Hopf (co)monads, tensor functors and exact sequences of tensor categories

Alain Bruguières

(Université Montpellier II)

based on joint works with Alexis Virelizier and Steve Lack [BLV] and with Sonia Natale [BN]

Conference 'Quantum Groups'

Clermont-Ferrand August 30- September 3 2010

Conference of the ANR project GALOISINT Quantum Groups : Galois and integration techniques

Motivation : Tannaka theory

2/35

Motivation : Tannaka theory

Over \Bbbk field:

2/35

Over k field:

H Hopf algebra \longrightarrow

a tensor category C = comodH+ a fiber functor $C \rightarrow \text{vect}$

Over k field:

H Hopf algebra \longrightarrow a tensor category C = comodH+ a fiber functor $C \rightarrow \text{vect}$

Reconstruction: given *C* tensor category + $\omega : C \rightarrow$ vect fiber functor

Over k field:

H Hopf algebra
$$\longrightarrow$$
 a tensor category $C = \text{comod}H$
+ a fiber functor $C \rightarrow \text{vect}$

Reconstruction: given C tensor category + $\omega : C \rightarrow$ vect fiber functor

$$\rightsquigarrow H = \operatorname{Coend}(\omega) = \int^{X \in C} \omega(X) \otimes \omega(X)^*$$
 Hopf algebra

Over k field:

$$\begin{array}{ccc} H \text{ Hopf algebra} & \longrightarrow & \text{a tensor category } C = \text{comod} H \\ & + \text{ a fiber functor } C \rightarrow \text{vect} \end{array}$$

Reconstruction: given C tensor category + $\omega : C \rightarrow$ vect fiber functor

$$\rightsquigarrow H = \operatorname{Coend}(\omega) = \int^{X \in C} \omega(X) \otimes \omega(X)^*$$
 Hopf algebra

with commutative diagram:

Over k field:

$$\begin{array}{ccc} H \mbox{ Hopf algebra} & \longrightarrow & a \mbox{ tensor category } C = \mbox{ comod} H \\ + \mbox{ a fiber functor } C \rightarrow \mbox{ vect} \end{array}$$

Reconstruction: given C tensor category + $\omega : C \rightarrow$ vect fiber functor

$$\rightsquigarrow H = \text{Coend}(\omega) = \int^{X \in C} \omega(X) \otimes \omega(X)^*$$
 Hopf algebra

with commutative diagram:

Over k field:

H Hopf algebra
$$\longrightarrow$$
 a tensor category $C = \text{comod}H$
+ a fiber functor $C \rightarrow \text{vect}$

Reconstruction: given C tensor category + $\omega : C \rightarrow$ vect fiber functor

 $\rightsquigarrow H = \text{Coend}(\omega) = \int^{X \in C} \omega(X) \otimes \omega(X)^*$ Hopf algebra

with commutative diagram:

A fiber functor is encoded by a Hopf algebra (in Vect)

G affine group scheme/k = commutative Hopf algebra H = O(G).

G affine group scheme/k = commutative Hopf algebra *H* = *O*(*G*). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

G affine group scheme/k = commutative Hopf algebra H = O(G). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: ${\cal C}$ symmetric tensor category $+ \omega$ symmetric fiber functor

G affine group scheme/k = commutative Hopf algebra *H* = *O*(*G*). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra,

G affine group scheme/k = commutative Hopf algebra *H* = *O*(*G*). Then C = comodH = repG and the fiber functor $C \rightarrow$ vect are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra, G = SpecH affine group scheme

G affine group scheme/k = commutative Hopf algebra *H* = *O*(*G*). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra, G = SpecH affine group scheme and $C \simeq \text{rep}G$ as symmetric tensor categories.

G affine group scheme/k = commutative Hopf algebra H = O(G). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra, G = SpecH affine group scheme and $C \simeq \text{rep}G$ as symmetric tensor categories. Then there exists a commutative algebra *A* in *C* (or its Ind-completion)

satisfying

• $\forall X \text{ in } C, A \otimes X \xrightarrow{\sim} A^n \text{ as left } A \text{-modules}$

• Hom
$$(1, A) = k$$

and we have

$$\omega(X) = \operatorname{Hom}(\mathbb{1}, A \otimes X).$$

G affine group scheme/k = commutative Hopf algebra H = O(G). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra, G = SpecH affine group scheme and $C \simeq \text{rep}G$ as symmetric tensor categories. Then there exists a commutative algebra *A* in *C* (or its Ind-completion)

Then there exists a commutative algebra A in C (or its Ind-completion) satisfying

• $\forall X \text{ in } C, A \otimes X \xrightarrow{\sim} A^n \text{ as left } A \text{-modules}$

•
$$\operatorname{Hom}(1, A) = \Bbbk$$

and we have

$$\omega(X) = \operatorname{Hom}(\mathbb{1}, A \otimes X).$$

The proof of Deligne's internal characterization of tannaka categories consists in constructing such a *trivializing algebra*.

G affine group scheme/k = commutative Hopf algebra *H* = *O*(*G*). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra, G = SpecH affine group scheme and $C \simeq \text{rep}G$ as symmetric tensor categories. Then there exists a commutative algebra A in *C* (or its Ind-completion)

Then there exists a commutative algebra A in C (or its Ind-completion) satisfying

• $\forall X \text{ in } C, A \otimes X \xrightarrow{\sim} A^n \text{ as left } A \text{-modules}$

• Hom
$$(1, A) = k$$

and we have

$$\omega(X) = \operatorname{Hom}(\mathbb{1}, A \otimes X).$$

The proof of Deligne's internal characterization of tannaka categories consists in constructing such a *trivializing algebra*.

A symmetric fiber functor is encoded by a certain commutative algebra in C (or IndC)

G affine group scheme/k = commutative Hopf algebra *H* = *O*(*G*). Then C = comodH = repG and the fiber functor $C \rightarrow \text{vect}$ are both symmetric.

Converse: *C* symmetric tensor category $+ \omega$ symmetric fiber functor $\rightsquigarrow H = \text{Coend}(\omega)$ commutative Hopf algebra, G = SpecH affine group scheme and $C \simeq \text{rep}G$ as symmetric tensor categories. Then there exists a commutative algebra *A* in *C* (or its Ind-completion)

Then there exists a commutative algebra A in C (or its Ind-completion) satisfying

• $\forall X \text{ in } C, A \otimes X \xrightarrow{\sim} A^n \text{ as left } A \text{-modules}$

• Hom
$$(1, A) = k$$

and we have

$$\omega(X) = \operatorname{Hom}(\mathbb{1}, A \otimes X).$$

The proof of Deligne's internal characterization of tannaka categories consists in constructing such a *trivializing algebra*.

A symmetric fiber functor is encoded by a certain commutative algebra in C (or IndC)

Can we give similar encodings for arbitrary tensor functors?

Tensor categories and tensor functors

Let \Bbbk be a field.

Definition

In this talk a *tensor category* is a k-linear abelian category with a structure of rigid category (=monoidal with duals) such that:

- C is locally finite (Hom's are finite dim'l and objects have finite length)
- \otimes is \Bbbk -bilinear and $\operatorname{End}(1) = \Bbbk$

C is *finite* if $C \cong_R^{\Bbbk} \mod$ for some finite dimensional \Bbbk -algebra *R*.

Definition

A tensor functor $F : C \to \mathcal{D}$ is a \Bbbk -linear exact strong monoidal functor between tensor categories.

A tensor functor F is faithful. It has a right adjoint iff it has a left adjoint; in that case we say that F is *finite*.

• vect is the initial tensor category

- vect is the initial tensor category
- **2** A fiber functor for *C* is a tensor functor $C \rightarrow \text{vect}$

- vect is the initial tensor category
- **a** fiber functor for *C* is a tensor functor $C \rightarrow \text{vect}$
- **③** A Hopf algebra morphism $f: H \rightarrow H'$ induces a tensor functor

 $f_*: \operatorname{comod} H \to \operatorname{comod} H'$

- vect is the initial tensor category
- **a** fiber functor for *C* is a tensor functor $C \rightarrow \text{vect}$
- **③** A Hopf algebra morphism $f: H \rightarrow H'$ induces a tensor functor

 $f_*: \operatorname{comod} H \to \operatorname{comod} H'$

Tannaka duality asserts that we have an equivalence of categories

 $\{\{\text{Hopf Algebras}\}\} \simeq \{\{\text{Tensor categories}\}\} / \text{vect}$

- vect is the initial tensor category
- **2** A fiber functor for *C* is a tensor functor $C \rightarrow \text{vect}$
- **③** A Hopf algebra morphism $f: H \rightarrow H'$ induces a tensor functor

 $f_*: \operatorname{comod} H \to \operatorname{comod} H'$

Tannaka duality asserts that we have an equivalence of categories

 $\{\{\text{Hopf Algebras}\}\} \simeq \{\{\text{Tensor categories}\}\} / \text{vect}$

But many tensor categories do not come from Hopf algebras!

- vect is the initial tensor category
- **2** A fiber functor for *C* is a tensor functor $C \rightarrow \text{vect}$
- **③** A Hopf algebra morphism $f: H \rightarrow H'$ induces a tensor functor

 $f_*: \operatorname{comod} H \to \operatorname{comod} H'$

Tannaka duality asserts that we have an equivalence of categories

 $\{\{\text{Hopf Algebras}\}\} \simeq \{\{\text{Tensor categories}\}\} / \text{vect}$

But many tensor categories do not come from Hopf algebras!

Question 1

Can one encode *F* by algebraic data in \mathcal{D} (or Ind \mathcal{D})?

Question 1

Can one encode F by algebraic data in \mathcal{D} (or Ind \mathcal{D})?

Yes. But this data cannot be a Hopf algebra, as \mathcal{D} is not braided.

Question 1

Can one encode F by algebraic data in \mathcal{D} (or Ind \mathcal{D})?

Yes. But this data cannot be a Hopf algebra, as \mathcal{D} is not braided. It is a Hopf (co)monad.

Question 1

Can one encode F by algebraic data in \mathcal{D} (or Ind \mathcal{D})?

Yes. But this data cannot be a Hopf algebra, as \mathcal{D} is not braided. It is a Hopf (co)monad.

Question 2

Can one encode F by an algebraic data in C (or IndC)?

Yes, if F is dominant.

Question 1

Can one encode F by algebraic data in \mathcal{D} (or Ind \mathcal{D})?

Yes. But this data cannot be a Hopf algebra, as \mathcal{D} is not braided. It is a Hopf (co)monad.

Question 2

Can one encode F by an algebraic data in C (or IndC)?

Yes, if F is dominant.

This data is a commutative algebra

Question 1

Can one encode F by algebraic data in \mathcal{D} (or Ind \mathcal{D})?

Yes. But this data cannot be a Hopf algebra, as \mathcal{D} is not braided. It is a Hopf (co)monad.

Question 2

Can one encode F by an algebraic data in C (or IndC)?

Yes, if F is dominant.

This data is a commutative algebra in the center of C (or IndC).

Outline of the talk

Introduction

Outline of the talk

7/35

Outline of the talk

7/35

- 2 Hopf Monads a sketchy survey
- Hopf (co)-monads applied to tensor functors

Outline of the talk

7/35

- 2 Hopf Monads a sketchy survey
- Hopf (co)-monads applied to tensor functors
- Exact sequences of tensor categories

Introduction

2 Hopf Monads - a sketchy survey

- Definition
- Examples
- Some aspects of the general theory

3 Hopf (co)-monads applied to tensor functors

4 Exact sequences of tensor categories

Monads

Let C be a category. The category EndoFun(C) is strict monoidal (\otimes =composition, $1 = 1_C$)

Let *C* be a category. The category EndoFun(C) is strict monoidal (\otimes =composition, $1 = 1_C$)

A monad on *C* is an algebra (=monoid) in EndoFun(C) :

$$T: C \to C, \quad \mu: T^2 \to T \text{ (product)}, \quad \eta: \mathbf{1}_C \to T \text{ (unit)}$$

Let *C* be a category. The category EndoFun(C) is strict monoidal (\otimes =composition, $1 = 1_C$)

A monad on *C* is an algebra (=monoid) in EndoFun(C) :

$$T: C \to C, \quad \mu: T^2 \to T \text{ (product)}, \quad \eta: \mathbf{1}_C \to T \text{ (unit)}$$

A *T*-module is a pair (M, r), $M \in Ob(C)$, $r \colon T(M) \to M$ s. t.

$$r\mu_M = rT(r)$$
 and $r\eta_M = id_M$.

Let *C* be a category. The category EndoFun(C) is strict monoidal (\otimes =composition, $1 = 1_C$)

A monad on *C* is an algebra (=monoid) in EndoFun(C) :

$$T: C \to C, \quad \mu: T^2 \to T \text{ (product)}, \quad \eta: \mathbf{1}_C \to T \text{ (unit)}$$

A *T*-module is a pair (M, r), $M \in Ob(C)$, $r \colon T(M) \to M$ s. t.

$$r\mu_M = rT(r)$$
 and $r\eta_M = id_M$.

 $\rightsquigarrow C^T$ category of *T*-modules.

Let *C* be a category. The category EndoFun(C) is strict monoidal (\otimes =composition, $1 = 1_C$)

A monad on *C* is an algebra (=monoid) in EndoFun(C) :

$$T: C \to C, \quad \mu: T^2 \to T \text{ (product)}, \quad \eta: \mathbf{1}_C \to T \text{ (unit)}$$

A *T*-module is a pair (M, r), $M \in Ob(C)$, $r \colon T(M) \to M$ s. t.

$$r\mu_M = rT(r)$$
 and $r\eta_M = id_M$.

 $\rightsquigarrow C^T$ category of *T*-modules.

Example

A algebra in a monoidal category C $\rightsquigarrow T = ? \otimes A : X \mapsto X \otimes A$ is a monad on C and $C^T = \text{Mod-}A$

Let *C* be a category. The category EndoFun(C) is strict monoidal (\otimes =composition, $1 = 1_C$)

A monad on *C* is an algebra (=monoid) in EndoFun(C) :

$$T: C \to C, \quad \mu: T^2 \to T \text{ (product)}, \quad \eta: \mathbf{1}_C \to T \text{ (unit)}$$

A *T*-module is a pair (M, r), $M \in Ob(C)$, $r \colon T(M) \to M$ s. t.

$$r\mu_M = rT(r)$$
 and $r\eta_M = id_M$.

 $\rightsquigarrow C^T$ category of *T*-modules.

Example

A algebra in a monoidal category C $\rightsquigarrow T = ? \otimes A : X \mapsto X \otimes A$ is a monad on C and $C^T = \text{Mod-}A$ $T' = A \otimes ?$ is a monad on C and $C^{T'} = A \cdot \text{Mod}$

Monads and adjunctions

A monad T on a category
$$C \rightsquigarrow$$
 an adjunction $F^{T}\begin{pmatrix} C \\ C \end{pmatrix} U^{T}$
where $U^{T}(M, r) = M$ and $F^{T}(X) = (T(X), \mu_{X})$.

10/35

Monads and adjunctions

A monad *T* on a category *C* \rightsquigarrow an adjunction $F^{T}\begin{pmatrix} C \\ C \end{pmatrix} U^{T}$ where $U^{T}(M, r) = M$ and $F^{T}(X) = (T(X), \mu_{X})$. An adjunction $F\begin{pmatrix} \mathcal{D} \\ C \end{pmatrix} U \quad \rightsquigarrow$ a monad $T = (UF, \mu := U(\varepsilon_{F}), \eta)$ on *C* where $\eta : 1_{C} \rightarrow UF$ and $\varepsilon : FU \rightarrow 1_{\mathcal{D}}$ are the adjunction morphisms

 \rightsquigarrow

 C^T

Monads and adjunctions

A monad T on a category
$$C \rightsquigarrow$$
 an adjunction $F^{T} \begin{pmatrix} \\ \\ C \end{pmatrix} U^{T}$

where $U^{\mathsf{T}}(M, r) = M$ and $F^{\mathsf{T}}(X) = (T(X), \mu_X)$.

An adjunction $F\left(\begin{array}{c} \mathcal{D} \\ \mathcal{C} \\ \mathcal{C} \\ \mathcal{C} \end{array} \right) u \longrightarrow a \text{ monad } T = (UF, \mu := U(\varepsilon_F), \eta) \text{ on } C$ where $\eta : 1_C \rightarrow UF$ and $\varepsilon : FU \rightarrow 1_{\mathcal{D}}$ are the adjunction morphisms

Monads and adjunctions

A monad *T* on a category $C \rightsquigarrow$ an adjunction $F^{T} \begin{pmatrix} U \\ U \end{pmatrix} U^{T}$

where $U^{\mathsf{T}}(M, r) = M$ and $F^{\mathsf{T}}(X) = (T(X), \mu_X)$.

An adjunction $F(\bigcup_{C}^{\mathcal{D}} U \iff a \mod T = (UF, \mu := U(\varepsilon_F), \eta) \text{ on } C$ where $\eta : 1_C \to UF$ and $\varepsilon : FU \to 1_{\mathcal{D}}$ are the adjunction morphisms

Monads and adjunctions

A monad *T* on a category $C \rightsquigarrow$ an adjunction $F^{T} \begin{pmatrix} c \\ c \end{pmatrix} U^{T}$

where $U^{T}(M, r) = M$ and $F^{T}(X) = (T(X), \mu_X)$.

An adjunction $F(\bigcup_{C}^{D} U \iff a \mod T = (UF, \mu := U(\varepsilon_F), \eta) \text{ on } C$ where $\eta : \mathbf{1}_{\mathcal{C}} \to UF$ and $\varepsilon : FU \to \mathbf{1}_{\mathcal{D}}$ are the adjunction morphisms

 $K: D \mapsto (U(D), U(\varepsilon_D))$

Monads and adjunctions

A monad *T* on a category $C \rightsquigarrow$ an adjunction $F^{T} \begin{pmatrix} c \\ c \end{pmatrix} U^{T}$

where $U^{T}(M, r) = M$ and $F^{T}(X) = (T(X), \mu_X)$.

An adjunction $F(\bigcup_{C}^{D} U \iff a \mod T = (UF, \mu := U(\varepsilon_F), \eta) \text{ on } C$ where $\eta : \mathbf{1}_{\mathcal{C}} \to UF$ and $\varepsilon : FU \to \mathbf{1}_{\mathcal{D}}$ are the adjunction morphisms

 $K: D \mapsto (U(D), U(\varepsilon_D))$

Bimonads [Moerdijk]

C monoidal category, (T, μ, η) monad on C

Bimonads [Moerdijk]

11/35

C monoidal category, (T, μ, η) monad on $C \rightsquigarrow C^T$, $U^T : C^T \to C$

Bimonads [Moerdijk]

11/35

C monoidal category, (T, μ, η) monad on $C \rightsquigarrow C^T$, $U^T : C^T \to C$

T is a *bimonad* if and only if C^T is monoidal and U^T is strict monoidal.

Bimonads [Moerdijk]

C monoidal category, (T, μ, η) monad on $C \rightsquigarrow C^T$, $U^T : C^T \to C$

T is a *bimonad* if and only if C^T is monoidal and U^T is strict monoidal. This is equivalent to:

T is comonoidal endofunctor
(with Δ_{X,Y}: *T*(X ⊗ Y) → *TX* ⊗ *TY* and ε : *T*1 → 1)

• μ and η are comonoidal natural transformations.

Bimonads [Moerdijk]

11/35

C monoidal category, (T, μ, η) monad on $C \rightsquigarrow C^T$, $U^T : C^T \to C$

T is a *bimonad* if and only if C^{T} is monoidal and U^{T} is strict monoidal. This is equivalent to:

- T is comonoidal endofunctor (with $\Delta_{X,Y}$: $T(X \otimes Y) \to TX \otimes TY$ and $\varepsilon : T1 \to 1$)
- μ and η are comonoidal natural transformations.

Axioms similar to those of a bialgebra except the compatibility between μ and Δ :

Bimonads [Moerdijk]

C monoidal category, (T, μ, η) monad on $C \rightsquigarrow C^T$, $U^T : C^T \to C$

T is a *bimonad* if and only if C^{T} is monoidal and U^{T} is strict monoidal. This is equivalent to:

- T is comonoidal endofunctor (with $\Delta_{X,Y}$: $T(X \otimes Y) \to TX \otimes TY$ and $\varepsilon : T1 \to 1$)
- μ and η are comonoidal natural transformations.

Axioms similar to those of a bialgebra except the compatibility between μ and Δ :

$$\begin{array}{c} T^{2}(X \otimes Y) \xrightarrow{T\Delta_{X,Y}} T(TX \otimes TY) \xrightarrow{\Delta_{TX,TY}} T^{2}X \otimes T^{2}Y \\ \downarrow \mu_{X \otimes Y} \\ \downarrow \\ T(X \otimes Y) \xrightarrow{\Delta_{X,Y}} TX \otimes TY \end{array}$$

Bimonads [Moerdijk]

C monoidal category, (T, μ, η) monad on $C \rightsquigarrow C^T$, $U^T : C^T \rightarrow C$

T is a bimonad if and only if C^{T} is monoidal and U^{T} is strict monoidal. This is equivalent to:

- T is comonoidal endofunctor (with $\Delta_{X,Y}$: $T(X \otimes Y) \to TX \otimes TY$ and $\varepsilon : T1 \to 1$)
- μ and η are comonoidal natural transformations.

Axioms similar to those of a bialgebra except the compatibility between μ and Δ :

No braiding involved!

For a bimonad T define the (left and right) fusion morphisms

- $H^{l}(X, Y) = (\operatorname{id}_{TX} \otimes \mu_{Y}) \Delta_{X, TY} \colon T(X \otimes TY) \to TX \otimes TY,$
- $H^{r}(X, Y) = (\mu_{X} \otimes \operatorname{id}_{TY}) \Delta_{TX,Y} \colon T(TX \otimes Y) \to TX \otimes TY.$

For a bimonad T define the (left and right) fusion morphisms

- $H^{l}(X, Y) = (\operatorname{id}_{TX} \otimes \mu_{Y}) \Delta_{X,TY} \colon T(X \otimes TY) \to TX \otimes TY,$
- $H^{r}(X, Y) = (\mu_X \otimes \operatorname{id}_{TY}) \Delta_{TX,Y} \colon T(TX \otimes Y) \to TX \otimes TY.$

A bimonad *T* is a *Hopf monad* if the fusion morphisms are isomorphisms.

For a bimonad T define the (left and right) fusion morphisms

- $H^{l}(X, Y) = (\operatorname{id}_{TX} \otimes \mu_{Y}) \Delta_{X, TY} \colon T(X \otimes TY) \to TX \otimes TY,$
- $H^{r}(X, Y) = (\mu_{X} \otimes \operatorname{id}_{TY}) \Delta_{TX,Y} \colon T(TX \otimes Y) \to TX \otimes TY.$

A bimonad T is a Hopf monad if the fusion morphisms are isomorphisms.

Proposition

For T bimonad on C rigid, equivalence:

- (i) C^{T} is rigid;
- (ii) T is a Hopf monad;
- (iii) (older definition) *T* admits a left and a right (unary) antipode $s_X^l : T({}^{\vee}TX) \to {}^{\vee}X$ and $s^r : T(TX^{\vee}) \to X^{\vee}$.

For a bimonad T define the (left and right) fusion morphisms

- $H^{l}(X, Y) = (\operatorname{id}_{TX} \otimes \mu_{Y}) \Delta_{X,TY} \colon T(X \otimes TY) \to TX \otimes TY,$
- $H^{r}(X, Y) = (\mu_X \otimes \operatorname{id}_{TY}) \Delta_{TX,Y} \colon T(TX \otimes Y) \to TX \otimes TY.$

A bimonad T is a Hopf monad if the fusion morphisms are isomorphisms.

Proposition

For T bimonad on C rigid, equivalence:

- (i) C^{T} is rigid;
- (ii) T is a Hopf monad;
- (iii) (older definition) *T* admits a left and a right (unary) antipode $s_X^l : T(^{\vee}TX) \rightarrow ^{\vee}X$ and $s^r : T(TX^{\vee}) \rightarrow X^{\vee}$.

There is a similar result for closed categories (monoidal categories with internal Homs).

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$

 $(M,r)\otimes(N,s)=(M\otimes N,(r\otimes s)\Delta_{M,N})$

There is a Tannaka dictionary relating properties of a monad T on a

monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)		

 $(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s) \Delta_{M,N})$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	

 $(M,r)\otimes (N,s)=(M\otimes N,(r\otimes s)\Delta_{M,N})$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$

 $(M,r)\otimes(N,s)=(M\otimes N,(r\otimes s)\Delta_{M,N})$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_{X}^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_{X}^{r}: T(T(X)^{\vee}) \to X^{\vee}$

 $(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s)\Delta_{M,N}) \qquad \qquad ^{\vee}(M, r) = (^{\vee}M, s_{M}^{\prime}T(^{\vee}r))$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular		

$$(M,r)\otimes(N,s)=(M\otimes N,(r\otimes s)\Delta_{M,N})$$
 $^{\vee}(M,r)=(^{\vee}M,s_{M}^{\prime}T(^{\vee}r))$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	

 $(M,r)\otimes (N,s) = (M\otimes N, (r\otimes s)\Delta_{M,N})$ $^{\vee}(M,$

$$^{\vee}(M,r) = (^{\vee}M, s_M^l T(^{\vee}r))$$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	$R_{X,Y}\colon X\otimes Y\to T(Y)\otimes T(X)$

 $(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s) \Delta_{M,N})$

$$^{\vee}(M,r) = (^{\vee}M, s_M^{\prime}T(^{\vee}r))$$

There is a Tannaka dictionary relating properties of a monad T on a monoidal category C and properties of its category of modules C^{T} .

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	$R_{X,Y} \colon X \otimes Y \to T(Y) \otimes T(X)$

$$(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s)\Delta_{M,N}) \qquad \qquad ^{\vee}(M, r) = (^{\vee}M, s_{M}^{I}T(^{\vee}r))$$
$$\tau_{(M,r),(N,s)} = (s \otimes r)R_{M,N}$$
Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s'_{X}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s'_{X}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	$R_{X,Y}\colon X\otimes Y\to T(Y)\otimes T(X)$
ribbon		

$$(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s)\Delta_{M,N}) \qquad \qquad ^{\vee}(M, r) = (^{\vee}M, s_{M}^{I}T(^{\vee}r))$$
$$\tau_{(M,r),(N,s)} = (s \otimes r)R_{M,N}$$

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	$R_{X,Y}\colon X\otimes Y\to T(Y)\otimes T(X)$
ribbon	ribbon	

$$(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s)\Delta_{M,N}) \qquad \qquad ^{\vee}(M, r) = (^{\vee}M, s_{M}^{I}T(^{\vee}r))$$
$$\tau_{(M,r),(N,s)} = (s \otimes r)R_{M,N}$$

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	$R_{X,Y}$: $X \otimes Y \to T(Y) \otimes T(X)$
ribbon	ribbon	$\theta_X\colon X\to T(X)$

$$(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s)\Delta_{M,N}) \qquad \qquad ^{\vee}(M, r) = (^{\vee}M, s_{M}^{I}T(^{\vee}r))$$
$$\tau_{(M,r),(N,s)} = (s \otimes r)R_{M,N}$$

Т	C^{T}	Structural morphism
bimonad	monoidal	$\Delta_{X,Y} \colon T(X \otimes Y) \to T(X) \otimes T(Y)$
Hopf monad (<i>C</i> rigid)	rigid	$s_X^{l}: T(^{\vee}T(X)) \to {}^{\vee}X$ $s_X^{r}: T(T(X)^{\vee}) \to X^{\vee}$
quasitriangular	braided	$R_{X,Y}$: $X \otimes Y \to T(Y) \otimes T(X)$
ribbon	ribbon	$\theta_X\colon X\to T(X)$

$$(M, r) \otimes (N, s) = (M \otimes N, (r \otimes s)\Delta_{M,N}) \qquad \qquad ^{\vee} (M, r) = (^{\vee}M, s_{M}^{I}T(^{\vee}r))$$
$$\tau_{(M,r),(N,s)} = (s \otimes r)R_{M,N} \qquad \qquad \Theta_{(M,r)} = r\theta_{M}$$

The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra: if you reverse the arrows in the definition, you obtain the notion of a *Hopf comonad*. A Hopf comonad is a monoidal comonad such that the cofusion operators are invertible.

The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra: if you reverse the arrows in the definition, you obtain the notion of a *Hopf comonad*. A Hopf comonad is a monoidal comonad such that the cofusion operators are invertible.

All results about Hopf monads translate into results about Hopf comonads.

The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra: if you reverse the arrows in the definition, you obtain the notion of a *Hopf comonad*. A Hopf comonad is a monoidal comonad such that the cofusion operators are invertible.

All results about Hopf monads translate into results about Hopf comonads. In particular, if T is a Hopf comonad on C,

The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra: if you reverse the arrows in the definition, you obtain the notion of a *Hopf comonad*. A Hopf comonad is a monoidal comonad such that the cofusion operators are invertible.

All results about Hopf monads translate into results about Hopf comonads. In particular, if T is a Hopf comonad on C,

• the category C_T of comodules over T is monoidal,

The notion of a Hopf monad is not self-dual, unlike that of a Hopf algebra: if you reverse the arrows in the definition, you obtain the notion of a *Hopf comonad*. A Hopf comonad is a monoidal comonad such that the cofusion operators are invertible.

All results about Hopf monads translate into results about Hopf comonads. In particular, if T is a Hopf comonad on C,

• the category C_T of comodules over T is monoidal,

2 we have a Hopf monoidal adjunction:
$$\mathcal{D} \underbrace{\int}_{U_T}^{F_T} C$$

where U_T is the forgetful functor and F_T is its right adjoint, the cofree comodule functor.

Let $\mathcal{D} \underbrace{\mathcal{D}}_{F} C$ be a comonoidal adjunction (meaning C, \mathcal{D} are monoidal and U is strong monoidal)

15/35

15/35

Let $\mathcal{D} \underbrace{\overset{\circ}{\underset{F}{\longrightarrow}}}_{F} C$ be a comonoidal adjunction (meaning C, \mathcal{D} are monoidal

and U is strong monoidal)

Then *F* is comonoidal and T = UF is a bimonad on *C*.

15/35

Let $\mathcal{D} \underbrace{\overset{\circ}{\underset{F}{\longrightarrow}}}_{F} C$ be a comonoidal adjunction (meaning C, \mathcal{D} are monoidal

and U is strong monoidal)

Then *F* is comonoidal and T = UF is a bimonad on *C*.

Let $\mathcal{D} \underbrace{\overset{\mathcal{O}}{\underset{F}{\longrightarrow}}}_{F} C$ be a comonoidal adjunction (meaning C, \mathcal{D} are monoidal

and *U* is strong monoidal)

Then *F* is comonoidal and T = UF is a bimonad on *C*.

There are canonical morphisms:

•
$$F(c \otimes Ud) \rightarrow Fc \otimes d$$

• $F(Ud \otimes c) \rightarrow d \otimes Fc$

and (F, U) is a Hopf adjunction if these morphisms are isos.

Let $\mathcal{D} \underbrace{\overset{\mathcal{O}}{\underset{F}{\longrightarrow}}}_{F} C$ be a comonoidal adjunction (meaning C, \mathcal{D} are monoidal

and U is strong monoidal)

Then *F* is comonoidal and T = UF is a bimonad on *C*.

There are canonical morphisms:

- $F(c \otimes Ud) \rightarrow Fc \otimes d$
- $F(Ud \otimes c) \rightarrow d \otimes Fc$

and (F, U) is a Hopf adjunction if these morphisms are isos.

Proposition

If the adjunction is *Hopf*, T is a Hopf monad. Such is the case if either of the following hold:

- C, \mathcal{D} are rigid;
- C, \mathcal{D} and U are closed.

Let $\mathcal{D} \underbrace{\overset{\sigma}{\underset{F}{\longrightarrow}}}_{F} C$ be a comonoidal adjunction (meaning C, \mathcal{D} are monoidal

and *U* is strong monoidal)

Then *F* is comonoidal and T = UF is a bimonad on *C*.

There are canonical morphisms:

- $F(c \otimes Ud) \rightarrow Fc \otimes d$
- $F(Ud \otimes c) \rightarrow d \otimes Fc$

and (F, U) is a Hopf adjunction if these morphisms are isos.

Proposition

If the adjunction is *Hopf*, T is a Hopf monad. Such is the case if either of the following hold:

- C, \mathcal{D} are rigid;
- C, \mathcal{D} and U are closed.

A bimonad is Hopf iff its adjunction is Hopf!

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in \mathcal{B} braided category with braiding τ

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in \mathcal{B} braided category with braiding $\tau \rightsquigarrow T = H \otimes$? is a Hopf monad on \mathcal{B}

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in \mathcal{B} braided category with braiding τ $\rightsquigarrow T = H \otimes$? is a Hopf monad on \mathcal{B} The monad structure of *T* comes from the algebra structure of *H*

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in \mathcal{B} braided category with braiding τ $\rightsquigarrow T = H \otimes$? is a Hopf monad on \mathcal{B} The monad structure of T comes from the algebra structure of H The comonoidal structure of T is

$$\Delta_{X,Y} = (H \otimes \tau_{H,X} \otimes Y)(\Delta \otimes X \otimes Y) \colon H \otimes X \otimes Y \to H \otimes X \otimes H \otimes Y$$

$$\varepsilon = \text{counit of } H \colon H \to \mathbb{1}$$

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in \mathcal{B} braided category with braiding τ $\rightsquigarrow T = H \otimes$? is a Hopf monad on \mathcal{B} The monad structure of T comes from the algebra structure of H The comonoidal structure of T is

 $\Delta_{X,Y} = (H \otimes \tau_{H,X} \otimes Y)(\Delta \otimes X \otimes Y) \colon H \otimes X \otimes Y \to H \otimes X \otimes H \otimes Y$ $\varepsilon = \text{counit of } H \colon H \to \mathbb{1}$

We have $\mathcal{B}^T =_H Mod$ as monoidal categories.

Hopf monads from Hopf algebras

Hopf monads generalize Hopf algebras in braided categories

H Hopf algebra in \mathcal{B} braided category with braiding τ $\rightsquigarrow T = H \otimes$? is a Hopf monad on \mathcal{B} The monad structure of *T* comes from the algebra structure of *H* The comonoidal structure of *T* is

 $\Delta_{X,Y} = (H \otimes \tau_{H,X} \otimes Y)(\Delta \otimes X \otimes Y) \colon H \otimes X \otimes Y \to H \otimes X \otimes H \otimes Y$ $\varepsilon = \text{counit of } H \colon H \to \mathbb{1}$

We have $\mathcal{B}^T =_H Mod$ as monoidal categories.

Can we extend this construction to non-braided categories?

The Joyal-Street Center

17/35

The Joyal-Street Center

$\mathcal{Z}(\mathcal{C})$ braided category

The Joyal-Street Center

$$\sigma_{\mathsf{Y}\otimes \mathsf{Z}} = (\mathrm{id}_{\mathsf{Y}}\otimes\sigma_{\mathsf{Z}})(\sigma_{\mathsf{Y}}\otimes\mathrm{id}_{\mathsf{Z}})$$

17/35

The Joyal-Street Center

 Objects of Z(C) = half-braidings of C : pair (X, σ) with σ_Y: X ⊗ Y → Y ⊗ X natural in Y s. t.

$$\sigma_{\mathsf{Y}\otimes \mathsf{Z}} = (\mathrm{id}_{\mathsf{Y}}\otimes\sigma_{\mathsf{Z}})(\sigma_{\mathsf{Y}}\otimes\mathrm{id}_{\mathsf{Z}})$$

• Morphisms $f: (X, \sigma) \to (X', \sigma')$ in $\mathcal{Z}(C)$ are morphisms $f: X \to X'$ in C s. t. $\sigma'(f \otimes id) = (id \otimes f)\sigma$

The Joyal-Street Center

$$\sigma_{\mathsf{Y}\otimes \mathsf{Z}} = (\mathrm{id}_{\mathsf{Y}}\otimes\sigma_{\mathsf{Z}})(\sigma_{\mathsf{Y}}\otimes\mathrm{id}_{\mathsf{Z}})$$

- Morphisms $f: (X, \sigma) \to (X', \sigma')$ in $\mathcal{Z}(C)$ are morphisms $f: X \to X'$ in C s. t. $\sigma'(f \otimes id) = (id \otimes f)\sigma$
- $(X, \sigma) \otimes_{\mathcal{Z}(C)} (X', \sigma') = (X \otimes X', (\sigma_Y \otimes \mathrm{id})(\mathrm{id} \otimes \sigma'))$

The Joyal-Street Center

$$\sigma_{\mathsf{Y}\otimes \mathsf{Z}} = (\mathrm{id}_{\mathsf{Y}}\otimes\sigma_{\mathsf{Z}})(\sigma_{\mathsf{Y}}\otimes\mathrm{id}_{\mathsf{Z}})$$

- Morphisms $f: (X, \sigma) \to (X', \sigma')$ in $\mathcal{Z}(C)$ are morphisms $f: X \to X'$ in C s. t. $\sigma'(f \otimes id) = (id \otimes f)\sigma$
- $(X,\sigma) \otimes_{\mathcal{Z}(C)} (X',\sigma') = (X \otimes X', (\sigma_Y \otimes \mathrm{id})(\mathrm{id} \otimes \sigma'))$
- Braiding: $c_{(X,\sigma),(X',\sigma')} = \sigma_{X'}$

The Joyal-Street Center

$$\sigma_{\mathsf{Y}\otimes \mathsf{Z}} = (\mathrm{id}_{\mathsf{Y}}\otimes\sigma_{\mathsf{Z}})(\sigma_{\mathsf{Y}}\otimes\mathrm{id}_{\mathsf{Z}})$$

- Morphisms $f: (X, \sigma) \to (X', \sigma')$ in $\mathcal{Z}(C)$ are morphisms $f: X \to X'$ in C s. t. $\sigma'(f \otimes id) = (id \otimes f)\sigma$
- $(X,\sigma) \otimes_{\mathcal{Z}(C)} (X',\sigma') = (X \otimes X', (\sigma_Y \otimes \mathrm{id})(\mathrm{id} \otimes \sigma'))$
- Braiding: $c_{(X,\sigma),(X',\sigma')} = \sigma_{X'}$

Representable Hopf monads

18/35

Representable Hopf monads

C monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(C)$ (which is braided) \rightsquigarrow a Hopf monad $T = H \otimes_{\sigma}$? on *C*, defined by $X \mapsto H \otimes X$.

Representable Hopf monads

C monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(C)$ (which is braided) \rightsquigarrow a Hopf monad $T = H \otimes_{\sigma}$? on *C*, defined by $X \mapsto H \otimes X$. The comonoidal structure of *T* is

$$\Delta_{X,Y} = (H \otimes \sigma_X \otimes Y)(\Delta \otimes X \otimes Y)$$

$$\varepsilon = \text{counit of } H$$

18/35

Representable Hopf monads

C monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(C)$ (which is braided) \rightsquigarrow a Hopf monad $T = H \otimes_{\sigma}$? on *C*, defined by $X \mapsto H \otimes X$. The comonoidal structure of *T* is

$$\Delta_{X,Y} = (H \otimes \sigma_X \otimes Y)(\Delta \otimes X \otimes Y)$$

$$\varepsilon = \text{counit of } H$$

Moreover T is equipped with a Hopf monad morphism

$$\boldsymbol{e} = (\varepsilon \otimes ?) : T \to \mathrm{id}_{\mathcal{C}}$$

Representable Hopf monads

C monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(C)$ (which is braided) \rightsquigarrow a Hopf monad $T = H \otimes_{\sigma}$? on *C*, defined by $X \mapsto H \otimes X$. The comonoidal structure of *T* is

$$\Delta_{X,Y} = (H \otimes \sigma_X \otimes Y)(\Delta \otimes X \otimes Y)$$

$$\varepsilon = \text{counit of } H$$

Moreover T is equipped with a Hopf monad morphism

$$e = (\varepsilon \otimes ?) : T \to \mathrm{id}_C$$

Theorem (BVL)

This construction defines an equivalence of categories

{{Hopf algebras in $\mathcal{Z}(C)$ } $\xrightarrow{\simeq}$ {{Hopf monads on C}} / id_C

If *H* is a Hopf algebra and $T = H \otimes$ we recover Sweedler's Theorem.

Monadicity of the center

Let *C* be a rigid category, with center $\mathcal{Z}(C)$.

Monadicity of the center

Let *C* be a rigid category, with center $\mathcal{Z}(C)$.

Using duality, interpret a half-braiding $\sigma_Y : X \otimes Y \to Y \otimes X$ as a dinatural transformation ${}^{\vee}Y \otimes X \otimes Y \to X$
Let *C* be a rigid category, with center $\mathcal{Z}(C)$. Using duality, interpret a half-braiding $\sigma_Y : X \otimes Y \to Y \otimes X$ as a dinatural transformation ${}^{\vee}Y \otimes X \otimes Y \to X$

We say that *C* is *centralizable* if $Z(X) = \int^{Y \in C} \nabla Y \otimes X \otimes Y$ exists for all $X \in C$

Let *C* be a rigid category, with center $\mathcal{Z}(C)$. Using duality, interpret a half-braiding $\sigma_Y : X \otimes Y \to Y \otimes X$ as a dinatural transformation ${}^{\vee}Y \otimes X \otimes Y \to X$

We say that *C* is *centralizable* if $Z(X) = \int^{Y \in C} \nabla Y \otimes X \otimes Y$ exists for all $X \in C$ (note that Z(1) is the coend of *C*). Then a half braiding σ corresponds with $\tilde{\sigma} : Z(X) \to X$

Let *C* be a rigid category, with center $\mathcal{Z}(C)$. Using duality, interpret a half-braiding $\sigma_Y : X \otimes Y \to Y \otimes X$ as a dinatural transformation ${}^{\vee}Y \otimes X \otimes Y \to X$

We say that *C* is *centralizable* if $Z(X) = \int^{Y \in C} {}^{\vee}Y \otimes X \otimes Y$ exists for all $X \in C$ (note that Z(1) is the coend of *C*). Then a half braiding σ corresponds with $\tilde{\sigma} : Z(X) \to X$

Theorem (BV)

If *C* is centralizable, then $Z : X \mapsto Z(X)$ is a **quasitriangular Hopf monad** on *C* and we have a braided isomorphism of categories

 $\mathcal{Z}(C) \to C^{Z}$ $(X, \sigma) \mapsto (X, \tilde{\sigma})$

Let *C* be a rigid category, with center $\mathcal{Z}(C)$. Using duality, interpret a half-braiding $\sigma_Y : X \otimes Y \to Y \otimes X$ as a dinatural transformation ${}^{\vee}Y \otimes X \otimes Y \to X$

We say that *C* is *centralizable* if $Z(X) = \int^{Y \in C} {}^{\vee}Y \otimes X \otimes Y$ exists for all $X \in C$ (note that Z(1) is the coend of *C*). Then a half braiding σ corresponds with $\tilde{\sigma} : Z(X) \to X$

Theorem (BV)

If *C* is centralizable, then $Z : X \mapsto Z(X)$ is a **quasitriangular Hopf monad** on *C* and we have a braided isomorphism of categories

 $\mathcal{Z}(C) \to C^{Z}$ $(X, \sigma) \mapsto (X, \tilde{\sigma})$

Remark: In general the Hopf monad *Z* is not augmented, i.e. not representable by a Hopf algebra: *e. g.* $C = \{\{G \text{-graded vector spaces}\}\}$, for *G* non abelian finite group.

The centralizer of a Hopf monad

Let *C* be a monoidal rigid category

The centralizer of a Hopf monad

Let *C* be a monoidal rigid category A Hopf monad $T: C \rightarrow C$ is *centralizable* if

The centralizer of a Hopf monad

Let C be a monoidal rigid category A Hopf monad $T: C \rightarrow C$ is *centralizable* if

$$Z_T(X) = \int^{Y \in C} {}^{\vee} T(Y) \otimes X \otimes Y$$
 exists for all $X \in \operatorname{Ob}(X)$

Proposition (BV)

If T is a centralizable Hopf monad, $Z_T : X \mapsto Z_T(X)$ is a Hopf monad called the centralizer of T.

The centralizer of a Hopf monad

20/35

Let C be a monoidal rigid category A Hopf monad $T: C \rightarrow C$ is *centralizable* if

$$Z_T(X) = \int^{Y \in C} {}^{\vee} T(Y) \otimes X \otimes Y$$
 exists for all $X \in \operatorname{Ob}(X)$

Proposition (BV)

If T is a centralizable Hopf monad, $Z_T : X \mapsto Z_T(X)$ is a Hopf monad called the centralizer of T.

In particular the monad Z of the previous slide is the centralizer of 1_{C} .

The centralizer of a Hopf monad

Let C be a monoidal rigid category A Hopf monad $T: C \rightarrow C$ is *centralizable* if

$$Z_T(X) = \int^{Y \in C} {}^{\vee} T(Y) \otimes X \otimes Y$$
 exists for all $X \in \operatorname{Ob}(X)$

Proposition (BV)

If T is a centralizable Hopf monad, $Z_T : X \mapsto Z_T(X)$ is a Hopf monad called the centralizer of T.

In particular the monad Z of the previous slide is the centralizer of 1_{C} . In a sense the centralizer plays the role of the dual of the Hopf monad T.

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

21/35

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

Facts

 linear bimonads on _RMod_R with a right adjoint is are bialgebroids in the sense of Takeuchi [Szlacháni]

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

Facts

- linear bimonads on _RMod_R with a right adjoint is are bialgebroids in the sense of Takeuchi [Szlacháni]
- linear Hopf monads on _RMod_R with a right adjoints are a Hopf algebroids in the sense of Schauenburg.

Hopf monads as 'quantum groupoids'

Let R be a unitary ring \rightsquigarrow a monoidal category ($_BMod_B, \otimes_{B,B} R_B$).

Facts

- linear bimonads on _BMod_B with a right adjoint is are bialgebroids in the sense of Takeuchi [Szlacháni]
- linear Hopf monads on _B Mod_B with a right adjoints are a Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids.

Hopf monads as 'quantum groupoids'

Let R be a unitary ring \rightsquigarrow a monoidal category ($_BMod_B, \otimes_{B,B} R_B$).

Facts

- linear bimonads on _BMod_B with a right adjoint is are bialgebroids in the sense of Takeuchi [Szlacháni]
- linear Hopf monads on _B Mod_B with a right adjoints are a Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated axioms ~> a Hopf adjunction ~> a Hopf monad (much easier to manipulate).

Hopf monads as 'quantum groupoids'

Let R be a unitary ring \rightsquigarrow a monoidal category ($_BMod_B, \otimes_{B,B} R_B$).

Facts

- linear bimonads on _BMod_B with a right adjoint is are bialgebroids in the sense of Takeuchi [Szlacháni]
- linear Hopf monads on _B Mod_B with a right adjoints are a Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated axioms ~> a Hopf adjunction ~> a Hopf monad (much easier to manipulate). Using Hopf monads one shows:

Theorem (BVL)

A finite tensor category C over a field k is tensor equivalent to the category of A-modules for some bialgebroid A.

21/35

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

Facts

- linear bimonads on _RMod_R with a right adjoint is are bialgebroids in the sense of Takeuchi [Szlacháni]
- linear Hopf monads on _RMod_R with a right adjoints are a Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated axioms \rightsquigarrow a Hopf adjunction \rightsquigarrow a Hopf monad (much easier to manipulate). Using Hopf monads one shows:

Theorem (BVL)

A finite tensor category C over a field \Bbbk is tensor equivalent to the category of A-modules for some bialgebroid A.

Given a \Bbbk - equivalence $C \stackrel{\Bbbk}{\simeq}_R \mod$ for some finite dimensional \Bbbk - algebra R, one constructs a canonical Hopf algebroid A over R.

Some aspects of the general theory

22/35

Outlook of General Theory of Hopf monads

Tannaka dictionary

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals (with values in a certain autoequivalence of *C*)

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals (with values in a certain autoequivalence of *C*)
- Semisimplicity, Maschke criterion

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals (with values in a certain autoequivalence of *C*)
- Semisimplicity, Maschke criterion
- The drinfeld double of a Hopf monad

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals (with values in a certain autoequivalence of *C*)
- Semisimplicity, Maschke criterion
- The drinfeld double of a Hopf monad
- Cross-products

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals (with values in a certain autoequivalence of *C*)
- Semisimplicity, Maschke criterion
- The drinfeld double of a Hopf monad
- Cross-products
- Bosonization for Hopf monads

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals (with values in a certain autoequivalence of *C*)
- Semisimplicity, Maschke criterion
- The drinfeld double of a Hopf monad
- Cross-products
- Bosonization for Hopf monads
- Applications to construction and comparison of quantum invariants (non-braided setting)

Hopf modules and Sweedler's Theorem for Hopf Monads

T Hopf monad on $C \rightsquigarrow T\mathbb{1}$ is a coalgebra in *C* (coproduct $\Delta_{\mathbb{1},\mathbb{1}}$, counit ε)

Hopf modules and Sweedler's Theorem for Hopf Monads

T Hopf monad on $C \rightsquigarrow T\mathbb{1}$ is a coalgebra in *C* (coproduct $\Delta_{\mathbb{1},\mathbb{1}}$, counit ε) \rightsquigarrow lifts to a coalgebra $\hat{C} = F^{T}(\mathbb{1})$ in C^{T} . Moreover we have a natural isomorphism

$$\sigma: \hat{C} \otimes ? \to ? \otimes \hat{C}.$$

Hopf modules and Sweedler's Theorem for Hopf Monads

T Hopf monad on $C \rightsquigarrow T\mathbb{1}$ is a coalgebra in *C* (coproduct $\Delta_{\mathbb{1},\mathbb{1}}$, counit ε) \rightsquigarrow lifts to a coalgebra $\hat{C} = F^{T}(\mathbb{1})$ in C^{T} . Moreover we have a natural isomorphism

$$\sigma: \hat{C} \otimes ? \to ? \otimes \hat{C}.$$

Proposition (BVL)

 σ is a half-braiding

Hopf modules and Sweedler's Theorem for Hopf Monads

T Hopf monad on $C \rightsquigarrow T\mathbb{1}$ is a coalgebra in *C* (coproduct $\Delta_{\mathbb{1},\mathbb{1}}$, counit ε) \rightsquigarrow lifts to a coalgebra $\hat{C} = F^{T}(\mathbb{1})$ in C^{T} . Moreover we have a natural isomorphism

$$\sigma: \hat{\mathbf{C}} \otimes ? \to ? \otimes \hat{\mathbf{C}}.$$

Proposition (BVL)

 σ is a half-braiding and (\hat{C}, σ) is a cocommutative coalgebra in $\mathcal{Z}(C^{\mathsf{T}})$ called the *induced central coalgebra* of T .

Hopf modules and Sweedler's Theorem for Hopf Monads

T Hopf monad on $C \rightsquigarrow T\mathbb{1}$ is a coalgebra in *C* (coproduct $\Delta_{\mathbb{1},\mathbb{1}}$, counit ε) \rightsquigarrow lifts to a coalgebra $\hat{C} = F^{T}(\mathbb{1})$ in C^{T} . Moreover we have a natural isomorphism

$$\sigma: \hat{C} \otimes ? \to ? \otimes \hat{C}.$$

Proposition (BVL)

 σ is a half-braiding and (\hat{C}, σ) is a cocommutative coalgebra in $\mathcal{Z}(C^{\mathsf{T}})$ called the *induced central coalgebra* of T .

A (right) *T*-Hopf module is a (right) \hat{C} -comodule in C^T

Hopf modules and Sweedler's Theorem for Hopf Monads

T Hopf monad on $C \rightsquigarrow T\mathbb{1}$ is a coalgebra in *C* (coproduct $\Delta_{\mathbb{1},\mathbb{1}}$, counit ε) \rightsquigarrow lifts to a coalgebra $\hat{C} = F^T(\mathbb{1})$ in C^T . Moreover we have a natural isomorphism

$$\sigma: \hat{\mathbf{C}} \otimes ? \to ? \otimes \hat{\mathbf{C}}.$$

Proposition (BVL)

 σ is a half-braiding and (\hat{C}, σ) is a cocommutative coalgebra in $\mathcal{Z}(C^{\mathsf{T}})$ called the *induced central coalgebra* of T .

A (right) *T*-Hopf module is a (right) \hat{C} -comodule in C^T , *i. e.* a data (M, r, ∂) with (M, r) a *T*-module, (M, ∂) a *T*1-comodule + *T*-linearity of ∂ .

Under suitable exactness conditions (T is conservative, C has coequalizers and T preserves them):

Under suitable exactness conditions (T is conservative, C has coequalizers and T preserves them):

Theorem (BVL)

The assignment $X \mapsto (TX, \mu_X, \Delta_{X,1})$ is an equivalence of categories

 $Q: C \xrightarrow{\simeq} \{\{T \text{-Hopf modules}\}\}$

with quasi-inverse the functor coinvariant part.

Under suitable exactness conditions (T is conservative, C has coequalizers and T preserves them):

Theorem (BVL)

The assignment $X \mapsto (TX, \mu_X, \Delta_{X,1})$ is an equivalence of categories

 $Q: C \xrightarrow{\simeq} \{\{T \text{-Hopf modules}\}\}$

with quasi-inverse the functor *coinvariant part*. Moreover if *C* has equalizers and *T* preserves them, *Q* is a monoidal equivalence, the category of Hopf modules (i.e. \hat{C} - comodules) being endowed with the cotensor product over \hat{C} .

Proof of Sweedler's theorem for Hopf monads An adjunction $F(\bigcap_{C}^{\mathcal{D}} u \iff a \text{ comonad } \hat{T} = (FU, F(\eta_U), \varepsilon) \text{ on } \mathcal{D}.$

Some aspects of the general theory Proof of Sweedler's theorem for Hopf monads 25/35An adjunction $F(\bigcup_{U}^{\mathcal{D}} U \iff a \text{ comonad } \hat{T} = (FU, F(\eta_U), \varepsilon) \text{ on } \mathcal{D}.$ Denoting $\mathcal{D}_{\hat{\tau}}$ the category of \hat{T} -comodules we have a cocomparison

functor \hat{K} .

If *T* is a monad on *C*, its adjunction is comonadic under *suitable exactness* assumptions (descent), *i. e.* $\hat{K} : C \to (C^T)_{\hat{T}}$ is an equivalence.

Proof of Sweedler's theorem for Hopf monads 25/35 An adjunction $F\left(\begin{array}{c} \mathcal{D} \\ \mathcal{D} \\ \mathcal{C} \end{array} \right) \longrightarrow a \text{ comonad } \hat{T} = (FU, F(\eta_U), \varepsilon) \text{ on } \mathcal{D}.$ Denoting $\mathcal{D}_{\hat{T}}$ the category of \hat{T} - comodules we have a cocomparison functor \hat{K} : $C \longrightarrow \mathcal{D}_{\hat{T}}$ The adjunction (F, U) is *comonadic* if \hat{K} equivalence.

If *T* is a monad on *C*, its adjunction is comonadic under *suitable exactness* assumptions (descent), *i. e.* $\hat{K} : C \to (C^T)_{\hat{T}}$ is an equivalence. For *T* Hopf monad, we have an isomorphism of comonads on C^T

$$\phi: \hat{T} \xrightarrow{\sim} ? \otimes \hat{C}$$

defined by $\phi_{(M,r)} = (r \otimes \operatorname{id}_{T(1)})T_{M,1} \colon TM \to M \otimes T1.$ Hence $C^{T} \xrightarrow{\sim} \{ \{ \text{right } T \text{-Hopf modules} \} \}$

Introduction

- 2 Hopf Monads a sketchy survey
- Hopf (co)-monads applied to tensor functors
 - 4 Exact sequences of tensor categories

If C is a tensor category, its Ind-completion IndC is a monoidal abelian category containing C as a full subcategory and whose objects are formal filtering colimits of objects of C.

If *C* is a tensor category, its Ind-completion Ind*C* is a monoidal abelian category containing *C* as a full subcategory and whose objects are formal filtering colimits of objects of *C*. For instance Ind vect = Vect, and Ind comodH = ComodH.

If *C* is a tensor category, its Ind-completion Ind*C* is a monoidal abelian category containing *C* as a full subcategory and whose objects are formal filtering colimits of objects of *C*. For instance Ind vect = Vect, and Ind comodH = ComodH. Note that these are no longer rigid.

If *C* is a tensor category, its Ind-completion Ind*C* is a monoidal abelian category containing *C* as a full subcategory and whose objects are formal filtering colimits of objects of *C*. For instance Ind vect = Vect, and Ind comodH = ComodH. Note that these are no longer rigid.

Theorem

Let $F : C \to \mathcal{D}$ be a tensor functor. There exists a \Bbbk -linear left exact comonad on Ind*C* such that we have a commutative diagram:

If *C* is a tensor category, its Ind-completion Ind*C* is a monoidal abelian category containing *C* as a full subcategory and whose objects are formal filtering colimits of objects of *C*. For instance Ind vect = Vect, and Ind comodH = ComodH. Note that these are no longer rigid.

Theorem

Let $F : C \to \mathcal{D}$ be a tensor functor. There exists a \Bbbk -linear left exact comonad on Ind*C* such that we have a commutative diagram:

where C_T is the category of *T*-comodule whose underlying object is in *C*.

28/35

The functor $F : C \to \mathcal{D}$ extends to a linear faithful exact functor $\operatorname{Ind} F : \operatorname{Ind} \mathcal{D} \to \operatorname{Ind} \mathcal{D}$ which preserves colimits and is strong monoidal.

The functor $F : C \to \mathcal{D}$ extends to a linear faithful exact functor Ind $F : \text{Ind}C \to \text{Ind}\mathcal{D}$ which preserves colimits and is strong monoidal. IndF has a right adjoint, denoted by R.

The functor $F: C \to \mathcal{D}$ extends to a linear faithful exact functor Ind $F: IndC \to Ind\mathcal{D}$ which preserves colimits and is strong monoidal. IndF has a right adjoint, denoted by R. It is also a monoidal adjunction, which is Hopf.

The functor $F : C \to \mathcal{D}$ extends to a linear faithful exact functor Ind $F : \text{Ind}C \to \text{Ind}\mathcal{D}$ which preserves colimits and is strong monoidal. IndF has a right adjoint, denoted by R. It is also a monoidal adjunction, which is Hopf. Its comonad T = IndFR is a Hopf comonad on IndC.

The functor $F : C \to \mathcal{D}$ extends to a linear faithful exact functor

- $\mathrm{Ind} F:\mathrm{Ind} \mathcal{C}\to\mathrm{Ind} \mathcal{D}$ which preserves colimits and is strong monoidal.
- IndF has a right adjoint, denoted by R.
- It is also a monoidal adjunction, which is Hopf. Its comonad T = IndFR is a Hopf comonad on Ind*C*.
- $\operatorname{Ind} F$ being faithful exact, the adjunction ($\operatorname{Ind} F, R$) is comonadic by Beck, hence the theorem.

28/35

The functor $F: \mathcal{C} \to \mathcal{D}$ extends to a linear faithful exact functor

- $\mathrm{Ind} F : \mathrm{Ind} \mathcal{C} \to \mathrm{Ind} \mathcal{D}$ which preserves colimits and is strong monoidal.
- IndF has a right adjoint, denoted by R.

It is also a monoidal adjunction, which is Hopf. Its comonad T = IndFR is a Hopf comonad on Ind*C*.

IndF being faithful exact, the adjunction (IndF, R) is comonadic by Beck, hence the theorem.

Example

If $\mathcal{D} = \text{vect}$, a linear Hopf comonad on Vect is of the form $H \otimes$? for some Hopf algebra H, so we recover the classical tannakian result.

Let $F : C \to \mathcal{D}$ be a tensor functor. We say that *F* is *dominant* if the right adjoint *R* of Ind*F* is faithful exact.

Then applying the classification theorem for Hopf modules in its dual form we obtain:

Theorem

If F is dominant, there exists a commutative algebra (A, σ) in $\mathcal{Z}(IndC)$ - the induced central algebra of T - such that we have a commutative diagram

where A- mod is the category of 'finite type' A-modules in IndC (=quotients of $A \otimes X, X \in C$), with tensor product $\otimes_{A,\sigma}$, and F_A is the tensor functor $X \mapsto A \otimes X$.

If $\mathcal{D} = \text{vect} \mathbb{k}$ and *C*, *F* are symmetric, then *A* is Deligne's trivializing algebra.

Introduction

- 2 Hopf Monads a sketchy survey
- 3 Hopf (co)-monads applied to tensor functors
- 4 Exact sequences of tensor categories

An exact sequence of Hopf algebras in the sense of Schneider is a sequence

$$K \xrightarrow{i} H \xrightarrow{p} H'$$

of Hopf algebras such that

- $p^{-1}(0)$ is a normal Hopf ideal of *H*;
- 2 *H* is right faithfully coflat over H';
- i is a categorical kernel of p.

An exact sequence of Hopf algebras in the sense of Schneider is a sequence

$$K \xrightarrow{i} H \xrightarrow{p} H'$$

of Hopf algebras such that

- $p^{-1}(0)$ is a normal Hopf ideal of *H*;
- 2 *H* is right faithfully coflat over H';
- i is a categorical kernel of p.

We extend this notion to tensor categories.

Let $F : C \to \mathcal{D}$ be a tensor functor. We denote by \Bbbk_F the full tensor subcategory of *C*

 $\Bbbk_F = \{X \in C \mid F(X) \text{ is trivial}\}$

An exact sequence of Hopf algebras in the sense of Schneider is a sequence

$$K \xrightarrow{i} H \xrightarrow{p} H'$$

of Hopf algebras such that

- $p^{-1}(0)$ is a normal Hopf ideal of *H*;
- 2 *H* is right faithfully coflat over H';
- i is a categorical kernel of *p*.

We extend this notion to tensor categories.

Let $F : C \to \mathcal{D}$ be a tensor functor. We denote by \Bbbk_F the full tensor subcategory of *C*

 $\Bbbk_F = \{X \in C \mid F(X) \text{ is trivial}\}$

Note that *F* induces a fiber functor $\mathcal{K}_F \to \text{vect}$, $X \mapsto \text{Hom}(\mathbb{1}, F(X))$. We say that *F* is *normal* if the right adjoint *R* of Ind*F* satisfies $R(\mathbb{1}) \in \text{Ind}(\mathcal{K}_F)$.

This means that the subcategory < 1 > of Ind*C* generated by 1 is stable under the Hopf comonad T = UR which encodes *F*.

An exact sequence of tensor categories is a sequence

$$C' \xrightarrow{f} C \xrightarrow{F} C''$$

of tensor categories such that:

- F is normal and dominant;
- **②** *f* induces a tensor equivalence $C' \rightarrow K_F$.

An exact sequence of tensor categories is a sequence

$$C' \xrightarrow{f} C \xrightarrow{F} C''$$

of tensor categories such that:

- *F* is normal and dominant;
- 2 *f* induces a tensor equivalence $C' \to \mathcal{K}_F$.

If $H' \to H \to H''$ is an exact sequence of Hopf algebras, then

```
\operatorname{comod} H' \to \operatorname{comod} H \to \operatorname{comod} H''
```

is an exact sequence of tensor categories, and, if H is finite dimensional,

 $\mod H'' \to \mod H \to \mod H'$

is also an exact sequence of tensor categories.

Exact sequences of tensor categories are classified by certain Hopf (co)-monads.

Exact sequences of tensor categories are classified by certain Hopf (co)-monads.

A linear exact Hopf comonad T on tensor category C is normal if $T(1) \in <1$. We have <1 > \simeq Vect, so if T is normal it restricts to a Hopf algebra H on Vect. If in addition T is faithful, we have an exact sequence of tensor categories

 $\operatorname{comod} H \to C_T \to C$

and 'all extensions of C by comodH' are of this form up to tensor equivalence [one has to be more precise].

Examples

34/35

Equivariantization

Examples

Equivariantization

Let *G* be a finite group acting on a tensor category *C* by tensor automorphisms $(T_g)_{g \in G}$. Then we have an exact sequence

$$\operatorname{rep} \mathsf{G} \to C^{\mathsf{G}} \to C$$

where $C^{G} \rightarrow C$ is the equivariantization functor.

Examples

Equivariantization

Let *G* be a finite group acting on a tensor category *C* by tensor automorphisms $(T_g)_{g \in G}$. Then we have an exact sequence

$$\operatorname{rep} G \to C^G \to C$$

where $C^G \to C$ is the equivariantization functor. The endofunctor $T = \bigoplus T_g$ admits a structure of Hopf comonad T^G (it admits also a structure of Hopf monad), and C^G is just \mathbb{C}^{T^G} . The Hopf comonad T^G is normal faithful exact, and its associated Hopf algebra is k^G . It has a certain commutativity property. These conditions characterize Hopf comonads corresponding with equivariantizations (at least over \mathbb{C}).

24. More on Hopf monads

BV1. Hopf Diagrams and Quantum Invariants, AGT 5 (2005) 1677-1710.

Where Hopf diagram are introduced as a means for computing the Reshetikhin-Turaev invariant in terms of the coend of a ribbon category and its structural morphisms.

BV2. Hopf Monads, Advances in Math. 215 (2007), 679-733.

Where the notion of Hopf monad is introduced, and several fundamental results of the theory of finite dimensional Hopf algebras are extended thereto.

BV3. Categorical Centers and Reshetikhin-Turaev Invariants, Acta Mathematica Vietnamica **33** 3, 255-279

Where the coend of the center of a fusion spherical category over a ring is described, the modularity of the center, proven, and the corresponding Reshetikhin-Turaev invariant, constructed.

BV4. *Quantum Double of Hopf monads and Categorical Centers,* arXiv:0812.2443, to appear in Transactions of the American Mathematical Society (2010)

Where the general theory of centralizers and doubles of Hopf monads is expounded.

BLV. Hopf Monads on Monoidal Categories, arXiv:1003.1920.

Where Hopf monads are defined anew in the monoidal world

BN. Exact sequences of tensor categories, arXiv:1006.0569.

See also: http://www.math.univ-montp2.fr/~bruguieres/recherche.html