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INVARIANTS

A. BRUGUIÈRES

Abstract. A tortile (or ribbon) category defines invariants of ribbon
(framed) links and tangles. We observe that these invariants, when
restricted to links, string links, and more general tangles which we call
turbans, do not actually depend on the braiding of the tortile category.
Besides duality, the only pertinent data for such tangles are the double
braiding and twist. We introduce the general notions of twine, which
is meant to play the rôle of the double braiding (in the absence of a
braiding), and the corresponding notion of twist. We show that the
category of (ribbon) pure braids is the free category with a twine (a
twist). We show that a category with duals and a self-dual twist defines
invariants of stringlinks. We introduce the notion of turban category, so
that the category of turban tangles is the free turban category. Lastly
we give a few examples and a tannaka dictionary for twines and twists.

‘Just the place for a Snark!’, the Bellman cried,
As he landed his crew with care;
Supporting each man at the top of the tide
By a finger entwined in his hair.

Lewis Carroll, The Hunting of the Snark
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Introduction

It is now well understood that certain categorical notions are very closely
related to low dimensional topology. For instance, braids form a braided
monoidal category, and the category of braids is the free braided category.
The category Tang of oriented ribbon tangles is a tortile (or ribbon) category
[JS93], and indeed, it has been proved by Shum [Shu94] (also [Tur94]) that
Tang is the free tortile category. This theorem is a powerful tool for con-
structing invariants of ribbon links in S3, since ribbon links up to isotopy are
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the endomorphisms of the unit object in Tang. Via Kirby calculus, Shum’s
theorem underlies the construction of the Reshetikhin-Turaev invariants of
closed 3-manifolds. Kirby calculus can also be used to describe cobordisms of
3-manfolds in terms of certain tangles, and this allowed Turaev to construct
a TQFT associated with a modular category [Tur94].

The present work explores certain consequences of the following observa-
tion. Let C be a tortile category. Recall that C is a braided category with
duals, and a (self-dual) twist θ. Denoting cX,Y : X ⊗ Y

∼−→ Y ⊗ X the
braiding, define the double braiding by DX,Y = cY,XcX,Y . Notice that θ
satisfies certain axioms where c appears only in the form of its double D,
and conversely, θ determines D. It turns out that many significant notions
apparently related to c actually depend only on D or θ. The S-matrix, and
the subcategory of transparent objects [Bru00], which play an important role
in the construction of invariants of 3-manifolds, are defined purely in terms
of the double braiding D. More surprisingly, the invariants of ribbon links
defined by C via Shum’s Theorem do not depend on the actual braiding,
but only on D (see Proposition 1, and section 5); and this result extends
to a much larger class of ribbon tangles, namely those whose linking matrix
is diagonal mod2. Since these tangles play an important role here, we give
them a name: we call them turban tangles.

All this suggests that the double braiding and the twist deserve to be
studied for their own sake, and that the universal property of the category
of tangles, that is, Shum’s Theorem, should have an analogue for the category
of turban tangles.

The first step is to axiomatize the notion of double braiding. We observe
that a double braiding satisfies certain formal properties (TW0)-(TW2). An
operator D satisfying these properties will be called a twine. An entwined
category is a monoidal category with a twine. The category of pure braids
is the free entwined category (section 2, Theorem 1). We also introduce a
general notion of twist, in such a way that the category of ribbon pure braids
is the free category with twist (section 3, Theorem 2).

In section 4, we bring duality into the picture, and find out that a cate-
gory with duals and (self-dual) twist defines invariants of ribbon string links
(theorem 3).

The heart of the matter is to extend these constructions to the largest
possible subcategory of the category of tangles. The natural candidate is
the subcategory generated by the twist and duality: this is precisely the
category of turban tangles (proposition 1). In section 5, we define a turban
category to be a category with a twist and good duals (sovereign structure),
satisfying certain additional conditions. We show that the category of turban
tangles is the free turban category (theorem 4).

Section 6 gives a few examples of twines, twists and turban categories, as
well as the tannaka dictionary for twines and twists.

The definition of a turban category proposed in this paper is certainly
not definitive, but I believe that this notion could lead to new topological
invariants, including 3-manifold invariants and related TQFT’s. The land of
twines and twists is ‘full of crags and chasms’, and exploring it sometimes
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feels like snark hunting. For instance, the fact that if c, c’ are braidings,
then c′Y,XcX,Y is a twine, came to me as a real surprise! While so far I have
few examples of twines or twists, there are many indications that the class
of entwined category is much larger that the class of braided category.

After completion of this work, I was informed that in a recent and unpub-
lished work, S. Lack had given a categorical characterization of the category
of pure braids ([Lac04]) which is essentially the same as mine (section 2).
I also learned about M. Staic’s recent work ([Sta04]), where the notions of
pure braided structure and pure ribbon structure on a Hopf algebra are in-
troduced; those are the twinor and twistor notions my section 6. M. Staic
shows that such algebraic data yield invariants of pure braids and long knots
respectively. Moreover, in a final remark, M. Staic suggests definitions for a
pure braided structure and a pure ribbon structure on a monoidal category.
The former is more complicated than, but equivalent to, my notion of twine;
the latter is essentially the same as my notion of twist. Our contributions
seem to be complementary, and, hopefully, one need not conclude that ‘the
Snark was a Boojum, you see!’.

I wish to thank Alexis Virelizier for many enlightening discussions.

1. Conventions and notations

1.1. Monoidal categories. Unless otherwise specified, all categories will
be small and all monoidal categories will be strict. We will use Penrose
graphical calculus, with the ascending convention: diagrams are to be read

from bottom to top, e. g. given X
f→ Y

g→ Z, we represent gf as

g

f

If C is a monoidal category, with tensor product ⊗ and unit object I, we
denote ⊗n the n-uple tensor product

Cn −→ C ,

(X1, . . . Xn) 7→ X1 ⊗ · · · ⊗Xn .

In particular ⊗0 = I, ⊗1 = 1C and ⊗2 = ⊗.

Let C be a monoidal category. A duality of C is a data (X, Y, e, h), where
X, Y are objects, and e : X ⊗ Y → I, h : I → Y ⊗ X morphisms of C,
satisfying:

(e⊗ 1X)(1X ⊗h) = 1X and (1Y ⊗e)(h⊗ 1Y ) = 1Y .

If (X, Y, e, h) is a duality, we say that (Y, e, h) is a right dual of X, and
(X, e, h) is a left dual of X. If a right or left dual of an object exists, it is
unique up to unique isomorphism.

By monoidal category with right duals (resp. left duals, resp. duals), we
mean a monoidal category C where each object X admits a right dual (resp.
a left dual, resp. both a right and a left dual).
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If C has right duals, we may pick a right dual (X∨, eX , hX) for each object
X (the actual choice is inocuous, in that a right dual is unique up to unique
isomorphism). This defines a monoidal functor

?∨ : Co → C
where Co denotes the category with opposite composition and tensor product.

Similarly a choice of left duals (∨X, εX , ηX) for all X ∈ ObC defines a
monoidal functor ∨? : Co → C.

A (strict) sovereign structure on C is the choice, for each object X, of a
right dual (X∗, eX , hX) and a left dual (X∗, εX , ηX), with same underlying
object X∗, in such a way that ∨? = ?∨ as monoidal functors. Essentially, left
duals and right duals coincide. By sovereign category, we mean a monoidal
category with a sovereign structure. This is an appropriate categorical set-
ting for a good notion of trace; however one must distinguish a left- and a
right trace trl and trr. If X is an object of C and f ∈ End(X),

trl(f) = εX(1X∗ ⊗f)hX , trr(f) = eX(f ⊗ 1X∗)ηX in End(I) .

Definition. Let C be a braided category, with braiding c; the double braid-
ing is the functorial isomorphism

DX,Y = cY,XcX,Y : X ⊗ Y
∼−→ X ⊗ Y .

A tortile category is a monoidal braided category with duals, equipped
with a twist, that is, a functorial isomorphism θX : X

∼−→ X (X ∈ ObC)
such that θX⊗θY = θX⊗Y DX,Y and θI = 1I . Moreover the twist is assumed
to be self-dual, i. e. θX∨ = θ∨X .

If C is a tortile category, and if one makes the (inocuous) choice of right du-
als (X∨ = X∗, eX , hX), there is a canonical choice of left duals (X∗, εX , ηX)
which defines a sovereign structure. The self-duality of the twist implies that
the left- and right trace coincide (a property often referred to as sphericity).

1.2. Tangles. We will often represent tangles by tangle diagrams, which we
view as drawings made up of the following pictograms:

, , , ,

called positive crossing, negative crossing, local max an local min respectively
(linked up by smooth arcs without horizontal tangents).

Two tangle diagrams represent the same isotopy class of ribbon tangles
(also called framed tangles) if and only if one may be obtained from the
other by deformation and a finite number of ribbon Reidemeister moves:

(R0) = = , (R1) = = ,

(R2) = = , = = , (R3) = .
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Note that isotopy of non-ribbon tangles is obtained by adding the Reide-
meister move = to this list.

We will denote {D} (and sometimes just D) the isotopy class of ribbon
tangles represented by a tangle diagram D.

Let D be a tangle diagram, C a component of D. We denote ∆CD the
tangle diagram obtained from D replacing C by 2 parallel copies of D.

A tangle may be oriented, and/or coloured by elements of a set.

We denote Tang the category of isotopy classes of oriented ribbon tangles.
This is a tortile category, whose objects are words on the letters [+] and
[−]. We denote Tang[Λ] the category of isotopy classes of oriented ribbon
tangles coloured by elements of the set Λ, which is another tortile category.
In Tang[Λ], we denote [+]λ (resp. [−]λ) the object [+] (resp. [−]) coloured
by the element λ ∈ Λ. In the unoriented case, the point will be denoted [•].

Shum’s theorem may be formulated as follows : if C is a tortile category
and Λ = ObC, there exists a unique strict monoidal functor

FC : Tang[Λ]→ C
preserving the twist and dualities, and sending [+]X (X ∈ ObC) to the object
X itself. We will refer to FC as Shum’s functor; one may view it as a ribbon
tangle invariant.

1.3. Ribbon Tangles and Turbans Tangles. Recall that the braiding c
and the twist θ of the category of ribbon tangles are defined by

cm,p =

...

......

...

m

m

p

p

, θn =

...

...

n

.,

evaluation and coevaluation morphisms en and hn being given by

en =
... ...
n n

, hn =

......

n n

;

the ribbon structure on Tang[Λ] is defined by the same tangles, with appro-
priate orientation and Λ-colouring.

Definition. A ribbon tangle T is turban (resp. even) if its linking matrix
is diagonal mod2 (resp. zero mod2).

For instance, ribbon links, ribbon pure braids, ribbon string links are
turban.

Turban tangles (resp. even tangles) form a monoidal subcategory of Tang

which we denote Turb (resp. eTang). The following proposition, with its
corollary, is the main motivation for the rest of this work.

Proposition 1. The category Turb (resp. eTang) is the smallest monoidal
subcategory of Tang having the same objects as Tang, and containing all
evaluations, coevaluations and twists (resp. double braidings).
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Corollary 1. Any invariant of ribbon links or turban tangles arising from a
tortile category C is independent of the braiding: it depends only on the twist
and the duality.

We will prove proposition 1 and its corollary in section 5.

2. Twines and pure links

Definition. Let C be a monoidal category. A twine of C is an automorphism
D of ⊗, that is, a functorial isomorphism

DX,Y : X ⊗ Y
∼−→ X ⊗ Y (X, Y ∈ C)

satisfying the following axioms:

(DB0) DI,I = 1I ;

(DB1) (DX,Y ⊗ 1Z)DX⊗Y,Z = (1X ⊗DY,Z)DX,Y ⊗Z ;

(DB2) (DX⊗Y,Z ⊗ 1T )(1X ⊗D−1
Y,Z ⊗ 1T )(1X ⊗DY,Z⊗T )

= (1X ⊗DY,Z⊗T )(1X ⊗D−1
Y,Z ⊗ 1T )(DX⊗Y,Z ⊗ 1T ) .

An entwined category is a monoidal category equipped with a twine.

If C, C′ are two entwined categories, with twines D, D′, a strict entwined
functor F : C → C′ is a strict monoidal functor C → C′ such that for all
X, Y ∈ ObC,

F (DX,Y ) = D′
FX,FY .

Example. Let C be a monoidal category, and c a braiding of C. Then
DX,Y = cY,XcX,Y (the double of c) is a twine of C. In particular, let B
be the category of braids, with its canonical braiding c. Recall that the
canonical braiding c is characterised by the fact that c1,1 is the standard
generator of B2. Let D be the double of c. Let PB be the category of pure
braids. Then for any integers m, p, Dm,p is a morphism of P and this defines
a twine of PB. We will therefore consider PB as an entwined category.

Remark. This example admits of the following surprising generalization,
which was pointed out to me by A. Virelizier: if c, c′ are two braidings in C,
then DX,Y = c′Y,XcX,Y is a twine.

Here are a few comments on the axioms.
The first two axioms (DB0) and (DB1) imply the following:
(a) DX,I = 1X = DI,X .

(b) (D−1
X,Y⊗1Z)DX,Y ⊗Z = DX⊗Y,Z(1X ⊗D−1

Y,Z) and (1X ⊗D−1
Y,Z)DX⊗Y,Z =

DX,Y ⊗Z(D−1
X,Y ⊗ 1Z).

It will be very convenient to depict DX,Y , D−1
X,Y as follows:

DX,Y =
X Y

, D−1
X,Y =

X Y

-1 .
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Similarly, let

Df
X,Y,Z =

X Y Z

= (D−1
X,Y ⊗ 1Z)DX,Y ⊗Z = DX⊗Y,Z(1X ⊗D−1

Y,Z) ,

Db
X,Y,Z =

X Y Z

= (1X ⊗D−1
Y,Z)DX⊗Y,Z = DX,Y ⊗Z(D−1

X,Y ⊗ 1Z) .

Now (DB2) can be re-interpreted in a nice way. Indeed, composing each
side of (DB2) on the right by (1X ⊗D−1

Y,Z ⊗ 1T ) and using (b), we obtain the

sliding property: = .

Notice that the notion of twine is invariant under left-right symmetry
(tensor product reversal) and under top-bottom symmetry (composition re-

versal). In both cases front and back (i. e. and ) are

exchanged. In particular central symmetry preserves front and back.

The following theorem justifies, in a sense, the axioms for a twine.

Theorem 1. The category of pure braids is the universal entwined category.
More precisely, let C be an entwined category, Λ = ObC, and denote PB(Λ)
the category of Λ-coloured pure braids. There exists a unique strict entwined
functor PB(Λ)→ C sending [•]X (X ∈ ObC) to the object X itself.

Proof of Theorem 1. The proof relies on a presentation of the group of
pure braids Pn by generators and relations, due to Markov [Mar45]. (See
also [Ver03]). Let σi ∈ Bn (1 ≤ i < n) be the standard generator:

σi =
... ...

1     ...          i   i+1       ...     n

.

For 1 ≤ i < j ≤ n, let si,j = σj−1 . . . σiσi . . . σj−1; pictorially:

si,j =

1 ...    i        ...           j   ...  n

... ... ...
.

Then the si,j ’s generate Pn, subject to the Burau relations:
(Bu1) si,jsk,l = sk,lsi,j for i < j < k < l or i < k < j < l;
(Bu2) si,jsi,ksj,k = si,ksj,ksi,j = sj,ksi,jsi,k for i < j < k;

(Bu3) si,ksj,ksj,ls
−1
j,k = sj,ksj,ls

−1
j,ksi,k for i < j < k < l.

In the entwined category PB of pure braids, si,j = 1i−1⊗Df
1,j−i−1,1⊗1n−j .
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Proposition 2. Let C be an entwined category. There exists a unique group
morphism

PBn → Aut(⊗n)

P 7→ [P ]

such that for all X1, . . . , Xn ∈ ObC and 1 ≤ i < j ≤ n,

[σi,j ]X1,...,Xn
= 1X1⊗···⊗Xi−1

⊗Df
Xi,Xi+1⊗···⊗Xj−1,Xj

⊗ 1Xj+1⊗···⊗Xn
.

Proof. Since the si,j ’s generate Pn, we only have to check compatibility
with the Burau relations.

Now the first case of (Bu1) is functoriality of the tensor product, and the

second case of (Bu2) is functoriality of Df
X,Y,Z with respect to Y .

In order to check the other relations, we will have to perform certain
computations in an entwined category. Let us adopt the notation:

=

 -1

.

It is understood that each strand is coloured by an object of C, so this is
an identity of morphisms of C.

Lemma 1. The following identities hold in an entwined category:

a)
= =

; b) = ; c) = ;

d) = = ; e) = .

N. B.: strings which are drawn very close represent one entry coloured by
the tensor product of the colours of the strings.

Proof. The computations would be very awkward in algebraic form; they
are much easier to conduct using Penrose graphical calculus. Here is a sketch
of the proof.

Assertions a) and b): the first identity of a) holds by definition; the second

results from the definition of by straightforward computation, and

implies b) by definition of .
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Consider assertion e), and denote X, A, Y, B, Z, C, T the objects of C used
to colour the seven strands, listed from left to right. Then the case A =
B = C = I is just the sliding property, which is a consequence of the twine
axioms. Now using a), we deduce e) in the case B = C = I.

c) Using the definitions and elementary manipulations, assertion c) can be
easily reduced to assertion e) in the case B = C = I, which we just proved,

and the identity = , analogous to the second identity of a).

Assertion e): the case C = I can now be deduced from the case B = C = I
using b). Hence the general case, using a) and c).

Let us prove assertion d). By reason of symmetry, it is enough to check
the first identity. Now one computes easily

=

-1

and one concludes using e) and functoriality of the twine. Thus ends the
proof of the lemma. 2

Relations (Bu2) and (Bu3) are direct consequences of assertions d) and e)
of the lemma, hence the proposition. 2

Now the lemma clearly defines a monoidal functor PB[Λ]→ C which sends
[X] to X (X ∈ ObC), the pure braid on n strands coloured by X1, . . . Xn to
[P ]X1,...,Xn

, and preserves the twine. Uniqueness results form the fact that
the si,j ’s generate PB.

3. Twists and ribbon pure braids

Definition. Let C be a monoidal category. A twist of C is an automorphism
θ of 1C , that is, a functorial isomorphism

θX : X
∼−→ X (X ∈ C)

satisfying the following axioms:

(TW0) θI = 1I ;

(TW1) (θ−1
X⊗Y ⊗ 1Z⊗T )(θX⊗Y ⊗Z ⊗ 1T )(1X ⊗θ−1

Y ⊗Z ⊗ 1T )

(1X ⊗θY ⊗Z⊗T )(1X⊗Y ⊗θ−1
Z⊗T ) = (1X⊗Y ⊗ θ−1

Z⊗T )(1X ⊗θY ⊗Z⊗T )

(1X ⊗θ−1
Y ⊗Z ⊗ 1T )(θX⊗Y ⊗Z ⊗ 1T )(θ−1

X⊗Y ⊗ 1Z⊗T ) .
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Graphically, axiom (TW1) may be represented as

= , with © = θ and ⊖ = θ−1.

A twisted category is a monoidal category equipped with a twist.
If C, C′ are two twisted categories, with twists θ, θ′, a strict twisted functor

F : C → C′ is a strict monoidal functor satisfying for all X ∈ ObC:
F (θX) = θFX .

Proposition 3. Let C be a monoidal category and θ an automorphism of 1C.
Define an automorphism D of ⊗ by

DX,Y = (θ−1
X ⊗ θ−1

Y )θX⊗Y .

Then θ is a twist if and only if D is a twine.

Proof. By its very form, D satisfies (DB1), and one checks easily that
(DB0) and (DB2) are equivalent respectively to (TW0) and (TW1). 2

As a result, a twisted category is canonically entwined, and a strict twisted
functor is entwined.
Example. Let C be a braided category, and let θ be a balanced structure,
that is an automorphism of 1C satisfying

θX⊗Y = (θX ⊗ θY )RY,XRX,Y .

Then θ is a twist.
In particular, the category of ribbon braids is twisted, and so is the cate-

gory of ribbon pure braids. Moreover we have a canonical group isomorphism

(u, t1, . . . , tn) : RPBn
∼−→ PBn × Z

n ,

where u denotes the forgetful morphism RPBn → PBn, and ti the self-linking
number of the i-th component.

Remark. Let C be an entwined category, with twine D. Just like in the
braided case (c. f. [Str94]), there is a canonical way of adjoining a twist to C.
Indeed, define a category C̃ as follows. The objects of C̃ are data (X, t), with
X ∈ ObC and t ∈ Aut(X). Morphisms from (X, t) to (X ′, t′) are morphisms

f : X → X ′ in C such that t′f = ft. Define a tensor product on C̃, on
objects, by

(X, t)⊗ (X ′, t′) = (X ⊗X ′, (t⊗ t′)DX,X′) ,

and on morphisms, by the tensor product of C. One checks easily that this
makes C̃ a strict monoidal category (using axioms TW0 and TW1), and that

setting θ(X,t) = t defines a twist θ on C̃ (using TW2). The forgetful functor

C̃ → C is entwined, and this construction is universal.
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Theorem 2. Let C be a twisted category, Λ = ObC, and RPB(Λ) be the
category of Λ-coloured ribbon pure braids. There exists a unique strict twisted
functor

[?] : RPB[Λ]→ C
sending [•]X (X ∈ ObC) to the object X itself.

Proof. Clearly the image of the coloured ribbon pure braid P [X1, . . . , Xn]

can be no other than (θ
t1(P )
X1
⊗. . . θ

tn(P )
Xn

)[u(P )]X1,...,Xn
, and this defines indeed

a strict twisted functor. 2

Notation. Let C be a twisted category; for P ∈ RPBn, we let [P ] =

(θt1(P ) ⊗ . . . θtn(P ))[u(P )] ∈ End(⊗n).

4. Twists, duality, and invariants of string links

Definition. Let n be a non-negative integer. A (ribbon) string link on
n strands is an oriented (ribbon) tangle from n[+] to n[+], without closed
components, and such that the i-th input is connected to the i-th output.

We denote RStL the monoidal subcategory of Tang whose morphisms are
isotopy classes of ribbon string links.

The category of ribbon pure braids RPB is naturally embedded as a
monoidal subcategory of RStL.

Definition. Let P be a ribbon string link on n strands, and 1 < i < n. We
define the i-th right contraction of P to be the ribbon string link on n − 2
strands ci(P ) defined by

ci(P ) =

i−2
︷ ︸︸ ︷

n−i−1
︷ ︸︸ ︷

... ...

......

P

︸ ︷︷ ︸

i−2

︸ ︷︷ ︸

n−i−1

.

We will now mimick this construction in a categorical setting, using the
notion of duality.

Proposition 4. Let C be a monoidal category, and let θ be a twist of C. Let
X be an object of C and (Y, e, h) be a right dual of X.

The following assertions are equivalent:
(i) θX and θY are dual morphisms;
(ii) θ2

X = (eD−1
X,Y ⊗ 1X)(1X ⊗h);

(ii’) θ2
Y = (1Y ⊗ eD−1

Y,X)(h⊗ 1Y );
Moreover if they hold for one right dual of X, they hold for all.

Definition. Let C be a monoidal category with right duals. Let θ be a
twist of C. We say that θ is self-dual if for any object X of C the equivalent
assertions of the previous proposition hold.
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Let C be a twisted with right duals and a self-dual twist. Assume that
right duals are chosen.
Notation. Let C be a monoidal category with right duals. Let X, Y, Z be
objects of C. For f ∈ End(X ⊗ Y ⊗ Y ∨ ⊗ Y ⊗ Z), let

cX,Y,Z(f) = (1X ⊗ e⊗ 1Y ⊗ 1Z)f(1X ⊗ 1Y ⊗h⊗ 1Z) .

Now let φ ∈ End(⊗n) and 1 < i < n. Define ciφ ∈ End(⊗n−2) by

(ci φ)X1,...,Xn−2
= cX1⊗···⊗Xi−2,Xi−1,Xi⊗...Xn−2

φX1,...,Xi−1,X∨

i−1
,Xi−1,...,Xn

.

Pictorially,

(ciφ)X1,...,Xn−2
=

X1...Xi−2 Xi−1...Xn−2

... ...

......

φ

X1 ... Xi−1 Xi ... Xn−2

.

Notice that ciφ is in fact independent of the choice of a right dual for Xi−1.

Theorem 3. Let C be a monoidal category with right duals and a self-dual
twist. There exists a unique way of associating to each isotopy class of ribbon

string link P ∈ RStLn a functorial endomorphim
−→
P ∈ End(⊗n) in such a way

that:

(i)
−→
P = [P ] for any ribbon pure braid P ;

(ii) ci

−→
P =

−→
ciP for any P ∈ RStLn and 1 < i < n such that the i-th

component of P is trivial.

Corollary 2. Let C be a monoidal category with right duals and a self-dual
twist. Let Λ = ObC and denote RStL[Λ] ⊂ Tang[Λ] the category of Λ-coloured
ribbon string links. There exists a canonical strict twisted functor

−→
? : RStL[Λ] −→ C

which sends a coloured ribbon string link P [X1, . . . , Xn] to
−→
P X1,...,Xn

.

If C is a twisted category with left duals, one may (by left-right symmetry)

associate with any ribbon string link P ∈ RStLn an element
←−
P ∈ End(⊗n).

If both right- and left duals exist, it is not at all clear whether
←−
P =

−→
P . This

suggests the following definition.

Definition. Let C be a monoidal category with left and right duals, and θ
a twist of C. We say that θ is ambidextrous if it is self-dual, and we have

∀P ∈ RStL,
←−
P =

−→
P .

If such is the case, we set [P ] =
←−
P =

−→
P .

When the twist is ambidextrous, we have [ciP ] = ci[P ] for any P ∈ RStLn

and any 1 < i < n.

Remark. Theorem 3, while it provides a means of constructing invariants
of ribbon string links, has a serious drawback : it is not a universal property,
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because the category of ribbon string links has no duals. The aim of section
5 will be to mend this matter.

Proof of Theorem 3. If P is a ribbon pure braid,
−→
P = [P ] is already

well-defined. The point is now to see that a string link can be obtained from
a pure braid by a sequence of ‘nice’ contractions. This will at least show

that
−→
? is unique, and suggest a construction for it. We then must check the

coherence of this construction, i. e. its independence from the choices made.
The main trick we use consists in ‘pulling a max to the top line’. Let D

be a tangle diagram with a local max m, with p outputs. We may write

D =

U

... ...

T

...

... ...

m ,

where T , U are tangle diagrams.
Let i be an integer, 1 ≤ i ≤ n + 1. Let j be the number of strands to the

left of m on the same horizontal line, plus 1. Let T ′ be a tangle diagram
obtained from T by inserting a new component C going from a point between
the (j−1)-th and j-th inputs of T to a point between the (i−1)-th and i-th
outputs of T . We assume also that C has no local extrema. Note that we
have T = T ′ − C. Let T ′′ = ∆CT ′ be the tangle diagram obtained from T ′

by doubling C. Set

D′ =

U

... ...

T''

...

... ...

.

We say that D′ is obtained from D by pulling m to the top in the i-th
position (along the path C).

One defines similarly the action of pulling a local min to the bottom.
Now let D be a n-string link diagram, oriented from bottom to top. We

say that D is right-handed if all local extrema point to the right.
Assume D is right-handed. Pulling all local max to the top and all local

min to the bottom, one may obtain a pure braid diagram. Here is an algo-
rithm. Denote mi the number of local max (which is equal to the number of
local min) on the i-th component of D. Let m = m(D) = m1 + · · ·+ mn be
the number of local max of D. If m(D) = 0, we are already done. Otherwise,
chose i minimal so that mi > 0. Denote c the i-th component, and let m be
the first max, and m′ the first min you meet on c, going from bottom to top.
Pull m to the top, in the i-th position (just to the left of c), and m′ to the
bottom, in the i+1-th position (just to the right of c). Let D′ be the diagram
so constructed. Then D′ is a string link diagram, with m(D′) = m(D)− 1.
Moreover, {D} = ci+1{D′}, and the (i+1)-th component of D′ is unknotted.
Repeated m times, this transformation yields a pure braid diagram P with
n + 2m threads, and we have

{D} = cjm . . . cj1P ,
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where 1 ≤ j1 ≤ · · · ≤ jm ≤ n, and jk takes mi times the value i + 1.
We therefore set −→

D = cjm . . . cj1 [P ] ,

and we now proceed to show that this is independent of the choice made in
the construction of P , that is, the actual paths along which the local extrema
are being pulled.

Lemma 2. Let P , P ′ be two pure braid diagrams:

P =

...

... ...

, P ′ =

...

... ...

,

which differ only inside a circle. Inside the circle, the i-th and i + 1 strands
pass respectively to the front and the back of the k-th strand; above the circle,
the i-th and (i + 1)-th strands run parallel. Let C be a entwined category,
X1, . . . , Xn objects of C, and let e : Xi ⊗ Xi+1 → I be any morphism. Let
E = 1X1⊗···⊗Xi−1

⊗ e⊗ 1Xi+2⊗···⊗Xn
. Then E[P ]X1,...,Xn

= E[P ′]X1,...,Xn
.

Proof. We will use the following fact, which is an immediate consequence
of Proposition 1. If A ∈ PBn and 1 ≤ i ≤ n, construct ∆iP ∈ PBn+1 by dou-
bling the i-th strand of P . Given n + 1 objects X1, . . . , Xi, X

′
i, Xi+1, . . . Xn

in C, we have:

[∆iP ]X1,...,Xi,X
′

i,Xi+1,...,Xn
= [P ]X1,...,Xi⊗X′

i,Xi+1,...,Xn
.

Now let us prove the lemma, and assume for instance k < i. One may
represent P and P ′ as

P = ∆iA∆isk,iB, P ′ = ∆iAB ,

with A ∈ PBn−1, B ∈ PBn, and sk,i is the Burau generator. Using the
above-mentioned fact, we may assume A and B trivial. The lemma then
results from elementary properties of the twine. The case k > i + 1 can be
treated in a similar way. 2

From the lemma, we see not only that
−→
DX1,...,Xn

is independent of the
choices made, but also that it is invariant under Reidemeister moves of type
2 and 3. In addition, it is invariant under ‘right-handed moves of type 0’,
namely

= =
,

,

In the first case, it is an easy consequence of the identity

ci+1[∆
3
i P ] = [P ] ,

where P is a pure braid diagram and ∆3
i P is is obtained by tripling the i-th

strand of P . The second case is deduced from the first, using type 2 moves.
Now let D be a arbitrary n-string link diagram. For each local extremum

pointing to the left, modify D in the following way :

(1) , (2) .
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This operation yields a right-handed diagram Dr.
For 1 ≤ i ≤ n, let ti be the algebraic number of modifications made on

the i-th component, with (1) counting as −1 and (2) as +1.

Set
−→
D = (θt1 ⊗ · · · ⊗ θtn)Dr.

Clearly this is invariant under Reidemeister moves of type 2 and 3. As for
invariance under type 0 moves, the case when the extrema point to the left
reduces to the right-handed case (already proved) via:

= =

(R2-3)

.

Moreover, we have =
+1

(where the +1 denotes the twist), and =
+1

=
  1

by self-duality of the twist, hence invariance under moves of type 1.

Let us summarize: given P ∈ RStLn, we have constructed
−→
P ∈ End(⊗n).

Now notice that when one forms the i-th contraction ciD of a string link
diagram D, the orientation of its i-th component is reversed; in particular,
if D is right-handed, ciD is not, unless there are no local extrema on the
i-th component, that is, the i-th component is unknotted. In that case, we

do have ci

−→
P =

−→
ciP . Indeed, we may represent P by a diagram whose i-th

component has no local extrema, hence P = cjm . . . cj1Q, with Q ribbon pure
braid, j1 ≤ · · · ≤ jm, and jk 6= i + 1 for all k. We conclude by the following
straightforward lemma.

Lemma 3. The contraction operators ci satisfy the following relations :
(a) for i ≤ j − 2, cicj = cj−2ci;
(b) for i ≥ j, cicj = cjci+2.

Assume jk−1 ≤ i ≤ jk−2. By the lemma, ciP = cjm−2 . . . cjk−2cicjk−1
. . . c1Q,

so
−→
ciP = cjm−2 . . . cjk−2cicjk−1

. . . c1[Q] = cicjm . . . cj1 [Q] = ci

−→
P , hence the

theorem.

As an illustration, let us compute
−→
P in the case of the trefoil :

P = = = , hence :
−→
P =

-1

.

5. Turban categories

By virtue of Shum’s theorem, the category of ribbon oriented tangles is
the universal tortile category. On the other hand, we have just seen that any
category with right duals and a self-dual twist defines invariants of ribbon
string links. Recall proposition 1:



16 A. BRUGUIÈRES

Proposition 1. The category Turb (resp. eTang) is the smallest monoidal
subcategory of Tang having the same objects as Tang, and containing all
evaluations, coevaluations and twists (resp. double braidings).

This strongly suggests that Shum’s theorem has an analogue for turbans.
In other words, one should be able to define a notion of ‘turban category’,
in such a way that Turb is the universal turban category. Before we proceed
to do so, let us prove proposition 1.

Proof of Proposition 1 and its corollary. We denote E the monoidal
subcategory of Tang generated by the evaluation morphisms. A tangle in E
may be represented by a diagram with 2n + k input and k output, without
crossings and local min. Here is a typical example:

.

Dually, we denote E∗ the monoidal subcategory of Tang generated by the
coevaluation morphisms.

Lemma 4. Any turban tangle T may be factorized as T = EPH, where P
is a ribbon pure braid and E ∈ E, H ∈ E∗. Moreover, if T is even, we may
assume that each component of P has trivial self-linking number.

Proof. Let T be an (oriented) turban tangle, that is, an oriented ribbon
tangle whose linking matrix has only even entries outside the diagonal.

We may write T as

T = T'

...

...

,

where T ′ is a turban with 2n input and no output. Assume T ′ has k closed
component. Pulling one local min per closed component down to the bottom
line on the right-hand side, we may represent T ′ as

T ′ = H

......
,

where H is a turban with 2N = 2n + 2k input, no output and no closed
components.

Now the turban condition on H excludes a configuration of four legs i <
j < k < l with (i, j) and (k, l) connected in H.

By pulling one local max per component to the top line, we may therefore
write H as

H = EQ ,

where Q ∈ RStL2N , and E is an element of E with 2N input and 0 output.
So we may write P = E′QH ′, with Q ∈ RStL, E′ ∈ E , H ′ ∈ E∗. Now

any ribbon string link may be obtained from a ribbon pure braid by a finite
number of contractions, so we may write Q = E′′PH ′′, with P ∈ RPB,
E′′ ∈ E and H ′′ ∈ E∗. Setting E = E′E′′, H = H ′′H ′, we have T = EPH.

If T is even, Q may be assumed even. Now by self-duality of the twist we

have = so we may factor Q as E′PH ′, with E′ ∈ E , H ′ ∈ E∗ and P a

ribbon pure braid with trivial self-linking numbers. 2
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Clearly, the lemma implies proposition 1. Indeed, we know that the cate-
gory of ribbon pure braids is generated (as a monoidal category) by the twist,
and the subcategory of ribbon pure braids with trivial self-linking numbers
is generated by the double braiding.

Remark. Proposition 1 has the following straightforward consequence. If
C is a twisted category with chosen right and left duals, and ObC = Λ, there
exists at most one strict twisted, dual-preserving functor FC : Turb[Λ] → C
sending [+]X (X ∈ ObC) to the object X itself.

Now let us prove the corollary:

Corollary 1. Any invariant of ribbon links or turban tangle arising from a
ribbon category C is independent of the braiding: it depends only on the twist
and the duality.

Let C be a ribbon category, and let FC : Tang[Λ]→ C be Shum’s functor.
We may view FC as an invariant of Λ-colored tangles, and by ‘tangle in-
variants arising from C’, we mean tangle invariants which may be expressed
in terms of FC . Now the restriction of FC to Turb is a strict twisted, dual-
preserving functor sending [+]X to X for any X ∈ ObC. There is at most
one such functor. Now let C′ be another tortile category with same under-
lying monoidal category, choices of duals and twist (that is, we only allow
for a change of braiding, and the double braiding must be the same). Then
the restriction of FC′ to Turb satisfies the same conditions as FC , hence they
coincide; and this proves the assertion on turban invariants, as well as link
invariants since any ribbon link is turban.

The notion of turban category. Naturally, one could define a turban
category to be a twisted category with chosen left and right duals, and such
that the functor FC exists. We would have the universal property for free!
However, such a definition would not be of great practical use: we need a
more concrete criterion. Also, it seems reasonable to assume that the choices
of left and right duals define a sovereign structure on C (indeed, such is the
case in Turb).

Let C be a sovereign category with ambidextrous twist. For any ribbon

stringlink P , denote [P ] =
−→
P =

←−
P . Pictorially, we will represent [P ] as P .

We say that the strong sphericity condition is satisfied if for any P ∈
RStLn+2, 1 ≤ i ≤ n + 1, X1, . . . , Xn, Y ∈ ObC, and f ∈ End(Y ), we have

(Sph)
P

...

... ...

...

= P

X1

X1

X1

X1

Xi−1

Xi−1

Xi−1

Xi−1

Xi

Xi

Xi

Xi

Xn

Xn

Xn

Xn

Y

Y

e

η

ε

h

f

f

,

where e, h, ε, η denote the evaluation and coevaluation morphisms for Y .



18 A. BRUGUIÈRES

We say that the strong interchange condition is satisfied if for any P ∈
RStLn+2, 1 ≤ i ≤ n, X1, . . . , Xn, Y ∈ ObC, and f ∈ End(Y ), we have :

(Int)
P

...

... ...

...

= P

...

...

X1

X1

X1

X1

Xi−1

Xi−1

Xi−1

Xi−1

Xi

Xi

Xi

Xi

Xi+1

Xi+1

Xi+1

Xi+1

Xn

Xn

Xn

Xn

Y

Y

e

e

η

η
f

f

.

We say that the weak sphericity condition (resp. the weak interchange
condition) holds when we have (Sph) (resp. (Int)) whenever f = 1Y .

Definition. A turban category is a twisted sovereign category with am-
bidextrous twist satisfying the strong sphericity and the strong interchange
conditions.

Examples.

1) For any set Λ, Turb[Λ] is a turban category.
2) Any tortile category is a turban category.
3) If C is a turban category, and D ⊂ C is a twisted sovereign subcategory

of C, then D is a turban category.

We can now state the analogue of Shum’s theorem.

Theorem 4. The category of oriented turban tangles is the universal turban
category. In other words, if C is a turban category and Λ = ObC, there exists
a unique turban functor

FC : Turb[Λ]→ C
sending [+]X (X ∈ ObC) to the object X itself.

Proof.

We must construct a twisted, dual-preserving functor

F : Turb[Λ]→ C
sending [+]X (X ∈ ObC) to the object X itself. The proof of proposition 1
gives us a construction for F , and we have to check that it is unambiguous.
We will now outline the proof.

1) The assumption that the twist is ambidextrous tells us that the functor
F is well-defined on ribbon string links. It is also well-defined on E and E∗.

2) We check that F is well-defined on a turban tangle T with 2n input, no
output, and no closed component. Such a T may be factorized as T = EP ,
with P ∈ RStL2n and E ∈ E , so we should set F (T ) = F (E)F (P ). We have
to check that this is independent of the actual factorization. The proof of
this fact is similar to that of Theorem 3: starting from a suitable diagram
representing T , a factorization is obtained by pulling certain local max to
the top line in the right order. Just as in the proof of theorem 3, each of
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these local max may have to be modified so as to point in the appropriate
direction. We need an analogue of lemma 2, graphically:

=

............

;

this is easy to check using theorem 3. This tells us that F (E)F (P ) is inde-
pendent of the choices of pathes, and it is then easy to check that it depends
only on the isotopy class of the tangle.

3) We now define F on turban tangles T with 2n input, no output, and
closed components L1, . . . Lk. Such a tangle may be factorized as

T = H

......
,

where H is a turban with 2N = 2n+2k input, no output and no closed com-
ponents. Such a factorization is obtained by pulling a local min of each of
the Li to the bottom line, and to the right. This defines F (T ) with possibly
two types of ambiguities: we use a numbering of closed components, and for
each closed component we must decide whether the local minimum points to
the right or to the left. However, the (weak) exchange and sphericity condi-
tions say precisely that the value for F (T ) is independent of the numbering
of components, and the direction of each min.

4) We may write an arbitrary turban tangle T as

T = T'

...

...

,

where T ′ is a turban with 2n input and no output, and this defines F on T
in an unambiguous way.

This defines a monoidal functor which has the required properties. 2

Remark. Theorem 4 remains true if we replace the strong sphericity and
strong interchange condition by their weak counterparts. However the strong
version will probably prove more useful.

6. Construction of twisted categories

6.1. Toy example: the group-like case. Let G be a group and C =
G−vect the category of G-graded vector spaces over a field k. Denote kg the
simple object consisting of one copy of k in degree g. The dual of kg is kg−1 ,
and the canonical evaluation and coevaluation morphisms define a sovereign
structure on C. Each simple object has left and right dimension equal to 1.

An automorphism of ⊗ is characterized by its values on simple objects,
that is, a map δ : G ⊗ G → k∗. It is a twine if and only if δ(e, e) = 1 and
δ(g, h)δ(gh, k) = δ(h, k)δ(g, hk) (in other words, δ is a 2-cocycle).

Notice that if G is not commutative, C is not braided; and if G is com-
mutative, a braiding on C corresponds to a bicharacter c : G×G→ k∗. The
double braiding, c(h, g)c(g, h), is a symmetric bicharacter. Twines are far
more numerous than double braidings.
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An automorphism of 1C is given by a map θ : G → k∗. It is a twist if
and only if θ(e) = 1. Self-duality is equivalent to θ(g−1) = θ(g). Now any
self-dual twist actually defines a turban structure on C.

The invariants of ribbon links and turban tangles associated with such
turban categories contain no more information than the linking matrix.

6.2. Toy example: the infinitesimal case, first order. Let C be a k-
monoidal category, where k is a field, and define C[ε] = C⊗kk[ε] by extending
the scalars of C to the ring of dual numbers k[ε] = k[X]/(X2).

Let dX,Y : X ⊗ Y → X ⊗ Y be a functorial morphism, X, Y ∈ C. Set
DX,Y = 1X⊗Y + ε dX,Y . Then D is a twine on C[ε] if and only if d satisfies
the following conditions :

(a) dI,I = 0;
(b) dX,Y ⊗ 1Z + dX⊗Y,Z = 1X ⊗ dY,Z + dX,Y ⊗Z .
We say that d is an infinitesimal twine if it satisfies (a) and (b).
When is such a twine D a double braiding? Assume that c is a braiding

on C[ε] such that DX,Y = cY,X cY,X . We may write

cX,Y = SX,Y (1X,Y +ε τX,Y ) ,

where S is a symmetry of C, and τX,Y is an infinitesimal braiding of the sym-
metric category (C, S). Let us recall the axioms of an infinitesimal braiding:

τX,Y ⊗Z = τX,Y ⊗ 1Z +(1X ⊗SZ,Y )−1(τX,Z ⊗ 1Y )(1X ⊗SZ,Y ) ,

τX⊗Y,Z = 1X ⊗ τY,Z + (SX,Y ⊗ 1Z)−1(1Y ⊗ τX,Z)(SX,Y ⊗ 1Z) .

We have d = τ + τ o, where τ o
X,Y = S−1

X,Y τY,XSX,Y . As a result d is an
infinitesimal braiding satisfying do = d. We may therefore conclude that, if
D is a double braiding, d is an infinitesimal braiding such that do = d for
some symmetry S on C. The converse is true in characteristic 6= 2, with
c = S + 1

2 εS d.
Now let us consider twists. Let tX : X → X be a functorial morphism,

X ∈ ObC. Set θX = 1X + ε tX . Then θ is a twist if and only if t satisfies the
condition tI = 0. If C has duals, θ is self-dual if and only if tX∨ = −tX .

6.3. The infinitesimal case, higher order. Let k be a field of char-
acteristic 6= 2, and let C be a k-monoidal category with duals. Define
C[[h]] = C ⊗k k[[h]] by extending the scalars of C to the ring of formal series
k[[h]]. Let D be a twine of C[[h]], of the form

DX,Y = 1X⊗Y +
∑

n>0

hn d
(n)
X,Y

with d
(n)
X,Y ∈ EndC(X ⊗ Y ).

The relations between the d(n)’s expressing the axioms of a twine are
rather complicated; however we have the following result, which generalizes
a theorem of Deligne ([Yet92]).

Theorem 5. With the above notations, assume D is self-dual, i. e. D∨
X,Y =

DY ∨,X∨ for all X, Y ∈ ObC.
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Then the entwined category (C[[h]], D) admits a unique self-dual twist of
the form

θX = 1X +
∑

n>0

hn t
(n)
X

with t
(n)
X ∈ EndC(X).

Proof. Let WX = eX DX,X∨ and UX = (WX ⊗ 1X)(1X ⊗hX). A twist θ is
self-dual if and only if θ−2 = U , so, if θ is a formal series with constant term

1, it has to be the inverse of the formal square root of U : θ =
√

U
−1

. We
must now check that this defines a twist for D, i. e. that we have :

θX⊗Y = (θX ⊗ θY )DX,Y .

Since these formal series have constant term 1, it is enough to check the
square of that identity, which amounts to :

UX ⊗ UY = UX⊗Y D2
X,Y .

Now using duality and self-duality of D, this is equivalent to :

WX⊗Y (DX,Y ⊗DY ∨,X∨) = WX(1X ⊗WY ⊗ 1X∨) .

Now let us denote Tn the central pure braid on n strands defined inductively
by T1 = 1 and Tp+q = Dp,q(Tp ⊗ Tq). We have D2,2(D1,1 ⊗ D1,1) = T4 =
(1⊗D1,1 ⊗ 1)(D1,2 ⊗ 1)D3,1, so that, pictorially, we have :

= = (by functoriality of D and DB0) ,

hence the theorem. 2

Infinitesimal twists are expected to define turban invariants of finite type.

6.4. Tannaka theory for twined and twisted categories. Let k be a
field, and H a bialgebra over k, with coproduct ∆, counit ε, product µ and
unit η. Denote comodH the monoidal category of finite dimensional right
H-comodules.

Definition. A cotwinor of H is a linear form d : H ⊗ H → K satisfying
the following axioms :
(codt-1) d is invertible (for the convolution product on H⊗H), and d∗µ =

µ ∗ d in Hom(H⊗2, H);
(codt0) d(η ⊗ η) = 1;
(codt1) (d⊗ ε) ∗ d(µ⊗ 1H) = (ε⊗ d) ∗ d(1H ⊗µ);
(codt2) d(12)3d

−1
23 d2(34) = d2(34)d

−1
23 d(12)3 in Hom(H⊗4, k).

Definition. A cotwistor of H is a linear form θ : H → k satisfying the
following axioms:
(cotw-1) θ is invertible (for the convolution product on H), and (θ⊗1H)∆ =

(1H ⊗ θ)∆;
(cotw0) θη = 1;
(cotw1) (θ−1µ)12(θµ

3)123(θ
−1µ)23(θµ

3)234(θ
−1µ)34 =.
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Theorem 6. The set of twines (resp twists) of comodH is in 1—1 correspon-
dence with the set of cotwinors (resp. cotwistors) on H. Moreover, when H
admits an antipode S (that is, when comodH has right duals) self-dual twists
of comodH correspond exactly with cotwistors θ such that θS = θ.

Proof. This is straightforward tannakian translation. Given d : H⊗H → k,
and two H-comodules V , V ′, with coactions ∂, ∂′, define

DV,V ′ = (1V ⊗V ′ ⊗ d)(1X ⊗σH,X′ ⊗ 1H)(∂ ⊗ ∂′) .

Axiom (codt-1) means that DV,V ′ is an isomorphism of comodules, and
(codt0)-(codt2) translate axioms (DT0)-(DT2) of twines. Similarly, given
θ : H → k, and a H-comodule V , define

θV = (1H ⊗ θ) ∂ .

Axiom (cotw-1) means that θV is an isomorphism of comodules, and (cotw0),
(cotw1) translate axioms (TW0), (TW1) of twists. 2

Should the reader prefer modules to comodules, here are the dual notions.

Definition. A twinor of H is an element d ∈ H⊗H satisfying the following
axioms :
(dt-1) d is invertible, and ∀x ∈ H, d∆(x) = ∆(x)d;
(dt0) (ε⊗ ε)d = 1;
(dt1) (d⊗ η)(∆⊗ 1H)d = (η ⊗ d)(1H ⊗∆)d;
(dt2) d(12)3d

−1
23 d2(34) = d2(34)d

−1
23 d(12)3 in H⊗4.

Definition. A twistor of H is an element θ ∈ H satisfying the following
axioms:
(tw-1) θ is invertible and central;
(tw0) εθ = 1;
(tw1) (∆θ−1)12(∆

3θ)123(∆θ−1)23(∆
3θ)234(∆θ−1)34 =

(∆θ−1)34(∆
3θ)234(∆θ−1)23(∆

3θ)123(∆θ−1)12.

If d is a twinor (resp. twistor) of H, the monoidal category H-mod of
finite dimensional left H-modules is entwined (resp. twisted).
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