Deformation quantization with branes and coloured MZVs

Damien Calaque (Université de Montpellier)

Higher structures emerging from renormalisation (ESI)
14 October 2020

Deformation quantization

Given a Poisson bracket $\{-,-\}$ on a commutative algebra A_{0}, does there exist an associative formal deformation of the commutative product \cdot of the form $\star=\cdot+\hbar\{-,-\}+o(\hbar)$?

Given a Poisson bracket $\{-,-\}$ on a commutative algebra A_{0}, does there exist an associative formal deformation of the commutative product . of the form $\star=\cdot+\hbar\{-,-\}+o(\hbar)$?

The general answer is "NO" [Mathieu]

Given a Poisson bracket $\{-,-\}$ on a commutative algebra A_{0}, does there exist an associative formal deformation of the commutative product \cdot of the form $\star=\cdot+\hbar\{-,-\}+o(\hbar)$?

The general answer is "NO" [Mathieu], but it is "YES" whenever the A_{0} is reasonnable enough [Kontsevich]

Given a Poisson bracket $\{-,-\}$ on a commutative algebra A_{0}, does there exist an associative formal deformation of the commutative product . of the form $\star=\cdot+\hbar\{-,-\}+o(\hbar)$?

The general answer is "NO" [Mathieu], but it is "YES" whenever the A_{0} is reasonnable enough [Kontsevich], that is to say:
(1) $A_{0}=k \llbracket x_{1}, \ldots, x_{n} \rrbracket(k$ field of char. 0$)$;
(2) $A_{0}=C^{\infty}(M), M$ being a smooth manifold;
(3) $A_{0}=k[X], X$ being a smooth affine algebraic variety over k a field of char. 0 .

Given a Poisson bracket $\{-,-\}$ on a commutative algebra A_{0}, does there exist an associative formal deformation of the commutative product . of the form $\star=\cdot+\hbar\{-,-\}+o(\hbar)$?

The general answer is "NO" [Mathieu], but it is "YES" whenever the A_{0} is reasonnable enough [Kontsevich], that is to say:
(1) $A_{0}=k \llbracket x_{1}, \ldots, x_{n} \rrbracket(k$ field of char. 0$)$;
(2) $A_{0}=C^{\infty}(M), M$ being a smooth manifold;
(3) $A_{0}=k[X], X$ being a smooth affine algebraic variety over k a field of char. 0 .

Actually, (2) and (3) are obtained from (1) by globalization techniques that we are not going to discuss here. Kontsevich formula for (1) is remarkably elegant.

Deformation quantization
Kontsevich formula

$$
f \star g=\sum_{n \geq 0} \hbar^{n} \sum_{\Gamma \in \mathcal{G}_{n, 2}} c_{\Gamma} B_{\Gamma, \alpha}(f, g)
$$

$$
f \star g=\sum_{n \geq 0} \hbar^{n} \sum_{\Gamma \in \mathcal{G}_{n, 2}} c_{\Gamma} B_{\Gamma, \alpha}(f, g)
$$

- $\mathcal{G}_{n, 2}$ is a set of directed graphs with
- vertex set $\{1, \ldots, n, \overline{1}, \overline{2}\}$,
- no loops and no multiple edges,
- exactly two outgoing edges from every blue vertex,
- no outgoing edge from red vertices,

$$
f \star g=\sum_{n \geq 0} \hbar^{n} \sum_{\Gamma \in \mathcal{G}_{n, 2}} c_{\Gamma} B_{\Gamma, \alpha}(f, g)
$$

- $\mathcal{G}_{n, 2}$ is a set of directed graphs with
- vertex set $\{1, \ldots, n, \overline{1}, \overline{2}\}$,
- no loops and no multiple edges,
- exactly two outgoing edges from every blue vertex,
- no outgoing edge from red vertices,
- $B_{\Gamma, \alpha}$ is a bidifferential operator built from Γ and the Poisson tensor $\alpha=\alpha^{i j} \partial_{i} \wedge \partial_{j}$, where $\alpha^{i j}=\left\{x_{i}, x_{j}\right\}$.

$$
f \star g=\sum_{n \geq 0} \hbar^{n} \sum_{\Gamma \in \mathcal{G}_{n, 2}} c_{\Gamma} B_{\Gamma, \alpha}(f, g)
$$

- $\mathcal{G}_{n, 2}$ is a set of directed graphs with
- vertex set $\{1, \ldots, n, \overline{1}, \overline{2}\}$,
- no loops and no multiple edges,
- exactly two outgoing edges from every blue vertex,
- no outgoing edge from red vertices,
- $B_{\Gamma, \alpha}$ is a bidifferential operator built from Γ and the Poisson tensor $\alpha=\alpha^{i j} \partial_{i} \wedge \partial_{j}$, where $\alpha^{i j}=\left\{x_{i}, x_{j}\right\}$.

$$
B_{\Gamma, \alpha}(f, g)=\left(\partial_{k} \alpha^{i j}\right) \alpha^{k}\left(\partial_{i} f\right)\left(\partial_{l} \partial_{j} g\right)
$$

$$
f \star g=\sum_{n \geq 0} \hbar^{n} \sum_{\Gamma \in \mathcal{G}_{n, 2}} c_{\Gamma} B_{\Gamma, \alpha}(f, g)
$$

- $\mathcal{G}_{n, 2}$ is a set of directed graphs with
- vertex set $\{1, \ldots, n, \overline{1}, \overline{2}\}$,
- no loops and no multiple edges,
- exactly two outgoing edges from every blue vertex,
- no outgoing edge from red vertices,
- $B_{\Gamma, \alpha}$ is a bidifferential operator built from Γ and the Poisson tensor $\alpha=\alpha^{i j} \partial_{i} \wedge \partial_{j}$, where $\alpha^{i j}=\left\{x_{i}, x_{j}\right\}$.

$$
B_{\Gamma, \alpha}(f, g)=\left(\partial_{k} \alpha^{i j}\right) \alpha^{k}\left(\partial_{i} f\right)\left(\partial_{l} \partial_{j} g\right)
$$

- coefficients $c_{\Gamma} \in \mathbb{R}$ are of transcendental nature.

Moduli of marked disks

$C_{n, 2}$ is the moduli of holomorphic (closed) disks D with an embedding $\{1, \ldots, n\} \hookrightarrow D \backslash \partial D$, and a cyclic order preserving embedding $\{\overline{1}, \overline{2}, \infty\} \hookrightarrow \partial D$.

Moduli of marked disks

$C_{n, 2}$ is the moduli of holomorphic (closed) disks D with an embedding $\{1, \ldots, n\} \hookrightarrow D \backslash \partial D$, and a cyclic order preserving embedding $\{\overline{1}, \overline{2}, \infty\} \hookrightarrow \partial D$.

$$
C_{n, 2} \simeq\left(\operatorname{Conf}_{n}(\mathbb{H}) \times \operatorname{Conf}_{2,+}(\mathbb{R})\right) / \mathbb{R}_{>0} \ltimes \mathbb{R}
$$

Kontsevich weights

Moduli of marked disks

$C_{n, 2}$ is the moduli of holomorphic (closed) disks D with an embedding $\{1, \ldots, n\} \hookrightarrow D \backslash \partial D$, and a cyclic order preserving embedding $\{\overline{1}, \overline{2}, \infty\} \hookrightarrow \partial D$.

$$
C_{n, 2} \simeq\left(\operatorname{Conf}_{n}(\mathbb{H}) \times \operatorname{Conf}_{2,+}(\mathbb{R})\right) / \mathbb{R}_{>0} \ltimes \mathbb{R}
$$

Kontsevich weight of $\Gamma \in \mathcal{G}_{n, 2}$

$$
c_{\Gamma}:=\int_{C_{n, 2}} \omega_{\Gamma}, \text { with } \quad \omega_{\Gamma}:=\bigwedge_{(i, j) \in E(\Gamma)} \frac{d \operatorname{Arg}\left(\left(z_{j}-z_{i}\right)\left(z_{j}-\bar{z}_{i}\right)\right)}{2 \pi} .
$$

Moduli of marked disks

$C_{n, 2}$ is the moduli of holomorphic (closed) disks D with an embedding $\{1, \ldots, n\} \hookrightarrow D \backslash \partial D$, and a cyclic order preserving embedding $\{\overline{1}, \overline{2}, \infty\} \hookrightarrow \partial D$.

$$
C_{n, 2} \simeq\left(\operatorname{Conf}_{n}(\mathbb{H}) \times \operatorname{Conf}_{2,+}(\mathbb{R})\right) / \mathbb{R}_{>0} \ltimes \mathbb{R} .
$$

Kontsevich weight of $\Gamma \in \mathcal{G}_{n, 2}$

$$
c_{\Gamma}:=\int_{C_{n, 2}} \omega_{\Gamma}, \text { with } \quad \omega_{\Gamma}:=\bigwedge_{(i, j) \in E(\Gamma)} \frac{d \operatorname{Arg}\left(\left(z_{j}-z_{i}\right)\left(z_{j}-\bar{z}_{i}\right)\right)}{2 \pi} .
$$

These integrals converge and satisfy algebraic relations ensuring the associativity of \star [Kontsevich].

There is a TFT, the Poisson σ-model [lkeda,Schaller-Strobl], from which one can derive Kontsevich formula [Kontsevich,Cattaneo-Felder]:

There is a TFT, the Poisson σ-model [lkeda,Schaller-Strobl], from which one can derive Kontsevich formula [Kontsevich,Cattaneo-Felder]:

- fields are maps $\phi: D \rightarrow M$ together with connection 1-form $\eta \in \Omega^{1}\left(D, \phi^{*} T^{*} M\right)$.

There is a TFT, the Poisson σ-model [lkeda,Schaller-Strobl], from which one can derive Kontsevich formula [Kontsevich,Cattaneo-Felder]:

- fields are maps $\phi: D \rightarrow M$ together with connection 1-form $\eta \in \Omega^{1}\left(D, \phi^{*} T^{*} M\right)$.
- action functional is $S(\phi, \eta):=\int_{D}\left(\langle\eta, d \phi\rangle+\frac{1}{2}\left\langle\eta \wedge \eta, \phi^{*} \pi\right\rangle\right)$.

There is a TFT, the Poisson σ-model [lkeda,Schaller-Strobl], from which one can derive Kontsevich formula [Kontsevich,Cattaneo-Felder]:

- fields are maps $\phi: D \rightarrow M$ together with connection 1-form $\eta \in \Omega^{1}\left(D, \phi^{*} T^{*} M\right)$.
- action functional is $S(\phi, \eta):=\int_{D}\left(\langle\eta, d \phi\rangle+\frac{1}{2}\left\langle\eta \wedge \eta, \phi^{*} \pi\right\rangle\right)$.
- the star products reads as

$$
(f \star g)(x)=\int_{\text {fields }} f(\phi(\overline{1})) g(\phi(\overline{2})) \delta_{x=\phi(\infty)} e^{\frac{S(\phi, \eta)}{\hbar}} D \phi D \eta
$$

There is a TFT, the Poisson σ-model [lkeda,Schaller-Strobl], from which one can derive Kontsevich formula [Kontsevich,Cattaneo-Felder]:

- fields are maps $\phi: D \rightarrow M$ together with connection 1-form $\eta \in \Omega^{1}\left(D, \phi^{*} T^{*} M\right)$.
- action functional is $S(\phi, \eta):=\int_{D}\left(\langle\eta, d \phi\rangle+\frac{1}{2}\left\langle\eta \wedge \eta, \phi^{*} \pi\right\rangle\right)$.
- the star products reads as

$$
(f \star g)(x)=\int_{\text {fields }} f(\phi(\overline{1})) g(\phi(\overline{2})) \delta_{X=\phi(\infty)} e^{\frac{S(\phi, \eta)}{\hbar}} D \phi D \eta
$$

Topological invariance guaranties the associativity of \star

Both $((f \star g) \star h)(x)$ and $(f \star(g \star h))(x)$ equal

$$
\int_{\text {fields }} f(\phi(\overline{1})) g(\phi(\overline{2})) h(\phi(\overline{3})) \delta_{X=\phi(\infty)} e^{\frac{S(\phi, \eta)}{\hbar}} D \phi D \eta
$$

- More general observables: one is led to replace 2 with any positive integer m (\Rightarrow Kontsevich formality theorem).
- More general observables: one is led to replace 2 with any positive integer m (\Rightarrow Kontsevich formality theorem).
- Different gauge fixing: one obtains variants of c_{Γ} 's where $d A r g$ is replaced by dlog.
- More general observables: one is led to replace 2 with any positive integer m (\Rightarrow Kontsevich formality theorem).
- Different gauge fixing: one obtains variants of c_{Γ} 's where $d A r g$ is replaced by dlog.
- Boundary condition: require that $\phi(\partial D) \subset C$, where $C \subset M$ is a coisotropic submanifold (a "brane"); $\Rightarrow A_{\infty}$-deformation of $\Gamma\left(C, \wedge^{\bullet} N C\right)$; \Rightarrow quantization of reduced spaces
[Cattaneo-Felder].
- More general observables: one is led to replace 2 with any positive integer m (\Rightarrow Kontsevich formality theorem).
- Different gauge fixing: one obtains variants of c_{Γ} 's where $d A r g$ is replaced by dlog.
- Boundary condition: require that $\phi(\partial D) \subset C$, where $C \subset M$ is a coisotropic submanifold (a "brane"); $\Rightarrow A_{\infty}$-deformation of $\Gamma\left(C, \wedge^{\bullet} N C\right) ; \Rightarrow$ quantization of reduced spaces
[Cattaneo-Felder].
- Several branes (\Rightarrow Fukaya-type category):
- two branes [Cattaneo-Felder]: two A_{∞}-algebras together with an invertible A_{∞}-bimodule realizing a Koszul/Morita duality/equivalence [C-Felder-Ferrario-Rossi] (conjectured by Shoikhet).
- three branes: composition up to homotopy of A_{∞}-bimodules [Ferrario].
- more...?
- More general observables: one is led to replace 2 with any positive integer m (\Rightarrow Kontsevich formality theorem).
- Different gauge fixing: one obtains variants of c_{Γ} 's where $d A r g$ is replaced by dlog.
- Boundary condition: require that $\phi(\partial D) \subset C$, where $C \subset M$ is a coisotropic submanifold (a "brane"); $\Rightarrow A_{\infty}$-deformation of $\Gamma\left(C, \wedge^{\bullet} N C\right) ; \Rightarrow$ quantization of reduced spaces
[Cattaneo-Felder].
- Several branes (\Rightarrow Fukaya-type category):
- two branes [Cattaneo-Felder]: two A_{∞}-algebras together with an invertible A_{∞}-bimodule realizing a Koszul/Morita duality/equivalence [C-Felder-Ferrario-Rossi] (conjectured by Shoikhet).
- three branes: composition up to homotopy of A_{∞}-bimodules [Ferrario].
- more...?

Spoiler: already with two branes, the weights (and graphs) involved are more general.

Multiple zeta values

Definition

Let s_{1}, \ldots, s_{ℓ} be positive integers, with $s_{1}>1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{1}{n_{1}^{S_{1}} \cdots n_{\ell}^{s_{\ell}}} .
$$

Definition

Let s_{1}, \ldots, s_{ℓ} be positive integers, with $s_{1}>1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{1}{n_{1}^{S_{1}} \cdots n_{\ell}^{s_{\ell}}} .
$$

These numbers also have an integral representation:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right)=\int_{\Delta^{k}} \omega_{0}\left(t_{1}\right) \ldots \omega_{0}\left(t_{s_{1}-1}\right) \omega_{1}\left(t_{\mathfrak{s}_{1}}\right) \omega_{0}\left(t_{\mathfrak{s}_{1}+1}\right) \ldots \omega_{1}\left(t_{k}\right)
$$

where

- $\omega_{0}(t)=d t / t$ and $\omega_{1}(t)=d t /(1-t)$,
- $\Delta^{k}=\left\{\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k} \mid t_{1} \geq \cdots \geq t_{k}\right\}$.

Definition

Let s_{1}, \ldots, s_{ℓ} be positive integers, with $s_{1}>1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{1}{n_{1}^{S_{1}} \cdots n_{\ell}^{s_{\ell}}}
$$

These numbers also have an integral representation:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right)=\int_{\Delta^{k}} \omega_{0}\left(t_{1}\right) \ldots \omega_{0}\left(t_{s_{1}-1}\right) \omega_{1}\left(t_{s_{1}}\right) \omega_{0}\left(t_{\mathfrak{s}_{1}+1}\right) \ldots \omega_{1}\left(t_{k}\right)
$$

where

- $\omega_{0}(t)=d t / t$ and $\omega_{1}(t)=d t /(1-t)$,
- $\Delta^{k}=\left\{\left(t_{1}, \ldots, t_{k}\right) \in[0,1]^{k} \mid t_{1} \geq \cdots \geq t_{k}\right\}$.

They are iterated integrals of $d \log (c . r$.$) on \mathcal{M}_{0,4}$.

- [Broadhurst-Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Broadhurst-Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of $\mathcal{M}_{0, n}$ are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of MZVs.
- [Broadhurst-Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of $\mathcal{M}_{0, n}$ are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of MZVs.
- Warning (life isn't simple): there are amplitudes in ϕ^{4} at high loop orders, which are related to modular forms (e.g. [Brown-Schnetz]), and not expected to be expressible as multiple zeta values (contrary to what may have been believed in the past).
- [Broadhurst-Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of $\mathcal{M}_{0, n}$ are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of MZVs.
- Warning (life isn't simple): there are amplitudes in ϕ^{4} at high loop orders, which are related to modular forms (e.g. [Brown-Schnetz]), and not expected to be expressible as multiple zeta values (contrary to what may have been believed in the past).
What about the Kontsevich weights c_{Γ}, that are Feynman amplitudes for the Poisson σ-model?
- [Broadhurst-Kreimer]: a lot of Feynman amplitudes in QFT are (linear combinations of) MZVs.
- [Brown]: periods of $\mathcal{M}_{0, n}$ are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of MZV s.
- Warning (life isn't simple): there are amplitudes in ϕ^{4} at high loop orders, which are related to modular forms (e.g. [Brown-Schnetz]), and not expected to be expressible as multiple zeta values (contrary to what may have been believed in the past).
What about the Kontsevich weights c_{Γ}, that are Feynman amplitudes for the Poisson σ-model?

Theorem [Banks-Panzer-Pym]

The coefficients c_{Γ} are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of MZVs.

Define the sheaf $\mathcal{U}_{n, m}^{\bullet}$ of polylogarithmic forms on $C_{n, m}$:

Define the sheaf $\mathcal{U}_{n, m}^{0}$ of polylogarithmic forms on $C_{n, m}$:
(1) Consider the map $\iota: C_{n, m} \hookrightarrow C_{2 n+m} \simeq \mathcal{M}_{0,2 n+m+1}$ that "double" the interior marked points.

Define the sheaf $\mathcal{U}_{n, m}^{0}$ of polylogarithmic forms on $C_{n, m}$:
(1) Consider the map $\iota: C_{n, m} \hookrightarrow C_{2 n+m} \simeq \mathcal{M}_{0,2 n+m+1}$ that "double" the interior marked points.
(2) Define the sheaf \mathcal{U}^{\bullet} of polylogarithmic forms on $\mathcal{M}_{0,2 n+m+1}$

Define the sheaf $\mathcal{U}_{n, m}^{\bullet}$ of polylogarithmic forms on $C_{n, m}$:
(1) Consider the map $\iota: C_{n, m} \hookrightarrow C_{2 n+m} \simeq \mathcal{M}_{0,2 n+m+1}$ that "double" the interior marked points.
(2) Define the sheaf \mathcal{U}^{\bullet} of polylogarithmic forms on $\mathcal{M}_{0,2 n+m+1}$: linear combinations of dlog of cross-ratios with coefficients being polylogs (period integrals on the universal curve).

Define the sheaf $\mathcal{U}_{n, m}^{0}$ of polylogarithmic forms on $C_{n, m}$:
(1) Consider the map $\iota: C_{n, m} \hookrightarrow C_{2 n+m} \simeq \mathcal{M}_{0,2 n+m+1}$ that "double" the interior marked points.
(2) Define the sheaf \mathcal{U}^{\bullet} of polylogarithmic forms on $\mathcal{M}_{0,2 n+m+1}$: linear combinations of dlog of cross-ratios with coefficients being polylogs (period integrals on the universal curve).
(3) Restrict: $\mathcal{U}_{n, m}^{\bullet}:=\iota^{*} \mathcal{U}^{\bullet}$.

Define the sheaf $\mathcal{U}_{n, m}^{\bullet}$ of polylogarithmic forms on $C_{n, m}$:
(1) Consider the map $\iota: C_{n, m} \hookrightarrow C_{2 n+m} \simeq \mathcal{M}_{0,2 n+m+1}$ that "double" the interior marked points.
(2) Define the sheaf \mathcal{U}^{\bullet} of polylogarithmic forms on $\mathcal{M}_{0,2 n+m+1}$: linear combinations of dlog of cross-ratios with coefficients being polylogs (period integrals on the universal curve).
(3) Restrict: $\mathcal{U}_{n, m}^{\bullet}:=\iota^{*} \mathcal{U}^{\bullet}$.

Theorem [Banks-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends polylogarithmic forms to polylogarithmic forms.

Define the sheaf $\mathcal{U}_{n, m}^{\bullet}$ of polylogarithmic forms on $C_{n, m}$:
(1) Consider the map $\iota: C_{n, m} \hookrightarrow C_{2 n+m} \simeq \mathcal{M}_{0,2 n+m+1}$ that "double" the interior marked points.
(2) Define the sheaf \mathcal{U}^{\bullet} of polylogarithmic forms on $\mathcal{M}_{0,2 n+m+1}$: linear combinations of dlog of cross-ratios with coefficients being polylogs (period integrals on the universal curve).
(3) Restrict: $\mathcal{U}_{n, m}^{\bullet}:=\iota^{*} \mathcal{U}^{\bullet}$.

Theorem [Banks-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends polylogarithmic forms to polylogarithmic forms.

This is essentially the same strategy as for Brown's result, with a specific difficulty for when one forgets an interior point.

Alternating MZVs

Let s_{1}, \ldots, s_{ℓ} be non-zero integers, with $s_{1} \neq 1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{\epsilon\left(s_{1}\right)^{n_{1}} \cdots \epsilon\left(s_{\ell}\right)^{n_{\ell}}}{n_{1}^{\left|s_{1}\right|} \cdots n_{\ell}^{\left|s_{\ell}\right|}}
$$

where $\epsilon(s)=s /|s|$.

Alternating MZVs

Let s_{1}, \ldots, s_{ℓ} be non-zero integers, with $s_{1} \neq 1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{\epsilon\left(s_{1}\right)^{n_{1}} \cdots \epsilon\left(s_{\ell}\right)^{n_{\ell}}}{n_{1}^{\left|s_{1}\right|} \cdots n_{\ell}^{\left|s_{\ell}\right|}}
$$

where $\epsilon(s)=s /|s|$.
New period in the game: $\zeta(-1)=\sum_{n \geq 1} \frac{(-1)^{n}}{n}=-\log (2)$.

Multiple zeta values

Alternating Multiple Zeta Values (Euler sums)

Alternating MZVs

Let s_{1}, \ldots, s_{ℓ} be non-zero integers, with $s_{1} \neq 1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{\epsilon\left(s_{1}\right)^{n_{1}} \cdots \epsilon\left(s_{\ell}\right)^{n_{\ell}}}{n_{1}^{\left|s_{1}\right|} \cdots n_{\ell}^{\left|s_{\ell}\right|}}
$$

where $\epsilon(s)=s /|s|$.
New period in the game: $\zeta(-1)=\sum_{n \geq 1} \frac{(-1)^{n}}{n}=-\log (2)$.

Generalization: N-coloured MZVs

$s_{1}, \ldots, s_{\ell} \in \mathbb{N}_{>0}$ and $\xi_{1}, \ldots \xi_{\ell} \in \mu N$, with $\left(s_{1}, \xi_{1}\right) \neq(1,1)$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell} \mid \xi_{1}, \ldots, \xi_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{\xi_{1}^{n_{1}} \cdots \xi_{\ell}^{n_{\ell}}}{n_{1}^{S_{1}} \cdots n_{\ell}^{s_{\ell}}}
$$

Alternating MZVs

Let s_{1}, \ldots, s_{ℓ} be non-zero integers, with $s_{1} \neq 1$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{\epsilon\left(s_{1}\right)^{n_{1}} \cdots \epsilon\left(s_{\ell}\right)^{n_{\ell}}}{n_{1}^{\left|s_{1}\right|} \cdots n_{\ell}^{\left|s_{\ell}\right|}}
$$

where $\epsilon(s)=s /|s|$.
New period in the game: $\zeta(-1)=\sum_{n \geq 1} \frac{(-1)^{n}}{n}=-\log (2)$.

Generalization: N-coloured MZVs

$s_{1}, \ldots, s_{\ell} \in \mathbb{N}_{>0}$ and $\xi_{1}, \ldots \xi_{\ell} \in \mu N$, with $\left(s_{1}, \xi_{1}\right) \neq(1,1)$:

$$
\zeta\left(s_{1}, \ldots, s_{\ell} \mid \xi_{1}, \ldots, \xi_{\ell}\right):=\sum_{n_{1}>\cdots>n_{\ell} \geq 1} \frac{\xi_{1}^{n_{1}} \cdots \xi_{\ell}^{n_{\ell}}}{n_{1}^{s_{1}} \cdots n_{\ell}^{S_{\ell}}}
$$

These numbers also have an integral representation, as iterated integrals of dlog of t, and $t-\xi, \xi \in \mu N$.

Consider the moduli $\mathcal{C}_{n, p+1+q}$ of marked disks: boundary marked points are given by

$$
\{-\bar{p}, \ldots,-\overline{1}, 0, \overline{1}, \ldots, \bar{q}, \infty\} \hookrightarrow \partial D .
$$

Consider the moduli $\mathcal{C}_{n, p+1+q}$ of marked disks: boundary marked points are given by

$$
\{-\bar{p}, \ldots,-\overline{1}, 0, \overline{1}, \ldots, \bar{q}, \infty\} \hookrightarrow \partial D .
$$

We have a map $\iota: \mathcal{C}_{n, p+1+q} \hookrightarrow \mathcal{M}_{0, N(2 n+p+q)+2}$ sending all coloured (blue, magenta and red) points (that we see as points in the upper half-plane) to their N-th roots and complex conjugates.

Consider the moduli $\mathcal{C}_{n, p+1+q}$ of marked disks: boundary marked points are given by

$$
\{-\bar{p}, \ldots,-\overline{1}, 0, \overline{1}, \ldots, \bar{q}, \infty\} \hookrightarrow \partial D .
$$

We have a map $\iota: \mathcal{C}_{n, p+1+q} \hookrightarrow \mathcal{M}_{0, N(2 n+p+q)+2}$ sending all coloured (blue, magenta and red) points (that we see as points in the upper half-plane) to their N-th roots and complex conjugates.

An illustration of the $\operatorname{map} \iota$ for $N=2$

Consider the moduli $\mathcal{C}_{n, p+1+q}$ of marked disks: boundary marked points are given by

$$
\{-\bar{p}, \ldots,-\overline{1}, 0, \overline{1}, \ldots, \bar{q}, \infty\} \hookrightarrow \partial D .
$$

We have a map $\iota: \mathcal{C}_{n, p+1+q} \hookrightarrow \mathcal{M}_{0, N(2 n+p+q)+2}$ sending all coloured (blue, magenta and red) points (that we see as points in the upper half-plane) to their N-th roots and complex conjugates.

An illustration of the $\operatorname{map} \iota$ for $N=2$

One then defines the sheaf $\mathcal{U}_{N}:=\iota^{*} \mathcal{U}^{\bullet}$ of N-coloured polylogarithmic forms.

Theorem [C-Dupont-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends N -coloured polylogarithmic forms to N -coloured polylogarithmic forms.

Theorem [C-Dupont-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends N -coloured polylogarithmic forms to N -coloured polylogarithmic forms.
($N=2$) \Rightarrow Weights (a-k-a Feynman amplitudes) appearing in [C-Felder-Ferrario-Rossi] for the deformation quantization in the presence of two branes are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of alternating multiple zeta values.

Theorem [C-Dupont-Panzer-Pym]

Fiber-integrating along "forgetting-a-point" maps sends N -coloured polylogarithmic forms to N -coloured polylogarithmic forms.
($N=2$) \Rightarrow Weights (a-k-a Feynman amplitudes) appearing in [C-Felder-Ferrario-Rossi] for the deformation quantization in the presence of two branes are $\mathbb{Q}\left[(2 \pi \mathrm{i})^{-1}\right]$-linear combinations of alternating multiple zeta values.

Questions:

- Occurences of N-coloured MZVs in the Poisson σ-model?
- Nature of the weights when there are more branes?
- Higher genus version? Do eMZVs appear if one replaces the source with a genus one curve in the Poisson σ-model?

