HAX301X – Algèbre III

Réduction des Endomorphismes

Livret d'exercices

Introduction et rappels

Piste verte.

Exercice 1. Soit f une application linéaire de E dans E telle que $\ker(f) \neq \{0_E\}$. Peut-on trouver une base de E dans laquelle la matrice de f est inversible?

Exercice 2. Les matrices $\begin{pmatrix} 1 & 0 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{pmatrix}$ et $\begin{pmatrix} 4 & 5 & 6 \\ 1 & 0 & 3 \\ 7 & 8 & 9 \end{pmatrix}$ sont-elles sembables/conjuguées?

Exercice 3. Calculer le carré des matrices diagonales $M := diag(1, \frac{1}{2}, \frac{1}{2}) \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$ et $N := diag(\frac{2}{3}, \frac{2}{3}, \frac{2}{3}) \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$. Montrer que M et N ne sont pas semblables/conjuguées.

Piste bleue.

Exercice 4. Soit $N \in \mathbb{N}^*$. On considère la matrice de taille $N \times N$

$$C = \begin{pmatrix} 0 & 1 & 0 & \cdots & 0 \\ \vdots & 0 & \ddots & \ddots & \vdots \\ \vdots & \vdots & \ddots & \ddots & 0 \\ 0 & 0 & \cdots & 0 & 1 \\ a_0 & a_1 & \cdots & a_{N-2} & a_{N-1} \end{pmatrix}$$

où $a_0, \ldots, a_{N-1} \in \mathbb{K}$ sont des scalaires. Quel est le rang de C?

Exercice 5. Considérons la matrice $P \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ définie comme

$$P := \begin{pmatrix} 0 & \cdots & 0 & 1 \\ \vdots & \ddots & \ddots & 0 \\ 0 & \ddots & \ddots & \vdots \\ 1 & 0 & \cdots & 0 \end{pmatrix}.$$

- (1) Calculer que $P^2 = I_n$; puis calculer que pour tout $A = (a_{ij})_{1 \leq i,j \leq n} \in \operatorname{Mat}_{n \times n}(\mathbb{K})$, PAP^{-1} est la matrice dont le coefficient (i,j) est a_{n-i+1}, a_{n-j+1} .
- (2) Écrire P comme une matrice de passage, et ré-interpréter la question précédente en termes de changement de base.

Exercice 6. On appelle f l'endomorphisme de \mathbb{R}^2 canoniquement associé à $A = \begin{pmatrix} 7 & 2 \\ -4 & 1 \end{pmatrix}$.

- (1) Écrire la matrice de f relativement à la base $\mathcal{B} = (w_1, w_2)$ de \mathbb{R}^2 , avec $w_1 = (1, -2)$ et $w_2 = (1, -1)$.
- (2) Déterminer la matrice de passage de la base canonique $C = (e_1, e_2)$ de \mathbb{R}^2 à la base \mathcal{B} .
- (3) En déduire une expression en fonction de $n \in \mathbb{N}$ de A^n .
- (4) Application : Soient $(u_n)_{n\in\mathbb{N}}$ et $(v_n)_{n\in\mathbb{N}}$ deux suites définies par $u_0=1=v_0$ et pour tout entier naturel n :

$$\begin{cases} u_{n+1} = 7u_n + 2v_n \\ v_{n+1} = -4u_n + v_n \end{cases}$$

Exprimer u_n et v_n en fonction de n.

Exercice 7. Soit E un \mathbb{K} -espace vectoriel et $(F_n)_{n\geq 0}$ une suite croissante (pour l'inclusion) de sous-espaces vectoriels de E. Montrer que $\cup_{n\geq 0} F_n$ est un sous-espace vectoriel de E.

Piste rouge.

Exercice 8. Soit E un \mathbb{K} -espace vectoriel et $A = (a_{ij})_{1 \leq i,j \leq N} \in \operatorname{Mat}_{N \times N}(\mathbb{K}), N \in \mathbb{N}$. On définit un endomorphisme A_E de E^N de la manière suivante :

$$A_E \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix} := \begin{pmatrix} a_{11}v_1 + \dots + a_{1N}v_N \\ \vdots \\ a_{N1}v_1 + \dots + a_{NN}v_N \end{pmatrix}.$$

Pour tout endomorphisme $\varphi: E \to E$ on définit une application linéaire $\Phi: E \to E^N$ et un endomorphisme $\varphi^{\times N}: E^N \to E^N$ comme suit :

$$\Phi(v) := \begin{pmatrix} v \\ \varphi(v) \\ \vdots \\ \varphi^{\circ(N-1)}(v) \end{pmatrix} \quad \text{et} \quad \varphi^{\times N} \begin{pmatrix} v_1 \\ \vdots \\ v_N \end{pmatrix} := \begin{pmatrix} \varphi(v_1) \\ \vdots \\ \varphi(v_N) \end{pmatrix}.$$

- (1) Montrer que Φ induit un isomorphisme entre $\ker \left(a_0 \mathrm{id}_E + a_1 \varphi + \cdots + a_{N-1} \varphi^{\circ N-1} \varphi^{\circ N}\right)$ et $\ker \left(\varphi^{\times N} A_C\right)$, où C est la matrice de l'Exercice 4.
- (2) Posons $\mathbb{K} = \mathbb{R}$, $E = \mathbb{R}^{\mathbb{N}}$ et $\varphi(u)_n := u_{n+1}$. Déduire du point précédent que le sousespace vectoriel des suites numériques $(u_n)_{n\geq 0}$ satisfaisant la relation de récurrence

$$u_{n+N} = a_0 u_n + a_1 u_{n+1} + \dots + a_{N-1} u_{n+N-1}$$

s'identifie à l'espace vectoriel des suites $(X_n)_{n\geq 0}$ à valeur dans \mathbb{R}^N satisfaisant la relation de récurrence $X_{n+1}=CX_n$.

PERMUTATIONS

Piste verte.

Exercice 9. Dans \mathfrak{S}_4 , quel est l'inverse du cycle (1234)?

Exercice 10. Effectuer les produits de permutations qui suivent :

- $(1) \ \begin{pmatrix} 1 & 2 & 3 & 4 \\ 4 & 3 & 1 & 2 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 4 \end{pmatrix}.$
- $(2) \ \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 5 & 1 & 2 & 4 \end{pmatrix} \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 3 & 4 & 1 & 5 & 2 \end{pmatrix}.$

Exercice 11. Calculer la signature de toutes les permutations qui apparaissent dans les Exercices 9 et 10.

Exercice 12. Factoriser la permutation $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 7 & 6 & 4 & 5 & 3 & 2 & 1 \end{pmatrix}$ en produit de cycles à supports disjoints. Puis faire de même avec $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 5 & 1 & 4 & 3 & 6 & 2 \end{pmatrix}$.

Piste bleue.

Exercice 13. Soit $\sigma \in \mathfrak{S}_n$. Montrer que pour tout $1 \le i, j \le n$ il n'y a que deux possibilités : soit $\mathcal{O}_{\sigma}(i) = \mathcal{O}_{\sigma}(j)$, soit $\mathcal{O}_{\sigma}(i) \cap \mathcal{O}_{\sigma}(j) = \emptyset$.

Exercice 14. Montrer que \mathfrak{S}_n est abélien si et seulement si $n \in \{1, 2\}$.

Exercice 15. Montrer que la signature de toute transposition vaut -1. [Indication : on pourra montrer que le nombre d'inversions de la transposition (i j) est 2|i - j| - 1.]

Exercice 16. Soient $(\alpha, \beta) \in \mathfrak{S}_q \times \mathfrak{S}_r$. On définit alors $\alpha \sqcup \beta \in \mathfrak{S}_{q+r}$ de la manière suivante :

$$\alpha \sqcup \beta := \begin{pmatrix} 1 & \cdots & q & q+1 & \cdots & q+r \\ \alpha(1) & \cdots & \alpha(q) & q+\beta(1) & \cdots & q+\beta(r) \end{pmatrix}.$$

Démontrer que $\varepsilon(\alpha \sqcup \beta) = \varepsilon(\alpha)\varepsilon(\beta)$.

Piste rouge.

Exercice 17. On rappelle que le support d'une permutation $\sigma \in \mathfrak{S}_n$ est l'ensemble $supp(\sigma) := \{1 \le i \le n \mid \sigma(i) \ne i\}.$

- (1) Déterminer le support de $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 1 & 3 & 6 & 4 & 2 & 5 \end{pmatrix}$, et montrer que c'est un cycle.
- (2) Montrer que pour tout $\sigma \in \mathfrak{S}_n$, si $i \in supp(\sigma)$ alors $\sigma(i) \in supp(\sigma)$.
- (3) Montrer que deux permutations à supports disjoints commutent. [Indication : on pourra calculer $\sigma\tau(i)$ et $\tau\sigma(i)$ dans les trois cas qui suivent : $i \in supp(\sigma)$, $i \in supp(\tau)$, et $i \notin supp(\sigma) \cup supp(\tau)$.]

Exercice 18.

- (1) Montrer que tout élément de \mathfrak{S}_n peut s'écrire comme produit de k transpositions, avec k < n.
- (2) Soient $2 \le i \ne j \le n$. Calculer (1 i)(1 j)(1 i). En déduire que toute permutation peut s'écrire comme produit de transpositions (1 i) avec $i \ge 2$.
- (3) Soient $1 \le i < j \le n$. Écrire (ij) comme produit de transpositions de la forme (k k + 1), avec $1 \le k \le n 1$. En déduire que toute permutation peut s'écrire comme produit de transpositions (k k + 1) avec $1 \le k \le n 1$.

Exercice 19. Soit σ une permutation d'ordre $\ell \in \mathbb{N}$. On note $\sigma = c_1 \cdots c_m$ sa décomposition en produit de cycles à supports disjoints, et on note ℓ_i l'ordre de c_i . Montrer que $\ell = ppcm(\ell_1, \ldots, \ell_m)$.

DÉTERMINANT

Piste verte.

Exercice 20. Montrer que le déterminant de $\begin{pmatrix} 1 & 2 & 2 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \\ 2 & 3 & 3 & 2 \end{pmatrix}$ est nul de (au moins) deux manières différentes.

Exercice 21. Calculer $\det(\phi)$, pour $\phi : \mathbb{K}[X]_{\leq 3} \to \mathbb{K}[X]_{\leq 3}$ l'application linéaire donnée par la dérivée. Même question avec l'application linéaire $\psi : \mathbb{K}[X]_{\leq 3} \to \mathbb{K}[X]_{\leq 3}$ définie par $\psi(P)(X) = P(X+1)$.

Piste bleue.

Exercice 22. Soit E un \mathbb{K} -espace vectoriel, $n \in \mathbb{N}$ et $f : E^n \to \mathbb{K}$ une application. Montrer que si f est antisymétrique et linéaire en le premier argument, alors f est n-linéaire.

Exercice 23. Soit E un \mathbb{K} -espace vectoriel et $n \in \mathbb{N}$. Montrer que si $f: E^n \to \mathbb{K}$ est une forme n-linéaire alternée alors pour toute famille liée (u_1, \ldots, u_n) de longueur n, $f(u_1, \ldots, u_n) = 0$.

Exercice 24. Soit E un \mathbb{K} -espace vectoriel de dimension n. Supposons que $E = F \oplus G$, pour F et G des sous-espaces vectoriels de dimension respective q et r (ainsi, n = q + r). On se donne une base $v = (v_1, \ldots, v_q)$ de F et une base $w = (w_1, \ldots, w_r)$ de G, de sorte que $u := v \sqcup w = (v_1, \ldots, v_q, w_1, \ldots, w_r)$ est une base de E. Soit $\phi \in \operatorname{End}(E)$ un endomorphisme.

- (1) Démontrer que F est stable par ϕ si et seulement si $M_{u,u}(\phi)$ est une matrice triangulaire supérieure par blocs de type (q,r);
- (2) Démontrer que G est stable par ϕ si et seulement si $M_{u,u}(\phi)$ est une matrice triangulaire inférieure par blocs de type (q,r);
- (3) En déduire que F et G sont stables par ϕ si et seulement si $M_{u,u}(\phi)$ est diagonale par blocs de type (q,r).

Exercice 25. Soit $A = (a_{ij})_{1 \leq i,j \leq 3} \in \operatorname{Mat}_{3 \times 3}(\mathbb{K})$. Montrer que

$$a_{22}\det(A) = \begin{vmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{vmatrix} \begin{vmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \end{vmatrix} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix}.$$

Piste rouge.

Exercice 26. Soient $A \in \operatorname{Mat}_{3\times 3}(\mathbb{K})$ et $v, w \in \mathbb{K}^3$. Montrer que

$$(Av) \wedge (Aw) = com(A)(v \wedge w)$$
.

Exercice 27. Soit $M = (m_{ij})_{1 \leq i,j \leq n} \in \operatorname{Mat}_{n \times n}(\mathbb{K})$. On note $X \cdot M \in \operatorname{Mat}_{n \times n}(\mathbb{K}[X])$ la matrice dont le coefficient (i,j) est $m_{ij}X$. Montrer que $\det(\operatorname{I}_n + X \cdot M) \equiv 1 + X\operatorname{tr}(M) \mod X^2$.

Exercice 28. Soient k > 0 et n > 0 deux entiers naturels, et soit E un \mathbb{K} -espace vectoriel de dimension n. L'objectif de cet exercice est de montrer que $\dim(\mathrm{Alt}_k(E)) = \binom{n}{k}$.

(1) Commencer par montrer que si k > n alors dim(Alt_k(E)) = 0.

- (2) Montrer que pour k = 1, $\dim(Alt_1(E)) = n$.
- (3) Suppons que (v_1, \ldots, v_n) est une base de E. Montrer que l'application

$$Alt_k(E) \longrightarrow \mathbb{K}^{\binom{n}{k}}$$

$$f \longmapsto (f(v_{i_1}, \dots, v_{i_k}))_{1 < i_1 < \dots < i_k < n}$$

est un isomorphisme d'espaces vectoriels ¹.

Exercice 29. Pour tout $n \in \mathbb{N}$ on considère le déterminant $n \times n$

$$f_n := \begin{vmatrix} +1 & -1 & 0 & \cdots & \cdots & 0 \\ +1 & +1 & -1 & \ddots & & \vdots \\ 0 & +1 & \ddots & \ddots & \ddots & \vdots \\ \vdots & \ddots & \ddots & \ddots & \ddots & 0 \\ \vdots & & \ddots & \ddots & \ddots & \ddots & -1 \\ 0 & \cdots & \cdots & 0 & +1 & +1 \end{vmatrix}.$$

Montrer que f_n est le terme numéro n de la suite de Fibonacci (définie par $f_0 = f_1 = 1$ et la relation de récurrence $f_{n+2} = f_{n+1} + f_n$ quel que soit $n \in \mathbb{N}$). [Indication : pour montrer que la relation de récurrence est satisfaite, on pourra commencer par développer le déterminant suivant la première colonne.]

Exercice 30. On considère le déterminant des matrices de taille $n \times n$ à coefficients réels comme une fonction de n^2 variables $A = (a_{ij})_{1 \le i,j \le n}$. Montrer que

$$\frac{\partial \det(A)}{\partial a_{ij}} = (-1)^{i+j} |A^{i,j}|.$$

[Indication : on pourra développer le déterminant suivant la j-ième colonne ou bien suivant la i-ième ligne.]

Piste noire.

Exercice 31. Le déterminant de Vandermonde est défini par

$$V(x_0, \dots, x_n) := \begin{vmatrix} 1 & x_0 & \cdots & x_0^n \\ 1 & x_1 & \cdots & x_1^n \\ \vdots & \vdots & & \vdots \\ 1 & x_n & \cdots & x_n^n \end{vmatrix}.$$

quel que soient $x_0, \ldots, x_n \in \mathbb{K}$. C'est l'évaluation en $(x_0, \ldots, x_n) \in \mathbb{K}^{n+1}$ d'un polynôme en n+1 variable $V \in \mathbb{K}[X_0, \ldots, X_n]$.

^{1.} Vous pouvez vous inspirer de la démonstration de la Proposition 3.6 et du Lemme 3.7 dans le Chapitre 1 du cours.

- (1) Fixons x_0, \ldots, x_{n-1} , et considérons le polynôme $Q(Y) := V(x_0, \ldots, x_{n-1}, Y) \in \mathbb{K}[Y]$. Montrer que Q est un multiple de $\prod_{i=0}^{n-1} (Y - x_i)$.
- (2) Montrer que Q est de degré $\leq n$ et que le coefficient de Y^n est $V(x_0, \ldots, x_{n-1})$. En déduire que $Q(Y) = V(x_0, \ldots, x_{n-1}) \prod_{i=0}^{n-1} (Y x_i)$.
- (3) Démontrer que

$$V(x_0,\ldots,x_n) = \prod_{0 \le i < j \le n} (x_j - x_i).$$

(4) En déduire que $x_0, \ldots, x_n \in \mathbb{K}$ sont distincts deux à deux si et seulement si l'application

$$\mathbb{K}[X]_{\leq n} \longrightarrow \mathbb{K}^{n+1}$$
 $P \longmapsto (P(x_0), \dots, P(x_n))$

est un isomorphisme de K-espaces vectoriels.

On suppose désormais que nous sommes dans cette situation, de sorte que la matrice A définissant le déterminant de Vandermonde est inversible. On note L_i l'unique polynôme de degré $\leq n$ tel que $L_i(x_j) = \delta_{ij}$.

- (5) Montrer que si $A^{-1} = (b_{ij})_{0 \le i,j \le n}$ alors $L_i(X) = b_{0i} + b_{1i}X + \dots + b_{ni}X^n$.
- (6) Montrer que

$$L_i(X) = \prod_{\substack{j=0\\j\neq i}}^n \frac{X - x_j}{x_i - x_j}.$$

(7) En déduire une formule pour l'inverse de la matrice de Vandermonde lorsque n=2 (lorsque celle-ci est inversible). [On pourra utiliser a, b, c plutôt que x_0, x_1, x_2 .]

Valeurs propres et polynôme caractéristique

Piste verte.

Exercice 32. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $\pi: E \to E$ une projection. On note $q = \dim(\ker(\pi))$ et $r = \dim(\operatorname{im}(\pi))$. Donner le spectre et le polynôme caractéristique $\chi_{\pi}(X)$ π en fonction de q et r.

Exercice 33. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soit $\sigma: E \to E$ une symétrie. On suppose que la caractéristique de \mathbb{K} est différente de 2. On note $q = \dim(\ker(\sigma - \mathrm{id}))$ et $r = \dim(\ker(\sigma + \mathrm{id}))$. Donner le spectre et le polynôme caractéristique $\chi_{\sigma}(X)$ de σ en fonction de q et r.

Exercice 34. Dans \mathbb{R}^3 , donner deux vecteurs propres non colinéaires de la matrice $\begin{pmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$.

Peut-on en trouver un troisième qui ne soit pas combinaison linéaire des deux autres?

Piste bleue.

Exercice 35. Trouver les valeurs propres de la matrice $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix} \in \operatorname{Mat}_{3\times 3}(\mathbb{R})$. Montrer qu'elle est diagonalisable et donner une base de vecteurs propres.

Exercice 36. Calculer le polynôme caractéristique de $\begin{pmatrix} 2 & -1 & -1 \\ 1 & 2 & 1 \\ -1 & 1 & 2 \end{pmatrix}$ et en déduire que cette matrice est diagonalisable. Donner une base de vecteurs propres.

Exercice 37. Même chose avec $\begin{pmatrix} 5 & -3 & 2 \\ 6 & -4 & 4 \\ 4 & -4 & 5 \end{pmatrix}$. En déduire qu'elle est semblable/conjuguée à la matrice de l'exercice précédent.

Exercice 38. Soient $a_0, \ldots, a_{n-1} \in \mathbb{K}$ des scalaires. On leur associe une matrice de taille $n \times n$

$$C = \begin{pmatrix} 0 & \cdots & \cdots & 0 & -a_0 \\ 1 & 0 & \cdots & 0 & -a_1 \\ 0 & \ddots & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & -a_{n-2} \\ 0 & \cdots & 0 & 1 & -a_{n-1} \end{pmatrix}$$

Montrer que $\chi_C(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} + X^n$. [Indication : on pourra développer le déterminant selon la dernière colonne.]

On dit que C est la **matrice compagnon** de ce polynôme unitaire.

Exercice 39. Soient $A \in \operatorname{Mat}_{m \times n}(\mathbb{K})$ et $B \in \operatorname{Mat}_{n \times m}(\mathbb{K})$. On considèrent les matrices par bloc qui suivent :

$$M := \begin{pmatrix} X \cdot \mathbf{I}_m & -A \\ \mathbf{0} & \mathbf{I}_n \end{pmatrix}$$
 et $N := \begin{pmatrix} \mathbf{I}_m & A \\ B & X \cdot \mathbf{I}_n \end{pmatrix}$

- (1) Calculer MN et NM.
- (2) En déduire que $X^n \chi_{AB}(X) = X^m \chi_{BA}(X)$.
- (3) Conclure que si m = n alors $\chi_{AB}(X) = \chi_{BA}$.
- (4) Soit $C = (a_i b_j)_{1 \le i, j \le n} \in \operatorname{Mat}_{n \times n}(\mathbb{K})$, où les a_i et les b_j sont des scalaires quelconques. Montrer que $\chi_C(X) = X^n - (\sum_{i=1}^n a_i b_i) X^{n-1}$.

Piste rouge.

Exercice 40. Calculer le polynôme caractéristique de $\begin{pmatrix} 0 & 1 & 0 \\ -4 & 4 & 0 \\ -2 & 1 & 2 \end{pmatrix}$ et en déduire que cette

matrice est trigonalisable. Décrire ses sous-espaces propres et en déduire qu'elle n'est pas diagonalisable. Trigonaliser la matrice.

Exercice 41. Même chose avec la matrice $\begin{pmatrix} 3 & 1 & 1 \\ 0 & 2 & 0 \\ -1 & -1 & 1 \end{pmatrix}$. En déduire qu'elle est sem-

blable/conjuguée à la matrice de l'exercice précédent. Par quelle matrice?

Exercice 42. Soit $E \subset C^{\infty}(\mathbb{R}, \mathbb{R})$ le sous-espace vectoriel des fonctions qui sont 2π -périodiques. On considère l'endomorphisme $\phi: E \to E$ défini par $\phi(f) = f''$.

- (1) Montrer que pour tout entier naturel $n \in \mathbb{N}$, $-n^2$ est une valeur propre de ϕ , dont on donnera un vecteur propre associé.
- (2) Pour $\lambda \in \mathbb{R}$, donner une base du sous-espace vectoriel de $C^{\infty}(\mathbb{R}, \mathbb{R})$ défini comme

$$E_{\lambda} := \{ f \in C^{\infty}(\mathbb{R}, \mathbb{R}) \mid f'' = \lambda f \}.$$

[Indication : on pourra distinguer 3 cas : $\lambda < 0$, $\lambda = 0$ et $\lambda > 0$.

- (3) En déduire que ϕ n'a pas d'autre valeur propre que celles de la question (1).
- (4) Pour chaque valeur propre $\lambda = -n^2$ de ϕ donner la dimension de $\ker(\phi + n^2 \mathrm{id}_E)$. [Attention: il y a 2 situations possibles.]

DIAGONALISATION, TRIGONALISATION, POLYNÔMES D'ENDOMORPHISMES

Piste verte.

Exercice 43. Soit $A = diag(\lambda_1, ..., \lambda_n) \in \operatorname{Mat}_{n \times n}(\mathbb{K})$ et soit $P \in \mathbb{K}[X]$. Montrer que $P(A) = diag(P(\lambda_1), ..., P(\lambda_n))$.

Exercice 44. Calculer le polynôme caractéristique et le polynôme minimal des trois matrices qui suivent :

$$\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}, \quad
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{pmatrix}
\quad \text{et} \quad
\begin{pmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{pmatrix}$$

Piste bleue.

Exercice 45. Soient E un \mathbb{R} -espace vectoriel de dimension finie et f un endomorphisme de E vérifiant $f^{\circ 3} = 4f$. Montrer que la trace de f est un entier pair.

Exercice 46. Soient E un \mathbb{K} -espace vectoriel de dimension $n \in \mathbb{N}$ et $f \in \text{End}(E)$ tel que $f^{\circ 2}$ soit une projection.

- (1) Montrer que $Sp(f) \subset \{-1, 0, 1\}$.
- (2) Montrer que f est diagonalisable si et seulement si $f^{\circ 3} = f$.

Exercice 47. Soit E un \mathbb{K} -espace vectoriel de dimension finie et soit $f \in \text{End}(E)$. Montrer que les affirmations suivantes sont équivalentes :

- (1) χ_f est scindé.
- (2) μ_f est scindé.
- (3) Il existe un polynôme scindé annulateur de f.

Exercice 48. Soit E un \mathbb{C} -espace vectoriel de dimension finie, et soit $\phi : E \to E$ un endomorphisme tel que $\phi^n = \mathrm{id}_E$ pour un certain $n \in \mathbb{N}^*$. Montrer que ϕ est diagonalisable. Est-ce toujours le cas si on remplace \mathbb{C} par \mathbb{R} ?

Exercice 49. Soit C la matrice compagnon de l'Exercice 38.

- (1) Montrer par récurrence sur $1 \leq k \leq n-1$ que la première colonne de la matrice C^k est le vecteur e_{k+1} de la base canonique de \mathbb{K}^n , de sorte que la famille $(e_1, Ce_1, \ldots, C^{n-1}e_1)$ est exactement la base canonique.
- (2) En déduire que si $P \in \mathbb{K}[X]_{\leq n-1}$ est un polynôme annulateur de C alors P = 0.
- (3) En déduire que le polynôme minimal de C est égal à son polynôme caractéristique, et donc que $\mu_C(X) = \chi_C(X) = a_0 + a_1 X + \cdots + a_{n-1} X^{n-1} + X^n$.

Piste rouge.

Exercice 50. Soit E un \mathbb{K} -espace vectoriel de dimension finie, et soient $f, g \in \operatorname{End}(E)$ deux endomorphismes qui commutent : $f \circ g = g \circ f$.

- (1) Montrer que pour toute valeur propre λ de g, le sous-espace vectoriel $E_{\lambda}(g)$ est stable par f. En déduire que si f est diagonalisable alors la restriction $f_{|E_{\lambda}(g)}$ est diagonalisable comme endomorphisme de $E_{\lambda}(g)$.
- (2) Montrer que si f et g sont diagonalisables alors il existe une base commune de diagonalisation de f et g (autrement dit, il existe une base \mathcal{B} de E telle que $M_{\mathcal{B},\mathcal{B}}(f)$ et $M_{\mathcal{B},\mathcal{B}}(g)$ sont toutes les deux diagonales).
- (3) En déduire que si f et g sont diagonalisables alors $f \circ g$ et $g \circ f$ sont diagonalisables.
- (4) Illustrer ce résultat avec les endomorphismes de \mathbb{R}^2 canoniquement associés à $\begin{pmatrix} 3 & -1 \\ 2 & 0 \end{pmatrix}$ et $\begin{pmatrix} 0 & 1 \\ -2 & 3 \end{pmatrix}$.

HAX301X – Algèbre III

Réduction des Endomorphismes

Exercices supplémentaires

Exercice 1. Soit E un \mathbb{K} -espace vectoriel de dimension finie $n \geq 2$ et $f: E \rightarrow E$ un endomorphisme de rang 1.

- (1) Montrer que 0 est une valeur propre de f et que sa multiplicité géométrique $m_g(0)$ est n-1.
- (2) En déduire que $\chi_f(X) = X^{n-1}(X \lambda)$, avec $\lambda \in \mathbb{K}$.
- (3) Montrer que $\lambda=\operatorname{tr}(f)$, et en déduire que f est diagonalisable si et seulement si $\operatorname{tr}(f)\neq 0$.

Exercice 2. Soit $f: E \to E$ un endomorphisme et $v \in E$ un vecteur tel que $f^{\circ q}(v) = 0_E$ et $f^{\circ (q-1)}(v) \neq 0_E$, pour un certain entier $q \geq 1$.

- (1) Montrer que la famille $\mathcal{B}_v := (f^{\circ k}(v))_{0 \le k \le q-1}$ est libre.
- (2) Montrer que $H_v := \text{Vect}\{f^{\circ k}(v) \mid 0 \le k \le q-1\}$ est stable par f.
- (3) Donner la matrice de $f_{|H_v|}$ dans la base \mathcal{B}_v .

Exercice 3. Décrire le terme général des suites à valeurs réelles $(u_n)_{n\geq 0} \in \mathbb{R}^{\mathbb{N}}$ satisfaisant la relation de récurrence

$$u_{n+3} = u_n - u_{n+1} + u_{n+2}$$
.

[Indication : pour la formule du terme général, on pourra faire une disjonction de cas en fonction de la parité de n]

Exercice 4. Même question que l'exercice précédent, avec la relation de récurrence

$$u_{n+4} = 2u_{n+2} - u_n$$
.

Exercice 5. On considère le \mathbb{R} -espace vectoriel $E := \mathcal{C}^1(\mathbb{R}, \mathbb{R})$ des fonctions d'une variable réelle de classe \mathcal{C}^1 . On rappelle que $F := \{y \in E \mid y'' - y = 0\}$ est un sous-espace vectoriel de E [HAX202X: l'ensemble des solutions d'une équation différentielle linéaire homogène est un

sous-espace vectoriel]. On admettra que $G:=\left\{(u,v)\in E^2\,|\, \begin{pmatrix} u'\\v' \end{pmatrix}=\begin{pmatrix} 0&1\\1&0 \end{pmatrix}\begin{pmatrix} u\\v \end{pmatrix}\right\}$ est un sous-espace vectoriel de E^2 .

- (1) Montrer que l'application linéaire $\varphi: E \to E^2$ définie par $\varphi(y) = (y, y')$ induit un isomorphisme d'espaces vectoriels entre F et G.

 [Indication: il suffit de montrer que φ est injective et que $\varphi(F) = G$.]
- (2) Trouver une base \mathcal{B} dans laquelle la matrice de l'endomorphisme canoniquement associé à $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ est $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$.
- (3) En déduire que $(u, v) \in G$ si et seulement si il existe des constantes $a, b \in \mathbb{R}$ telles que $(u + v)'(t) = a \exp(t)$ et $(u v)'(t) = b \exp(-t)$.
- (4) Conclure : $y \in F$ si et seulement si il existe des constantes $\lambda, \mu \in \mathbb{R}$ telles que $y(t) = \lambda \exp(t) + \mu \exp(-t)$.

Piste noire.

Exercice 6. Soit E un \mathbb{C} -espace vectoriel complexe de dimension finie non nulle. Soient f et g des endomorphismes de E.

- (1) On suppose f et g commutent. Montrer que qu'il existe une base commune de trigonalisation pour f et g (on dit que f et g sont cotrigonalisables).
- (2) On suppose que $f \circ g g \circ f = \lambda f$, avec $\lambda \in \mathbb{C}^*$. Montrer que f est nilpotent, et que f et g sont cotrigonalisables.
- (3) On suppose que $f \circ g g \circ f = \lambda f + \mu g$, avec $\lambda, \mu \in \mathbb{C}$. Montrer que f et g sont cotrigonalisables.