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Galois-Grothendieck duality and Tannaka duality

In SGA1 (1960) Grothendieck defines the étale fundamental group π(X , p)
of a scheme S at a geometric point p.

Consider the fibre functor at p :

ωp :

{
{finite étale coverings of S} → set

E 7→ Ep

Set π = π(X , p) = ‘profinite group of automorphisms’ of ωp . Then

{finite étale coverings of S} � {continuous finite π-sets}

This follows from

Theorem
Let C be a category and ω : C → set be a functor, and assume :

1 C has finite limits and colimits, and ω is exact ;
2 in C any morphism factorizes as mono ◦ epi, and epis are strict ;
3 ω is conservative ;
4 in C monos are summands.

Then C � G − set, where G is the profinite group Aut(ω).
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Galois-Grothendieck duality and Tannaka duality

Tannaka theory in its algebraic form (Saavedra Rivano’s thesis in 1972,
Deligne-Milne, Deligne...).

Theorem
Neutral case. Let C be a symmetric tensor category over a field k,
ω : C → Vectk a symmetric fibre functor, that is, a strong monoidal
symmetric k-linear exact functor.

Then G = Aut(ω) is an affine algebraic
group over k and C � repG.
2) General case. Still works if you replace Vectk with ModB , with B
commutative k-algebra , 0. Then G is an affine groupoid with base SpecB.

This theorem has several variants, notably :
Nori’s approach, where k is a coherent commutative ring and G is a
Hopf algebra in the pro objects of mod k
Non-commutative case, where C is no longer symmetric G is a
’quantum’ Hopf algebroid [Maltsiniotis, B]
Fully non-commutative case, B non-commutative,
ω : C →B BimodB  G is a Hopf algebroid in the sense of
Takeuchi/Schauenburg
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Galois-Grothendieck duality and Tannaka duality

Aim : unify Galois-Grothendieck duality and Tannaka duality (neutral or
not, commutative or not).

Question
Let ω : C → B be a strong monoidal functor. Describe C as the category of
representations of a Hopf structure living at the level of B?

In the neutral case, a partial answer has been given by Xavier Rochard in
his unpublished thesis (1998).
More recently, work by Daniel Schäppi (Tannaka duality for comonoids in
cosmoi).
Our first step to address this question will be to study (co)monoidal
adjunction and introduce Hopf (co)monads which serve exactly that kind of
purpose.
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Hopf adjunctions and Hopf comonads

A monoidal adjunction is an adjunction
C

ω
��
B

R

WW

where C, B are monoidal

and ω is strong monoidal.

Then R, and the adjunction morphisms
η : 1C → Rω and ε : ωR → 1B are monoidal.
It is Hopf if for all b ∈ B, c ∈ C the fusion morphisms are isomorphisms :

Hl
b ,c : c ⊗ Rb → R(ωc ⊗ b) and Hr

b ,c : Rb ⊗ c → R(b ⊗ ωc)

Such is the case if C has duals or if C and ω are coclosed.

Example

B bialgebra over k a monoidal adjunction
ComodB

U
��

Vectk

cofree

XX

It is Hopf iff B is a Hopf algebra (w. bijective antipode).
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Hopf adjunctions and Hopf comonads

Hopf comonads 8 / 23

A monoidal comonad [I. Moerdijk] on a monoidal category B is a a
comonad (T ,∆, ε) such that T , ∆ and ε are monoidal, that is :

T : B → B, ∆: T → T2 (coproduct), ε : T → 1B (counit)

µa,b : Ta ⊗ Tb → T(a ⊗ b), η : 1→ T1

The µ −∆ compatibility doesn’t require a braiding :

Ta ⊗ Tb
∆a⊗∆b//

µa,b

��

T2a ⊗ T2b
∆Ta,Tb // T(Ta ⊗ Tb)

Tµa,b
��

T(a ⊗ b)
∆a⊗b

// T2(a ⊗ b)

Define the (left and right) fusion morphisms
Hl

a,b = µa,Tb(Ta ⊗∆b) : Ta ⊗ Tb → T(a ⊗ Tb),
Hr

a,b = µTa,b(∆a ⊗ Tb) : Ta ⊗ Tb → T(Ta ⊗ b).

T is a Hopf comonad if Hl and Hr are isomorphisms.
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Hopf comonads and Hopf monoidal adjunctions 9 / 23

T comonad on B an adjunction

BT

UT
��
B

RT

VV

where BT = {T -comodules (b , δ : b → Tb)}, UT (b , δ) = b and
RT (b) = (Tb ,∆b).

T is a monoidal (resp Hopf) comonad iff its adjunction (UT ,RT ) is a
monoidal adjunction (resp a Hopf monoidal adjunction).

Conversely let
C

ω
��
B

R

WW

be monoidal (Hopf) adjunction ; its comonad

T = ωR is a monoidal (Hopf) comonad.
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the comparison functor K : c 7→ (ωc, ωηc)
is strong monoidal
The adjunction (ω,R) is comonadic if K is
an equivalence.



Hopf adjunctions and Hopf comonads

Outlook of General Theory of Hopf (co)monads 10 / 23

The notion of a Hopf comonad is not self-dual, unlike that of a Hopf
algebra. The dual notion is that of Hopf monads. Many classical results of
the theory of Hopf algebras extend to Hopf (co)monads [BV 2007, BVL
2011]

Tannaka dictionary

Hopf modules and Sweedler decomposition theorem

Existence of universal integrals

Semisimplicity, Maschke criterion

The Drinfeld double of a Hopf (co)monad

Cross-products

Bosonization for Hopf (co)monads

Applications to construction and comparison of quantum invariants
(non-braided setting)
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Hopf adjunctions and Hopf comonads

Hopf comonads from Hopf algebras 11 / 23

Hopf comonads generalize Hopf algebras in braided categories.

B monoidal category, (H, σ) a Hopf algebra in Z(B) (which is braided)
 a Hopf comonad T = H⊗σ? on B, defined by X 7→ H ⊗ X . The
monoidal structure of T is

µa,b = (m ⊗ a ⊗ b)(H ⊗ σa ⊗ b)

η = unit of H

Moreover T comes with a Hopf comonad morphism

e = (η⊗?) : idB → T

Theorem (B Virelizier Lack)

Central Hopf agebras = (co)augmented Hopf (co)monads

Consequence for Tannaka duality : the neutral case means that ω has a
monoidal section the reconstructed Hopf structure is a Hopf algebra in
Z(B).
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Hopf adjunctions and Hopf comonads

Hopf comonads as ‘quantum groupoids’ 12 / 23

Let R be a unitary ring a monoidal category (RModR ,⊗R ,R RR).

Facts
linear monoidal comonads on RModR which commute to colimits are
bialgebroids in the sense of Takeuchi [Szlacháni, Hai]

linear Hopf comonads on RModR which commute to colimits are a
Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated
axioms a Hopf adjunction a Hopf comonad (much easier to
manipulate).
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Main result

Reconstruction witout an adjoint 14 / 23

Let ω : C → B be a strong monoidal functor. How can we reconstruct a
Hopf comonad from ω?

Assume that B has pertinent colimits (small filtered colimits if ω is right
exact, small colimits otherwise) and ⊗B preserves them. Then the
following Kan extension exists :

Tω =

{
B → B

b 7→ lim(c,φ)∈C/b ωc

Tω is a comonad coacting universally on ω, in fact a monoidal comonad.
If for all c ∈ C ωc is ‘small’ in B then T preserves pertinent colimits.
Tω is a Hopf comonad if, in addition C has (enough) duals or C and ω are
coclosed.

The Hopf comonad Tω will play the rôle of Aut(ω).
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Main result

Comonadicity criterion 15 / 23

Let ω : C → B be a strong monoidal functor, with B having small filtered
colimits which are exact and preserved by ⊗B. Assume that

1 C has finite limits and colimits and ω is exact ;
2 C has mono-epi factorizations and has strict monos ;
3 C is coartinian ;
4 ω is conservative ;

Then

a) ω extends uniquely to a strong monoidal functor Ω : IndC → B which
preserves filtered colimits and has a right adjoint R ;

b) Ω is comonadic with comonad T = Tω = ΩR, so that IndC �⊗ BT ;

c) Moreover, if Bf ⊂ B is a full monoidal subcategory containing ω(C) and
whose objects have finite type in B (e. g. B = IndBf ), we have C �⊗ Bf

T .
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If in addition
1 C has duals or C and ω are coclosed,
2 for any mono i of C, ω(i) is a tensor-universal mono of B,

then T is a Hopf comonad.

Note that, if ω has a monoidal section, then the Hopf comonad T is
co-augmented, so there exists a Hopf algebra (H, σ) in Z(B) such that
T = H⊗σ? and C is the category of H-comodules in B.
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Applications Recovering classical results

In its direct form the main result yields tannaka duality in the neutral case
and in the general case (even non-commutative), with B = Vectk,
B = ModB, B =B BimodB .
In its opposite form, it yields Nori’s construction when B = Pro mod k. It
yields Galois-Grothendieck duality when B = Proset (� category of
compact totally disconnected topological spaces), with a proviso.
The first part of the theorem reconstructs a comonoidal monad T on
Proset, which is in fact a bialgebra G because set is generated by the unit
object and T preserves finite sums and filtering limits. Since we are in a
cartesian category, bialgebras are just monoids.
One verifies that the last axiom of Grothendieck implies that C and ω are
closed, so the monoid G is a group in Proset, that is a profinite group.
One can refine the criterion for categories with enough duals.
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closed, so the monoid G is a group in Proset, that is a profinite group.
One can refine the criterion for categories with enough duals.
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Hopf adjunctions revisited 19 / 23

Consider a Hopf monoidal adjunction
C

ω
��
B

R

WW

Theorem (BVL)

A = R(1) is an algebra in C, and comes with a canonical half-braiding σ
which makes it a commutative algebra in Z(C) called the induced
central algebra.
The monoidal monad Rω is isomorphic to A⊗σ? (that is A⊗? endowed
with a monoidal structure defined by σ).
If the adjunction is monadic, B �⊗ CA ,σ, where CA ,σ is the monoidal
category of A -modules in C, with tensor product ⊗A and unit object A . Via
this equivalence, ω is the functor ‘free module’ c 7→ A ⊗ c.

This result is the generalization to Hopf adjunctions of Sweedler’s theorem
on the structure of Hopf modules.
The central commutative algebra generalizes Deligne’s trivializing algebra.
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Let F : C → D be a tensor functor between tensor categories. Then
IndF : IndC → IndB has a right adjoint R.

Theorem
Let F : C → D be a tensor functor. There exists a k- linear left exact
comonad on IndD such that we have a commutative diagram :

C
F //

'⊗   

D

DT

==
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Theorem

If R is faithful exact (F dominant), with induced central algebra (A , σ), we
have a commutative diagram

C
FA //

F ��

CA ,σ

D

'⊗

==

where CA is the category of A -modules ’of finite type’ and FA is the tensor
functor X 7→ A ⊗ X .

If D = vectk and C, F are symmetric, then A is Deligne’s trivializing
algebra.
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Existence of fibre functors 22 / 23

Theorem [BLV]

Let C be a finite tensor category. Then there exists a finite dimensional k
algebra B and a fibre functor ω : C →B BimodB . Hence C �⊗ repA for a
certain Hopf algebroid with base B.
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24. More on Hopf monads 23 / 23

BV1. Hopf Diagrams and Quantum Invariants, AGT 5 (2005) 1677-1710.
Where Hopf diagram are introduced as a means for computing the Reshetikhin-Turaev
invariant in terms of the coend of a ribbon category and its structural morphisms.

BV2. Hopf Monads, Advances in Math. 215 (2007), 679-733.
Where the notion of Hopf monad is introduced, and several fundamental results of the
theory of finite dimensional Hopf algebras are extended thereto.

BV3. Categorical Centers and Reshetikhin-Turaev Invariants, Acta Mathematica
Vietnamica 33 3, 255-279
Where the coend of the center of a fusion spherical category over a ring is described, the
modularity of the center, proven, and the corresponding Reshetikhin-Turaev invariant,
constructed.

BV4. Quantum Double of Hopf monads and Categorical Centers, arXiv :0812.2443, to
appear in Transactions of the American Mathematical Society (2010)
Where the general theory of centralizers and doubles of Hopf monads is expounded.

BLV. Hopf Monads on Monoidal Categories, arXiv :1003.1920.
Where Hopf monads are defined anew in the monoidal world
BN. Exact sequences of tensor categories, arXiv :1006.0569.

See also : http://www.math.univ-montp2.fr/∼bruguieres/recherche.html


	Galois-Grothendieck duality and Tannaka duality
	Hopf adjunctions and Hopf comonads
	Main result
	Applications
	Recovering classical results
	The hidden commutative algebra
	Application to tensor functors


