
THE DOUBLE OF A HOPF MONAD

ALAIN BRUGUIÈRES AND ALEXIS VIRELIZIER

Abstract. The center Z(C) of an autonomous category C is monadic over C

(if certain coends exist in C). The notion of Hopf monad naturally arises if one
tries to reconstruct the structure of Z(C) in terms of its monad Z: we show that
Z is a quasitriangular Hopf monad on C and Z(C) is isomorphic to the braided
category Z- C of Z-modules. More generally, let T be a Hopf monad on an
autonomous category C. We construct a Hopf monad ZT on C, the centralizer

of T , and a canonical distributive law Ω: TZT → ZT T . By Beck’s theory,
this has two consequences. On one hand, DT = ZT ◦Ω T is a quasitriangular
Hopf monad on C, called the double of T , and Z(T - C) ≃ DT - C as braided
categories. As an illustration, we define the double D(A) of a Hopf algebra
A in a braided autonomous category in such a way that the center of the
category of A- modules is the braided category of D(A)-modules (generalizing
the Drinfeld double). On the other hand, the canonical distributive law Ω also

lifts ZT to a Hopf monad Z̃Ω

T
on T - C, and Z̃Ω

T
(1, T0) is the coend of T - C. For

T = Z, this gives an explicit description of the Hopf algebra structure of the
coend of Z(C) in terms of the structural morphisms of C. Such a description is
useful in quantum topology, especially when C is a spherical fusion category,
as Z(C) is then modular.
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Introduction

The center Z(C) of an autonomous category C, introduced by Drinfeld, is a
braided autonomous category. This construction establishes a bridge between the
non-braided world and the braided world. It is useful, in particular, for comparing
quantum invariants of 3 manifolds. Indeed, the center Z(C) of spherical fusion
category C is modular (see [Mü03]) and it is conjectured that the Turaev-Viro
invariant TVC (as revisited in [BW96]) is equal to the Reshetikhin-Turaev invariant
RTZ(C) (see [Tur94]).
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2 A. BRUGUIÈRES AND A. VIRELIZIER

Let C be an autonomous category. If the coend:

Z(X) =

∫ Y ∈C
∨Y ⊗X ⊗ Y

exists for all object X of C, then Day and Street [DS07] showed that Z is a monad
on C and the center Z(C) is isomorphic to the category Z- C of Z-modules in C
(also called Z- algebras). By Tannaka reconstruction, we endow the monad Z with
a quasitriangular Hopf monad structure which reflects the braided autonomous
structure of Z(C) in the sense that Z(C) ≃ Z- C as braided categories. The notion
of Hopf monad, which generalizes Hopf algebras to the non-braided (and non-linear)
setting, was introduced in [BV07] for this very purpose.

The Reshetikhin-Turaev invariant can be expressed in terms of the simple ob-
jects of the category (as in Reshetikhin and Turaev’s original construction) or in
terms of the coend of the category (following Lyubashenko, see [Lyu95, BV05]). In
order to compute RTZ(C), the first approach is not practicable for lack of a work-
able description of the simple objects of the center. And so we need to provide an
explicit description of the coend of Z(C) and its algebraic structure. To fulfill this
objective, we extend the previous construction of Z to a more general situation.
Let T be a Hopf monad on an autonomous category C. We denote T -C the cat-
egory of T -modules (also called T - algebras), which is autonomous. Assume T is
centralizable, meaning that the coend:

ZT (X) =

∫ Y ∈C
∨T (Y ) ⊗X ⊗ Y.

exists for every object X of C. We endow ZT with a structure of a Hopf monad on C
and call ZT the centralizer of T . In particular, Z1C

= Z as Hopf monads. Note that
the coend of C is Z(1) = Z1C

(1), and so the coend of Z(C) is Z1Z(C)
(1) = Z1Z- C

(1).
Using adjunction and exactness properties of Hopf monads, we show that 1T - C

is centralizable and:

UTZ1T-C
= ZTUT .

Note that this implies that, as an object of C, the coend of the category T - C is
ZT (1) and, in particular, the coend of Z(C) = Z- C is ZZ(1). Now UTZ1T- C

=
ZTUT means in fact that the Hopf monad Z1T- C

is a lift to T -C of the Hopf
monad ZT . Extending Beck’s theory of distributive laws to Hopf monads, we show
that such a lift is encoded by an invertible comonoidal distributive law Ω: TZT →
ZTT , called the canonical distributive law of T . The coend of T - C is therefore
(ZT (1), ZT (T0)Ω1). When T is quasitriangular, this coend has a structure of a
Hopf algebra in the braided autonomous category T - C, which we elucidate in terms
of T . Hence, for T = Z, an explicit description of the coend of Z(C). The case of
fusion categories is treated in detail.

The canonical distributive law Ω also endows the composition of ZT and T with
a Hopf monad structure, denoted DT = ZT ◦Ω T and called the double of T . We
prove that DT is quasitriangular and give a braided isomorphism:

DT - C ≃ Z(T - C).

This construction, which holds for any centralizable Hopf monad on an au-
tonomous category, generalizes the Drinfeld double in an non-braided setting. As
an illustration, we apply this to Hopf monads associated with Hopf algebras. This
leads to the double D(A) of a Hopf algebra A in a braided autonomous category B.
More precisely, the endofunctor ? ⊗A is a Hopf monad on B. Assuming B admits
a coend C, the Hopf monad ?⊗A is centralizable, and its centralizer is of the form
?⊗Z(A), where Z(A) = ∨A⊗C is a Hopf algebra in B. The canonical distributive
law of ?⊗A is of the form id1B

⊗Ω, where Ω: Z(A)⊗A→ A⊗Z(A) is a distributive



THE DOUBLE OF A HOPF MONAD 3

law of Hopf algebras. Then D(A) = A ⊗Ω Z(A) is a quasitriangular Hopf algebra
in B, such that:

Z(BA) ≃ BD(A) ≃ D(A)B ≃ Z(AB).

as braided categories, where AB and BA denote the categories of left and right
modules over A. Note that a Hopf algebra B in B is quasitriangular when it is
endowed with a R-matrix. In this context, we define R-matrices to be morphisms
r : C⊗C → B⊗B which encode braidings on BB (or equivalently BB). When B is
the category of finite-dimensional vector spaces over a field k, we recover the usual
definition of R-matrices and the Drinfeld double of a Hopf algebra H . Indeed, in
that case: C = k, Z(H) = H∗cop, and D(H) = H ⊗Ω H

∗cop.
The canonical distributive law of a Hopf monad is in fact naturally defined in a

more general setting. Let T be a Hopf monad on an autonomous category C and Q
be a Hopf monad on T - C. Their cross product Q⋊ T = UTQFT is a Hopf monad
on C. If Q ⋊ T is centralizable, then so is Q and the Hopf monad ZQ is a lift to
T -C of the Hopf monad ZQ⋊T :

UTZQ = ZQ⋊TUT .

Hence a canonical distributive law Ω: TZQ⋊T → ZQ⋊TT and a Hopf monad
DQ,T = ZQ⋊T ◦Ω T on C. Moreover, we show:

DQ,T - C ≃ ZQ(T -C),

where ZQ(T - C) is the center of T - C relative to Q. When Q = idT - C , we obtain the
previous results.

This paper is organized as follows. In Section 1, we review several facts about
monoidal categories and Hopf algebras in braided categories. Section 2 recalls the
definition and elementary properties of Hopf monads. Section 3 deals with monoidal
adjunctions, exactness properties, and cross products of Hopf monads. In Section 4,
we briefly recall the basic results of Beck’s theory of distributive laws and extend
them to the Hopf monad setting. In Section 5, we define the centralizer ZT of a Hopf
monad T on C and relate it to the center ZT (C) of C relative to T . In Section 6, we
define the canonical distributive law Ω of T over ZT and the double DT = ZT ◦Ω T ,
and state their categorical properties. In Section 7, we study the centralizer ZQ

of a Hopf monad Q on T -C and construct the canonical distributive law of T over
ZQ⋊T . Section 8 is devoted to Hopf monads on a braided category B. In particular,
we define the double D(A) of a Hopf algebra A in a braided autonomous category.
In Section 9, we treat the case of the center of a fusion category.

1. Preliminaries and notations

1.1. Categories. Unless otherwise specified, categories are small, and monoidal
categories are strict.

If C is a category, we denote Ob(C) the set of objects of C and HomC(X,Y ) the
set of morphisms in C from an object X to an object Y . The identity functor of C
will be denoted by 1C . We denote Cop the opposite category (where arrows are
reversed).

Let C, D be two categories. Functors from C to D are the objects of a cate-
gory Fun(C,D). Given two functors F,G : C → D, a morphism α : F → G is a
family {αX : F (X) → G(X)}X∈Ob(C) of morphisms in D satisfying the following
functoriality condition: αY F (f) = G(f)αX for every morphism f : X → Y in C.
Such a morphism is called a natural transformation. We denote Hom(F,G) the set
HomFun(C,D)(F,G) of natural transformations from F to G, and idF the identity
natural transformation of a functor F .

If C, C′ are two categories, we denote σC,C′ the flip functor C×C′ → C′×C defined
by (X,X ′) 7→ (X ′, X).
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1.2. Monoidal categories. Let C be monoidal category with monoidal product
⊗ : C × C → C and unit object 1. For n ≥ 0, we denote ⊗n the functor:

⊗n : Cn = C × · · · × C︸ ︷︷ ︸
n times

→ C, (X1, . . . , Xn) 7→ X1 ⊗ · · · ⊗Xn.

Note that ⊗0 is the constant functor equal to 1, ⊗1 = id1C
, and ⊗2 = ⊗.

For a family of functors {Fi : Ai → C}1≤i≤n, set:

F1 ⊗ · · · ⊗ Fn = ⊗n ◦ (F1, · · · , Fn) : A1 × · · · × An → C.

For a functor F : A → C, set:

F⊗n = F ⊗ · · · ⊗ F︸ ︷︷ ︸
n times

: An → C.

If C is a monoidal category, we denote C⊗op the monoidal category with opposite
monoidal product ⊗op defined by X ⊗op Y = Y ⊗X .

1.3. Monoidal functors. Let (C,⊗, 1) and (D,⊗, 1) be two monoidal categories.
A monoidal functor from C to D is a triple (F, F2, F0), where F : C → D is a functor,
F2 : F ⊗F → F⊗ is a morphism of functors, and F0 : 1 → F (1) is a morphism in D,
such that:

F2(X,Y ⊗ Z)(idF (X) ⊗ F2(Y, Z)) = F2(X ⊗ Y, Z)(F2(X,Y ) ⊗ idF (Z));

F2(X, 1)(idF (X) ⊗ F0) = idF (X) = F2(1, X)(F0 ⊗ idF (X));

for all objects X,Y, Z of C.
A monoidal functor (F, F2, F0) is said to be strong (resp. strict) if F2 and F0 are

isomorphisms (resp. identities).
By a monoidal isomorphism, we mean a strong monoidal functor which is an

isomorphism.

1.4. Monoidal natural transformations. Let F : C → D and G : C → D be two
monoidal functors. A natural transformation ϕ : F → G is monoidal if it satisfies:

ϕX⊗Y F2(X,Y ) = G2(X,Y )(ϕX ⊗ ϕY ) and G0 = ϕ1F0.

1.5. Comonoidal functors. Let (C,⊗, 1) and (D,⊗, 1) be two monoidal cate-
gories. A comonoidal functor1 from C to D is a triple (F, F2, F0), where F : C → D
is a functor, F2 : F⊗ → F ⊗ F is a natural transformation, and F0 : F (1) → 1 is a
morphism in D, such that:

(
idF (X) ⊗ F2(Y, Z)

)
F2(X,Y ⊗ Z) =

(
F2(X,Y ) ⊗ idF (Z)

)
F2(X ⊗ Y, Z);

(idF (X) ⊗ F0)F2(X, 1) = idF (X) = (F0 ⊗ idF (X))F2(1, X);

for all objects X,Y, Z of C.
It is convenient to denote F3 : F⊗3 → F⊗3 the natural transformation defined by

F3(X,Y, Z) = (idF (X)⊗F2(Y, Z))F2(X,Y ⊗Z) = (F2(X,Y )⊗ idF (Z))F2(X⊗Y, Z).
A comonoidal functor (F, F2, F0) is said to be strong (resp. strict) if F2 and F0

are isomorphisms (resp. identities). In that case, (F, F−1
2 , F−1

0 ) is a strong (resp.
strict) monoidal functor.

1.6. Comonoidal natural transformations. Let F : C → D and G : C → D be
two comonoidal functors. A natural transformation ϕ : F → G is comonoidal if it
satisfies:

G2(X,Y )ϕX⊗Y = (ϕX ⊗ ϕY )F2(X,Y ) and G0ϕ1 = F0.

1Comonoidal functors are also called opmonoidal functors



THE DOUBLE OF A HOPF MONAD 5

1.7. Autonomous categories. Recall that a duality in a monoidal category C is a
quadruple (X,Y, e, d), where X , Y are objects of C, e : X⊗Y → 1 (the evaluation)
and d : 1 → Y ⊗X (the coevaluation) are morphisms in C, such that:

(e⊗ idX)(idX ⊗ d) = idX and (idY ⊗ e)(d⊗ idY ) = idY .

Then (X, e, d) is a left dual of Y and (Y, e, d) is a right dual of X .
If D = (X,Y, e, d) and D′ = (X ′, Y ′, e′, d′) are two dualities, two morphisms

f : X → X ′ and g : Y ′ → Y are in duality with respect to D and D′ if

e′(f ⊗ idY ′) = e(idX ⊗ g)
(
or, equivalently, (idY ′ ⊗ f)d = (g ⊗ idX)d′

)
.

In that case we write f = ∨gD,D′ and g = f∨
D,D′ , or simply f = ∨g and g = f∨.

Note that this defines a bijection between HomC(X,X ′) and HomC(Y ′, Y ).
Left and right duals, if they exist, are essentially unique: if (Y, e, d) and (Y ′, e′, d′)

are right duals of some objectX , then there exists a unique isomorphism u : Y → Y ′

such that e′ = e(idX ⊗ u−1) and d′ = (u⊗ idX)d.
A left autonomous (resp. right autonomous, resp. autonomous) category is a

monoidal category for which every object admits a left dual (resp. a right dual,
resp. both a left and a right dual).

Assume C is a left autonomous category and, for each object X , pick a left dual
(∨X, evX , coevX). This data defines a strong monoidal functor ∨?: Cop,⊗op → C.

Likewise, if C is a right autonomous category, picking a right dual (X∨, ẽvX , c̃oevX)
for each object X defines a strong monoidal functor ?∨ : Cop,⊗op → C.

Subsequently, when dealing with left or right autonomous categories, we shall
always assume tacitly that left duals or right duals have been chosen. Moreover, in
formulae, we abstain from writing down the following canonical isomorphisms:

∨?2(X,Y ) : ∨Y ⊗ ∨X →
∨
(X ⊗ Y ), ∨?0 : 1 → ∨1,

?∨2 (X,Y ) : Y ∨ ⊗X∨ → (X ⊗ Y )
∨
, ?∨0 : 1 → 1∨,

and

(ẽvX ⊗ id∨(X∨))(idX ⊗ coevX∨) : X →
∨
(X∨),

(id(∨X)∨ ⊗ evX)(c̃oev∨X ⊗ idX) : X → (∨X)
∨
.

1.8. Braided categories. Recall that a braiding on a monoidal category C is a
natural isomorphism τ : ⊗ → ⊗σC,C such that:

τX,Y ⊗Z = (idY ⊗ τX,Z)(τX,Y ⊗ idZ) and τX⊗Y,Z = (τX,Z ⊗ idY )(idX ⊗ τY,Z).

A braided category is a monoidal category endowed with a braiding.
The mirror of a braiding τ is the braiding τ defined by τX,Y = τ−1

Y,X . The

mirror of a braided category B is the braided category B which coincides with B as
a monoidal category but is endowed with the mirror braiding.

If C is braided with braiding τ , then C⊗op is braided with braiding τo defined by
τo
X,Y = τY,X . Note that τ 7→ τo is a bijection between braidings on C and braidings

on C⊗op.

1.9. Braided functors. A braided functor between two braided categoriesB and B′

is a strong monoidal functor F : B → B′ such that:

F (τX,Y )F2(X,Y ) = F2(Y,X)τ ′F (X),F (Y )

for all objects X,Y of B, where τ and τ ′ are the braidings of B and B′.

Example 1.1. If B is a braided category with braiding τ , the monoidal functor
(1B, τ, id1) : B⊗op → B is a braided isomorphism.
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1.10. The center of a monoidal category. Let C be a monoidal category. A left
half braiding of C is a pair (M,σ), whereM is an object of C and σ : M⊗1C → 1C⊗M
is a natural transformation such that:

(i) σY ⊗Z = (idY ⊗ σZ)(σY ⊗ idZ) for all Y, Z ∈ Ob(C);
(ii) σ1 = idM ;
(iii) σ is an isomorphism.

Note that if C is autonomous, (iii) is a consequence of (i) and (ii).
The center of C is the braided category Z(C) defined as follows. Its objects are

left half braidings of C. A morphism in Z(C) from (M,σ) to (M ′, σ′) is a morphism
f : M →M ′ in C such that: (id1C

⊗ f)σ = σ′(f ⊗ id1C
). The monoidal product and

braiding τ are:

(M,σ) ⊗ (N, γ) =
(
M ⊗N, (σ ⊗ idN)(idM ⊗ γ)

)
and τ(M,σ),(N,γ) = σN .

Note that if C is autonomous, so is Z(C).

Remark 1.2. Likewise, define a right half braiding of a monoidal category C to be
a pair (M,σ), where M is an object of C and σ : 1C ⊗M → M ⊗ 1C is a natural
transformation satisfying analogous axioms. Right half braidings form a braided
category Z ′(C), with braiding: τ ′(M,σ),(N,γ) = γM . We have:

Z ′(C) = Z(C⊗op)⊗op.

The braided category Z ′(C) is isomorphic to the mirror of Z(C) via the braided
isomorphism given by (M,σ) 7→ (M,σ−1).

1.11. Algebras, bialgebras, and Hopf algebras in categories. Let C be a
monoidal category. An algebra in C is an object A of C endowed with morphisms
m : A⊗ A→ A (the product) and u : 1 → A (the unit) such that:

m(m⊗ idA) = m(idA ⊗m) and m(idA ⊗ u) = idA = m(u ⊗ idA).

A coalgebra in C is an object C of C endowed with morphisms ∆: C → C ⊗C (the
coproduct) and ε : C → 1 (the counit) such that:

(∆ ⊗ idC)∆ = (idC ⊗ ∆)∆ and (idC ⊗ ε)∆ = idC = (ε⊗ idC)∆.

Let B be a braided category, with braiding τ . A bialgebra in B is an object A
of B endowed with an algebra structure (m,u) and a coalgebra structure (∆, ε) in B
satisfying:

∆m = (m⊗m)(idA ⊗ τA,A ⊗ idA)(∆ ⊗ ∆), ∆u = u⊗ u,

εm = ε⊗ ε, εu = id1.
Let A be a bialgebra in B. Set:

mop = mτ−1
A,A and ∆cop = τ−1

A,A∆.

Then (A,mop, u,∆, ε) is a bialgebra in the mirror B of B, called the opposite of A,
and denoted Aop. Similarly (A,m, u,∆cop, ε) is a bialgebra in B, called the co-
opposite of A, and denoted Acop. Consequently Acop,op = (Acop)op is a bialgebra
in B (with product mτA,A and coproduct τ−1

A,A∆).
An antipode for a bialgebra A is a morphism S : A→ A in B such that:

m(S ⊗ idA)∆ = uε = m(idA ⊗ S)∆.

If it exists, an antipode is unique, and it is a morphism of bialgebras A→ Acop,op.
A Hopf algebra in B is a bialgebra in B which admits an invertible antipode.

If A is a Hopf algebra in B, with antipode S, then Aop and Acop are Hopf algebras
in the mirror B of B, with antipode S−1.
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1.12. Modules in categories. Let (A,m, u) be an algebra in a monoidal cate-
gory C. A left A-module (in C) is a pair (M, r), where M is an object of C and
r : A⊗M →M is a morphism in C, such that:

r(m ⊗ idM ) = r(idA ⊗ r) and r(u ⊗ idM ) = idM .

An A- linear morphism between two left A-modules (M, r) and (N, s) is a morphism
f : M → N such that fr = s(idA ⊗ f). Hence the category AC of left A- modules.
Likewise, one defines the category CA of right A- modules.

Let A be a bialgebra in a braided category B. Then the category AB is monoidal,
with unit object (1, ε) and monoidal product:

(M, r) ⊗ (N, s) = (r ⊗ s)(idA ⊗ τA,M ⊗ idN )(∆ ⊗ idM⊗N ),

where ∆ and ǫ are the coproduct and counit of A, and τ is the braiding of B.
Likewise the category CA is monoidal, with unit object (1, ε) and monoidal product:

(M, r) ⊗ (N, s) = (r ⊗ s)(idM ⊗ τN,A ⊗ idA)(∆ ⊗ idM⊗N ).

Assume B is autonomous. Then AB is autonomous if and only if BA is au-
tonomous, if and only if A is a Hopf algebra. If A is a Hopf algebra, with antipode S,
then the duals of a left A-module (M, r) are:

∨
(M, r) =

(
∨M, (evM ⊗ id∨M )(id∨M ⊗ r(S ⊗ idM ) ⊗ id∨M )(τA,∨M ⊗ coevM )

)
,

(M, r)
∨

=
(
M∨, (idM∨ ⊗ ẽvM )(idM∨ ⊗ rτ−1

A,M ⊗ idM∨)(c̃oevM ⊗ S−1 ⊗ idM∨)
)
,

and the duals of a right A-module (M, r) are:
∨
(M, r) =

(
∨M, (evM ⊗ id∨M )(id∨M ⊗ rτ−1

M,A ⊗ id∨M )(id∨M ⊗ S−1 ⊗ coevM )
)
,

(M, r)
∨

=
(
M∨, (idM∨ ⊗ ẽvM )(idM∨ ⊗ r(idM ⊗ S) ⊗ idM∨ )(c̃oevM ⊗ τM∨,A)

)
.

Remark 1.3. Let A be a Hopf algebra in a braided category B, with braiding τ .
The functor FA : AB → BA, defined by FA(M, r) =

(
M, rτM,A(idM ⊗ S)

)
and

FA(f) = f , gives rise to a monoidal isomorphism of categories:

FA = (FA, τ, 1) : (AB)⊗op → BA.

Therefore braidings on AB are in bijection with braidings on BA. More precisely,
if c is a braiding on BA, then:

c′(M,r),(N,s) = τM,N cFA(N,s),FA(M,r) τ
−1
N,M

is a braiding on AB (making FA braided), and the correspondence c 7→ c′ is bijective.

1.13. Penrose graphical calculus. We represent morphisms in a category by
diagrams to be read from bottom to top. Thus we draw the identity idX of an
object X , a morphism f : X → Y , and its composition with a morphism g : Y → Z

as follows:

idX =

X

X

, f =

X

Y

f , and gf =

X

f

g

Z

.

In a monoidal category, we represent the monoidal product of two morphisms
f : X → Y and g : U → V by juxtaposition:

f ⊗ g =

X

f

Y

U

g

V

.

The duality morphisms of an autonomous category are depicted as:

evX =
X∨X

, coevX =
X ∨X

, ẽvX =
X X∨

, and c̃oevX =
XX∨

.
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The braiding τ of a braided category, and its inverse, are depicted as:

τX,Y =
X

X

Y

Y

and τ−1
Y,X =

X

X

Y

Y

.

Given a Hopf algebra A in a braided category, we depict its product m, unit u,
coproduct ∆, counit ε, antipode S, and S−1 as follows:

m =

A

A

A

, u =
A

, ∆ =

A A

A

, ε =

A

, S =

A

A

, S−1 =

A

A

.

2. Hopf monads and their modules

In this section, we review the notion of a Hopf monad. For a general treatment,
we refer to [BV07].

2.1. Monads. Let C be a category. Recall that the category End(C) of endofunc-
tors of C is strict monoidal with composition for monoidal product and identity
functor 1C for unit object. A monad on C is an algebra in End(C), that is, a triple
(T, µ, η), where T : C → C is a functor, µ : T 2 → T and η : 1C → T are natural
transformations, such that:

µXT (µX) = µXµT (X) and µXηT (X) = idT (X) = µXT (ηX)

for any object X of C.

Example 2.1. Let A be an algebra in a monoidal category C, with product m and
unit u. Then the endofunctor ? ⊗ A of C, defined by X 7→ X ⊗ A, has a structure
of a monad on C, with product µ = id1C

⊗m and unit η = id1C
⊗ u. Similarly, the

endofunctor A⊗ ? is a monad on C with product m⊗ id1C
and unit u⊗ id1C

.

2.2. Bimonads. A bimonad2 on a monoidal category C is a monad (T, µ, η) on
C such that the functor T : C → C is comonoidal and the natural transformations
µ : T 2 → T and η : 1C → T are comonoidal. In other words, T is endowed with a
natural transformation T2 : T⊗ → T ⊗ T and a morphism T0 : T (1) → 1 in C such
that:

(
idT (X) ⊗ T2(Y, Z)

)
T2(X,Y ⊗ Z) =

(
T2(X,Y ) ⊗ idT (Z)

)
T2(X ⊗ Y, Z),

(idT (X) ⊗ T0)T2(X, 1) = idT (X) = (T0 ⊗ idT (X))T2(1, X),

and

T2(X,Y )µX⊗Y = (µX ⊗ µY )T2(T (X), T (Y ))T (T2(X,Y )),

T0µ1 = T0T (T0), T2(X,Y )ηX⊗Y = (ηX ⊗ ηY ), T0η1 = id1.
Remark 2.2. A bimonad on a monoidal category C is nothing but an algebra
in the strict monoidal category of comonoidal endofunctors of C (with monoidal
product ◦ and unit object 1C).

Remark 2.3. A bimonad T on a monoidal category C = (C,⊗, 1) may be viewed
as a bimonad T o on the monoidal category C⊗op = (C,⊗op, 1), with comonoidal
structure T o

2 = T2σC,C and T o
0 = T0. The bimonad T o is called the opposite of the

bimonad T . We have: T o- C⊗op = (T - C)⊗op.

2Bimonads were introduced in [Moe02] under the name ‘Hopf monads’, which we prefer to
reserve for bimonads with antipodes by analogy with Hopf algebras.
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2.3. Antipodes. Right and left antipodes of a Hopf monad generalize the antipode
of a Hopf algebra and its inverse. Let (T, µ, η) be a bimonad on a monoidal cate-
gory C.

Assume C is left autonomous. A left antipode for T is a natural transformation
sl = {sl

X : T (
∨
T (X)) → ∨X}X∈Ob(C) satisfying:

T0T (evX)T (∨ηX ⊗ idX) = evT (X)(s
l
T (X)T (∨µX) ⊗ idT (X))T2(

∨
T (X), X);

(ηX ⊗ id∨X)coevXT0 = (µX ⊗ sl
X)T2(T (X),

∨
T (X))T (coevT (X));

for every object X of C. By [BV07, Theorem 3.7], a left antipode sl is ‘anti-
(co)multiplicative’: for all objects X,Y of C,

sl
Xµ∨T (X) = sl

XT (sl
T (X))T

2(∨µX); sl
Xη∨T (X) = ∨ηX ;

sl
X⊗Y T (

∨
T2(X,Y )) = (sl

Y ⊗ sl
X)T2(

∨
T (Y ),

∨
T (X)); sl1T (∨T0) = T0.

Assume C is right autonomous. A right antipode for T is a natural transformation
sr = {sr

X : T (T (X)
∨
) → X∨}X∈Ob(C) satisfying:

T0T (ẽvX)T (idX ⊗ η∨X) = ẽvT (X)(idT (X) ⊗ sr
T (X)T (µ∨

X))T2(X,T (X)
∨
);

(idX∨ ⊗ ηX)c̃oevXT0 = (sr
X ⊗ µX)T2(T (X)

∨
, T (X))T (c̃oevT (X));

for every object X of C. By [BV07, Theorem 3.7], a right antipode sr is also
‘anti-(co)multiplicative’: for all objects X,Y of C,

sr
XµT (X)∨ = sr

XT (sr
T (X))T

2(µX
∨); sr

XηT (X)∨ = ηX
∨;

sr
X⊗Y T (T2(X,Y )∨) = (sr

Y ⊗ sr
X)T2(T (Y )∨, T (X)∨); sr1T (T0

∨) = T0.

Note that if a left (resp. right) antipode exists, then it is unique. Furthermore,
when both exist, the left antipode sl and the right antipode sr are ‘inverse’ to each

other in the sense that idT (X) = sr
∨T (X)

T ((sl
X)

∨
) = sl

T (X)∨
T (∨(sr

X)) for any object

X of C.

2.4. Hopf monads. A Hopf monad is a bimonad on an autonomous category
which has a left antipode and a right antipode.

Hopf monads generalize Hopf algebras in a non-braided setting. In particu-
lar, finite-dimensional Hopf algebras and several generalizations (Hopf algebras in
braided autonomous categories, bialgebroids, etc...) provide examples of Hopf mon-
ads. If fact, any monoidal adjunction between autonomous categories gives rise to
a Hopf monad (see Theorem 3.2). It turns out that much of the theory of finite-
dimensional Hopf algebras (such as the decomposition of Hopf modules, the exis-
tence of integrals, Maschke’s criterium of semisimplicity, etc...) extends to Hopf
monads, see [BV07].

Example 2.4 (Hopf monads associated with Hopf algebras). Let A be a Hopf
algebra in a braided autonomous category B, with braiding τ . According to [BV07],
the endofunctor ? ⊗ A of B has a structure of a Hopf monad on B, with product
µ = id1B

⊗m, unit η = id1B
⊗ u, comonoidal structure given by:

(? ⊗A)2(X,Y ) = (idX ⊗ τY,A ⊗ idA)(idX⊗Y ⊗ ∆) and (? ⊗A)0 = ε,

and left and right antipodes:

sl
X = (evA ⊗ id∨X)(id∨A ⊗ τ∨X,A)(id∨A⊗∨X ⊗ S−1),

sr
X = (ẽvA ⊗ idX∨)τA∨⊗X∨,A(idA∨⊗X∨ ⊗ S).

Pictorially, the structural morphisms of ? ⊗A are:
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µX =

A

A

AX

X

, ηX =
A

, (? ⊗A)2(X,Y ) =

A A

AX

X

Y

Y

,

(? ⊗A)0 =

A

, sl
X =

A∨A ∨X

∨X

, sr
X =

AA∨ X∨

X∨

.

Similarly, the endofunctor A⊗? of B has a structure of a Hopf monad on B, with
product µ = m⊗ id1B

, unit η = u⊗ id1B
, comonoidal structure:

(A⊗?)2(X,Y ) = (idA ⊗ τA,X ⊗ idY )(∆ ⊗ idX⊗Y ) and (A⊗?)0 = ε,

and left and right antipodes:

sl
X = (id∨X ⊗ evA)τA,∨X⊗∨A(S ⊗ id∨X⊗∨A),

sr
X = (idX∨ ⊗ ẽvA)(τA,X∨ ⊗ id∨A)(S−1 ⊗ idX∨⊗A∨).

Pictorially, the structural morphisms of A⊗? are:

µX =

A

A

A X

X

, ηX =
A

, (A⊗?)2(X,Y ) =

AA

A X

X

Y

Y

,

(A⊗?)0 =

A

, sl
X =

A ∨A∨X

∨X

, sr
X =

A A∨X∨

X∨

.

Example 2.5. The previous example can be extended to the non-braided setting as
follows. Let C be a autonomous category and (A, σ) be a Hopf algebra in the center
Z(C) of C (see Section 1.10). Denote m, u, ∆, ε, S the product, unit, coproduct,
counit, and antipode of (A, σ). Observe that (A,m, u) is an algebra in C. Then the
endofunctor A⊗? of C has a structure of a Hopf monad on C, denoted A⊗σ?, with
product µ = m⊗ id1C

, unit η = u⊗ id1C
, comonoidal structure:

(A⊗σ?)2(X,Y ) = (idA ⊗ σX ⊗ idY )(∆ ⊗ idX⊗Y ) and (A⊗σ?)0 = ε,

and left and right antipodes:

sl
X = (id∨X ⊗ evA)σ∨X⊗∨A(S ⊗ id∨X⊗∨A),

sr
X = (idX∨ ⊗ ẽvA)(σX∨ ⊗ id∨A)(S−1 ⊗ idX∨⊗A∨).

Likewise, if (A, σ) is a Hopf algebra in Z ′(C) (see Remark 1.2), then the endofunctor
? ⊗ A of C has a structure of a Hopf monad on C, denoted ? ⊗σ A, with product
µ = id1C

⊗m, unit η = id1C
⊗ u, comonoidal structure given by:

(? ⊗σ A)2(X,Y ) = (idX ⊗ σY ⊗ idA)(idX⊗Y ⊗ ∆) and (? ⊗σ A)0 = ε,

and left and right antipodes:

sl
X = (evA ⊗ id∨X)(id∨A ⊗ σ∨X)(id∨A⊗∨X ⊗ S−1),

sr
X = (ẽvA ⊗ idX∨)σA∨⊗X∨(idA∨⊗X∨ ⊗ S).

Note that if A is a Hopf algebra in an autonomous braided category B with braid-
ing τ , then (A, τA,−) is a Hopf algebra in Z(B), (A, τ−,A) is a Hopf algebra in Z ′(B),
and we have A⊗? = A⊗τA,−

? and ? ⊗A =? ⊗τ−,A
A as Hopf monads on B.
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2.5. Modules over a monad. Let (T, µ, η) be a monad on a category C. An
action of T on an object M of C is a morphism r : T (M) →M in C such that:

rT (r) = rµM and rηM = idM .

The pair (M, r) is then called a T -module in C, or just a T -module3.
Given two T -modules (M, r) and (N, s) in C, a morphism of T -modules from

(M, r) to (N, r) is a morphism f ∈ HomC(M,N) which is T -linear, that is, such
that fr = sT (f). This gives rise to the category T - C of T -modules (in C), with
composition inherited from C. We denote by UT : T -C → C the forgetful functor
of T defined by UT (M, r) = M for any T -module (M, r) and UT (f) = f for any
T -linear morphism f .

Example 2.6. Let A be an algebra in a monoidal category C and consider the
monads ? ⊗ A and A⊗? of Example 2.1. Then the category of (? ⊗ A)- modules
(resp. of (A⊗?)- modules) coincides with the category CA of right A-modules in C
(resp. with the category AC of left A-modules in C):

(? ⊗A)- C = CA and (A⊗?)- C = AC.

2.6. Tannaka dictionary. Structures of bimonad and Hopf monad on a monad T
have natural interpretations in terms of the category of T -modules:

Theorem 2.7 ([BV07]). Let T be a monad on a monoidal category C and T -C be
the category of T -modules.

(a) If T is a bimonad, then the category T -C is monoidal by setting:

(M, r) ⊗ (N, s) =
(
M ⊗N, (r ⊗ s)T2(M,N)

)
and 1T- C = (1, T0).

Moreover this gives a bijective correspondence between bimonad structures
on the monad T and monoidal structures on T - C such that the forgetful
functor UT : T - C → C is strict monoidal.

(b) Assume T is a bimonad and C is left autonomous (resp. right) autonomous.
Then T has a left (resp. right) antipode if and only if T - C is left (resp. right)
autonomous. If sl is a left antipode for T , left duals in T -C are given by:
∨
(M, r) = (∨M, sl

MT (∨r)), ev(M,r) = evM , coev(M,r) = coevM ,

and if sr is a right antipode for T , right duals in T -C are given by:

(M, r)
∨

= (M∨, sr
MT (r∨)), ẽv(M,r) = ẽvM , c̃oev(M,r) = c̃oevM .

(c) Assume T is a bimonad and C is autonomous. Then T is a Hopf monad if
and only if T -C is autonomous.

Example 2.8. Let A be a Hopf algebra in a braided autonomous category B and
consider the Hopf monads ? ⊗A and A⊗? of Example 2.4. Then:

(? ⊗A)-B = BA and (A⊗?)-B = AB

as monoidal categories.

Example 2.9. More generally, let C be a monoidal category and (A, σ) be a Hopf
algebra in the braided category Z(C). Then AC coincides with the category of
modules over the Hopf monad A⊗σ? on C defined in Example 2.5. Hence AC is
autonomous, with unit object (1, ε) and monoidal product:

(M, r) ⊗ (N, s) = (r ⊗ s)(idA ⊗ σM ⊗ idN )(∆ ⊗ idM⊗N ).

3Pairs (M, r) are usually called T -algebras in the literature (see [Mac98]). However, throughout
this paper, pairs (M, r) are considered as the analogues of modules over an algebra, and so the
term ‘algebra’ would be awkward in this context.
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Likewise, if (A, σ) is a Hopf algebra in the braided category Z ′(C) (see Remark 1.2),
then CA coincides with the category of modules over the Hopf monad ? ⊗σ A, and
so is autonomous, with unit object (1, ε) and monoidal product:

(M, r) ⊗ (N, s) = (r ⊗ s)(idM ⊗ σN ⊗ idA)(idM⊗N ⊗ ∆).

2.7. Quasitriangular Hopf monads. A R-matrix for a Hopf monad (T, µ, η) on
an autonomous category C is a natural transformation

R = {RX,Y : X ⊗ Y → T (Y ) ⊗ T (X)}X,Y ∈Ob(C)

such that, for all objects X,Y, Z of C,

(µY ⊗ µX)RT (X),T (Y )T2(X,Y ) = (µY ⊗ µX)T2(T (Y ), T (X))T (RX,Y );

(idT (Z) ⊗ T2(X,Y ))RX⊗Y,Z

= (µZ ⊗ idT (X)⊗T (Y ))(RX,T (Z) ⊗ idT (Y ))(idX ⊗RY,Z);

(T2(Y, Z) ⊗ idT (X))RX,Y ⊗Z

= (idT (Y )⊗T (Z) ⊗ µX)(idT (Y ) ⊗RT (X),Z)(RX,Y ⊗ idZ);

(idT (X) ⊗ T0)R1,X = ηX = (T0 ⊗ idT (X))RX,1.
A quasitriangular Hopf monad is a Hopf monad equipped with an R-matrix.

Remark 2.10. For a bimonad, an R-matrix is also required to be ∗-invertible (see
[BV07, Section 8.2]). For a Hopf monad T , this condition is automatic and we have:

R∗−1
X,Y =

(
idT (X)⊗T (Y ) ⊗ evX(sl

X ⊗ idX)
)

(idT (X) ⊗R∨T (X),Y ⊗ idX)(coevT (X) ⊗ idY ⊗X);

=
(
ẽvY (idY ⊗ sr

Y ) ⊗ idT (X)⊗T (Y )

)

(idY ⊗RX,T (Y )∨ ⊗ idT (Y ))(idY ⊗X ⊗ c̃oevT (Y ));

where sl and sr are the left and right antipodes of T .

There is a natural interpretation of R-matrices for a Hopf monad T in terms of
braidings on the category of T -modules:

Theorem 2.11 ([BV07]). Let T be a Hopf monad on an autonomous category C.
Then any R-matrix R for T defines a braiding τ on the category T -C as follows:

τ(M,r),(N,s) = (s⊗ t)RM,N : (M, r) ⊗ (N, s) → (N, s) ⊗ (M, r).

This assignment is a bijection between R-matrices for T and braidings on T - C.

Remark 2.12. In Section 8.6, we define R-matrices for a Hopf algebra A in a
braided autonomous category B admitting a coend C. These R-matrices are mor-
phisms r : C ⊗ C → A ⊗ A, which encode R-matrices for the Hopf monads ? ⊗ A

and A⊗?. They generalize usual R-matrices for finite-dimensional Hopf algebras.

2.8. Morphisms of Hopf monads. A morphism of monads between two monads
(T, µ, η) and (T ′, µ′, η′) on a category C is a natural transformation f : T → T ′ such
that, for every object X of C,

fXµX = µ′
XfT ′(X)T (fX) and fXηX = η′X .

According to [BV07, Lemma 1.7], a morphism of monads f : T → T ′ yields a
functor f∗ : T ′- C → T - C defined by f∗(M, r) = (M, rfM ). Moreover, the mapping
f 7→ f∗ is a bijective correspondence between: (i) morphisms of monads f : T → T ′,
and (ii) functors F : T ′- C → T - C such that UTF = UT ′ .

A morphism of bimonads between two bimonads T and T ′ on a monoidal cate-
gory C is a morphism of monads f : T → T ′ which is comonoidal, that is:

T ′
2(X,Y )fX⊗Y = (fX ⊗ fY )T2(X,Y ) and T ′

0f1 = T0.
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According to [BV07, Lemma 2.9], the associated functor f∗ : T ′- C → C → T -C
is then monoidal strict. Moreover, the mapping f 7→ f∗ is a bijective correspon-
dence between: (i) morphisms of bimonads f : T → T ′, and (ii) monoidal functors
F : T ′- C → T - C such that UTF = UT ′ as monoidal functors.

A morphism of Hopf monads is a morphism of bimonads between Hopf monads.

Example 2.13. Let A be a Hopf algebra in a braided autonomous category B,
with braiding τ . Recall that Aop is a Hopf algebra in the mirror B of B. The Hopf
monad ? ⊗Aop on B may be seen as a Hopf monad on B. Then

τA,? : A⊗? → ? ⊗Aop

is an isomorphism of Hopf monads and

(τA,?)
∗ : BAop = (? ⊗Aop)-B → (A⊗?)-B = AB

is an isomorphism of monoidal categories. Likewise, since (Aop)op = A as Hopf
algebras in B, τ?,A induces isomorphisms ? ⊗A→ Aop⊗? and AopB → BA.

3. Hopf monads, monoidal adjunctions, and coends

Monads and adjunctions are closely related. This relationship extends naturally
to Hopf monads and monoidal adjunctions between autonomous categories. We
show that the forgetful functor of a Hopf monad creates and preserves coends.
Lastly, we define the pushforward of a Hopf monad under an adjunction and, as a
special case, the cross product of Hopf monads.

3.1. Adjunctions. Let C and D be categories. Recall that an adjunction is a pair
of functors (F : C → D, U : D → C) endowed with a bijection:

HomD

(
F (X), Y

)
≃ HomC

(
X,U(Y )

)

which is natural in both X ∈ Ob(C) and Y ∈ Ob(D). The functor F is then called
left adjoint of U and the functor U right adjoint of F . Note that a left (resp. right)
adjoint of a given functor, if it exists, is unique up to unique natural isomorphism.

An adjunction (F,U) is entirely determined by two natural transformations
η : 1C → UF and ε : FU → 1D satisfying:

U(ε) ηU = idU and εFF (η) = idF .

These transformations η and ε are respectively called the unit and counit of the
adjunction, and collectively the adjunction morphisms.

Adjunctions may be composed: given two adjunctions (F : C → D, U : D → C)
and (F ′ : D → E , U ′ : E → D), the pair (F ′F : C → E , UU ′ : E → C) is an adjunction
called the composite of (F,U) and (F ′, U ′).

Adjunctions and monads are closely related. Indeed if T is a monad on a cate-
gory C, then the forgetful functor UT : T - C → C has a left adjoint FT : C → T - C, de-
fined by FT (X) = (T (X), µX) for any objectX of C and FT (f) = T (f) for any mor-
phism f in C. The unit of the adjunction (FT , UT ) is the unit η : 1C → T = UTFT

of the monad T , and the counit ε : FTUT → 1T - C of (FT , UT ) is the T - action, that
is, ε(M,r) = r for any T -module (M, r).

Moreover if (F : C → D, U : D → C) is a pair of adjoint functors, with adjunction
morphisms η : 1C → UF and ε : FU → 1D, then T = UF is a monad on C, with
product µ = U(εF ) : T 2 → T and unit η. The monad (T, µ, η) is the called the
monad of the adjunction (F,U). In addition there exists a unique functor K : D →
T -C such that UTK = U and KF = FT . The functor K is called the comparison
functor and is given by K(D) =

(
U(D), U(εD)

)
for any object D of D.

Note that if T is a monad on C, then T is the monad of the adjunction (FT , UT )
and the comparison functor is the identity functor. In general, however, the com-
parison functor of an adjunction need not be an equivalence.
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3.2. Monadic adjunctions. An adjunction is monadic if its comparison functor
(see Section 3.1) is an equivalence. Remark that the composite adjunction of two
monadic adjunctions need not be monadic.

A functor U : D → C is monadic if it admits a left adjoint F : C → D and the
adjunction (F,U) is monadic. If such is the case, the monad T = UF of the adjunc-
tion (F,U) is called the monad of U . It is well-defined up to unique isomorphism
of monads (as the left adjoint F is unique up to unique natural isomorphism).

For example, if T is a monad on a category C, the forgetful functor UT : T -C → C
is monadic with monad T .

Remark 3.1. Let U : D → C be a functor. If there exist a monad T on C and an iso-
morphism of categories K : D → T - C such that U = UTK, then F = K−1FT is left
adjoint to U and the adjunction (F,U) is monadic with monad T and comparison
functor K.

3.3. Hopf monads and monoidal adjunctions. Let C and D be monoidal cat-
egories. An adjunction (F : C → D, U : D → C) is said to be monoidal if the right
adjoint U : D → C is strong monoidal. For example, if T is a bimonad on a monoidal
category C, then the adjunction (FT , UT ) is monoidal.

The monad of a monoidal adjunction between monoidal categories (resp. au-
tonomous categories) is a bimonad (resp. a Hopf monad). More precisely:

Theorem 3.2 ([BV07]). Let (F : C → D, U : D → C) be a monoidal adjunction
between monoidal categories. Denote T = UF the monad of this adjunction. Then
the functor F is comonoidal and T is a bimonad on C. The comparison functor
K : D → T - C is strong monoidal, satisfies UTK = U as monoidal functors, and
KF = FT as comonoidal functors. If the categories C and D are furthermore
autonomous, then the bimonad T is a Hopf monad.

Remark 3.3. Let (F,U) be a monoidal adjunction between autonomous cate-
gories, with unit η and counit ε. Let T = UF be the Hopf monad associated with
this monoidal adjunction (see Theorem 3.2). Then the comonoidal structure and
antipodes of T are:

T2(X,Y ) = U2(F (X), F (Y ))−1 U(εF (X)⊗F (Y ))UF
(
U2(F (X), F (Y ))(ηX ⊗ ηY )

)
,

T0 = U−1
0 U(ε1)UF (U0),

sl
X = ∨ηX U l

1(F (X))−1 U(ε∨F (X))UF
(
U l

1(F (X))
)
,

sr
X = η∨X U r

1 (F (X))−1 U(εF (X)∨)UF
(
U r

1 (F (X))
)
,

where U l
1(Y ) : ∨U(Y ) → U(∨Y ) and U r

1 (Y ) : U(Y )∨ → U(Y ∨) are the compatibility
isomorphisms of U with duals (see [BV07, Section 3.2]).

3.4. Hopf monads and right adjoints. If F : C → D is a functor between au-
tonomous categories, denote F ! : C → D the functor defined by: F !(X) = F (∨X)

∨

and F !(f) = F (∨f)
∨

for all object X and morphism f in C.

Lemma 3.4. Let U : D → C be a strong monoidal functor between autonomous
categories. If F : C → D is a left adjoint for U , then F ! is a right adjoint for U .

Proof. Since U is strong monoidal, we have U(∨X) ≃
∨
U(X) for any objet X of C.

Hence the following isomorphisms:

HomC

(
U(X), Y

)
≃ HomC

(
∨Y, ∨U(X)

)
≃ HomC

(
∨Y, U(∨X)

)

≃ HomD

(
F (∨Y ), ∨X

)
≃ HomD

(
X,F (∨Y )

∨)
= HomD

(
X,F !(Y )

)

which are natural in both X ∈ Ob(C) and Y ∈ Ob(D). �

Proposition 3.5. Let T be a Hopf monad on an autonomous category C. Then:
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(a) The endofunctor T ! of C is a right adjoint of T .
(b) The functor F !

T : C → T - C is a right adjoint of the forgetful functor UT .

Proof. Part (a) is [BV07, Corollary 3.12]. Part (b) is Lemma 3.4 applied to the
monoidal adjunction (FT , UT ). �

Remark 3.6. If T is a Hopf monad on an autonomous category C, then the ad-
junction morphisms e : TT ! → 1C and h : 1C → T ! T are given by eX = sr

∨X and

hX = (sl
X)

∨
, where sl and sr denote the left and right antipodes of T .

Recall that a functor G : D → C preserves colimits if the image under G of a
colimit in D is a colimit in C. A functor G : D → C creates colimits if, for any
functor F : I → D such that GF : I → C has a colimit, this colimit lifts uniquely to
a colimit of F . See [Mac98] for more precise definitions.

Since the forgetful functor of a monad which preserves colimits creates colimits
(by [Bor94, Proposition 4.3.2]), Proposition 3.5 admits the following corollary:

Corollary 3.7. If T is a Hopf monad on an autonomous category C, then T pre-
serves colimits and the forgetful functor UT : T -C → C creates and preserves colim-
its.

3.5. Coends and Hopf monads. Let C and D be categories and F : Cop × C →
D be a functor. A dinatural transformation d : F → Z from F to an object Z
of D is family d = {dX : F (X,X) → Z}X∈Ob(C) of morphisms in D satisfying the
dinaturality condition:

dY F (idY , f) = F (f, idX)dX

for every morphism f : X → Y in C. We denote Dinat(F,Z) the set of dinatural
transformations from F to Z.

A coend of a functor F : Cop×C → D consists of an object C of C and a dinatural
transformation i : F → C which is universal in the sense that, for every dinatural
transformation d : F → Z, there exists a unique morphism r : C → Z such that
dX = r ◦ iX for all X ∈ Ob(C). In other words, the map:

{
HomD(C,Z) → Dinat(F,Z)

r 7→ ri

is a bijection. The dinatural transformation i is then called a universal dinatural
transformation for F . A coend of F , if it exists, is unique up to unique isomorphism.

Following [Mac98], we denote it
∫ X∈C

F (X,X).
Coends are well-behaved under adjunction:

Lemma 3.8. Let C, D, E be categories, (F : C → D, U : D → C) be an adjunction,
and G : Dop × C → E be a functor. We have:

∫ X∈C

G(F (X), X) ≃

∫ Y ∈D

G(Y, U(Y )),

meaning that if either coend exists, then both exist and they are naturally isomor-
phic.

Proof. Denote η : 1C → UF and ε : FU → 1D the adjunction morphisms. The
lemma results from the existence of a bijection:

ψ : Dinat
(
G(F × 1C), E

)
→ Dinat

(
G(1Dop × U), E

)

which is natural in E ∈ Ob(E). It is defined by ψ(d) = dUG(ε, idU ), and its inverse
by ψ−1(t) = tFG(idF , η). �

Coends are special cases of colimits (see [Mac98]), and particular, a functor
which preserves (resp. creates) colimits preserves (resp. creates) coends. Hence, by
Corollary 3.7:
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Proposition 3.9. Let T be a Hopf monad on an autonomous category C and

F : Dop × D → T - C be a functor. Then the coend C =
∫ Y ∈D

UTF (Y, Y ) ex-

ists if and only if the coend
∫ Y ∈D

F (Y, Y ) exists. Moreover, given a coend C =∫ Y ∈D
UTF (Y, Y ) with universal dinatural transformation iY : UTF (Y, Y ) → C,

there exists a unique action r : T (C) → C of T on C such that iY : F (Y, Y ) → (C, r)

is T - linear. We have then (C, r) =
∫ Y ∈D

F (Y, Y ), with universal dinatural trans-
formation i. The morphism r : T (C) → C is characterized by

rT (iY ) = iY αY where F (Y, Y ) = (UTF (Y, Y ), αY ),

as T (i) is a universal dinatural transformation.

3.6. Pushforward of a monad under an adjunction. Let (F : C → D, U : D →
C) be an adjunction and Q be an endofunctor of D. The endofunctor UQF of C is
called the pushforward of Q under the adjunction (F,U) and is denoted by (F,U)∗Q.

If Q is a monad, then (F,U)∗Q is a monad: it is the monad of the composite
adjunction (FQF,UUQ) of (F,U) and (FQ, UQ).

If Q is comonoidal and (F,U) is monoidal, then (F,U)∗Q is comonoidal with
comonoidal structure the composition of the comonoidal structures of UT , Q, and FT .

By Theorem 3.2, if the adjunction (F,U) is monoidal and Q is a bimonad, then
(F,U)∗Q is a bimonad (since the composite of monoidal adjunctions is a monoidal
adjunction).

Finally, if C and D are autonomous, (F,U) is monoidal, and Q is a Hopf monad,
then (F,U)∗Q is a Hopf monad.

Remark 3.10. The structural morphisms of (F,U)∗Q can be expressed using those
of Q and the adjunction morphisms of (F,U) (by applying Remark 3.3).

3.7. Cross products. Let T be a monad on a category C and Q be an endofunctor
of T - C. Denote η and ε the unit and counit of (UT , FT ). The pushforward of Q
under the adjunction (FT , UT ) is called the cross product of Q by T and denoted
by Q⋊ T . Recall: Q⋊ T = UTQFT as an endofunctor of C.

If (Q, q, v) is a monad on T -C, then Q⋊ T is a monad on C with product p and
unit e given by:

p = qFT
Q(εQFT

) and e = vFT
η.

If T is a bimonad and Q is comonoidal, then Q ⋊ T is a comonoidal with
comonoidal structure given by:

(Q⋊ T )2(X,Y ) = Q2

(
FT (X), FT (Y )

)
Q

(
εFT (X)⊗FT (Y )FT (ηX ⊗ ηY )

)
,

(Q⋊ T )0 = Q0Q(ε(1,T0)).

If T and Q are bimonads, then Q⋊T is a bimonad. If T and Q are Hopf monads,
then Q⋊ T is a Hopf monad, with left and right antipodes given by:

al
X = ∨ηXS

l
∨FT (X)Q(ε∨QFT (X)) and ar

X = η∨XS
r
F∨

T (X)Q(εQFT (X)∨),

where Sl and Sr are the antipodes of Q.

Example 3.11. Let H be a bialgebra over a field k and A be a H-module algebra,
that is, an algebra in the monoidal category HVectk of left H-modules. In this
situation, we may form the cross product A⋊H , which is a k-algebra (see [Maj95]).
Recall H⊗? is a monad on Vectk and A⊗? is a monad on HVectk. Then:

(A⊗?) ⋊ (H⊗?) = (A⋊H)⊗?

as monads. Moreover, if H is a quasitriangular bialgebra and A is a H-module
bialgebra, that is, a bialgebra in the braided category HVectk, then A ⋊ H is a
k-bialgebra, and (A⊗?) ⋊ (H⊗?) = (A⋊H)⊗? as bimonads.
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4. Distributive laws and liftings

Given two monads P and T on a category C, when is the composition PT a
monad? How can one lift P to a monad on the category T -C? Beck’s theory of
distributive law [Bec69] provides an answer for these questions. In this section, we
recall the basic results of this theory and extend them to Hopf monads.

4.1. Distributive laws between algebras. Let (A,m, u) and (B,µ, η) be two
algebras in a monoidal category C. Given a morphism Ω: B⊗A→ A⊗B in C, set:

p = (m⊗ µ)(idA ⊗ Ω ⊗ idB) : (A⊗B) ⊗ (A⊗B) → (A⊗B).

Then (A⊗B, p, u⊗ η) is an algebra in C if and only if Ω satisfies:

Ω(idB ⊗m) = (m⊗ idB)(idA ⊗ Ω)(Ω ⊗ idA); Ω(idB ⊗ u) = u⊗ idB;

Ω(µ⊗ idA) = (idA ⊗ µ)(Ω ⊗ idB)(idB ⊗ Ω); Ω(η ⊗ idA) = idA ⊗ η.

If such is the case, we say that Ω is a distributive law of B over A. The algebra
(A ⊗ B, p, u ⊗ η) is then denoted A ⊗Ω B. Note that i = (idA ⊗ η) : A → A ⊗Ω B

and j = (u ⊗ idB) : B → A ⊗Ω B are algebra morphisms, and the middle unitary
law holds:

p(idA ⊗ η ⊗ u⊗ idA) = idA⊗B.

In other words, we have p(i⊗ j) = idA⊗B.

Remark 4.1. Let (C, p, e) be an algebra in C and i : A → C, j : B → C be two
algebra morphisms such that Θ = p(i ⊗ j) : A ⊗ B → C is an isomorphism in C.
Then there exists a unique distributive law Ω of B over A such that Θ is an algebra
isomorphism from A⊗Ω B to C. Moreover:

Ω = Θ−1p(j ⊗ i), i = Θ(idA ⊗ η) and j = Θ(u⊗ idB).

Remark 4.2. If a distributive law Ω: B⊗A→ A⊗B ofB overA is an isomorphism,
then Ω−1 is a distributive law of A over B and Ω: B ⊗Ω−1 A → A ⊗Ω B is an
isomorphism of algebras.

Example 4.3. Let A and B be bialgebras in a braided category B. A distributive
law of B over A is comultiplicative if it satisfies:

(idA ⊗ τA,B ⊗ idB)(∆A ⊗ ∆B)Ω = (Ω ⊗ Ω)(idB ⊗ τB,A ⊗ idA)(∆B ⊗ ∆A),

(εA ⊗ εB)Ω = εB ⊗ εA,

where τ is the braiding of B. A comultiplicative distributive law is nothing but a
distributive law between algebras in the monoidal category of coalgebras in B. Let
Ω be a comultiplicative distributive law of B over A. Then A ⊗Ω B is a bialgebra
in B. Furthermore, if A and B are Hopf algebras, then A ⊗Ω B is a Hopf algebra
with structural morphisms:

mA⊗ΩB = (mA ⊗mB)(idA ⊗ Ω ⊗ idB), uA⊗ΩB = uA ⊗ uB,

∆A⊗ΩB = (idA ⊗ τA,B ⊗ idB)(∆A ⊗ ∆B), εA⊗ΩB = εA ⊗ εB,

SA⊗ΩB = SA ⊗ SB,

where mC , uC , ∆C , εC , SC denote respectively the product, unit, coproduct,
counit, and antipode of a Hopf algebra C.

4.2. Lifting monads and bimonads. Let (P,m, u) be a monad on a category C

and U : D → C be a functor. A lift of the monad P to D is a monad (P̃ , m̃, ũ) on D

such that PU = UP̃ , mU = U(m̃), and uU = U(ũ).
Let P be a bimonad on a monoidal category C and U : D → C be a strong

monoidal functor. A lift of the bimonad P to D is bimonad P̃ on D which is a lift
of the monad P to D such that UP̃ = PU as comonoidal functors.
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4.3. Distributive laws between monads. Let (T, µ, η) and (P,m, u) be monads
on a category C. Following Beck [Bec69], a distributive law of T over P is a natural
transformation Ω: TP → PT verifying:

ΩXT (mX) = mT (X)P (ΩX)ΩP (X); ΩXT (uX) = uT (X);

ΩXµP (X) = P (µX)ΩT (X)T (ΩX); ΩXηP (X) = P (ηX);

for all object X of C.

Remark 4.4. Viewing the monads T and P as algebras in the monoidal category
of endofunctors of C (with monoidal product ◦ and unit object 1C), the above
definition of a distributive law agrees with that given in Section 4.1.

Let Ω be a distributive law of T over P . Firstly, Ω defines a monad structure on
the endofunctor PT of C, with product p and unit e given by:

pX = mT (X)P
2(µX)P (ΩT (X)) and eX = uT (X)ηX .

The monad (PT, p, e) is denoted P ◦Ω T . Secondly Ω defines a lift (P̃Ω, m̃, ũ) of the
monad P to the category T -C as follows:

P̃Ω(M, r) =
(
P (M), P (r)ΩM

)
, m̃(M,r) = mM , and ũ(M,r) = uM .

Furthermore, there is a canonical isomorphism of categories:

K :

{
P̃Ω- (T - C) −→ (P ◦Ω T )- C(
(M, r), s

)
7−→

(
M,UT (s)P (r)

)

with inverse:

K−1 :

{
(P ◦Ω T )- C −→ P̃Ω- (T - C)

(A,α) 7−→
(
(A,αuT (A)), αP (ηA)

) .

In fact K is the comparison functor of the composite adjunction:

P̃Ω- (T - C)

U
P̃Ω

''

F
P̃Ω

gg T - C
UT

''

FT

gg C

Hence this composite adjunction is monadic with monad P ◦Ω T .
The assignments Ω 7→ P ◦Ω T and Ω 7→ P̃Ω are one-to-one in the following sense:

Theorem 4.5 ([Bec69]). Let (T, µ, η) and (P,m, u) be monads on a category C.
We have bijective correspondences between:

(i) Distributive laws Ω: TP → PT of T over P ;
(ii) Products p : PTPT → PT for which:

(a) (PT, p, uTη) is a monad on C;
(b) uT : T → PT and P (η) : P → PT are morphisms of monads;
(c) the middle unitary law pXP (ηPT (X)uT (X)) = idPT (X) holds;

(iii) Lifts of the monad P on C to a monad P̃ on T - C.

4.4. Distributive laws between bimonads. Let T and P be bimonads on a
monoidal category C. Recall that TP and PT are comonoidal endofunctors of C.
A distributive law Ω: TP → PT of T over P is comonoidal if it is comonoidal as a
natural transformation, that is, if it satisfies:

(PT )2(X,Y )ΩX⊗Y = (ΩX ⊗ ΩY )(TP )2(X,Y ) and (PT )0Ω1 = (TP )0.

Remark 4.6. Viewing the bimonads T and P as algebras in the monoidal category
of comonoidal endofunctors of C (see Remark 2.2), a comonoidal distributive law is
a distributive law in the sense of Section 4.1.
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Beck’s Theorem 4.5 was generalized by Street [Str72] to monads in a 2- category.
Applying this theorem to the case of the 2-category of monoidal categories and
comonoidal functors, we obtain:

Theorem 4.7. Let (T, µ, η) and (P,m, u) be bimonads on a monoidal category C.
We have bijective correspondences between:

(i) Comonoidal distributive laws Ω: TP → PT of T over P ;
(ii) Products p : PTPT → PT for which:

(a) (PT, p, uTη) is a bimonad on C;
(b) uT : T → PT and P (η) : P → PT are morphisms of bimonads;
(c) the middle unitary law pXP (ηPT (X)uT (X)) = idPT (X) holds.

(iii) Lifts of the bimonad P on C to a bimonad P̃ on T -C.

Also, if Ω is a comonoidal distributive law of T over P , the canonical isomorphism
of categories P̃Ω- (T - C) ≃ (P ◦Ω T )- C is strict monoidal.

Example 4.8. Let B be a braided category, A and B be two bialgebras in B,
and Ω: B ⊗ A → A ⊗ B be a morphism in B. Then the following conditions are
equivalent:

(i) Ω ⊗ id1B
is a comonoidal distributive law of B⊗? over A⊗?;

(ii) id1B
⊗ Ω is a comonoidal law of ? ⊗A over ? ⊗B;

(iii) Ω is a comultiplicative distributive law of B over A (see Example 4.3).

If such is the case, we have the following equalities of bimonads:

(A⊗?) ◦(Ω⊗id1B
) (B⊗?) = (A⊗Ω B)⊗?

(? ⊗B) ◦(id1B
⊗Ω) (? ⊗A) = ? ⊗ (A⊗Ω B).

Remark 4.9. Let Ω: TP → PT be a distributive law between monads on a cat-
egory C. Then P̃Ω

⋊ T = P ◦Ω T as monads, where ⋊ denotes the cross product
(see Section 3.7). Moreover, if C is monoidal, T and P are bimonads, and Ω is

comonoidal, then P̃Ω
⋊ T = P ◦Ω T as bimonads.

4.5. Distributive laws and antipodes. We show here that if Ω: TP → PT is
a comonoidal distributive law between Hopf monads, then the composition P ◦Ω T

and the lift P̃Ω are Hopf monads:

Proposition 4.10. Let T and P be bimonads on a monoidal category C and let
Ω: TP → PT be a comonoidal distributive law of T over P . Then:

(a) If C is left autonomous, T has a left antipode sl, and P has a left an-

tipode Sl, then the bimonads P ◦Ω T and P̃Ω have left antipodes, denoted
al and S̃l respectively, given by:

al
X = Sl

XP (sl
P (X))PT (∨ΩX) : PT

(
∨
PT (X)

)
→ ∨X,

S̃l
(M,r) = Sl

M : P̃Ω
(∨
P̃Ω(M, r)

)
→

∨
(M, r).

(b) If C is right autonomous, T has a right antipode sr, and P has a right

antipode Sr, then the bimonads P ◦ΩT and P̃Ω have right antipodes, denoted
ar and S̃r respectively, given by:

ar
X = Sr

XP (sr
P (X))PT (Ω∨

X) : PT
(
PT (X)

∨)
→ X∨,

S̃r
(M,r) = Sr

M : P̃Ω
(
P̃Ω(M, r)

∨)
→ (M, r)

∨
.
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Proof. Let us prove Part (a). One first checks that al
X satisfies the axioms of a left

antipode, that is,

(PT )0PT (evX)PT (
∨
(uT (X)ηX) ⊗ idX)

= evPT (X)(a
l
PT (X)PT (∨pX) ⊗ idPT (X))(PT )2(

∨PT (X), X);

(uT (X)ηX ⊗ id∨X)coevX(PT )0

= (pX ⊗ al
X)(PT )2(PT (X), ∨PT (X))PT (coevPT (X)).

This can be done applying the axioms for the left antipodes sl and Sl of T and P
and the axioms for the distributive law Ω. By Theorem 2.7(b), this implies that
(P ◦Ω T )- C is left autonomous. Now recall that:

K :

{
P̃Ω- (T -C)

∼
−→ (P ◦Ω T )- C(

(M, r), s
)

7−→
(
M, sP (r)

)

is a strict monoidal isomorphism of categories (see Section 4.3). Therefore P̃Ω- (T - C)

is left autonomous and so, by Theorem 2.7(b), P̃Ω has a left antipode S̃l. Further-

more, given a P̃Ω- module ((M, r), s), we have:

K−1
(
∨K((M, r), s)

)
=

(
(∨M, sl

MT (r)), ρ
)
.

where UT (ρ) = al
MPT (∨P (r)∨s)P (ηM ) = Sl

MP (∨s). Hence S̃l
(M,r) = Sl

M .

Part (b) results from Part (a) applied to the opposite Hopf monads

(P ◦Ω T )o = P o ◦Ω T
o and (P̃Ω)o = (P̃ o)Ω,

see Remark 2.3. �

From Proposition 4.10, Theorem 4.7, and Remark 4.9, we deduce:

Corollary 4.11. If T and P are Hopf monads on an autonomous category C and
Ω: TP → PT is a comonoidal distributive law, then P ◦Ω T is a Hopf monad on C,
P̃Ω is a Hopf monad on T - C, and P̃Ω

⋊ T = P ◦Ω T as Hopf monads.

4.6. Invertible distributive laws. Let T , P be two monads on a category C and
Ω: TP → PT be an invertible distributive law of T over P . Then Ω−1 : PT → TP

is a distributive law of P over T , and Ω is a isomorphism of monads from T ◦Ω−1 P

to P ◦Ω T .
If C is monoidal, P , T are bimonads, and Ω: TP → PT is a comonoidal dis-

tributive law of T on P , then Ω−1 : PT → TP is a comonoidal distributive law of
P over T , and Ω is a isomorphism of bimonads from T ◦Ω−1 P to P ◦Ω T .

Proposition 4.12. Let P , T be Hopf monads on an autonomous category C. Then
any comonoidal distributive law Ω: TP → PT of T over P is invertible. Further-
more, for any object X of C, we have:

Ω−1
X = Sr

∨TP (X)P
(
sr

P (∨TP (X))

)
PT

(
Ω∨

∨TP (X)

)
PT

(
P (sl

P (X))
∨
)
PT

(
Sl∨

X

)
,

where sl, sr, Sl, Sr denote left and right antipodes of T and P respectively.

Proof. The functors T , P and PT are Hopf monads by assumption and Corol-
lary 4.11. Therefore, by Proposition 3.5, the functors T !, P !, and (PT )! are
right adjoints for T , P , and PT respectively. On the other hand, by composi-
tion of adjunctions, P ! ◦ T ! = (PT )! is a right adjoint for TP . As a left adjoint
is unique up to unique natural isomorphism, we obtain a canonical isomorphism
α : PT → TP . Denoting e : TT ! → 1C , h : 1C → T !T , e′ : PP ! → 1C, h′ : 1C → P !P ,
E : PT (PT )! → 1C , and H : 1C → (PT )!PT the adjunction morphisms, we have
α = ETPPTP

!(hP )PT (h′). Now the adjunction morphisms can be expressed in
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terms of the antipodes, see Remark 3.6. Therefore, using Proposition 4.10, we get
that, for any object X of C,

αX = Sr
∨TP (X)P (sr

P (∨TP (X)))PT (Ω∨
∨TP (X))PT (P (sl

P (X))
∨)PT (Sl∨

X )

Furthermore: EX = Sr
∨XP (sr

P (∨X))PT (Ω∨
∨X) and HX = (PT )!(ΩX)P (sl

P (X))
∨Sl∨

X .

Hence:

idPT (X) = EPT (X)PT (HX)

= EPT (X)PT (PT )!(ΩX)PT (P (sl
P (X))

∨)PT (Sl∨
X )

= ΩXETP (X)PT (P (sl
P (X))

∨)PT (Sl∨
X ) by functoriality of E

= ΩXS
r
∨TP (X)P (sr

P (∨TP (X)))PT (Ω∨
∨TP (X))PT (P (sl

P (X))
∨)PT (Sl∨

X )

= ΩXαX .

This shows that Ω, as inverse of the isomorphism α, is an isomorphism. �

Remark 4.13. Let Ω: B ⊗ A → A ⊗ B be a distributive law between two Hopf
algebras A and B in a braided autonomous category B with braiding τ . Then,
applying Proposition 4.12 to the distributive law of Example 4.8, we find that Ω is
invertible, and its inverse is given by:

Ω−1 = (S−1
B ⊗ S−1

A )τ−1
B,A Ω τA,B(SA ⊗ SB),

where SA and SB are the antipodes of A and B.

5. The centralizer of a Hopf monad

In this section, we introduce the notion of centralizer of a Hopf monad, and
interpret its category of modules as the categorical center relative to the Hopf
monad.

5.1. Centralizers of endofunctors. Let C be a monoidal category and T be an
endofunctor of C.

A centralizer of T at an object X of C is a pair (Z, δ), where Z ∈ Ob(C) and

δ = {δY : X ⊗ Y → T (Y ) ⊗ Z}Y ∈Ob(C) : X ⊗ 1C → T ⊗ Z

is a natural transformation, verifying the following universal property: for every
object W of C and every natural transformation ξ : X⊗1C → T ⊗W , there exists a
unique morphism r : Z →W in C such that ξ = (idT ⊗ r)δ. Note that a centralizer
of T at X , if it exists, is unique up to unique isomorphism.

Remark 5.1. The notion of centralizer is not invariant under left/right symmetry.
We should properly call it ‘left-handed’ centralizer. We can as well define a ‘right-
handed’ centralizer of T at X to be a pair (Z ′, δ′), with

δ′ = {δ′Y : Y ⊗X → Z ′ ⊗ T (Y )}Y ∈Ob(C) : 1C ⊗X → Z ′ ⊗ T

satisfying the relevant universal property. Note that this is equivalent to saying
that (Z ′, δ′) is a ‘left-handed’ centralizer of T at X in the monoidal category C⊗op.
By left/right symmetry, all notions and results concerning ‘left-handed’ centralizers
can be adapted to the ‘right-handed’ version.

The endofunctor T is said to be centralizable at an object X of C if it admits a
centralizer at X .

A centralizer of T is a pair (ZT , ∂), where ZT is an endofunctor of C and

∂ = {∂X,Y : X ⊗ Y → T (Y ) ⊗ ZT (X)}X,Y ∈Ob(C) : ⊗ → (T ⊗ ZT )σC,C

is a natural transformation, such that (ZT (X), ∂X,1C
) is a centralizer of T at X for

every object X of C.
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The endofunctor T is said to be centralizable if it admits a centralizer. An
endofunctor of C is centralizable if and only if it is centralizable at every object
of C. In that case, its centralizer is essentially unique. More precisely:

Lemma 5.2. Let T be an endofunctor of a monoidal category C. We have:

(a) Given a centralizer (ZT (X), ∂X) of T at every object X of C, the assignment
ZT : X 7→ ZT (X) admits a unique structure of functor such that:

∂ = {∂X,Y = (∂X)Y : X ⊗ Y → T (Y ) ⊗ ZT (X)}X,Y ∈Ob(C)

is a natural transformation. The pair (ZT , ∂) is then a centralizer of T .
(b) If (Z, ∂) and (Z ′, ∂′) are centralizers of T , then there exists a unique natural

isomorphism α : Z → Z ′ such that ∂′ = (idT ⊗ α)∂.

Proof. For each morphism f : X → X ′ in C, by the universal property of centraliz-
ers, there exists a unique morphism ZT (f) : ZT (X) → ZT (X ′) such that:

(idT ⊗ ZT (f)) ∂X,1C
= ∂X′,1C

(f ⊗ 1C),

and this assignment defines the only structure of functor on ZT such that ∂ is a
natural transformation. �

5.2. Centralizers and coends. In this section, we give a characterization of cen-
tralizable endofunctors in a left autonomous category in terms of coends.

Proposition 5.3. Let C be a left autonomous category, T be an endofunctor of C,
and X be an object of C. Then T is centralizable at X if and only if the coend

ZT (X) =

∫ Y ∈C
∨
T (Y ) ⊗X ⊗ Y

exists. If such is the case, denoting i the universal dinatural transformation of the
coend and setting:

(∂X)Y =
(
idT (Y ) ⊗ iY

)
(coevT (Y ) ⊗ idX⊗Y ),

the pair (ZT (X), ∂X) is a centralizer of T at X.

Proof. Let F : Cop × C → C be the functor defined by F (Y, Z) =
∨
T (Y ) ⊗ X ⊗ Z

and F (f, g) =
∨
T (f) ⊗X ⊗ g. By duality, we have a bijection:

ψ : Dinat(F,Z) → Hom(X ⊗ 1C, T ⊗ Z)

which is natural in Z ∈ Ob(C). It is defined by:

ψ(j)Y =
(
idT (Y ) ⊗ jY

)
(coevT (Y ) ⊗ idX⊗Y ) : X ⊗ Y → T (Y ) ⊗ Z

and its inverse by:

ψ−1(δ) = (evT (Y ) ⊗ idZ)(id∨T (Y ) ⊗ δY ) :
∨
T (Y ) ⊗X ⊗ Y → Z.

Therefore T is centralizable at X if and only if F admits a coend and, if so, the
centralizer of T at X is canonically isomorphic to the coend of F . �

5.3. Extended factorization property of the centralizer. Let T be a central-
izable endofunctor of a monoidal category C and (ZT , ∂) be a centralizer of T . For
any non-negative integer n, let

∂n : ⊗n+1 → (T⊗n ⊗ Zn
T )σC,Cn

be the natural transformation defined by the following diagram:

∂n
X,Y1,...,Yn

=

T (Y1) T (Y2) T (Yn)

Y1 Y2 YnX

Zn
T (X)

where ∂X,Y =

YX

T (Y ) ZT (X)

.
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In other words, the morphisms:

∂n
X,Y1,...,Yn

: X ⊗ Y1 ⊗ · · · ⊗ Yn → T (Y1) ⊗ · · · ⊗ T (Yn) ⊗ Zn
T (X)

are defined inductively by ∂0
X = idX and

∂n+1
X,Y1,...,Yn+1

= (idT (Y1)⊗···⊗T (Yn) ⊗ ∂Zn
T (X),Yn+1

)(∂n
X,Y1,...,Yn

⊗ idYn+1).

Notice ∂1 = ∂ and ∂p+q = (idT⊗p ⊗∂q)(∂p⊗ id⊗q
) for all non-negative integers p, q.

Lemma 5.4. Assume C is left autonomous. Let D be category and K,L : D → C
be two functors. For every non-negative integer n and every natural transforma-
tion ξ : K ⊗ ⊗n → (T⊗n ⊗ L)σD,Cn, there exists a unique natural transformation
r : Zn

TK → L such that:

(idT (Y1)⊗···⊗T (Yn) ⊗ rX)∂n
X,Y1,...,Yn

= ξX,Y1,...,Yn
,

that is,
T (Y1) T (Y2) T (Yn)

Y1 Y2 YnK(X)

L(X)

rX

=

T (Y1) T (Y2) T (Yn)

Y1 Y2 YnK(X)

L(X)

ξX,Y1,...,Yn ,

for all X ∈ Ob(D) and Y1, . . . , Yn ∈ Ob(C).

Remark 5.5. We will often write the equality defining r in Lemma 5.4 as:

(idT⊗n ⊗ r)∂n
K,1Cn = ξ.

Strictly speaking, it should be: (idT⊗n ⊗ r)σD,Cn ∂
n
K,1Cn

= ξ. However, in this kind
of formulae, we will usually omit the permutation σ as it can easily be recovered
from the context.

Proof of Lemma 5.4. The lemma can be verified by induction on n using the Pa-
rameter Theorem and Fubini Theorem for coends (see [Mac98]) and the fact that, by

Proposition 5.3, we haveZTK(X) =
∫ Y ∈C ∨

T (Y )⊗K(X)⊗Y for allX ∈ Ob(C). �

5.4. Structure of centralizers. In this section, we show that the centralizer ZT

of a Hopf monad T is a Hopf monad. The structural morphisms of ZT are defined
as in Figure 1 using the extended factorization property of ZT given in Lemma 5.4.
More precisely:

Theorem 5.6. Let T be a centralizable endofunctor of a left autonomous category C
and let (ZT , ∂) be its centralizer. We have:

(a) If T is comonoidal, then ZT is a monad on C, with product m : Z2
T → ZT

and unit u : 1C → ZT defined by:

(idT⊗2 ⊗m)∂2 = (T2 ⊗ idZT
)∂1C ,⊗ and u = (T0 ⊗ idZT

)∂1C,1.
(b) If (T, µ, η) is a monad, then ZT is comonoidal, with comonoidal structure

defined by:
(
idT ⊗ (ZT )2

)
∂⊗,1C

= (µ⊗ idZ
⊗2
T

)(∂1C ,T ⊗ idZT
)(id1C

⊗ ∂);
(
idT ⊗ (ZT )0

)
∂1,1C

= η.

(c) If T is a bimonad, then ZT is a bimonad on C, with the monad structure
of Part (a) and the comonoidal structure of Part (b).

(d) If C is autonomous, T is a bimonad, and T has a right antipode sr, then
the bimonad ZT has a left antipode Sl defined by:

(idT ⊗ Sl)∂∨ZT ,1C
=

∨(
(sr ⊗ idZT

)∂1C ,T∨

)
.
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T (Y1) T (Y2)

Y1 Y2X

ZT (X)

mX

=

T (Y1) T (Y2)

X Y1 ⊗ Y2

ZT (X)

T2(Y1, Y2)
, u =

X

ZT (X)

T0

,

ZT (X1) ZT (X2)

Y

T (Y )

X1 ⊗X2

(ZT )2(X1, X2)
=

ZT (X1) ZT (X2)

Y

T (Y )

X1 X2

µX

,

T (Y )

Y

1 (ZT )0
=

T (Y )

Y

1 ηX ,1
T (Y )

∨ZT (X) Y

∨X

Sl
X

=

1
T (Y )

∨ZT (X) Y

∨X

sr
Y ,

1
T (Y )

ZT (X)∨ Y

X∨

Sr
X

=

1

T (Y )

ZT (X)∨ Y

X∨

sl
Y

.

Figure 1. Structural morphisms of ZT

(e) If C is autonomous, T is a bimonad, and T has a left antipode sl, then the
bimonad ZT has a right antipode Sr defined by:

(idT ⊗ Sr)∂Z∨
T

,1C
=

(
(sl ⊗ idZT

)∂1C ,∨T

)∨
.

In particular if C is autonomous and T is a Hopf monad, then ZT is a Hopf monad.

Remark 5.7. The centralizer construction T 7→ ZT is functorial, contravariant
in T . More precisely, let C be a left autonomous category and T , T ′ be two cen-
tralizable endofunctors of C, with centralizers (ZT , ∂) and (ZT ′ , ∂′) respectively.
Then, for each natural transformation f : T → T ′, there exists a unique natural
transformation Zf : ZT ′ → ZT such that:

(idT ′ ⊗ Zf )∂′ = (f ⊗ idZT
)∂.

We have: Zfg = ZgZf and ZidT
= idZT

. Moreover, if f is comonoidal, then Zf is a
morphism of monads. If f if a morphism of monads, then Zf is comonoidal. Thus,
if f is a morphism of bimonads or Hopf monads, so is Zf .

Remark 5.8. Let T be a centralizable Hopf monad on an autonomous category C,
with centralizer (ZT , ∂). Set:

∂′X,Y =
sr

Y

Y X

T (Y )ZT (X)

: Y ⊗X → ZT (X) ⊗ T (Y ),

and ZT o = (ZT )o. Then (ZT o , ∂′) is a centralizer of T o in C⊗op. Moreover,
ZT o = (ZT )o as Hopf monads when ZT and ZT o are equipped with the Hopf monad
structure of Theorem 5.6. In the language of Remark 5.1, ‘left centralizability’ and
‘right centralizability’ are equivalent for a Hopf monad T , and a ‘left-handed’ cen-
tralizer Z ′

T = (ZTo)
o can be identified with a ‘right-handed’ centralizer ZT in a

manner preserving the Hopf monad structures.
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Proof of Theorem 5.6. To simplify notations, set Z = ZT . Let us prove Part (a).
By definition of the product m and unit u of Z, we have:

(
idT⊗3 ⊗mZ(m)

)
∂3 =

(
T2 ⊗ idT ⊗m)∂2

1C ,⊗,1C

=
(
(T2 ⊗ idT )T2 ⊗ idZ)∂1C ,⊗2

=
(
(idT ⊗ T2)T2 ⊗ idZ)∂1C ,⊗2

=
(
idT ⊗ T2 ⊗m)∂2

1C ,1C,⊗

=
(
idT⊗3 ⊗mmZ

)
∂3.

Therefore mZ(m) = mmZ by the uniqueness assertion of Lemma 5.4. Likewise,
since:

(
idT ⊗mZ(u)

)
∂ = (idT ⊗m)∂Z,1C

(u⊗ id1C
)

= (T0 ⊗ idT ⊗m)∂2
1C,1,1C

=
(
(T0 ⊗ idT )T2(1,−) ⊗ idZ

)
∂

= (idT ⊗ idZ)∂

and

(idT ⊗muZ)∂ = (idT ⊗ T0 ⊗m)∂2
1C ,1C,1

=
(
(idT ⊗ T0)T2(−, 1) ⊗ idZ

)
∂

= (idT ⊗ idZ)∂,

we get mZ(u) = idZ = muZ . Hence (Z,m, u) is a monad on C.
Let us prove Part (b). By definition of the natural transformation Z2, we have:

(
idT ⊗ (idZ ⊗ Z2)Z2

)
∂⊗3,1C

= (µT (µ) ⊗ idZ⊗3)(∂T 2,1C
⊗ idZ⊗2)(id1C

⊗ ∂T,1C
⊗ idZ)(id⊗ ⊗ ∂)

= (µµT ⊗ idZ⊗3)(∂T 2,1C
⊗ idZ⊗2)(id1C

⊗ ∂T,1C
⊗ idZ)(id⊗ ⊗ ∂)

=
(
idT ⊗ (Z2 ⊗ idZ)Z2

)
∂⊗3,1C

,

and so (idZ ⊗ Z2)Z2 = (Z2 ⊗ idZ)Z2 by Lemma 5.4. Likewise, since:
(
idT ⊗ (idZ ⊗ Z0)Z2(−, 1))∂ = (µ⊗ idZ ⊗ Z0)(∂1C ,T ⊗ idZ(1))(id1C

⊗ ∂1,1C
)

= (µ⊗ idZ)∂1C ,T (id1C
⊗ η) = (µT (η) ⊗ idZ)∂ = ∂

and
(
idT ⊗ (Z0 ⊗ idZ)Z2(1,−)

)
∂ = (µ⊗ Z0 ⊗ idZ)(∂1,T ⊗ idZ)∂

= (µηT ⊗ idZ)∂ = ∂,

we get: (idZ ⊗Z0)Z2(1C , 1) = idZ = (Z0 ⊗ idZ)Z2(1, 1C). Hence Z is a comonoidal
functor.

Let us prove Part (c). We have to show that m and u are comonoidal morphisms.
Since µ and η are comonoidal, we have:

(idT⊗2 ⊗ Z2m)∂2
⊗,1C,1C

= (T2µ⊗ idZ⊗2)(∂1C,T ⊗ idZ)(id1C
⊗ ∂)

=
(
(µ⊗ µ)T2T (T2) ⊗ idZ⊗2

)
(∂1C,T ⊗ idZ)(id1C

⊗ ∂)

=
(
idT⊗2 ⊗ (m⊗m)Z2Z(Z2)

)
∂2
⊗,1C,1C

and (idT⊗2 ⊗Z0m1)∂21,1C,1C
= T2η = η⊗ η =

(
idT⊗2 ⊗Z0Z(Z0)

)
∂21,1C,1C

. Therefore
Z2m = (m ⊗ m)Z2Z(Z2) and Z0m1 = Z0Z(Z0) by Lemma 5.4, that is, m is
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comonoidal. Moreover,

Z2u = (T0 ⊗ Z2)∂⊗,1 = (T0µ1 ⊗ idZ⊗2)∂2
1C ,1C,1

= (T0T (T0) ⊗ idZ⊗2)∂2
1C ,1C,1 = u⊗ u

and Z0u1 = (T0 ⊗ Z0)∂1,1 = T0η1 = id1. Hence u is comonoidal.
Parts (d) and (e) can be proved in a similar way, but we will rather deduce them

in Section 5.8 from the next Theorem 5.12. �

5.5. Categorical center relative to a Hopf monad. Let T be a comonoidal
endofunctor of a monoidal category C. The center of C relative to T , or shortly the
T -center of C, is the category ZT (C) defined as follows: objects are pairs (M,σ),
where M is an object of C and σ : M ⊗ 1C → T ⊗M is a natural transformation,
such that:

T (Y ) T (Z) M

M Y ⊗ Z

σY ⊗Z1 T2(Y, Z)

=

T (Y ) T (Z)

M

M

Y Z

σY

σZ1 and

M

M

σ1T0

=

M

M

1 ,

that is,

(T2(Y, Z) ⊗ idM )σY ⊗Z = (idT (Y ) ⊗ σZ)(σY ⊗ idZ) for all Y, Z ∈ Ob(C);

(T0 ⊗ idM )σ1 = idM .

A morphism f : (M,σ) → (M ′, σ′) is a morphism f : M →M ′ in C such that:

(idT (Y ) ⊗ f)σY = σ′
Y (f ⊗ idY )

for every object Y of C. The composition and identities are inherited from C.
Let UT : ZT (C) → C be the forgetful functor defined by:

UT (M,σ) = M and UT (f) = f.

If C is autonomous and T is a Hopf monad, then ZT (C) is autonomous. More
precisely:

Proposition 5.9. Let (T, µ, η) be a bimonad on a monoidal category C. Then
ZT (C) is monoidal, with unit object (1, η) and monoidal product:

(M,σ) ⊗ (N, γ) = (M ⊗N, ρ) where ρ = (µ⊗ idM⊗N )(σT ⊗ idN )(idM ⊗ γ),

and the forgetful functor UT : ZT (C) → C is strict monoidal. Now assume C is
autonomous. If T has a right antipode sr, then ZT (C) is left autonomous with left
duals given by

∨
(M,σ) = (∨M,σl), where:

σl
Y =

∨(
(sr

Y ⊗ idM )σT (Y )∨
)
.

If T has a left antipode sl, then the category ZT (C) is right autonomous with right
duals given by (M,σ)∨ = (M∨, σr), where:

σr
Y =

(
(sl

Y ⊗ idM )σ∨T (Y )

)∨
.

In particular, if T is a Hopf monad, then the category ZT (C) is autonomous.

We leave the proof to the reader. Pictorially, the morphisms ρ, σl, σr of Propo-
sition 5.9 are:
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ρ =

T (Y )

N

N

M

M

Y

σT (Y )

γY

µY

, σl =

T (Y )

∨M

∨M

Y

σT (Y )∨

sr
Y

, and σr =

T (Y )

M∨

M∨

Y

σ∨T (Y )

sl
Y

.

Remark 5.10. If C is an autonomous category, then Z1C
(C) coincides with the

usual center Z(C) of C (see Section 1.10).

Remark 5.11. The definition of the category ZT (C) is not left/right symmetric.
One may also consider the category Z ′

T (C) = ZT o(C⊗op)⊗op, whose objects are
pairs (M,σ), where M is an object of C and σ : 1C ⊗M → M ⊗ T is a natural
transformation satisfying the obvious conditions. If C is autonomous and T is a
Hopf monad, then the category Z ′

T (C) is autonomous and isomorphic to ZT (C) via
the strict monoidal functor ZT (C) → Z ′

T (C) defined by (M,σ) 7→ (M,σ′), where:

σ′
Y = (ẽvY (idY ⊗ sr

Y ) ⊗ idM⊗T (Y ))(idY ⊗ σT (Y )∨ ⊗ idT (Y ))(idY ⊗M ⊗ c̃oevT (Y )).

In particular Z ′
1C

(C) = Z ′(C), see Remark 1.2.

5.6. Monadicity of centers. In this section, we show that the center relative to
a centralizable Hopf monad is monoidally equivalent to the category of modules of
a its centralizer.

Theorem 5.12. Let T be a centralizable comonoidal endofunctor of a left au-
tonomous category C, with centralizer (ZT , ∂). The functor E : ZT - C → ZT (C),
defined by:

E(M, r) =
(
M, (idT ⊗ r)∂M,1C

)
and E(f) = f,

is an isomorphism of categories such that the following triangle commutes:

ZT - C
E //

UZT ""DD
DD

DD
�

ZT (C)

UT||zz
zz

zz

C

Furthermore, if T is a bimonad, so that ZT is a bimonad and ZT (C) is monoidal,
then E is strict monoidal (and so UTE = UZT

as monoidal functors).

We prove Theorem 5.12 in Section 5.7.

Remark 5.13. The functor FT = EFZT
: C → ZT (C) is left adjoint to UT and the

adjunction (FT ,UT ) is monadic with monad ZT (see Remark 3.1). If T is a bimonad,
this adjunction is monoidal and ZT is its associated bimonad (see Theorem 3.2).

A monoidal category C is said to be centralizable if its identity endofunctor 1C
is centralizable. In such case, the centralizer of 1C is called the centralizer of C. In
view of Remark 5.10, we have:

Corollary 5.14. Let C be a centralizable autonomous category, with centralizer
(Z, ∂). Then the forgetful functor U : Z(C) → C is monadic with monad Z. In fact
Z is a Hopf monad and the functor Z- C → Z(C), defined by:

(M, r) 7→
(
M, (id1C

⊗ r)∂M,1C

)
and f 7→ f,

is a strict monoidal isomorphism of categories.

Remark 5.15. The monadicity assertion of Corollary 5.14 is a consequence of [DS07,
Theorem 4.3].
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Remark 5.16. We will see in Section 6.2 that R =
(
u⊗ id

)
∂ is an R-matrix for Z

(where u denotes the unit of Z), making the isomorphism of Corollary 5.14 an
isomorphism of braided categories.

5.7. Proof of Theorem 5.12. Throughout this section, let T be a centralizable
endofunctor of a left autonomous category C, with centralizer (ZT , ∂). Recall ZT

is a monad by Theorem 5.6(a). Denote m and u its product and unit.
Remark first that, by Lemma 5.4, for any object M of C, we have a bijection:

{
HomC(ZT (M),M) → Hom(M ⊗ 1C , T ⊗M)

r 7→ σ(M,r) = {(idT (Y ) ⊗ r)∂M,Y }Y ∈Ob(C)
.

Lemma 5.17. Let M be an object of C and r : ZT (M) → M be a morphism in C.
Then (M, r) is a ZT -module if and only if (M,σ(M,r)) is an object of ZT (C).

Proof. By definition of the multiplication m of ZT , we have:

(T2 ⊗ idM )(σ(M,r))⊗ = (T2 ⊗ r)∂M,⊗ = (idT⊗2 ⊗ rmM )∂2
M,1C,1C

.

Moreover:

(idT ⊗ σ(M,r))(σ(M,r) ⊗ id1C
) =

(
idT⊗2 ⊗ rZT (r)

)
∂2

M,1C,1C
.

Therefore, by Lemma 5.4, (T2 ⊗ idM )(σ(M,r))⊗ = (idT ⊗ σ(M,r))(σ(M,r) ⊗ id1C
) if

and only if rmM = rZT (r). Also, since (T0⊗ idM )(σ(M,r))1 = (T0⊗ r)∂M,1 = ruM ,
we have (T0 ⊗ idM )(σ(M,r))1 = idM if and only if ruM = idM . �

Lemma 5.18. Let (M, r) and (N, s) be two ZT -modules. Let f : M → N be a
morphism in C. Then f is ZT - linear if and only if it is a morphism from (M,σ(M,r))
to (N, σ(N,s)) in ZT (C).

Proof. We have: (idT ⊗ f)σ(M,r) = (idT ⊗ fr)∂M,1C
and

σ(N,s)(f ⊗ idT ) = (idT ⊗ s)∂N,1C
(f ⊗ id1C

) = (idT ⊗ sZT (f))∂M,1C
.

Therefore, by Lemma 5.4, we obtain: (idT ⊗ f)σ(M,r) = σ(N,s)(f ⊗ idT ) if and only
if fr = sZT (f). �

Using Lemmas 5.17 and 5.18, one sees that the functor E : ZT - C → ZT (C),
given by E(M, r) = (M,σ(M,r)) and E(f) = f , is a well-defined isomorphism of
categories. Furthermore it clearly satisfies UTE = UZT

.
Assume now that (T, µ, η) is a bimonad. Then ZT is a bimonad by Theo-

rem 5.6(c) and the category ZT (C) is monoidal by Proposition 5.9. Since, for
all ZT - modules (M, r) and (N, s), we have:

E(M, r) ⊗ E(N, s) = (M,σ(M,r)) ⊗ (N, σ(N,s))

=
(
M ⊗N, (µ⊗ r ⊗ s)(∂M,T ⊗ idZT (N))(idM ⊗ ∂N,1C

)
)

=
(
M ⊗N, (idT ⊗ (r ⊗ s)(ZT )2(M,N))∂M⊗N,1C

)

= E
(
(M, r) ⊗ (N, s)

)

and E
(1, (ZT )0

)
=

(1, (idT⊗(ZT )0)∂1,1C

)
= (1, η), the functor E is strict monoidal.

Finally, we have: UTE = UZT
as monoidal functors because the forgetful functors

UZT
: ZT - C → C and UT : ZT (C) → C are strict monoidal.

5.8. End of proof of Theorem 5.6. Let us prove Part (d) of Theorem 5.6. Let
(T, µ, η) be a centralizable bimonad on an autonomous category C, with centralizer
(ZT , ∂). By Theorem 5.6(c), ZT is a bimonad. By Theorem 5.12, the functor
E : ZT - C → ZT (C), defined by:

E(M, r) =
(
M, (idT ⊗ r)∂M,1C

)
and E(f) = f,
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is a strict monoidal isomorphism. Assume T admits a right antipode sr. Then the
category ZT (C) is left autonomous by Proposition 5.9. Hence the category ZT - C is
left autonomous, and so ZT admits a left antipode by Theorem 2.7(b). Denote m
the product of ZT , u its unit, and Sl its right antipode. Let X be an object of C.
In the category ZT - C, we have a duality:

(
∨(ZT (X),mX), (ZT (X),mX), evZT (X), coevZT (X)

)
,

where
∨
(ZT (X),mX) =

(
∨ZT (X), Sl

ZT (X)ZT (∨mT )
)
. Hence, E being strict monoidal,

a duality in the category ZT (C):
(
E

(∨
(ZT (X),mX)

)
, E(ZT (X),mX), evZT (X), coevZT (X)

)
,

where E
(∨

(ZT (X),mX)
)

=
(
∨ZT (X), (idT ⊗Sl

ZT (X)ZT (∨mT ))∂∨ZT (X),1C

)
. Now, by

Proposition 5.9, we also have the following duality in ZT (C):
(
∨E(ZT (X),mX), E(ZT (X),mX), evZT (X), coevZT (X)

)

where ∨E(ZT (X),mX) =
(
∨
ZT (X), ∨((sr ⊗mX)∂ZT (X),T∨)

)
. Hence, by uniqueness

of duals up to unique isomorphism:
(
idT ⊗ Sl

ZT (X)ZT (∨mT )
)
∂∨ZT (X),1C

=
∨(

(sr ⊗mX)∂ZT (X),T∨

)
.

Composing on the left with (idT ⊗ ∨uX) =
∨
(uX ⊗ idT∨), we get:

(idT ⊗ Sl
X)∂∨ZT (X),1C

=
∨(

(sr ⊗ idZT (X))∂X,T∨

)
,

which is the defining relation of Theorem 5.6(d). Hence Part (d) of Theorem 5.6.
Part (e) can be shown similarly.

6. The double of a Hopf monad

Given a centralizable Hopf monad T on an autonomous category C, we construct
the canonical distributive law Ω of T over its centralizer ZT , which serves two
purposes. Firstly Ω gives rise to a new Hopf monad DT = ZT ◦Ω T , called the
double of T . The double DT is actually quasitriangular and Z(T -C) ≃ DT - C as
braided categories, see Section 6.2. Secondly Ω defines a lift of the Hopf monad
ZT to a Hopf monad Z̃Ω

T on T -C, which turns out to be the centralizer of the

category T -C, and so Z̃Ω
T (1, T0) is the coend of T - C, see Section 6.3.

Most of the results of this section are special cases of results of Section 7. We
state them here for convenience.

6.1. The canonical distributive law. Let T be a centralizable Hopf monad on
an autonomous category C and (ZT , ∂) be its centralizer.

Recall (see Proposition 5.3) that ZT (X) =
∫ Y ∈C ∨

T (Y )⊗X ⊗ Y , with universal
dinatural transformation:

iX,Y = (coevT (Y ) ⊗ idZT (X))(id∨T (X) ⊗ ∂X,Y ),

which is natural in X and dinatural in Y . Since T (i) is a universal dinatural trans-
formation (see Section 3.5), we can define a natural transformation Ω: TZT → ZTT

by:

ΩXT (iX,Y ) = iT (X),T (Y )

(
∨µY s

l
T (Y )T (∨µY ) ⊗ idT (X)⊗T (Y )

)
T3

(∨
T (Y ), X, Y

)
,

where µ and sl are the product and left antipode of T and T3 : T⊗3 → T⊗3 is
defined as in Section 1.5.

Theorem 6.1. The natural transformation Ω: TZT → ZTT is an invertible co-
monoidal distributive law.
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We call Ω the canonical distributive law of T . We prove Theorem 6.1 in Sec-
tion 7.4.

The inverse Ω−1 : ZTT → TZT of the distributive law Ω is the natural transfor-
mation defined by:

Ω−1
X iT (X),Y =

(
evT (Y )(id∨T (Y ) ⊗ µY T (µY )) ⊗ T (iX,T (Y )) ⊗ evY (sl

Y ⊗ idY )
)

◦ T3(T
2(Y ), ∨T 2(Y ) ⊗X ⊗ T (Y ), ∨T (Y ))T (coevT 2(Y ) ⊗ idX ⊗ coevT (Y )).

Remark 6.2. The canonical distributive law of T is the only natural transforma-
tion Ω: TZT → ZTT satisfying:

(µ⊗ Ω)T2T (∂) = (µ⊗ idZT T )∂T,TT2.

Remark 6.3. One can show that R-matrices for T correspond bijectively with
morphisms of Hopf monads f : ZT → T satisfying µT (f) = µfT Ω. The R-matrix
associated with such a morphism f is R = (idT ⊗ f)∂.

6.2. The double of a Hopf monad. Let T be a centralizable Hopf monad on
an autonomous category C, with centralizer (ZT , ∂). Let Ω: TZT → ZTT be the
canonical distributive law of T . By Corollary 4.11,

DT = ZT ◦Ω T,

is a Hopf monad on C. Denote η and u the units of T and ZT respectively.

Theorem 6.4. The natural transformation R = {RX,Y }X,Y ∈Ob(C), defined by:

RX,Y =
(
uT (Y ) ⊗ ZT (ηX)

)
∂X,Y : X ⊗ Y → DT (Y ) ⊗DT (X),

is R-matrix for the Hopf monad DT .

The quasitriangular Hopf monad DT is called the double of T . This terminology
is justified by the fact that the braided categories Z(T - C) andDT - C coincide. More
precisely, let U : Z(T -C) → C be the strict monoidal forgetful functor defined by:

U
(
(M, r), σ

)
= M and U(f) = f.

Let I : DT - C → Z(T -C) be the functor defined by I(f) = f and:

I(M, r) =
(
(M, ruT (M)), σ

)
with σ(N,s) = (s⊗ rZT (ηM ))∂M,N .

Theorem 6.5. The functor I is a strict monoidal isomorphism of braided categories
such that the following triangle of monoidal functors commutes:

DT - C
I //

UDT ""DD
DD

DD
�

Z(T - C)

U||zz
zz

zz

C

We prove Theorems 6.4 and 6.5 in Section 7.5.

Remark 6.6. The functor F = IFDT
: C → Z(T - C) is left adjoint to U and the

adjunction (F ,U) is monadic with monad DT (see Remark 3.1). Moreover DT is
the Hopf monad associated with this monoidal adjunction (see Theorem 3.2).

Remark 6.7. According to Remark 5.1, the construction of the double of a Hopf
monad T admits a ‘right-handed’ version: if Z ′

T is a ‘right-handed’ centralizer of T ,
there exists a ‘right-handed’ canonical law Ω′ of T over Z ′

T , and hence a Hopf
monad D′

T = Z ′
T ◦Ω′ T endowed with an R-matrix R′ such that D′

T - C ≃ Z ′(T - C)
as braided category. If we identify Z ′

T to ZT as in Remark 5.8, then Ω′ = Ω,
D′

T = DT as Hopf monads, and R′ = R∗−1.
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Remark 6.8. Let T be a centralizable Hopf monad on an autonomous category C
and (ZT , ∂) be its centralizer. Denote η and u the units of T and ZT respectively.
Assuming uT : T → ZTT is a monomorphism, one can show that the canonical
distributive law of T is the only comonoidal distributive law Ω: TZT → ZTT such
that:

R =
(
uT ⊗ ZT (η)

)
∂

is an R-matrix for the Hopf monad ZT ◦Ω T . This generalizes Drinfeld’s original
characterization of the double of a finite-dimensional Hopf algebra.

6.3. The centralizer and the coend of a category of modules. Let T be
a centralizable Hopf monad on an autonomous category C. Let (ZT , ∂) be the
centralizer of T and Ω: TZT → ZTT be the canonical distributive law of T . By
Corollary 4.11, Z̃Ω

T is Hopf monad which is a lift of the Hopf monad ZT to T -C.
Recall:

Z̃Ω
T (M, r) = (ZT (M), ZT (r)ΩM ) and Z̃Ω

T (f) = ZT (f).

For any T -modules (M, r) and (N, s), set:

∂̃(M,r),(N,s) = (s⊗ idZT (M))∂M,N : (M, r) ⊗ (N, s) → (N, s) ⊗ Z̃Ω
T (M, r).

Theorem 6.9. The pair (Z̃Ω
T , ∂̃) is a centralizer of the category T - C.

We prove Theorem 6.9 in Section 7.6.
Recall that:

ZT (1) =

∫ Y ∈C
∨T (Y ) ⊗ Y,

with universal dinatural transformation iY = (evT (Y ) ⊗ idZT (1))∂1,Y . Denote α =

ZT (T0)Ω1 the T - action of Z̃Ω
T (1, T0). It is characterized by:

αT (iY ) = iT (Y )

(
∨µY s

l
T (Y )T (∨µY ) ⊗ idT (Y )

)
T2

(∨
T (Y ), Y

)
.

By Theorem 6.9 and Proposition 5.3, Z̃Ω
T (1, T0) = (ZT (1), α) is the coend of T -C,

that is:

(ZT (1), α) =

∫ (M,r)∈T - C
∨
(M, r) ⊗ (M, r),

with universal dinatural transformation ı̃(M,r) = iM (∨r ⊗M).
The coend (ZT (1), α) of T -C is a coalgebra in T -C, with coproduct and counit

given by:

∆ = (ZT )2(1, 1) : ZT (1) → ZT (1) ⊗ ZT (1) and ε = (ZT )0 : ZT (1) → 1.
Assume now that T is furthermore quasitriangular, with R-matrixR, so that the au-
tonomous category T -C is braided. Then the coalgebra

(
(ZT (1), α),∆, ε

)
becomes

a Hopf algebra in T - C endowed with a self-dual Hopf pairing (see Section 8.3). Its
unit is:

u = (T0 ⊗ idZT (1))∂1,1 : 1 → ZT (1).
Its product m, antipode S, and Hopf pairing ω are given in Figure 2.

Remark 6.10. In Section 9.3, we treat the case of the centralizer of a fusion
category F (which is a quasitriangular Hopf monad by Theorem 6.5) to get a
convenient description of the coend of Z(F).
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m(iX ⊗ iY ) =

X Y∨T (X) ∨T (Y )

T2(T (X), Y )

∂1,T (X)⊗Y
∨µXs

l
T (X)T (∨µX)

T2(
∨T (X), X)

ZT (1)
R∨T (X)⊗X,∨T (Y )

sl
T (Y )T (∨µY )

,

SiY =

1 1

Y∨T (Y )

∂1,∨T (Y )

µY α

ZT (1)
RZT (1),T (Y )

sl
T (Y )T (∨µY )

, ω(iX ⊗ iY ) =

1 1
1 11

X Y∨T (X) ∨T (Y )

RX,∨T (Y )

RT (∨T (Y )),T (X)

µX sl
Y µ∨T (Y )

.

Figure 2. Hopf algebra structure of the coend of T - C

7. The centralizer of a Hopf monad on a category of modules

In this section, we study the centralizer of a Hopf monad Q on the category T -C
of modules over a Hopf monad T on an autonomous category C. We show that it is
centralizable whenever the cross product Q⋊ T is centralizable. In that case, the
centralizer of Q⋊ T lifts naturally to a centralizer of Q, which turns out to be also
a lift of Hopf monads. Hence a canonical distributive law Ω of T over ZQ⋊T and a
Hopf monad DQ,T = ZQ⋊T ◦Ω T on C. We interpret the category of DQ,T modules
as the center of T - C relative to Q.

7.1. Centralizability on categories of modules. In this section, given a Hopf
monad T on an autonomous category C, we give a criterion for an endofunctor Q
of T - C to be centralizable in terms of the centralizability of the cross product Q⋊T

on C (see Section 3.7 for the definition of cross-products).

Proposition 7.1. Let T be a Hopf monad on an autonomous category C and let Q
be a endofunctor of T -C. Let (M, r) be a T -module. Then:

(a) The endofunctor Q is centralizable at (M, r) if and only if Q ⋊ T is cen-
tralizable at UT (M, r) = M .

(b) Assume Q⋊T is centralizable at M , with centralizer (Z, δ). Then Q admits

a unique centralizer (Z̃, δ̃) at (M, r) such that:

UT (Z̃) = Z and δ̃(N,s) = (Q(s) ⊗ idZ)δN

for any T -module (N, s).

Remark 7.2. In the second formula of Proposition 7.1(b), Q(s) makes sense be-
cause s : (T (N), µN) → (N, s) is a morphism in T -C. This formula can be written:

δ̃ = (Q(ε) ⊗ idZ)δ

where ε denotes the counit of the adjunction (UT , FT ).
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Proof of Proposition 7.1. Let us prove Part (a). Fix a T -module (M, r). By Propo-
sition 5.3, Q is centralizable at (M, r) if and only if the coend:

∫ (N,s)∈T -C
∨Q(N, s) ⊗ (M, r) ⊗ (N, s)

exists. Since the functor UT creates and preserves coends (see Section 3.5) and is
strict monoidal, this is equivalent to the existence of the coend:

∫ (N,s)∈T -C
UT

(
∨Q(N, s) ⊗ (M, r) ⊗ (N, s)

)
=

∫ (N,s)∈T -C
∨UTQ(N, s) ⊗M ⊗ UT (N, s).

By Lemma 3.8, this is equivalent to the existence of the coend:
∫ Y ∈C

∨UTQFT (Y ) ⊗M ⊗ Y =

∫ Y ∈C
∨Q⋊ T (Y ) ⊗M ⊗ Y,

and so, by Proposition 5.3, to the fact that Q⋊ T is centralizable at M .
Let us prove Part (b). By Proposition 5.3, we have:

Z =

∫ Y ∈C
∨Q⋊ T (Y ) ⊗M ⊗ Y,

with universal dinatural transformation iY = (evQ⋊T (Y ) ⊗ idZ)(id∨Q⋊T (Y ) ⊗ δY ).
By Lemma 3.8, we have also:

Z =

∫ (N,s)∈T -C
∨UTQ(N, s) ⊗M ⊗ UT (N, s).

with universal dinatural transformation j(N,s) = iN (∨UTQ(s) ⊗ idM⊗N ). Set:

δ̃(N,s) = (idQ(N,s) ⊗ j(N,s))(coevQ(N,s) ⊗ idM ).

By Proposition 3.9, there exists a unique T - action α : T (Z) → Z such that j(N,s),

or equivalently δ̃(N,s), is T - linear for all T -modules (N, s). Furthermore we have:

(Z,α) =

∫ (N,s)∈T -C
∨Q(N, s) ⊗ (M, r) ⊗ (N, s)

with universal dinatural transformation j. Set Z̃ = (Z,α). By Proposition 5.3,

(Z̃, δ̃) is a centralizer of Q at (M, r). By construction, we have UT (Z̃) = Z and

δ̃(N,s) = (UTQ(s)⊗ idZ)δN for every T -module (N, s). Furthermore, since α is the

only action of T on Z = UT (Z̃) such that every δ̃(N,s) is T - linear, (Z̃, δ̃) is the only
centralizer of Q at (M, r) satisfying the conditions of Part (b). �

Applying Lemma 5.2 and Proposition 7.1(a), we deduce immediately:

Corollary 7.3. Let T be a Hopf monad on an autonomous category C and let Q
be an endofunctor of T -C. Then Q is centralizable if and only if, for any T -module
(M, r), the endofunctor Q⋊ T of C is centralizable at M .

7.2. Lifting centralizers. In this section, given a centralizable Hopf monad T on
an autonomous category C and an endofunctor Q of T -C, we show that a centralizer
of Q⋊T lifts uniquely to a centralizer of Q. Furthermore, if Q is comonoidal (resp.
a bimonad), then it is also a lift as a monad (resp. a bimonad).

Theorem 7.4. Let T be a Hopf monad on an autonomous category C and let Q be
an endofunctor of T -C. Assume Q⋊T is centralizable, with centralizer (ZQ⋊T , ∂).
Then:
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(a) The centralizer of Q⋊T lifts uniquely to a centralizer of Q. More precisely,

Q admits a unique centralizer (ZQ, ∂̃) such that UTZQ = ZQ⋊TUT and:

∂̃(M,r),(N,s) = (Q(s) ⊗ idZQ⋊T (M))∂M,N

for all T -modules (M, r) and (N, s).
(b) If Q is comonoidal, the monad ZQ is a lift of the monad ZQ⋊T to T - C.
(c) If Q is a bimonad, the bimonad ZQ is a lift of the bimonad ZQ⋊T to T - C.

Proof. Part (a) is a direct consequence of Lemma 5.2 and Proposition 7.1(b). Let

(ZQ, ∂̃) be the centralizer of Q given by Part (a).
Assume Q is comonoidal. Then Q⋊ T is comonoidal by Section 3.7. Therefore

both ZQ and ZQ⋊T are monads by Theorem 5.6(a). Denote η and ε the unit and
counit of the adjunction (UT , FT ). By Part (a), we have:

UT (∂̃) = (UTQ(ε) ⊗ idZQ⋊T UT
)∂UT ,UT

.

By definition of the product m̃ of ZQ, we have:

(idQFT ⊗QFT
⊗ m̃)∂̃2

1T -C ,FT ,FT
=

(
Q2(FT , FT ) ⊗ idZQ

)
∂̃1T- C,FT ⊗FT

.

Hence, we get:
(
UTQ(εFT

) ⊗ UTQ(εFT
) ⊗ UT (m̃)

)
∂2

UT ,T,T

=
(
UT

(
Q2(FT , FT )Q(εFT ⊗FT

)
)
⊗ idUT ZQ

)
∂UT ,T⊗T .

Composing on the right with (idUT
⊗ η ⊗ η) and then using the expression of the

comonoidal structure of Q⋊T (see Section 3.7) and the identity εFT
FT (η) = idFT

,
we obtain:

(
id(Q⋊T )⊗2 ⊗ UT (m̃)

)
∂2

UT ,1C,1C
=

(
(Q⋊ T )2 ⊗ idZQ⋊T UT

)
∂UT ,⊗

and so, by definition of the productm of ZQ⋊T , we have: UT (m̃) = mUT
. Moreover,

denoting ũ and u the units of ZQ and ZQ⋊T respectively, we have:

UT (ũ) = UT

(
(Q0 ⊗ idZQ

)∂̃1T- C,(1,T0)

)

=
(
UT (Q0)UTQ(T0) ⊗ idUT ZQ

)
∂UT ,1

=
(
(Q⋊ T )0 ⊗ idZQ⋊T UT

)
∂UT ,1 = uUT

.

Hence Part (b).
Suppose now Q is a bimonad. Then Q ⋊ T is a bimonad (see Section 3.7).

Therefore both ZQ and ZQ⋊T are bimonads by Theorem 5.6(c). By definition of
the morphism (ZQ)2, we have:

(
idQFT

⊗ (ZQ)2
)
∂̃⊗,FT

= (qFT
⊗ idZ

⊗2
Q

)(∂̃1T - C,QFT
⊗ idZQ

)(id1T- C
⊗ ∂̃1T-C ,FT

),

where q is the product of Q. Thus:
(
UTQ(εFT

) ⊗ UT ((ZQ)2)
)
∂UT ⊗UT ,T =

(
UT (qFT

Q(εQFT
)) ⊗ id(UT ZQ)⊗2

)

◦
(
∂UT ,Q⋊T ⊗ idUT ZQ

)(
idUT

⊗ (UTQ(εFT
) ⊗ idUT ZQ

)∂UT ,T

)
.

Composing on the right with (idUT
⊗ idUT

⊗ η), since the product of Q⋊T is given
by p = UT

(
qFT

Q(εQFT
)
)
, we obtain:

(
idQ⋊T ⊗ UT ((ZQ)2)

)
∂UT ⊗UT ,1C

=
(
p⊗ id(ZQ⋊T UT )⊗2

)
(∂UT ,Q⋊T ⊗ idZQ⋊T UT

)(idUT
⊗ ∂UT ,1C

),

and so, by definition of the morphism (ZQ⋊T )2, we obtain: (UTZQ)2 = (ZQ⋊TUT )2.
Now, by definition of the morphism (ZQ)0, we have:

(
idQFT

⊗ (ZQ)0
)
∂̃(1,T0),FT

= vFT
.
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where v is the unit of Q. Applying UT and composing with η, we get:
(
idQ⋊T ⊗ UT ((ZQ)0)

)
∂1,1C

= UT (vFT
)η.

Since UT (vFT
)η is the unit of Q⋊T and by definition of the morphism (ZQ⋊T )0, we

have: (UTZQ)0 = (ZQ⋊TUT )0. Hence UTZQ = ZQ⋊TUT as comonoidal functors,
and Part (c). �

7.3. The canonical distributive law and the double. Throughout this section,
let T be a Hopf monad on an autonomous category C and Q be a comonoidal
endofunctor of T -C, such that Q⋊ T is centralizable with centralizer (ZQ⋊T , ∂).

By Theorem 7.4, the centralizer (ZQ⋊T , ∂) lifts to a centralizer (ZQ, ∂̃) of Q and
the monad ZQ is a lift of the monad ZQ⋊T to T -C. The monad:

DQ,T = ZQ ⋊ T,

is called the double of the pair (Q, T ). Since lifts correspond bijectively with dis-
tributive laws (see Theorem 4.5), there exists a unique distributive law Ω of T over
ZQ⋊T such that:

ZQ = Z̃Ω
Q⋊T .

This distributive law is called the canonical distributive law of the pair (Q, T ). It
provides a description of structure of the monad DQ,T :

DQ,T = ZQ⋊T ◦Ω T.

Proposition 7.5. (a) If Q is a bimonad, then the canonical distributive law Ω

is comonoidal, DQ,T is a bimonad, and ZQ = Z̃Ω
Q⋊T as bimonads.

(b) If Q is a Hopf monad, then DQ,T is a Hopf monad.

Proof. Let us prove Part (a). By Theorem 7.4, ZQ is a lift of ZQ⋊T as a bimonad.
Therefore, by Theorem 4.7, Ω is comonoidal and DQ,T is a bimonad.

Let us prove Part (b). Since Q⋊T is a Hopf monad (see Section 3.7), so is ZQ⋊T

(by Theorem 5.6). Therefore DQ,T is a Hopf monad (by Corollary 4.11). �

Let U : ZQ(T - C) → C be the functor defined as the composition of the forgetful
functors UQ : ZQ(T - C) → T - C and UT : T - C → C, that is:

U
(
(M, r), σ

)
= M and U(f) = f.

Denoting η and u the units of T and ZQ⋊T , let I : DQ,T - C → ZQ(T - C) be the
functor defined by:

I(M, r) =
(
(M, ruT (M)), σ

)
and I(f) = f,

where σ(N,s) = (UTQ(s) ⊗ rZQ⋊T (ηM ))∂M,N .

Theorem 7.6. The functor I is an isomorphism of categories such that the fol-
lowing triangle commutes:

DQ,T - C I //

UDQ,T ""DD
DD

DD
�

ZQ(T - C)

U||zz
zz

zz

C

Furthermore, if Q is a bimonad (so that DQ,T is a bimonad and ZQ(T - C) is
monoidal), then the functor I is strict monoidal (and so UI = UDQ,T

as monoidal
functors).

Remark 7.7. The functor F = IFDQ,T
: C → ZQ(T - C) is left adjoint to U and

the adjunction (F ,U) is monadic with monad DQ,T (see Remark 3.1). If Q is
a bimonad, this adjunction is monoidal and DQ,T is its associated bimonad (see
Theorem 3.2).
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Proof. By Section 4.3, since DQ,T = ZQ⋊T ◦Ω T and ZQ = Z̃Ω
Q⋊T , the functor:

L :

{
DQ,T - C −→ ZQ- (T - C)
(M, r) 7−→

(
(M, ruT (M)), rZQ⋊T (ηM )

)

is an isomorphism of categories. By Theorem 5.12, the functor:

E :

{
ZQ- (T - C) −→ ZQ(T - C)(
(M, r), s

)
7−→

(
(M, r), (idQ ⊗ s)∂̃(M,r),1T-C

)

is an isomorphism of categories. Using Theorem 7.4(a), one verifies that I = EL.
Thus I is an isomorphism of categories, and it clearly satisfies UI = UDQ,T

.
Assume Q is a bimonad. Then L is strict monoidal (by Theorem 4.7) and E

is strict monoidal (by Theorem 5.12). Hence I = EL is strict monoidal, and so
UI = UDQ,T

as monoidal functors (since U and UDQ,T
are strict monoidal). �

The canonical distributive law Ω can be described explicitly as follows. By
Proposition 5.3, we have:

ZQ⋊T (X) =

∫ Y ∈C
∨Q⋊ T (Y ) ⊗X ⊗ Y,

with universal dinatural transformation:

iX,Y = (evQ⋊T (Y ) ⊗ idZQ⋊T (X))(id∨Q⋊T (Y ) ⊗ ∂X,Y ).

Recall that T (i) is a universal dinatural transformation (see Proposition 3.9). De-
note sl the left antipode of T and ε the counit of the adjunction (FT , UT ).

Proposition 7.8. The canonical distributive law Ω of the pair (Q, T ) is invertible,
and Ω and Ω−1 are characterized as natural transformations by:

ΩXT (iX,Y ) = iT (X),T (Y )

(
∨bY s

l
Y T (∨aY ) ⊗ idT (X)⊗T (Y )

)
T3(

∨Q⋊ T (Y ), X, Y ),

Ω−1
X iT (X),Y =

(
evQ⋊T (Y ) ⊗ T (iX,T (Y )) ⊗ evY

)
(id∨Q⋊T (Y ) ⊗ EX,Y ⊗ idY ),

where aY = UT (εQFT (Y )), bY = UTQ(εFT (Y )), and:

EX,Y =(aY T (bY ) ⊗ idT (∨Q⋊T T (Y )⊗X⊗T (Y )) ⊗ sl
Y )

◦ T3(Q⋊ T T (Y ), ∨Q⋊ T T (Y ) ⊗X ⊗ T (Y ), ∨T (Y ))

◦ T (coevQ⋊T T (Y ) ⊗ idX ⊗ coevT (Y )).

Remark 7.9. In the special case Q = 1T -C , we have: 1T - C ⋊ T = T and so, by
Proposition 7.8, the canonical distributive law of the pair (1T - C , T ) is nothing but
the canonical law of T defined in Section 6.1, and the double D1T- C,T of the pair
(1T - C , T ) coincides with the double DT of T defined in Section 6.2.

Proof. Note that aY and a′Y = sl
Q⋊T (Y )T (∨aY ) are the T - actions of QFT (Y ) and

∨QFT (Y ) respectively. By adjunction we have: bYQ⋊ T (ηY ) = idQ⋊T (Y ).

Recall that Z̃Ω
Q⋊T is the centralizer ofQ, with universal dinatural transformation:

j(M,r),(N,s) = iM,N

(
∨UTQ(ε(N,s)) ⊗ idM ⊗ idN

)
.

In particular, given two objects X,Y of C, the morphism jFT (X),FT (Y ) is T - linear,
that is,

ZQ⋊T (µX)ΩT (X)T (jFT (X),FT (Y )) = jFT (X),FT (Y )γX,Y ,

where:

γX,Y =
(
a′Y ⊗ µX ⊗ µY

)
T3(

∨Q⋊ T (Y ), T (X), T (Y ))
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is the T - action of ∨QFT (Y ) ⊗ FT (X) ⊗ FT (Y ). Composing on the right with
T (id∨Q⋊T (Y ) ⊗ ηX ⊗ ηY ), the left-hand side becomes:

ZQ⋊T (µX)ΩT (X)T
(
iT (X),T (Y )(

∨bY ⊗ ηX ⊗ ηY )
)

= ZQ⋊T (µX)ΩT (X)TZQ⋊T (ηX)T (iX,Y ) = ΩXT (iX,Y ),

and the right-hand side becomes:

iT (X),T (Y )(
∨bY a

′
Y ⊗ µXT (ηX) ⊗ µY T (ηY ))T3(

∨Q⋊ T (Y ), X, Y ).

Hence the formula for Ω.
Let Ω′ : ZQ⋊TT → TZQ⋊T be the natural transformation defined by:

Ω′
XiT (X),Y =

(
evQ⋊T (Y ) ⊗ T (iX,T (Y )) ⊗ evY

)
(id∨Q⋊T (Y ) ⊗ EX,Y ⊗ idY )

Using the axioms of a left antipode, one shows that Ω′Ω = idTZQ⋊T
and Ω′Ω =

idZQ⋊T T by verifying that Ω′
XΩXT (iX,Y ) = T (iX,Y ) and ΩXΩ′

XiT (X),Y = iT (X),Y .
This is left to the reader. Note that when Q is a Hopf monad, the invertibility
of Ω follows from Proposition 4.12, since in this case both T and ZQ⋊T are Hopf
monads. �

Remark 7.10. Let T be a Hopf monad on an autonomous category C and Q be
a comonoidal endofunctor of T - C such that Q ⋊ T is centralizable. Consider the
following diagram:

ZQ- (T -C)

W

{{xx
xx

xx
xx

x

��
ZQ⋊T - C

��

T -C

^^

ww
C

__ 88

where a double arrow represents the adjunction of the corresponding monad and
the functor W is defined by W

(
(M, r), s

)
= (M, s) and W(f) = f . This diagram is

a distributive adjoint square in the sense of Beck [Bec69] whose distributive law is
precisely the canonical distributive law Ω of the pair (Q, T ). Furthermore, since Ω

is invertible by Proposition 7.8, the monad T lifts to a monad T̃Ω−1

on ZQ⋊T - C.

Therefore, since ZQ = Z̃Ω
Q⋊T , we have an isomorphism of categories:

T̃Ω−1

- (ZQ⋊T - C) ≃ (T ◦Ω−1 ZQ⋊T )- C ≃ (ZQ⋊T ◦Ω T )- C ≃ ZQ- (T - C).

Via this isomorphism, W is the forgetful functor U
T̃Ω−1 . Hence W is monadic.

Note that when Q is a bimonad, the four monadic adjunctions are monoidal.

7.4. Proof of Theorem 6.1. This is a direct consequence of Remark 7.9 and
Propositions 7.5 and 7.8 applied to the Hopf monad Q = 1T - C .

7.5. Proof of Theorems 6.4 and 6.5. By Theorem 7.6 applied to the Hopf
monad Q = 1T -C and Remark 7.9, the functor I : DT - C → Z(T - C) of Theorem 6.5
is a strict monoidal isomorphism of monoidal categories such that UI = UDT

.
Now, by Remark 5.10, the category Z(T - C) is a braided category with braiding:

τ(
(M,r),γ

)
,
(
(N,s),δ

) = γ(N,s).

Therefore, since I is a strict monoidal isomorphism, there exists a unique braiding c
on DT - C such that I is braided. By Theorem 2.11, c is encoded by an R-matrix R
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for DT . Let p and e = uT η be the product and unit of DT . Then R is given by:

RX,Y = cFDT (X),FDT (Y )
(eX ⊗ eY )

= τIFDT (X),IFDT (Y )
(eX ⊗ eY )

=
(
pY uDT (Y ) ⊗ pXZT (ηDT (X))

)
∂DT (X),DT (Y )(eX ⊗ eY )

=
(
pY uDT (Y )T (eY ) ⊗ pXZT (ηDT (X)eX)

)
∂X,Y

=
(
pYDT (eY )uT (Y ) ⊗ pXDT (eX)ZT (ηX)

)
∂X,Y

=
(
uT (Y ) ⊗ ZT (ηX)

)
∂X,Y .

This concludes the proof of Theorems 6.4 and 6.5.

7.6. Proof of Theorem 6.9. This is a direct consequence of Remark 7.9 and
Theorem 7.4 applied to the Hopf monad Q = 1T - C .

8. The double of a Hopf algebra in a braided category

In this section, we extend several classical notions concerning a Hopf algebra
over a field to a Hopf algebra A in a braided autonomous category B, namely:
quasitriangularity and R-matrices and the doubleD(A) ofA. Our approach consists
in applying the results of previous sections to the Hopf monad ? ⊗A.

We need to assume that B admits a coend C. Then the Hopf monad ? ⊗ A is
centralizable and its centralizer is of the form ? ⊗ Z(A), where Z(A) is a certain
Hopf algebra in B called the centralizer of A. As an object of B, Z(A) = ∨A⊗ C.

We then define the double of A as D(A) = A⊗Ω Z(A) = A ⊗ ∨A⊗ C, where Ω
is an explicit distributive law. The double D(A) is a quasitriangular Hopf algebra
in B such that D?⊗A =? ⊗ D(A) (as quasitriangular Hopf monads). It satisfies:
Z(BA) ≃ BD(A) (as braided categories). When B = vectk, we have: C = k, A is
a finite-dimensional Hopf algebra over k, Z(A) = (A∗)cop, and D(A) is the usual
Drinfeld double of A.

8.1. Hopf monads represented by Hopf algebras. Let B be a braided au-
tonomous category and let A be a Hopf algebra in B. A Hopf monad T on a B is
said to be represented on the left (resp. on the right) by A if it is isomorphic to the
Hopf monad A⊗? (resp. ? ⊗A) defined in Example 2.4.

More generally, let T be a Hopf monad on an autonomous category C. If (A, σ)
is a Hopf algebra in the center Z(C) of C, then the Hopf monad T is said to be
represented on the left by (A, σ) if it is isomorphic to the Hopf monad A⊗σ? on C
defined in Example 2.5. Likewise, if (A, σ) is a Hopf algebra in Z̄(C), then the Hopf
monad T is said to be represented on the right by (A, σ) if it is isomorphic to the
Hopf monad ? ⊗σ A on C.

Not all Hopf monads can be so represented by Hopf algebras (see Remark 8.5
for an example).

8.2. Coends as Hopf algebras. Let T be an endofunctor of an autonomous cat-
egory C. If C admits a braiding τ , then, by Proposition 5.3, T is centralizable if
and only if the coend:

CT =

∫ Y ∈B
∨
T (Y ) ⊗ Y

exists. Assume this is the case. By Lemma 3.8, if T is a monad, then CT coin-

cides with the coend
∫ (M,r)∈T -C ∨UT (M, r) ⊗ UT (M, r) of UT . According to Ma-

jid [Maj95], the (co)end of a strong monoidal functor from an autonomous category
to a braided category is a Hopf algebra. In particular, if T is a Hopf monad and
τ a braiding on C, then CT is a Hopf algebra in C braided by τ . In this section
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we recover this structure explicitly in terms of the braiding τ and the Hopf monad
structure of T .

Let T be an endofunctor of an autonomous category C such that the coend

CT =
∫ Y ∈B ∨

T (Y )⊗Y exists. Denote iY : ∨
T (Y )⊗Y → CT the universal dinatural

transformation of CT , and set:

δY =

Y

T (Y )

iY

CT

= (idT (Y ) ⊗ iY )(coevT (Y ) ⊗ idY ) : X → T (Y ) ⊗ CT , depicted

Y

T (Y ) CT

.

If T is a monad on C, then CT is a coalgebra in C, with coproduct ∆ and counit ε
defined by:

X

T (X) CT CT

∆
=

X

T (X) CT CT

µX

and

X

T (X)

ε
=

X

T (X)

ηX ,

where µ and η are the product and unit of T .
If T is comonoidal and τ is a braiding on C, then CT becomes an algebra in C

with product mτ and unit u defined by:

YX

T (X) T (Y )

mτ

CT

=

T (X) T (Y ) CT

T2(X,Y )

X ⊗ Y

and u =

CT

T0 , where τX,Y =
X

X

Y

Y

.

If T is a bimonad and τ a braiding on C, then (CT ,m
τ , u,∆, ε) is a bialgebra in

C braided by τ . Furthermore, if T is a Hopf monad, then CT is a Hopf algebra,
whose antipode Sτ and its inverse S−1

τ are defined by:

X

T (X) CT

Sτ
=

X

T (X) CT

sl
X and

X

T (X) CT

S−1
τ =

X

T (X) CT

sr
X .

We denote this Hopf algebra by Cτ
T .

8.3. The coend of a braided autonomous category. Let B be an autonomous
category. The coend:

C =

∫ Y ∈B
∨Y ⊗ Y,

if it exists, is called the coend of B.
Assume that B admits a coend C and denote by iY : ∨Y ⊗ Y → C its universal

dinatural transformation. The universal coaction of C on the objects of B is the
natural transformation δ defined by:

δY = (idY ⊗ iY )(coevY ⊗ idY ) : Y → Y ⊗ C, depicted δY =

C

Y

Y

.

If B is braided, then C is a Hopf algebra in B. This well-known fact may be
viewed as a special case of the construction of Section 8.4, as 1B is a Hopf monad
on B and C = Cτ

1B
where τ is the braiding of B. Furthermore, the morphism
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ω : C ⊗ C → 1, defined by:

Y

Y

X

X

ω
=

Y

Y

X

X

,

is a Hopf pairing for C, that is, it satisfies:

ω(m⊗ idC) = ω(idC ⊗ ω ⊗ idC)(idC⊗2 ⊗ ∆), ω(u⊗ idC) = ε,

ω(idC ⊗m) = ω(idC ⊗ ω ⊗ idC)(∆ ⊗ idC⊗2), ω(idC ⊗ u) = ε.

These axioms imply: ω(S ⊗ idC) = ω(idC ⊗ S). Moreover the pairing ω satisfies
the self-duality condition: ωτC,C(S ⊗ S) = ω.

In this section, the structural morphisms of C are drawn in grey and the Hopf
pairing w : C ⊗ C → 1 is depicted as:

ω =
C C

.

Remark 8.1. The category B is symmetric if and only if ω = ǫ⊗ ǫ. In particular,
this is the case when C = 1.
Remark 8.2. The universal coaction of the coend on itself can be expressed in
terms of its Hopf algebra structure as follows:

δC =

C C

C

=

C

C C

.

Remark 8.3. The coend of the mirror B of B is the Hopf algebra Cop, with self-
dual pairing ω(S ⊗ idC).

8.4. Centralizers in braided categories. Let T be an endofunctor of a braided
autonomous category B, with braiding τ . Assume that the coend:

CT =

∫ Y ∈B
∨
T (Y ) ⊗ Y

exists. Set:

∂X,Y =

YX

XT (Y ) CT

= (τX,T (Y ) ⊗ idCT
)(idX ⊗ δY ) : X ⊗ Y → T (Y ) ⊗X ⊗ CT .

Then (? ⊗ CT , ∂) is a centralizer of T . Likewise, set:

∂′X,Y =

YX

XT (Y ) CT

= (δY ⊗ idX)τ−1
Y,X : X ⊗ Y → T (Y ) ⊗ CT ⊗X,

Then (CT⊗?, ∂′) is also a centralizer of T .
Assume furthermore that T is a Hopf monad. By Section 8.2, the object CT is

endowed with two Hopf algebra structures in B, namely: Cτ
T and (Cτ

T )op, where τ
is the mirror of τ . One verifies that the Hopf monad structure on ? ⊗ CT (resp.
CT⊗?) given by Theorem 5.6 coincides with that induced by the Hopf algebra Cτ

T

(resp. (Cτ
T )op). Thus:

Theorem 8.4. Let T be a Hopf monad on a braided autonomous category B, with
braiding τ . Then T is centralizable if and only if the coend:

CT =

∫ Y ∈B
∨
T (Y ) ⊗ Y
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exists. If such is the case, the centralizer of T is represented on the right by the
Hopf algebra Cτ

T and on the left by the Hopf algebra (Cτ
T )op.

Remark 8.5. In general, the centralizer ZT of a Hopf monad T on an autonomous
category C is isomorphic neither to ZT (1)⊗? nor to ? ⊗ ZT (1) as an endofunctor
of C, see Remark 9.2 for a counter-example. In particular, it cannot be represented
on the left by a Hopf algebra of Z(C), nor on the right by a Hopf algebra of Z̄(C),
in the sense of Section 8.1.

8.5. Centralizers of Hopf algebras. Let B be a braided autonomous category,

with braiding τ , admitting a coend C =
∫ Y ∈B ∨Y ⊗ Y . Recall that C is a Hopf

algebra in B endowed with a Hopf pairing, and denote by δ the universal coaction
of C (see Section 8.3).

Let A be a Hopf algebra in B. Set Z(A) = ∨A⊗ C. Then:

Z(A) =

∫ Y ∈B
∨
(Y ⊗A) ⊗ Y,

with universal dinatural transformation given by:

iY =

Y∨Y

∨A

∨A

C

: ∨(Y ⊗A) ⊗ Y = ∨A⊗ ∨Y ⊗ Y → ∨A⊗ C.

We endow the object Z(A) with the Hopf algebra structure Cτ
?⊗A defined in Sec-

tion 8.2. Explicitly, the structural morphisms of Z(A) are:

mZ(A) =

∨A

∨A

∨A

C

C C

, ∆Z(A) =

∨A

∨A ∨A

C

C C

, SZ(A) =

∨A

∨A

C

C

,

uZ(A) =

∨A C

, εZ(A) =

∨A C

.

Example 8.6. Let H be a finite-dimensional Hopf algebra over a field k. Note
that k is the coend of the category vectk of finite-dimensional vector spaces. Then
the centralizer of H is Z(H) = (H∗)cop.

By Theorem 8.4, (? ⊗ Z(A), ∂) is a centralizer of ? ⊗A, where:

∂X,Y =

Y

YX

XA ∨A C

,

and the Hopf monad structure on ? ⊗ Z(A) given by Theorem 5.6 is that induced
by the Hopf algebra Z(A). Hence, by Theorem 5.12, we have:

Z?⊗A(B) ≃ (? ⊗ Z(A))-B = BZ(A)

as monoidal categories.

Remark 8.7. One can show that the Hopf algebra Z(A) represents on the left the
centralizer ZA⊗? of A⊗?, and so:

ZA⊗?(B) ≃ (Z(A)⊗?)-B = Z(A)B

as monoidal categories.
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8.6. R-matrices for Hopf algebras in braided categories. In [Dri90], Drinfeld
introduced the notion of R-matrix for a Hopf algebra H over a field k. When H is
finite-dimensional, R-matrices for H are in bijection with braidings on the category
of finite-dimensional H-modules. The aim of this section is to extend the notion
of an R-matrix to a Hopf algebra A in braided autonomous category so as to
preserve this bijective correspondence. Note that the definition of an R-matrix
for A as a morphism r : 1 → A ⊗ A by straightforward extension of Drinfeld’s
axioms (sometimes found in the literature) does not fulfil this objective. Recall that
braidings on the autonomous category BA = (?⊗A)-B are encoded by R-matrices
for the Hopf monad ?⊗A. When B admits a coend, we can encode R-matrices for
? ⊗A in terms of A by introducing R-matrices for A.

Let A be a Hopf algebra in a braided autonomous category B, with braiding τ .
Assume that B admits a coend C. Any R-matrix RX,Y : X ⊗ Y → Y ⊗A⊗X ⊗A

for the Hopf monad ?⊗A gives rise to a unique morphism r : C ⊗C → A⊗A in B,
defined by:

X Y∨X ∨Y

A A

r

=

X Y∨X ∨Y

A A

RX,Y , so that: RX,Y =

X

X Y

Y A A

r
.

Re-writing the axioms for RX,Y (see Section 2.7) in terms of r leads to the following
definition: a R-matrix for A is a morphism

r : C ⊗ C → A⊗A

in B, which satisfies:

CC

A

A

A

r
=

CC

A

A

A

r

,

C CC

A AA

r =

C CC

AA A

r

r

,

C CC

A AA

r =

C CC

AA A

r

r

,

C

A

r =

C

A

=

C

A

r .

Remark 8.8. For finite-dimensional Hopf algebras over a field k, our definition of
an R-matrix coincides with Drinfeld’s definition (as the coend of vectk is k).

An R-matrix r for A defines an R-matrix for ? ⊗ A (by definition) and so a
braiding c on BA = (? ⊗A)-B (by Theorem 2.11) as:

c(M,r),(N,s) = (s⊗ r)RM,N =

M

M N

N

r s

r

.



THE DOUBLE OF A HOPF MONAD 43

As braidings on AB are in bijective correspondence with braidings on BA (see
Remark 1.3), an R-matrix r for A defines also a braiding c′ on AB as:

c′(M,r),(N,s) =

M

M N

N

r s

r

.

Furthermore, the map r 7→ c (resp. r 7→ c′) is a bijection between R-matrices for A
and braidings on BA (resp. on AB).

A quasitriangular Hopf algebra in B is a Hopf algebra in B endowed with an
R-matrix.

Remark 8.9. Let A be a quasitriangular Hopf algebra in B. By construction, the
monoidal isomorphism FA : (AB)⊗op → BA of Remark 1.3 is braided.

Remark 8.10. Let A be a quasitriangular Hopf algebra in B. Combining Re-
mark 8.9 with Example 1.1, we obtain that AB and BA are braided isomorphic.

8.7. The canonical distributive law of a Hopf algebra. Let A be a Hopf alge-
bra in a braided autonomous category B which admits a coend C. By Section 8.5,
the centralizer of ?⊗A is Z?⊗A =?⊗Z(A), where Z(A) = ∨A⊗C is the centralizer
of A. It turns out that the canonical distributive law of ? ⊗A over Z?⊗A is of the
form id1B

⊗ Ω, where Ω: Z(A) ⊗ A → A ⊗ Z(A) is a comultiplicative distributive
law of Z(A) over A (see Example 4.3). We have:

Ω =

∨A

∨A

C

C

A

A

and Ω−1 =

∨A

∨A

C

C

A

A

.

We call Ω the canonical distributive law of A.

Remark 8.11. By Theorem 6.9, ZBA
(M, r) =

(
M ⊗Z(A), (r⊗ idZ(A))(idM ⊗Ω)

)

is the centralizer of the category BA. In particular, the coend of BA is ZBA
(1, εA) =

(Z(A), α), where:

α = (εA ⊗ idZ(A))Ω =

∨A

∨A

C

C

A

: Z(A) ⊗A→ Z(A).

If A is quasitriangular, so that BA is braided, then (Z(A), α) is a Hopf algebra
in BA which represents ZBA

on the right (see Theorem 8.4). However, in this case,
this Hopf algebra (Z(A), α) is not in general a lift to BA of the Hopf algebra Z(A).

8.8. The Double of a Hopf algebra in a braided category. Let A be a Hopf
algebra in a braided autonomous category B which admits a coend C.

Let Z(A) be the centralizer of A (see Section 8.5) and Ω be the canonical dis-
tributive law of A (see Section 8.7). By Example 4.3,

D(A) = A⊗Ω Z(A) = A⊗ ∨A⊗ C
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is a Hopf algebra in B. Since ?⊗Z(A) is the centralizer of ?⊗A (see Section 8.5),
the Hopf monad ? ⊗D(A) is the double of ? ⊗ A, and so admits an R-matrix by
Theorem 6.5, which turns out to be encoded by the following R-matrix for D(A):

r =

∨A ∨AC

CC

CAA

: C ⊗ C → D(A) ⊗D(A).

The quasitriangular Hopf algebra D(A) is called the double of A.

Remark 8.12. The canonical distributive law of A is the unique comultiplicative
distributive law Ω of Z(A) over A such that the morphism r above is an R-matrix
for A⊗Ω Z(A), see Remark 6.8.

Theorem 8.13. Let A be a Hopf algebra in a braided autonomous category B admit-
ting a coend C and D(A) = A⊗Ω Z(A) be the double of A. We have isomorphisms
of braided categories:

Z(BA) ≃ BD(A) ≃ D(A)B ≃ Z ′(AB) ≃ Z(AB).

Proof. By construction, the quasitriangular Hopf monad ? ⊗ D(A) is the double
of ? ⊗ A. Hence the first braided isomorphism by Theorem 6.5. By Remark 8.10,

D(A)B ≃ BD(A) as braided categories since D(A) is quasitriangular. Finally, we
have the following isomorphisms of braided categories:

Z(BA) ≃ Z(BA)⊗op by Remark 1.1

≃ Z
(
(AB)⊗op

)⊗op
by Remark 8.9

≃ Z ′(AB) ≃ Z(AB) by Remark 1.2.

This completes the proof of the theorem. �

Remark 8.14. When B = vectk is the category of finite-dimensional vector spaces
over a field k, we recover the usual Drinfeld double and the interpretation of its
category of modules in terms of the center. More precisely, let H be a finite-
dimensional Hopf algebra over k and (ei) be a basis of H with dual basis (ei).
Then D(H) = H⊗ (H∗)cop is a quasitriangular Hopf algebra over k, with R-matrix
r =

∑
i ei ⊗ ε⊗ 1H ⊗ ei, such that:

Z
(
(vectk)H

)
≃ (vectk)D(H) ≃ D(H)(vectk) ≃ Z ′

(
H(vectk)

)
≃ Z

(
H(vectk)

)

as braided categories.

Remark 8.15. By Remark 4.2, Ω−1 is a distributive law of Z(A) over A and
induces an isomorphism of Hopf algebras:

D(A) = A⊗Ω Z(A)
∼
−→ Z(A) ⊗Ω−1 A.

Via this isomorphism, the R-matrix r of D(A) is sent to the R-matrix:

r
′ =

∨A ∨AC

CC

C AA

: C ⊗ C →
(
Z(A) ⊗Ω−1 A

)
⊗

(
Z(A) ⊗Ω−1 A

)

of Z(A) ⊗Ω−1 A.

Remark 8.16. Let B a braided autonomous category which admits a coend C.
Then D(1) = C as a Hopf algebra. Hence C is quasitriangular, with R-matrix

r = uCεC ⊗ idC , and Z(B) ≃ BC ≃ CB ≃ Z(B) as braided categories. In other
words, the center of B is self-mirror and is the category of C- modules in B.
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9. Hopf monads and fusion categories

In this section, given a k-linear Hopf monad T of a fusion category F , we describe
explicitly the centralizer of T and the canonical distributive law of T . Hence, in
particular, a description of the coend of Z(F), which is used in [BV09] to show
that the center of a spherical fusion category is modular and in [BV08] to provide
an algorithm for computing the Reshetikhin-Turaev invariant RTZ(F) in terms of C
itself.

9.1. Fusion categories. A fusion category over a commutative ring k is a k-linear
autonomous category F , whose monoidal product ⊗ is k-linear in each variable,
endowed with a finite family {Vi}i∈I of objects of F satisfying:

• HomF(Vi, Vj) = δi,j k for all i, j ∈ I;
• each object of F is a finite direct sum of objects of {Vi}i∈I ;
• 1 is isomorphic to V0 for some 0 ∈ I.

Let F be a fusion category. The family {Vi}i∈I is a representative family of scalar
objects of F (an object X of k-linear category is said to be scalar if End(X) = k).
The Hom spaces in F are free k-modules of finite rank. The multiplicity of i ∈ I

in an object X of F is defined as:

N i
X = rankk HomF(Vi, X) = rankk HomF(X,Vi).

For each object X of F , we choose families of morphisms (pi,α
X : X → Vi)1≤α≤Ni

X

and (qi,α
X : Vi → X)1≤α≤Ni

X
such that:

idX =
∑

i∈I
1≤α≤Ni

X

q
i,α
X p

i,α
X and p

i,α
X q

j,β
X = δi,jδα,β idVi

.

9.2. Centralizers in fusion categories. Let F be a fusion category over a com-
mutative ring k and T be a k-linear endofunctor T of F . Then T is centralizable,
with centralizer (ZT , ∂) given by:

ZT (X) =
⊕

i∈I

∨T (Vi) ⊗X ⊗ Vi

and

∂X,Y =
∑

i∈I
1≤α≤Ni

Y

(
T (qi,α

Y ) ⊗ id∨T (Vi)⊗X ⊗ p
i,α
Y

)(
coevT (Vi) ⊗ idX⊗Y

)
.

In particular, a fusion category is centralizable, with centralizer Z = Z1F
given by:

Z(X) =
⊕

i∈I

∨Vi ⊗X ⊗ Vi.

Remark 9.1. By Corollary 5.14, the centralizer Z of F provides in particular a
left adjoint FZ to the forgetful functor U : Z(F) ≃ Z-F → F , which is called the
induction functor in [ENO05].

Remark 9.2. In general, the centralizer Z of F is not isomorphic (as an endofunc-
tor of F) to Z(1)⊗? nor to ? ⊗ Z(1), as shown by the following counter-example.
Let G be a non-commutative finite group and let F be the fusion category of finite-
dimensional G- graded vector spaces over a field k. The elements of G form a
representative set of scalar objects of F . Then Z(x) =

⊕
g∈G g

−1xg for x ∈ G. In

particular Z(1) = 1#G. Now, if x ∈ G is not central, Z(x) is not isomorphic to
Z(1) ⊗ x ≃ x#G ≃ x⊗ Z(1).
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(ZT )2(X,Y ) =
∑

i,k∈I

1≤α≤Nk
T(Vi)

Vi

Vi

Vk

X

X

Y

Y

∨T (Vi)

∨T (Vi)
∨T (Vk)

∨T
(
q

k,α

T (Vi)

)
p

k,α

T (Vi)

∨µVi

, (ZT )0 =
∑

i∈I

Vi
∨T (Vi)

ηVi ,

mX =
∑

i,j,k∈I

1≤α≤Nk
Vi⊗Vj

Vi Vj

Vk
∨T (Vk)

∨T (Vj)
∨T (Vi) X

X

∨T
(
q

k,α
Vi⊗Vj

)

p
k,α
Vi⊗Vj

∨T2(Vi, Vj)

, uX =

X

X

∨T (V0)

T0 ,

Sl
X =

∑

i,j∈I

1≤α≤Ni
T(Vj )∨

∨∨T (Vi) Vj
∨T (Vj)

∨Vi
∨X

∨X

∨∨p
i,α

T (Vj)
∨

∨∨T
(
q

i,α

T (Vj)∨

)
∨(sr

Vj
) ,

Sr
X =

∑

i,j∈I

1≤α≤Ni
∨T (Vj)

T (Vi) Vj
∨T (Vj) V ∨

i X∨

X∨

p
i,α
∨T (Vj) T

(
q

i,α
∨T (Vj)

)
(sl

Vj
)
∨

.

Figure 3. Structural morphisms of ZT

Assume T is a centralizable Hopf monad. By Theorem 5.6, its centralizer ZT is
a Hopf monad on F and its structural morphisms can be described purely in terms
of those of T and of the category F (that is, the p, q’s and the duality morphisms).
They are depicted in Figure 3, where µ, η, sl, sr (resp. m, u, Sl, Sr) denote the
product, unit, left antipode, and right antipode of T (resp. ZT ). The canonical
distributive law of T is:

ΩX =
∑

i,j∈I

1≤α≤N
j

T (Vi)

(
∨T

(
q

j,α

T (Vi)

)
∨µVi

sl
T (Vi)

T
(
∨µVi

)
⊗ idT (X) ⊗ p

j,α

T (Vi)

)
T3

(
∨T (Vi), X, Vi

)
.

Hence an explicit description of the double DT = ZT ◦Ω T of T and of the lift Z̃Ω
T

of ZT to T -F . Note that the R-matrix of DT is:

RX,Y =
∑

i∈I
1≤α≤Ni

Y

(
∨T0 ⊗ T (qi,α

Y ) ⊗ id∨T (Vi) ⊗ ηX ⊗ p
i,α
Y

)(
coevT (Vi) ⊗ idX⊗Y

)
.

9.3. The coend of the center of a fusion category. Let F be a fusion category
over a commutative ring k, and denote Z the centralizer of F . Recall that Z is a
quasitriangular Hopf monad on F such that Z(F) ≃ Z-F , see Section 9.2. Since
Z is k-linear, it is centralizable. Denote ZZ its centralizer and Ω the canonical
distributive law of Z over ZZ . Then the coend of Z(F) is:

C = Z̃Ω
Z (1, Z0) =

(
ZZ(1), ZZ(Z0)Ω1).
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∆C =
∑

i,j,k,m,n∈I

1≤α≤Nk
k,m

1≤β≤Nn
∨k,j,k

∨Vi
∨Vj

∨∨Vi

Vj

Vj

∨Vm
∨Vn

∨∨Vm Vn
∨Vk

∨Vj
∨∨Vk

∨p
n,β
∨k,j,k∨q

n,β
∨k,j,k

∨p
i,α
k,m

∨∨q
i,α
k,m

, εC =
∑

j∈I
∨V0

∨Vj
∨∨V0 Vj

,

mC =
∑

i,j,k,l,m,n∈I
1≤α≤Nn

∨k,l,k

1≤β≤Ni
∨n,k,n

1≤γ≤Nm
∨∨n,j,∨n,l

∨Vk
∨Vl

∨∨Vk
∨Vi

∨Vj
∨∨Vi Vj

∨Vk
∨Vm

∨Vm

∨∨Vk Vm

∨q
m,γ
∨∨n,j,∨n,l

p
m,γ
∨∨n,j,∨n,l

∨q
n,α
∨k,l,k

∨p
n,α
∨k,l,k

∨p
i,β
∨n,k,n

∨∨q
i,β
∨n,k,n

, uC =
∑

i∈I

∨Vi
∨V0 V0

∨∨Vi

,

SC =
∑

i,j,k,l∈I

1≤α≤N
∨i
j,k,j∨

1≤β≤N l
∨j,∨i,∨j,∨∨i,j

∨Vk
∨Vl

∨∨Vk
∨Vm

p
l,β
∨j,∨i,∨j,∨∨i,j

∨q
l,β
∨j,∨i,∨j,∨∨i,j

∨p
∨i,α
j,k,j∨

∨∨q
∨i,α
j,k,j∨

∨Vk
∨Vl

∨∨Vk Vl

,

ωC =
∑

i,j,k,l∈I

1≤α≤N
∨k
∨i,j,i

1≤β≤Ni
∨k,∨l,∨∨k

p
∨k,α
∨i,j,i

q
i,β
∨k,∨l,∨∨k

∨q
∨k,α
∨i,j,i

p
i,β
∨k,∨l,∨∨k

∨Vi
∨Vj

∨∨Vi Vj
∨Vk

∨Vl
∨∨Vk Vl

.

Figure 4. Structural morphisms of the coend of Z(C)

Note that:

ZZ(1) =
⊕

j∈I

∨
Z(Vj) ⊗ Vj =

⊕

i,j∈I

∨Vi ⊗
∨Vj ⊗

∨∨Vi ⊗ Vj .

Using the results of Section 6.3, one computes the Hopf algebra structure of C
and its self-dual Hopf pairing. These are depicted in Figure 4, where we denote
AVi1⊗···⊗Vin

by Ai1,...,in
for A = pi,α, qi,α, or N i, and the dotted lines represent

the relevant isomorphism between 1 and V0 or its duals.
In [BV09], we use this explicit description of the coend of Z(F) to show that the

center Z(F) of a spherical fusion category F is modular. In particular, this implies
that if F is a spherical fusion category of invertible dimension over an algebraic
closed field k, then Z(F) is a modular ribbon fusion category (this last result was
first shown in [Mü03] using different methods).

Also, this description of the coend of Z(F) leads to an explicit algorithm (in-
volving Hopf diagrams [BV05]) for computing the Reshetikhin-Turaev invariants
defined with Z(F). Moreover, this approach allows one to define these invariants
over an arbitrary base ring, without assumption on the dimension of F (if the di-
mension of F is not invertible, this yields ‘non-semisimple’ invariants). See [BV08]
for details.
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