��ww
C

88

K̂
// DT̂

XX
The adjunction (F ,U) is
comonadic if K̂ equiva-
lence.

If T is a monad on C, its adjunction is comonadic under suitable exactness
assumptions (descent), i. e. K̂ : C → (CT )T̂ is an equivalence.
For T Hopf monad, we have an isomorphism of comonads on CT

φ : T̂
∼
−→? ⊗ Ĉ

defined by φ(M,r) = (r ⊗ idT(1))TM,1 : TM → M ⊗ T1.

Hence CT
T̂
∼
−→ {{right T - Hopf modules}} �
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Hopf (co)-monads applied to tensor functors

We now consider tensor categories over a field k.

If C is a tensor category, its Ind-completion IndC is a monoidal abelian
category containing C as a full subcategory and whose objects are formal
filtering colimits of objects of C. For instance Ind vect = Vect, and
Ind comodH = ComodH. Note that these are no longer rigid.

Theorem
Let F : C → D be a tensor functor. There exists a k- linear left exact
comonad on IndC such that we have a commutative diagram:

C
F //

'⊗   

vect

DT

<<

where CT is the category of T -comodule whose underlying object is in C.
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Hopf (co)-monads applied to tensor functors

Proof 28 / 35

The functor F : C → D extends to a linear faithful exact functor
IndF : IndC → IndD which preserves colimits and is strong monoidal.

IndF has a right adjoint, denoted by R.
It is also a monoidal adjunction, which is Hopf. Its comonad T = IndFR is
a Hopf comonad on IndC.
IndF being faithful exact, the adjunction (IndF ,R) is comonadic by Beck,
hence the theorem.

Example

If D = vect, a linear Hopf comonad on Vect is of the form H⊗? for some
Hopf algebra H, so we recover the classical tannakian result.
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Hopf (co)-monads applied to tensor functors

Let F : C → D be a tensor functor. We say that F is dominant if the right
adjoint R of IndF is faithful exact.
Then applying the classification theorem for Hopf modules in its dual form
we obtain:

Theorem

If F is dominant, there exists a commutative algebra (A , σ) in Z(IndC) -
the induced central algebra of T - such that we have a commutative
diagram

C
FA //

F ��

A- mod C

D

'⊗
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where A- mod is the category of ‘finite type’ A-modules in IndC
(=quotients of A ⊗ X, X ∈ C), with tensor product ⊗A ,σ, and FA is the
tensor functor X 7→ A ⊗ X.

If D = vectk and C, F are symmetric, then A is Deligne’s trivializing
algebra.
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Exact sequences of tensor categories

An exact sequence of Hopf algebras in the sense of Schneider is a
sequence

K i // H
p // H′

of Hopf algebras such that
1 p−1(0) is a normal Hopf ideal of H;
2 H is right faithfully coflat over H′;
3 i is a categorical kernel of p.

We extend this notion to tensor categories.
Let F : C → D be a tensor functor. We denote by kF the full tensor
subcategory of C

kF = {X ∈ C | F(X)is trivial}

Note that F induces a fiber functor KF → vect, X 7→ Hom(1,F(X).
We say that F is normal if the right adjoint R of IndF satisfies
R(1) ∈ Ind(KF ).
This means that the subcategory < 1 > of IndC generated by 1 is stable
under the Hopf comonad T = UR which encodes F .
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Exact sequences of tensor categories

An exact sequence of tensor categories is a sequence

C′
f // C

F // C′′

of tensor categories such that:
1 F is normal and dominant;
2 f induces a tensor equivalence C′ → KF .

If H′ → H → H′′ is an exact sequence of Hopf algebras, then

comodH′ → comodH → comodH′′

is an exact sequence of tensor categories, and, if H is finite dimensional,

mod H′′ → mod H → mod H′

is also an exact sequence of tensor categories.
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Exact sequences of tensor categories

Exact sequences of tensor categories are classified by certain Hopf
(co)-monads.

A linear exact Hopf comonad T on tensor category C is normal if
T(1) ∈< 1 >. We have < 1 >' Vect, so if T is normal it restricts to a Hopf
algebra H on Vect. If in addition T is faithful, we have an exact sequence
of tensor categories

comodH → CT → C

and ‘all extensions of C by comodH’ are of this form up to tensor
equivalence [one has to be more precise].
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Exact sequences of tensor categories

Examples 34 / 35

Equivariantization

Let G be a finite group acting on a tensor category C by tensor
automorphisms (Tg)g∈G . Then we have an exact sequence

repG → CG → C

where CG → C is the equivariantization functor.
The endofunctor T =

⊕
Tg admits a structure of Hopf comonad TG (it

admits also a structure of Hopf monad), and CG is just CTG
. The Hopf

comonad TG is normal faithful exact, and its associated Hopf algebra is
k G . It has a certain commutativity property. These conditions characterize
Hopf comonads corresponding with equivariantizations (at least over C).
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24. More on Hopf monads 35 / 35

BV1. Hopf Diagrams and Quantum Invariants, AGT 5 (2005) 1677-1710.
Where Hopf diagram are introduced as a means for computing the Reshetikhin-Turaev
invariant in terms of the coend of a ribbon category and its structural morphisms.

BV2. Hopf Monads, Advances in Math. 215 (2007), 679-733.
Where the notion of Hopf monad is introduced, and several fundamental results of the
theory of finite dimensional Hopf algebras are extended thereto.

BV3. Categorical Centers and Reshetikhin-Turaev Invariants, Acta Mathematica
Vietnamica 33 3, 255-279
Where the coend of the center of a fusion spherical category over a ring is described, the
modularity of the center, proven, and the corresponding Reshetikhin-Turaev invariant,
constructed.

BV4. Quantum Double of Hopf monads and Categorical Centers, arXiv:0812.2443, to
appear in Transactions of the American Mathematical Society (2010)
Where the general theory of centralizers and doubles of Hopf monads is expounded.

BLV. Hopf Monads on Monoidal Categories, arXiv:1003.1920.
Where Hopf monads are defined anew in the monoidal world
BN. Exact sequences of tensor categories, arXiv:1006.0569.

See also: http://www.math.univ-montp2.fr/∼bruguieres/recherche.html
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