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Deformation quantization

The deformation quantization problem

Given a Poisson bracket {−,−} on a commutative algebra A0,
does there exist an associative formal deformation of the
commutative product · of the form ? = ·+ ~{−,−}+ o(~)?

The general answer is “NO” [Mathieu], but it is “YES” whenever
the A0 is reasonnable enough [Kontsevich], that is to say:

1 A0 = k[[x1, . . . , xn]] (k field of char. 0);

2 A0 = C∞(M), M being a smooth manifold;

3 A0 = k[X ], X being a smooth affine algebraic variety over k a
field of char. 0.

Actually, (2) and (3) are obtained from (1) by globalization
techniques that we are not going to discuss here. Kontsevich
formula for (1) is remarkably elegant.
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Deformation quantization

Kontsevich formula

f ? g =
∑
n≥0

~n
∑

Γ∈Gn,2

cΓBΓ,α(f , g)

Gn,2 is a set of directed graphs with

vertex set {1, . . . , n, 1̄, 2̄},
no loops and no multiple edges,
exactly two outgoing edges from every blue vertex,
no outgoing edge from red vertices,

BΓ,α is a bidifferential operator built from Γ and the Poisson
tensor α = αij∂i ∧ ∂j , where αij = {xi , xj}.

BΓ,α(f , g) = (∂kα
ij)αkl(∂i f )(∂l∂jg)

coefficients cΓ ∈ R are of transcendental nature.
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Deformation quantization

Kontsevich weights

Moduli of marked disks

Cn,2 is the moduli of holomorphic (closed) disks D with an
embedding {1, . . . , n} ↪→ D\∂D, and a cyclic order preserving
embedding {1̄, 2̄,∞} ↪→ ∂D.

Cn,2 '
(
Confn(H)× Conf2,+(R)

)
/R>0 nR.

Kontsevich weight of Γ ∈ Gn,2

cΓ :=

∫
Cn,2

ωΓ , with ωΓ :=
∧

(i ,j)∈E(Γ)

dArg
(
(zj − zi )(zj − z̄i )

)
2π

.

These integrals converge and satisfy algebraic relations ensuring
the associativity of ? [Kontsevich].
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Deformation quantization

Poisson σ-model

There is a TFT, the Poisson σ-model [Ikeda,Schaller–Strobl], from
which one can derive Kontsevich formula
[Kontsevich,Cattaneo–Felder]:

fields are maps φ : D → M together with connection 1-form
η ∈ Ω1(D, φ∗T ∗M).

action functional is S(φ, η) :=
∫
D

(
〈η, dφ〉+ 1

2〈η ∧ η, φ
∗π〉
)
.

the star products reads as

(f ? g)(x) =

∫
fields

f
(
φ(1̄)

)
g
(
φ(2̄)

)
δx=φ(∞)e

S(φ,η)
~ DφDη .

Topological invariance guaranties the associativity of ?

Both
(
(f ? g) ? h

)
(x) and

(
f ? (g ? h)

)
(x) equal∫

fields
f
(
φ(1̄)

)
g
(
φ(2̄)

)
h
(
φ(3̄)

)
δx=φ(∞)e

S(φ,η)
~ DφDη .
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Deformation quantization

Deformation quantization with branes

More general observables: one is led to replace 2 with any
positive integer m (⇒ Kontsevich formality theorem).

Different gauge fixing: one obtains variants of cΓ’s where
dArg is replaced by dlog .
Boundary condition: require that φ(∂D) ⊂ C , where C ⊂ M

is a coisotropic submanifold (a “brane”); ⇒ A∞-deformation
of Γ(C ,∧•NC ); ⇒ quantization of reduced spaces
[Cattaneo–Felder].
Several branes (⇒ Fukaya-type category):

two branes [Cattaneo–Felder]: two A∞-algebras together with
an invertible A∞-bimodule realizing a Koszul/Morita
duality/equivalence [C–Felder–Ferrario–Rossi] (conjectured by
Shoikhet).
three branes: composition up to homotopy of A∞-bimodules
[Ferrario].
more...?

Spoiler: already with two branes, the weights (and graphs)
involved are more general.
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Multiple zeta values

Standard facts

Definition

Let s1, . . . , s` be positive integers, with s1 > 1:

ζ(s1, . . . , s`) :=
∑

n1>···>n`≥1

1

ns1
1 · · · n

s`
`

.

These numbers also have an integral representation:

ζ(s1, . . . , s`) =

∫
∆k

ω0(t1) . . . ω0(ts1−1)ω1(ts1)ω0(ts1+1) . . . ω1(tk)

where

ω0(t) = dt/t and ω1(t) = dt/(1− t),

∆k = {(t1, . . . , tk) ∈ [0, 1]k |t1 ≥ · · · ≥ tk}.
They are iterated integrals of dlog(c .r .) on M0,4.
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Multiple zeta values

MZVs in QFT

[Broadhurst–Kreimer]: a lot of Feynman amplitudes in QFT
are (linear combinations of) MZVs.

[Brown]: periods of M0,n are Q[(2πi)−1]-linear combinations
of MZVs.

Warning (life isn’t simple): there are amplitudes in φ4 at
high loop orders, which are related to modular forms
(e.g. [Brown–Schnetz]), and not expected to be expressible as
multiple zeta values (contrary to what may have been believed
in the past).

What about the Kontsevich weights cΓ, that are Feynman
amplitudes for the Poisson σ-model?

Theorem [Banks–Panzer–Pym]

The coefficients cΓ are Q[(2πi)−1]-linear combinations of MZVs.
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Ingredients of the proof of Banks–Panzer–Pym

Define the sheaf U•n,m of polylogarithmic forms on Cn,m:

1 Consider the map ι : Cn,m ↪→ C2n+m 'M0,2n+m+1 that
“double” the interior marked points.

2 Define the sheaf U• of polylogarithmic forms on M0,2n+m+1:
linear combinations of dlog of cross-ratios with coefficients
being polylogs (period integrals on the universal curve).

3 Restrict: U•n,m := ι∗U•.

Theorem [Banks–Panzer–Pym]

Fiber-integrating along “forgetting-a-point” maps sends
polylogarithmic forms to polylogarithmic forms.

This is essentially the same strategy as for Brown’s result, with a
specific difficulty for when one forgets an interior point.
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Alternating Multiple Zeta Values (Euler sums)

Alternating MZVs

Let s1, . . . , s` be non-zero integers, with s1 6= 1:

ζ(s1, . . . , s`) :=
∑

n1>···>n`≥1

ε(s1)n1 · · · ε(s`)n`

n
|s1|
1 · · · n

|s`|
`

,

where ε(s) = s/|s|.

New period in the game: ζ(−1) =
∑

n≥1
(−1)n

n = − log(2).

Generalization: N-coloured MZVs

s1, . . . , s` ∈ N>0 and ξ1, . . . ξ` ∈ µN , with (s1, ξ1) 6= (1, 1):

ζ(s1, . . . , s`|ξ1, . . . , ξ`) :=
∑

n1>···>n`≥1

ξn1
1 · · · ξ

n`
`

ns1
1 · · · n

s`
`

,

These numbers also have an integral representation, as iterated
integrals of dlog of t, and t − ξ, ξ ∈ µN .
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Coloured polylogarithmic forms

Consider the moduli Cn,p+1+q of marked disks: boundary marked
points are given by

{−p̄, . . . ,−1̄, 0, 1̄, . . . , q̄,∞} ↪→ ∂D .

We have a map ι : Cn,p+1+q ↪→M0,N(2n+p+q)+2 sending all
coloured (blue, magenta and red) points (that we see as points in
the upper half-plane) to their N-th roots and complex conjugates.

An illustration of the
map ι for N = 2

One then defines the sheaf U•N := ι∗U• of N-coloured
polylogarithmic forms.
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Main result – open questions

Theorem [C–Dupont–Panzer–Pym]

Fiber-integrating along “forgetting-a-point” maps sends
N-coloured polylogarithmic forms to N-coloured polylogarithmic
forms.

(N = 2) ⇒ Weights (a-k-a Feynman amplitudes) appearing in
[C–Felder-Ferrario–Rossi] for the deformation quantization in
the presence of two branes are Q[(2πi)−1]-linear combinations
of alternating multiple zeta values.

Questions:

Occurences of N-coloured MZVs in the Poisson σ-model?

Nature of the weights when there are more branes?

Higher genus version? Do eMZVs appear if one replaces the
source with a genus one curve in the Poisson σ-model?
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