Dualité de Galois-Grothendieck et dualité tannakienne

Alain Bruguières

(Université Montpellier II)

Journées en l'honneur de Georges Maltsiniotis Université Paris Diderot - Paris 7 17 - 18 Juin 2013

- 2 Hopf adjunctions and Hopf comonads
- 3 Main result
- Applications

In SGA1 (1960) Grothendieck defines the *étale fundamental group* $\pi(X, p)$ of a scheme *S* at a geometric point *p*.

In SGA1 (1960) Grothendieck defines the *étale fundamental group* $\pi(X, p)$ of a scheme *S* at a geometric point *p*. Consider the *fibre functor* at *p* :

$$\omega_p : \left\{ \begin{array}{ccc} \{ \text{finite \'etale coverings of } S \} & \to & \text{set} \\ E & \mapsto & E_p \end{array} \right.$$

In SGA1 (1960) Grothendieck defines the *étale fundamental group* $\pi(X, p)$ of a scheme *S* at a geometric point *p*. Consider the *fibre functor* at *p* :

$$\omega_p : \left\{ \begin{array}{ccc} \{\text{finite \'etale coverings of } S \} & \to & \text{set} \\ E & \mapsto & E_p \end{array} \right.$$

Set $\pi = \pi(X, p) =$ 'profinite group of automorphisms' of ω_p . Then

In SGA1 (1960) Grothendieck defines the *étale fundamental group* $\pi(X, p)$ of a scheme *S* at a geometric point *p*. Consider the *fibre functor* at *p* :

$$\omega_p : \begin{cases} \text{{finite {étale coverings of } S}} \to \text{set} \\ E & \mapsto E_p \end{cases}$$

Set $\pi = \pi(X, p)$ = 'profinite group of automorphisms' of ω_p . Then

{finite étale coverings of S} \cong {continuous finite π -sets}

In SGA1 (1960) Grothendieck defines the *étale fundamental group* $\pi(X, p)$ of a scheme *S* at a geometric point *p*. Consider the *fibre functor* at *p* :

$$\omega_p : \begin{cases} \text{{finite {étale coverings of } S}} \to \text{set} \\ E & \mapsto E_p \end{cases}$$

Set $\pi = \pi(X, p)$ = 'profinite group of automorphisms' of ω_p . Then

{finite étale coverings of S} \cong {continuous finite π -sets}

This follows from

Theorem

Let *C* be a category and $\omega : C \rightarrow$ set be a functor, and assume :

- C has finite limits and colimits, and ω is exact;
- In C any morphism factorizes as mono o epi, and epis are strict;
- \bullet is conservative ;
- in C monos are summands.

Then $C \cong G$ – set, where G is the profinite group $Aut(\omega)$.

Theorem

Neutral case. Let *C* be a symmetric tensor category over a field \Bbbk , $\omega : C \rightarrow \text{Vect}_{\Bbbk}$ a symmetric fibre functor, that is, a strong monoidal symmetric \Bbbk -linear exact functor.

Theorem

Neutral case. Let *C* be a symmetric tensor category over a field \Bbbk , $\omega : C \to \text{Vect}_{\Bbbk}$ a symmetric fibre functor, that is, a strong monoidal symmetric \Bbbk -linear exact functor. Then $G = \text{Aut}(\omega)$ is an affine algebraic group over \Bbbk and $C \cong \text{rep}G$.

Theorem

Neutral case. Let *C* be a symmetric tensor category over a field \Bbbk , $\omega : C \to \operatorname{Vect}_{\Bbbk}$ a symmetric fibre functor, that is, a strong monoidal symmetric \Bbbk -linear exact functor. Then $G = \operatorname{Aut}(\omega)$ is an affine algebraic group over \Bbbk and $C \cong \operatorname{rep} G$. 2) **General case.** Still works if you replace $\operatorname{Vect}_{\Bbbk}$ with Mod_B , with B commutative \Bbbk -algebra $\neq 0$. Then G is an affine groupoid with base SpecB.

Theorem

Neutral case. Let *C* be a symmetric tensor category over a field \Bbbk ,

 $\omega : C \to \text{Vect}_{\Bbbk}$ a symmetric fibre functor, that is, a strong monoidal symmetric \Bbbk -linear exact functor. Then $G = \text{Aut}(\omega)$ is an affine algebraic group over \Bbbk and $C \cong \text{rep}G$.

2) **General case.** Still works if you replace $Vect_{k}$ with Mod_{B} , with B commutative k-algebra $\neq 0$. Then G is an affine groupoid with base SpecB.

This theorem has several variants, notably :

 Nori's approach, where k is a coherent commutative ring and G is a Hopf algebra in the pro objects of mod k

Theorem

Neutral case. Let *C* be a symmetric tensor category over a field \Bbbk ,

 $\omega : C \to \text{Vect}_{\Bbbk}$ a symmetric fibre functor, that is, a strong monoidal symmetric \Bbbk -linear exact functor. Then $G = \text{Aut}(\omega)$ is an affine algebraic group over \Bbbk and $C \cong \text{rep}G$.

2) **General case.** Still works if you replace $Vect_{k}$ with Mod_{B} , with B commutative k-algebra $\neq 0$. Then G is an affine groupoid with base SpecB.

This theorem has several variants, notably :

- Nori's approach, where k is a coherent commutative ring and G is a Hopf algebra in the pro objects of mod k
- Non-commutative case, where *C* is no longer symmetric \rightsquigarrow *G* is a 'quantum' Hopf algebroid [Maltsiniotis, B]

Theorem

Neutral case. Let *C* be a symmetric tensor category over a field \Bbbk ,

 $\omega : C \to \operatorname{Vect}_{\Bbbk}$ a symmetric fibre functor, that is, a strong monoidal symmetric \Bbbk -linear exact functor. Then $G = \operatorname{Aut}(\omega)$ is an affine algebraic group over \Bbbk and $C \cong \operatorname{rep} G$.

2) **General case.** Still works if you replace $Vect_{k}$ with Mod_{B} , with B commutative k-algebra $\neq 0$. Then G is an affine groupoid with base SpecB.

This theorem has several variants, notably :

- Nori's approach, where k is a coherent commutative ring and G is a Hopf algebra in the pro objects of mod k
- Non-commutative case, where *C* is no longer symmetric \rightsquigarrow *G* is a 'quantum' Hopf algebroid [Maltsiniotis, B]
- Fully non-commutative case, B non-commutative,
 ω : C →_B Bimod_B → G is a Hopf algebroid in the sense of Takeuchi/Schauenburg

Question

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. Describe *C* as the category of representations of a **Hopf structure** living at the level of \mathcal{B} ?

Question

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. Describe *C* as the category of representations of a **Hopf structure** living at the level of \mathcal{B} ?

In the neutral case, a partial answer has been given by Xavier Rochard in his unpublished thesis (1998).

Question

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. Describe *C* as the category of representations of a **Hopf structure** living at the level of \mathcal{B} ?

In the neutral case, a partial answer has been given by Xavier Rochard in his unpublished thesis (1998).

More recently, work by Daniel Schäppi (*Tannaka duality for comonoids in cosmoi*).

Question

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. Describe *C* as the category of representations of a **Hopf structure** living at the level of \mathcal{B} ?

In the neutral case, a partial answer has been given by Xavier Rochard in his unpublished thesis (1998).

More recently, work by Daniel Schäppi (*Tannaka duality for comonoids in cosmoi*).

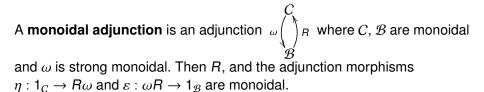
Our first step to address this question will be to study (co)monoidal adjunction and introduce Hopf (co)monads which serve exactly that kind of purpose.

2 Hopf adjunctions and Hopf comonads

3 Main result

Applications

and ω is strong monoidal.



A monoidal adjunction is an adjunction $\omega \begin{pmatrix} C \\ B \end{pmatrix}_{R}$ where C, \mathcal{B} are monoidal

and ω is strong monoidal. Then R, and the adjunction morphisms $\eta : 1_C \to R\omega$ and $\varepsilon : \omega R \to 1_{\mathcal{B}}$ are monoidal. It is **Hopf** if for all $b \in \mathcal{B}$, $c \in C$ the **fusion morphisms** are isomorphisms :

 $H_{b,c}^{l}: c \otimes Rb \to R(\omega c \otimes b)$ and $H_{b,c}^{r}: Rb \otimes c \to R(b \otimes \omega c)$

A monoidal adjunction is an adjunction $\omega \begin{pmatrix} C \\ B \end{pmatrix}_{R}$ where C, \mathcal{B} are monoidal

and ω is strong monoidal. Then R, and the adjunction morphisms $\eta : 1_C \to R\omega$ and $\varepsilon : \omega R \to 1_{\mathcal{B}}$ are monoidal. It is **Hopf** if for all $b \in \mathcal{B}$, $c \in C$ the **fusion morphisms** are isomorphisms :

 $H_{b,c}^{l}: c \otimes Rb \to R(\omega c \otimes b)$ and $H_{b,c}^{r}: Rb \otimes c \to R(b \otimes \omega c)$

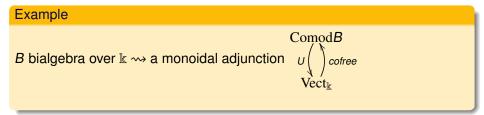
Such is the case if *C* has duals or if *C* and ω are coclosed.

A monoidal adjunction is an adjunction $\omega \begin{pmatrix} C \\ B \end{pmatrix}_{R}$ where C, \mathcal{B} are monoidal

and ω is strong monoidal. Then R, and the adjunction morphisms $\eta : 1_C \to R\omega$ and $\varepsilon : \omega R \to 1_{\mathcal{B}}$ are monoidal. It is **Hopf** if for all $b \in \mathcal{B}$, $c \in C$ the **fusion morphisms** are isomorphisms :

$$H^l_{b,c}: c \otimes Rb \to R(\omega c \otimes b)$$
 and $H^r_{b,c}: Rb \otimes c \to R(b \otimes \omega c)$

Such is the case if *C* has duals or if *C* and ω are coclosed.

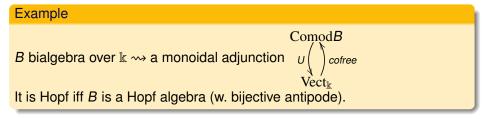


A monoidal adjunction is an adjunction $\omega \begin{pmatrix} C \\ B \\ B \end{pmatrix}_{R}$ where C, \mathcal{B} are monoidal

and ω is strong monoidal. Then R, and the adjunction morphisms $\eta : 1_C \to R\omega$ and $\varepsilon : \omega R \to 1_{\mathcal{B}}$ are monoidal. It is **Hopf** if for all $b \in \mathcal{B}$, $c \in C$ the **fusion morphisms** are isomorphisms :

$$H_{b,c}^{l}: c \otimes Rb \to R(\omega c \otimes b)$$
 and $H_{b,c}^{r}: Rb \otimes c \to R(b \otimes \omega c)$

Such is the case if *C* has duals or if *C* and ω are coclosed.



A **monoidal comonad** [I. Moerdijk] on a monoidal category \mathcal{B} is a a comonad (T, Δ, ε) such that T, Δ and ε are monoidal, that is :

A **monoidal comonad** [I. Moerdijk] on a monoidal category \mathcal{B} is a a comonad (T, Δ, ε) such that T, Δ and ε are monoidal, that is :

 $\begin{array}{ll} T: \mathcal{B} \to \mathcal{B}, & \Delta \colon T \to T^2 \text{ (coproduct)}, & \varepsilon \colon T \to 1_{\mathcal{B}} \text{ (counit)} \\ \mu_{a,b} \colon Ta \otimes Tb \to T(a \otimes b), & \eta \colon \mathbb{1} \to T\mathbb{1} \end{array}$

A **monoidal comonad** [I. Moerdijk] on a monoidal category \mathcal{B} is a a comonad (T, Δ, ε) such that T, Δ and ε are monoidal, that is :

$$\begin{array}{ll} T: \ensuremath{\mathcal{B}} \to \ensuremath{\mathcal{B}}, & \Delta \colon T \to T^2 \text{ (coproduct)}, & \varepsilon \colon T \to 1_{\ensuremath{\mathcal{B}}} \text{ (counit)} \\ \mu_{a,b} \colon Ta \otimes Tb \to T(a \otimes b), & \eta \colon \mathbbm{1} \to T\mathbbm{1} \end{array}$$

The $\mu - \Delta$ compatibility doesn't require a braiding :

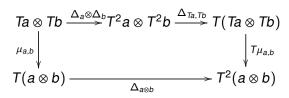
Define the (left and right) fusion morphisms

•
$$H_{a,b}^{l} = \mu_{a,Tb}(Ta \otimes \Delta_{b})$$
: $Ta \otimes Tb \rightarrow T(a \otimes Tb)$,
• $H_{a,b}^{r} = \mu_{Ta,b}(\Delta_{a} \otimes Tb)$: $Ta \otimes Tb \rightarrow T(Ta \otimes b)$.

A **monoidal comonad** [I. Moerdijk] on a monoidal category \mathcal{B} is a a comonad (T, Δ, ε) such that T, Δ and ε are monoidal, that is :

$$\begin{array}{ll} T: \ensuremath{\mathcal{B}} \to \ensuremath{\mathcal{B}}, & \Delta \colon T \to T^2 \text{ (coproduct)}, & \varepsilon \colon T \to 1_{\ensuremath{\mathcal{B}}} \text{ (counit)} \\ \mu_{a,b} \colon Ta \otimes Tb \to T(a \otimes b), & \eta \colon \mathbbm{1} \to T\mathbbm{1} \end{array}$$

The $\mu - \Delta$ compatibility doesn't require a braiding :



Define the (left and right) fusion morphisms

•
$$H_{a,b}^{l} = \mu_{a,Tb}(Ta \otimes \Delta_{b})$$
: $Ta \otimes Tb \to T(a \otimes Tb)$,
• $H_{a,b}^{l} = \mu_{a,Tb}(\Delta_{a} \otimes Tb)$: $Ta \otimes Tb \to T(Ta \otimes b)$.

•
$$H_{a,b}^r = \mu_{Ta,b}(\Delta_a \otimes Tb)$$
: $Ta \otimes Tb \to T(Ta \otimes b)$.

T is a Hopf comonad if H^{l} and H^{r} are isomorphisms.

9/23

T comonad on $\mathcal{B} \rightsquigarrow$ an adjunction $U_T \begin{pmatrix} \mathcal{B}_T \\ \mathcal{B} \end{pmatrix} R_T$ where $\mathcal{B}_T = \{T\text{-comodules } (b, \delta : b \to Tb)\}, U_T(b, \delta) = b$ and $R_T(b) = (Tb, \Delta_b).$

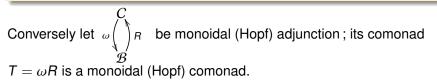
T comonad on $\mathcal{B} \rightsquigarrow$ an adjunction $U_T \begin{pmatrix} \mathcal{B}_T \\ \mathcal{B} \end{pmatrix} R_T$ where $\mathcal{B}_T = \{T\text{-comodules } (b, \delta : b \rightarrow Tb)\}, U_T(b, \delta) = b$ and $R_T(b) = (Tb, \Delta_b).$

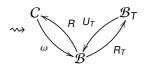
T is a monoidal (resp Hopf) comonad iff its adjunction (U_T, R_T) is a monoidal adjunction (resp a Hopf monoidal adjunction).

T comonad on $\mathcal{B} \rightsquigarrow$ an adjunction $U_T \left(\int_{-\infty}^{\infty} R_T \right)$

where $\mathcal{B}_T = \{T\text{-comodules } (b, \delta : b \to Tb)\}, U_T(b, \delta) = b \text{ and } R_T(b) = (Tb, \Delta_b).$

T is a monoidal (resp Hopf) comonad iff its adjunction (U_T, R_T) is a monoidal adjunction (resp a Hopf monoidal adjunction).

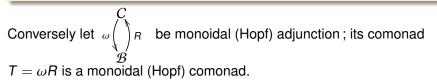


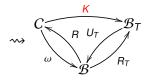


T comonad on $\mathcal{B} \rightsquigarrow$ an adjunction $U_T \left(\int R_T \right)$

where $\mathcal{B}_T = \{T\text{-comodules } (b, \delta : b \to Tb)\}, U_T(b, \delta) = b \text{ and } R_T(b) = (Tb, \Delta_b).$

T is a monoidal (resp Hopf) comonad iff its adjunction (U_T, R_T) is a monoidal adjunction (resp a Hopf monoidal adjunction).



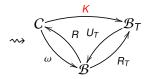


T comonad on $\mathcal{B} \rightsquigarrow$ an adjunction $U_T \begin{pmatrix} \mathcal{B}_T \\ \mathcal{B}_T \end{pmatrix} R_T$

where $\mathcal{B}_T = \{T\text{-comodules } (b, \delta : b \to Tb)\}, U_T(b, \delta) = b \text{ and } R_T(b) = (Tb, \Delta_b).$

T is a monoidal (resp Hopf) comonad iff its adjunction (U_T, R_T) is a monoidal adjunction (resp a Hopf monoidal adjunction).

Conversely let $\omega \begin{pmatrix} C \\ B \end{pmatrix}_R$ be monoidal (Hopf) adjunction ; its comonad $\mathcal{T} = \omega R$ is a monoidal (Hopf) comonad.



the comparison functor $K : c \mapsto (\omega c, \omega \eta_c)$ is strong monoidal The adjunction (ω, R) is comonadic if K is an equivalence. Hopf adjunctions and Hopf comonads

Outlook of General Theory of Hopf (co)monads 10/23

The notion of a Hopf comonad is not self-dual, unlike that of a Hopf algebra. The dual notion is that of Hopf monads. Many classical results of the theory of Hopf algebras extend to Hopf (co)monads [BV 2007, BVL 2011]

Hopf adjunctions and Hopf comonads

Outlook of General Theory of Hopf (co)monads 10/23

The notion of a Hopf comonad is not self-dual, unlike that of a Hopf algebra. The dual notion is that of Hopf monads. Many classical results of the theory of Hopf algebras extend to Hopf (co)monads [BV 2007, BVL 2011]

Tannaka dictionary

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals
- Semisimplicity, Maschke criterion

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals
- Semisimplicity, Maschke criterion
- The Drinfeld double of a Hopf (co)monad

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals
- Semisimplicity, Maschke criterion
- The Drinfeld double of a Hopf (co)monad
- Cross-products

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals
- Semisimplicity, Maschke criterion
- The Drinfeld double of a Hopf (co)monad
- Cross-products
- Bosonization for Hopf (co)monads

Outlook of General Theory of Hopf (co)monads 10/23

- Tannaka dictionary
- Hopf modules and Sweedler decomposition theorem
- Existence of universal integrals
- Semisimplicity, Maschke criterion
- The Drinfeld double of a Hopf (co)monad
- Cross-products
- Bosonization for Hopf (co)monads
- Applications to construction and comparison of quantum invariants (non-braided setting)

Hopf comonads from Hopf algebras

11/23

Hopf comonads generalize Hopf algebras in braided categories.

Hopf comonads generalize Hopf algebras in braided categories. \mathcal{B} monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(\mathcal{B})$ (which is braided) \rightsquigarrow a Hopf comonad $T = H \otimes_{\sigma}$? on \mathcal{B} , defined by $X \mapsto H \otimes X$.

Hopf comonads generalize Hopf algebras in braided categories. \mathcal{B} monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(\mathcal{B})$ (which is braided) \rightsquigarrow a Hopf comonad $T = H \otimes_{\sigma}$? on \mathcal{B} , defined by $X \mapsto H \otimes X$. The monoidal structure of T is

 $\mu_{a,b} = (m \otimes a \otimes b)(H \otimes \sigma_a \otimes b)$ $\eta = \text{unit of } H$

Hopf comonads generalize Hopf algebras in braided categories. \mathcal{B} monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(\mathcal{B})$ (which is braided) \rightsquigarrow a Hopf comonad $T = H \otimes_{\sigma}$? on \mathcal{B} , defined by $X \mapsto H \otimes X$. The monoidal structure of T is

$$\mu_{a,b} = (m \otimes a \otimes b)(H \otimes \sigma_a \otimes b)$$
$$\eta = \text{unit of } H$$

Moreover *T* comes with a Hopf comonad morphism

$$\mathbf{e} = (\eta \otimes ?) : \mathrm{id}_{\mathcal{B}} \to T$$

Hopf comonads generalize Hopf algebras in braided categories. \mathcal{B} monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(\mathcal{B})$ (which is braided) \rightsquigarrow a Hopf comonad $T = H \otimes_{\sigma}$? on \mathcal{B} , defined by $X \mapsto H \otimes X$. The monoidal structure of T is

$$\mu_{a,b} = (m \otimes a \otimes b)(H \otimes \sigma_a \otimes b)$$
$$\eta = \text{unit of } H$$

Moreover *T* comes with a Hopf comonad morphism

$$\mathbf{e} = (\eta \otimes ?) : \mathrm{id}_{\mathcal{B}} \to T$$

Theorem (B Virelizier Lack)

Central Hopf agebras = (co)augmented Hopf (co)monads

Hopf comonads generalize Hopf algebras in braided categories. \mathcal{B} monoidal category, (H, σ) a Hopf algebra in $\mathcal{Z}(\mathcal{B})$ (which is braided) \rightsquigarrow a Hopf comonad $T = H \otimes_{\sigma}$? on \mathcal{B} , defined by $X \mapsto H \otimes X$. The monoidal structure of T is

 $\mu_{a,b} = (m \otimes a \otimes b)(H \otimes \sigma_a \otimes b)$ $\eta = \text{unit of } H$

Moreover T comes with a Hopf comonad morphism

$$\boldsymbol{e} = (\eta \otimes ?) : \mathrm{id}_{\mathcal{B}} \to T$$

Theorem (B Virelizier Lack)

Central Hopf agebras = (co)augmented Hopf (co)monads

Consequence for Tannaka duality : the neutral case means that ω has a monoidal section \rightsquigarrow the reconstructed Hopf structure is a Hopf algebra in $\mathcal{Z}(\mathcal{B})$.

12/23

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

Facts

 linear monoidal comonads on _RMod_R which commute to colimits are bialgebroids in the sense of Takeuchi [Szlacháni, Hai]

12/23

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

 linear monoidal comonads on _RMod_R which commute to colimits are bialgebroids in the sense of Takeuchi [Szlacháni, Hai]

12/23

 linear Hopf comonads on _RMod_R which commute to colimits are a Hopf algebroids in the sense of Schauenburg.

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

 linear monoidal comonads on _RMod_R which commute to colimits are bialgebroids in the sense of Takeuchi [Szlacháni, Hai]

12/23

 linear Hopf comonads on _RMod_R which commute to colimits are a Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids.

Let *R* be a unitary ring \rightsquigarrow a monoidal category ($_RMod_R, \otimes_{R,R} R_R$).

Facts

 linear monoidal comonads on _RMod_R which commute to colimits are bialgebroids in the sense of Takeuchi [Szlacháni, Hai]

12/23

 linear Hopf comonads on _RMod_R which commute to colimits are a Hopf algebroids in the sense of Schauenburg.

Hopf algebroids are non-commutative avatars of groupoids. Complicated axioms \rightsquigarrow a Hopf adjunction \rightsquigarrow a Hopf comonad (much easier to manipulate).

Galois-Grothendieck duality and Tannaka duality

- 2 Hopf adjunctions and Hopf comonads
- 3 Main result
- Applications

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

14/23

14/23

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them.

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them. Then the following Kan extension exists :

$$T_{\omega} = \begin{cases} \mathcal{B} \to \mathcal{B} \\ b \mapsto \lim_{(c,\phi) \in C/b} \omega c \end{cases}$$

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them. Then the following Kan extension exists :

$$T_{\omega} = \begin{cases} \mathcal{B} \to \mathcal{B} \\ b \mapsto \lim_{(c,\phi) \in C/b} \omega c \end{cases}$$

 T_{ω} is a comonad coacting universally on ω

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them. Then the following Kan extension exists :

$$T_{\omega} = \begin{cases} \mathcal{B} \to \mathcal{B} \\ b \mapsto \lim_{(c,\phi) \in C/b} \omega c \end{cases}$$

 T_{ω} is a comonad coacting universally on ω , in fact a **monoidal comonad**.

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them. Then the following Kan extension exists :

$$T_{\omega} = \begin{cases} \mathcal{B} \to \mathcal{B} \\ b \mapsto \lim_{(c,\phi) \in C/b} \omega c \end{cases}$$

 T_{ω} is a comonad coacting universally on ω , in fact a **monoidal comonad**. If for all $c \in C \ \omega c$ is 'small' in \mathcal{B} then T preserves pertinent colimits.

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them. Then the following Kan extension exists :

$$T_{\omega} = \begin{cases} \mathcal{B} \to \mathcal{B} \\ b \mapsto \lim_{(c,\phi) \in C/b} \omega c \end{cases}$$

 T_{ω} is a comonad coacting universally on ω , in fact a **monoidal comonad**. If for all $c \in C \ \omega c$ is 'small' in \mathcal{B} then T preserves pertinent colimits. T_{ω} is a Hopf comonad if, in addition C has (enough) duals or C and ω are coclosed.

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor. How can we reconstruct a Hopf comonad from ω ?

Assume that \mathcal{B} has pertinent colimits (small filtered colimits if ω is right exact, small colimits otherwise) and $\otimes_{\mathcal{B}}$ preserves them. Then the following Kan extension exists :

$$T_{\omega} = \begin{cases} \mathcal{B} \to \mathcal{B} \\ b \mapsto \lim_{(c,\phi) \in C/b} \omega c \end{cases}$$

 T_{ω} is a comonad coacting universally on ω , in fact a **monoidal comonad**. If for all $c \in C \ \omega c$ is 'small' in \mathcal{B} then T preserves pertinent colimits. T_{ω} is a Hopf comonad if, in addition C has (enough) duals or C and ω are coclosed.

The Hopf comonad T_{ω} will play the rôle of Aut(ω).

Main result

Comonadicity criterion

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor, with \mathcal{B} having small filtered colimits which are exact and preserved by $\otimes_{\mathcal{B}}$. Assume that

- C has finite limits and colimits and ω is exact;
- C has mono-epi factorizations and has strict monos;
- C is coartinian;
- ω is conservative ;

Comonadicity criterion

Let $\omega : C \to \mathcal{B}$ be a strong monoidal functor, with \mathcal{B} having small filtered colimits which are exact and preserved by $\otimes_{\mathcal{B}}$. Assume that

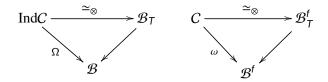
- C has finite limits and colimits and ω is exact;
- C has mono-epi factorizations and has strict monos;
- C is coartinian;
- ω is conservative ;

Then

- a) ω extends uniquely to a strong monoidal functor Ω : $\operatorname{Ind} C \to \mathcal{B}$ which preserves filtered colimits and has a right adjoint *R*;
- b) Ω is comonadic with comonad $T = T_{\omega} = \Omega R$, so that $IndC \cong_{\otimes} \mathcal{B}_T$;
- c) Moreover, if $\mathcal{B}^{f} \subset \mathcal{B}$ is a full monoidal subcategory containing $\omega(C)$ and whose objects have finite type in \mathcal{B} (e. g. $\mathcal{B} = \operatorname{Ind} \mathcal{B}^{f}$), we have $C \cong_{\otimes} \mathcal{B}_{T}^{f}$.

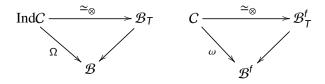
Main result

Hopf



Main result

Hopf



If in addition

- C has duals or C and ω are coclosed,
- 2 for any mono *i* of *C*, $\omega(i)$ is a tensor-universal mono of \mathcal{B} ,

then T is a Hopf comonad.

Note that, if ω has a monoidal section, then the Hopf comonad *T* is co-augmented, so there exists a Hopf algebra (H, σ) in $\mathcal{Z}(\mathcal{B})$ such that $T = H \otimes_{\sigma}$? and *C* is the category of *H*-comodules in \mathcal{B} .

1 Galois-Grothendieck duality and Tannaka duality

2 Hopf adjunctions and Hopf comonads

Main result

Applications

- Recovering classical results
- The hidden commutative algebra
- Application to tensor functors

Applications	Recovering classical results
--------------	------------------------------

In its direct form the main result yields tannaka duality in the neutral case and in the general case (even non-commutative), with $\mathcal{B} = \text{Vect}_{\Bbbk}$, $\mathcal{B} = \text{Mod}\mathcal{B}$, $\mathcal{B} =_{\mathcal{B}} \text{Bimod}_{\mathcal{B}}$.

In its direct form the main result yields tannaka duality in the neutral case and in the general case (even non-commutative), with $\mathcal{B} = \text{Vect}_{\Bbbk}$, $\mathcal{B} = \text{Mod}\mathcal{B}$, $\mathcal{B} =_{\mathcal{B}} \text{Bimod}_{\mathcal{B}}$.

In its opposite form, it yields Nori's construction when $\mathcal{B} = Pro \mod_{\Bbbk}$.

In its direct form the main result yields tannaka duality in the neutral case and in the general case (even non-commutative), with $\mathcal{B} = \text{Vect}_{\Bbbk}$, $\mathcal{B} = \text{Mod}\mathcal{B}$, $\mathcal{B} =_{\mathcal{B}} \text{Bimod}_{\mathcal{B}}$.

In its opposite form, it yields Nori's construction when $\mathcal{B} = \operatorname{Pro} \mod_{\Bbbk}$. It yields Galois-Grothendieck duality when $\mathcal{B} = \operatorname{Proset} (\cong \text{category of compact totally disconnected topological spaces}),$

In its opposite form, it yields Nori's construction when $\mathcal{B} = \operatorname{Pro} \mod_{\Bbbk}$. It yields Galois-Grothendieck duality when $\mathcal{B} = \operatorname{Proset} (\cong \text{category of compact totally disconnected topological spaces}), with a proviso.$

In its opposite form, it yields Nori's construction when $\mathcal{B} = \text{Pro} \mod_{\Bbbk}$. It yields Galois-Grothendieck duality when $\mathcal{B} = \text{Proset} (\cong \text{category of compact totally disconnected topological spaces}), with a proviso. The first part of the theorem reconstructs a comonoidal monad$ *T*on Proset, which is in fact a bialgebra*G*because set is generated by the unit object and*T*preserves finite sums and filtering limits. Since we are in a cartesian category, bialgebras are just monoids.

In its opposite form, it yields Nori's construction when $\mathcal{B} = \operatorname{Pro} \mod_{\Bbbk}$. It yields Galois-Grothendieck duality when $\mathcal{B} = \operatorname{Proset} (\cong \text{category of compact totally disconnected topological spaces}), with a proviso. The first part of the theorem reconstructs a comonoidal monad <math>T$ on Proset, which is in fact a bialgebra G because set is generated by the unit object and T preserves finite sums and filtering limits. Since we are in a cartesian category, bialgebras are just monoids.

One verifies that the last axiom of Grothendieck implies that *C* and ω are closed, so the monoid *G* is a group in Proset, that is a profinite group.

In its opposite form, it yields Nori's construction when $\mathcal{B} = \operatorname{Pro} \mod_{\Bbbk}$. It yields Galois-Grothendieck duality when $\mathcal{B} = \operatorname{Proset} (\cong \text{category of compact totally disconnected topological spaces}), with a proviso. The first part of the theorem reconstructs a comonoidal monad$ *T*on Proset, which is in fact a bialgebra*G*because set is generated by the unit object and*T*preserves finite sums and filtering limits. Since we are in a cartesian category, bialgebras are just monoids.

One verifies that the last axiom of Grothendieck implies that *C* and ω are closed, so the monoid *G* is a group in Proset, that is a profinite group. One can refine the criterion for categories with enough duals.

Consider a Hopf monoidal adjunction $\omega(\tilde{r})_R$

Theorem (BVL)

Consider a Hopf monoidal adjunction $\omega()_R$

Theorem (BVL)

A = R(1) is an algebra in *C*, and comes with a canonical half-braiding σ which makes it a **commutative algebra in** $\mathcal{Z}(C)$ called the *induced central algebra*.

Consider a Hopf monoidal adjunction $\omega(\tilde{r})_R$

Theorem (BVL)

A = R(1) is an algebra in *C*, and comes with a canonical half-braiding σ which makes it a **commutative algebra in** $\mathcal{Z}(C)$ called the *induced central algebra*.

The monoidal monad $R\omega$ is isomorphic to $A \otimes_{\sigma}$? (that is $A \otimes$? endowed with a monoidal structure defined by σ).

Consider a Hopf monoidal adjunction $\omega(\bigcap)_R$

Theorem (BVL)

A = R(1) is an algebra in *C*, and comes with a canonical half-braiding σ which makes it a **commutative algebra in** $\mathcal{Z}(C)$ called the *induced central algebra*.

The monoidal monad $R\omega$ is isomorphic to $A \otimes_{\sigma}$? (that is $A \otimes$? endowed with a monoidal structure defined by σ).

If the adjunction is monadic, $\mathcal{B} \cong_{\otimes} C_{A,\sigma}$, where $C_{A,\sigma}$ is the monoidal category of *A*-modules in *C*, with tensor product \otimes_A and unit object *A*.

Consider a Hopf monoidal adjunction $\omega()_R$

Theorem (BVL)

A = R(1) is an algebra in *C*, and comes with a canonical half-braiding σ which makes it a **commutative algebra in** $\mathcal{Z}(C)$ called the *induced central algebra*.

The monoidal monad $R\omega$ is isomorphic to $A \otimes_{\sigma}$? (that is $A \otimes$? endowed with a monoidal structure defined by σ).

If the adjunction is monadic, $\mathcal{B} \cong_{\otimes} C_{A,\sigma}$, where $C_{A,\sigma}$ is the monoidal category of *A*-modules in *C*, with tensor product \otimes_A and unit object *A*. Via this equivalence, ω is the functor 'free module' $c \mapsto A \otimes c$.

Consider a Hopf monoidal adjunction $\omega()_R$

Theorem (BVL)

A = R(1) is an algebra in *C*, and comes with a canonical half-braiding σ which makes it a **commutative algebra in** $\mathcal{Z}(C)$ called the *induced central algebra*.

The monoidal monad $R\omega$ is isomorphic to $A \otimes_{\sigma}$? (that is $A \otimes$? endowed with a monoidal structure defined by σ).

If the adjunction is monadic, $\mathcal{B} \cong_{\otimes} C_{A,\sigma}$, where $C_{A,\sigma}$ is the monoidal category of *A*-modules in *C*, with tensor product \otimes_A and unit object *A*. Via this equivalence, ω is the functor 'free module' $c \mapsto A \otimes c$.

This result is the generalization to Hopf adjunctions of Sweedler's theorem on the structure of Hopf modules.

Consider a Hopf monoidal adjunction $\omega()$

Theorem (BVL)

A = R(1) is an algebra in *C*, and comes with a canonical half-braiding σ which makes it a **commutative algebra in** $\mathcal{Z}(C)$ called the *induced central algebra*.

The monoidal monad $R\omega$ is isomorphic to $A \otimes_{\sigma}$? (that is $A \otimes$? endowed with a monoidal structure defined by σ).

If the adjunction is monadic, $\mathcal{B} \cong_{\otimes} C_{A,\sigma}$, where $C_{A,\sigma}$ is the monoidal category of *A*-modules in *C*, with tensor product \otimes_A and unit object *A*. Via this equivalence, ω is the functor 'free module' $c \mapsto A \otimes c$.

This result is the generalization to Hopf adjunctions of Sweedler's theorem on the structure of Hopf modules.

The central commutative algebra generalizes Deligne's trivializing algebra.

Let $F : C \to \mathcal{D}$ be a tensor functor between tensor categories. Then $IndF : IndC \to Ind\mathcal{B}$ has a right adjoint R.

Let $F : C \to \mathcal{D}$ be a tensor functor between tensor categories. Then $IndF : IndC \to Ind\mathcal{B}$ has a right adjoint R.

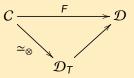
Theorem

Let $F : C \to \mathcal{D}$ be a tensor functor. There exists a \Bbbk -linear left exact comonad on $\operatorname{Ind}\mathcal{D}$ such that we have a commutative diagram :

Let $F : C \to \mathcal{D}$ be a tensor functor between tensor categories. Then $IndF : IndC \to Ind\mathcal{B}$ has a right adjoint R.

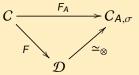
Theorem

Let $F : C \to \mathcal{D}$ be a tensor functor. There exists a \Bbbk -linear left exact comonad on $\operatorname{Ind}\mathcal{D}$ such that we have a commutative diagram :



Theorem

If *R* is faithful exact (*F* dominant), with induced central algebra (A, σ) , we have a commutative diagram



where C_A is the category of A-modules 'of finite type' and F_A is the tensor functor $X \mapsto A \otimes X$.

If $\mathcal{D} = \text{vect}_{\Bbbk}$ and C, F are symmetric, then A is Deligne's trivializing algebra.

Existence of fibre functors

Theorem [BLV]

Let *C* be a finite tensor category. Then there exists a finite dimensional \Bbbk algebra *B* and a fibre functor $\omega : C \to_B \operatorname{Bimod}_B$. Hence $C \cong_{\otimes} \operatorname{rep} A$ for a certain Hopf algebroid with base *B*.

24. More on Hopf monads

BV1. Hopf Diagrams and Quantum Invariants, AGT 5 (2005) 1677-1710.

Where Hopf diagram are introduced as a means for computing the Reshetikhin-Turaev invariant in terms of the coend of a ribbon category and its structural morphisms.

BV2. Hopf Monads, Advances in Math. 215 (2007), 679-733.

Where the notion of Hopf monad is introduced, and several fundamental results of the theory of finite dimensional Hopf algebras are extended thereto.

BV3. Categorical Centers and Reshetikhin-Turaev Invariants, Acta Mathematica Vietnamica **33** 3, 255-279

Where the coend of the center of a fusion spherical category over a ring is described, the modularity of the center, proven, and the corresponding Reshetikhin-Turaev invariant, constructed.

BV4. *Quantum Double of Hopf monads and Categorical Centers,* arXiv :0812.2443, to appear in Transactions of the American Mathematical Society (2010)

Where the general theory of centralizers and doubles of Hopf monads is expounded.

BLV. Hopf Monads on Monoidal Categories, arXiv :1003.1920.

Where Hopf monads are defined anew in the monoidal world

BN. Exact sequences of tensor categories, arXiv :1006.0569.

See also:http://www.math.univ-montp2.fr/~bruguieres/recherche.html