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Alone this summer morning on the deserted wharf,
I look toward the bar, I look toward the Indefinite,

I look and am glad to see
The tiny black figure of an incoming steamer.

[...]

Fernando Pessoa, Maritime Ode,
A Little Larger Than The Entire Universe: Selected Poems.
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Résumé

Dans cette thèse, en suivant les travaux initiés par V. Drinfeld, poursuivis par B. Enriquez, puis
par ce dernier, D. Calaque et P. Etingof, nous étudions la connexion KZB elliptique cyclotomique
(ellipsitomique en plus court) universelle, associée à l’espace de modules des courbes elliptiques
avec n points marqués et une structure de (M,N)-niveau. La platitude de cette connexion nous
permet d’étudier des relations de monodromie, ouvrant la voie à une théorie générale des associateurs
ellipsitomiques et des groupes de Grothendieck-Teichmüller qui lui correspondent, que l’on dégage via
l’utilisation du formalisme des opérades (et certaines de leurs variantes) en nous basant sur les travaux
de B. Fresse à ce sujet. D’une part, ce formalisme nous permet par ailleurs d’étudier la structure des
associateurs en genre supérieur. D’autre part, l’associateur KZB ellipsitomique nous permet de dégager
une théorie des valeurs multizêta elliptiques en des points de torsion, dont on démarque quelques unes
de leurs premières propriétés du type associateurs.

On commencera par mettre en place la machinerie opéradique nécessaire pour définir les associateurs
ellipsitomiques en partant tour à tour de la situation déjà connue en genre 0, puis de celle en genre 1 et
ensuite de leurs variantes cyclotomiques. Enfin, grâce à ce formalisme, nous dégagerons une définition
des associateurs en tout genre.

Ensuite, nous entrerons dans le détail de la construction de la connexion KZB ellipsitomique
universelle, en premier temps sur l’espace de configurations (M,N)-décorées d’une courbe elliptique
puis sur les espaces de modules des courbes à niveau, nous la lieront à sa version réalisée via l’utilisation
des algèbres de Hecke doublement affines et des r-matrices classiques dynamiques. Pour finir nous
présenterons les applications de cette construction, à savoir : formalité de certains sous-groupes de
tresses sur le tore, l’associateur KZB ellipsitomique, valeurs multizêta elliptiques en des points de
torsion ainsi qu’une application en représentations d’algèbres de Cherednik cyclotomiques.

Mots-clés

Connexions KZB universelles, associateurs de Drinfeld, groupes de Grothendieck-Teichmüller, valeurs
multizêta elliptiques en des points de torsion.
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Contributions to the theory of KZB associators

Abstract

In this thesis, following the work initiated by V. Drinfeld and pursued by B. Enriquez, then by the
latter together with D. Calaque and P. Etingof, we study the universal twisted elliptic (ellipsitomic
in short) KZB connection, associated to the moduli space of elliptic curves with n marked points
and a (M,N)-level structure. The flatness of this connection allows us to study monodromy relations
satisfied by this connection, opening the way to a general theory of ellipsitomic associators and
Grothendieck-Teichmüller groups corresponding to them, which is released via the use of the formalism
of operads (and some of their variants) basing ourselves on the work of B. Fresse. On the one hand,
this formalism allows us to study the structure of associators in higher genus. On the other hand,
the ellipsitomic KZB associator allows us to derive a theory of elliptic multiple zeta values at torsion
points, from which some of their first associator-like properties are distinguished.

We will begin by setting up the operadic machinery necessary to define the ellipsitomic associators
starting successively with the genus 0 situation, which is well-known, then the genus 1 situation and
their cyclotomic variants. Then, in light of this formalism, we will release a definition of genus g
associators.

Next, we will go into the details of the construction of the universal ellipsitomic KZB connection,
first over the (M,N)-twisted configuration space of an elliptic curve and then over the moduli space
of elliptic curves with a level structure. We will associate this connection to its realized version by
means of the use of double affine Hecke algebras and of classical dynamical r-matrices. Finally we will
present the applications of this construction, namely : the formality of certain subgroups of the braid
group on the torus, the ellipsitomic KZB associator, elliptic multiple zeta values at points of torsion as
well as an application in representations of cyclotomic Cherednik algebras.

Keywords

Universal KZB connections, Drinfeld associators, Grothendieck-Teichmüller groups, elliptic multiple
zeta values at torsion points.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Associators

The theory of Drinfeld associators was introduced by the ukrainian mathematician Vladimir Drinfeld
in his famous article [31]. It is an example of an object that mathematics borrow from physics and
whose mathematical significance ends up being independent of its physical importance. In particular
the following ideas1

• Quantum groups (Drinfeld) : associators produce quantizations of Lie bialgebras.

• Conformal Field theory and Wess-Zumino-Witten models (Witten2) : the KZ connection appears
naturally in the geometric quantization of 3-dimensional Chern-Simmons theory3.

• Algebraic topology of varieties and 3-dimensional topological invariants (Witten, Kontsevich4) :
the universal enveloping algebra of the holonomy Lie C-algebra of the configuration space of the
complex plane, which is where the KZ connection is defined, is precisely the algebra of horizontal
string diagrams.

served to answer deep problems in

• Number theory (Drinfeld, see [31]) : the KZ Associator is a generating series of all multizeta
values, which satisfy associator-like relations.

• Geometric Galois theory (Grothendieck5-Drinfeld, see [31] and [61]) : the set of associators is a
torsor under the action of a group whose profinite version contains the absolute Galois group
Gal(Q̄/Q).

1Non-exhaustive list, as well as cited authors with significant contributions in the theory of associators.
2see for example his article [105].
3The reader can also discover some parts this wide field in the excellent introduction [52] on the subject.
4see in particular his article [77].
5see in particular his manusscript «Esquisse d’un Program» [61].

17
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• Deformation quantization and formality (Kontsevich, Tamarkin, see [77] and [97]) : each Drinfeld
associator provides a universal deformation quantization (i.e. of a universal « star product ») in
the space of « observables » of a Poisson variety. Each associator produces a formality morphism
of the little disks operad.

Initially, in his seminal work [31] and motivated by the construction of quasi-Hopf algebras, V. Drinfeld
was looking to « universalize » the construction associated with the monodromy of a system of
differential equations with non-commutative variables coming from high energy physics and showed
that, not only associators over C and over Q exist, but their existence mobilizes the theory of a
mysterious group, the Grothendieck-Teichmüller group (in particular its k-pro-unipotent version),
whose existence has been foreseen by Alexander Grothendieck in [61] (see also [27]). This group (and its
different completed versions) is very important because it intervenes in several sectors of mathematics
(see for example [29] and [23]).

The construction of this connection goes as follows. First observe that the holonomy Lie algebra of
the configuration space

Conf(C, n) := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj if i 6= j}

of n points on the complex line is isomorphic to the graded Lie C-algebra tn generated by tij ,
1 ≤ i 6= j ≤ n, with relations

(S) tij = tji,

(L) [tij , tkl] = 0 if #{i, j, k, l} = 4,

(4T) [tij , tik + tjk] = 0 if #{i, j, k} = 3.

On the one hand, denote by PBn the fundamental group of Conf(C, n), also known as the pure braid
group with n strands, and by pbn its Malcev Lie algebra (which is filtered by its lower central series,
and complete). Then, one can easily check that PBn is generated by elementary pure braids Pij ,
1 ≤ i < j ≤ n, which satisfy (at least) the following relations:

(PB1) (Pij , Pkl) = 1 if {i, j} and {k, l} are non crossing,

(PB2) (PkjPijP
−1
kj , Pkl) = 1 if i < k < j < l,

(PB3) (Pij , PikPjk) = (Pjk, PijPik) = (Pik, PjkPij) = 1 if i < j < k.

We can depict the generator Pi,j in the following two equivalent ways:

1

1

i

i

...

...

j

j

n

n

←→

1
i

j

n
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Therefore one has a surjective morphism of graded Lie algebras pn : tn � gr(pbn) sending tij to
σ(log(Pij)), i < j where σ : pbn −→ gr(pbn) is the symbol map.

On the other hand, denote exp(̂tn) the exponential group associated to the degree completion t̂n of
tn. The universal KZ connection on the trivial exp(̂tn)-principal bundle over Conf(C, n) is then given
by the holomorphic 1-form

wKZ
n :=

∑
16i<j6n

dzi − dzj
zi − zj

tij ∈ Ω1(Conf(C, n), tn),

which takes its values in tn. It is a fact that the connection associated to this 1-form is flat and
descends to a flat connection over the moduli spaceM0,n+1 ' Conf(C, n)/Aff(C) of rational curves
with n+ 1 marked points.

First, the regularized holonomy of this connection along the real straight path from 0 to 1 in
M0,4 ' P1−{0, 1,∞} gives an element ΦKZ ∈ C〈〈x0, x1〉〉 called the KZ associator that is a generating
series for values at 0 and 1 of multiple polylogarithms, the latter being precisely multiple zeta values
([80],[49]). Next, using the monodromy representation of the universal KZ connection, one obtains :

1. A morphism of filtered Lie algebras µn : pbn −→ t̂n such that gr(µn) ◦ pn = id. Hence one
concludes that pn and µn are bijective. This proves that pbn is isomorphic to the degree
completion of its associated graded, which is actually tn. We will then say that the group PBn is
formal (or more accurately weakly 1-formal, see the comments below).

2. A system of relations (called Pentagon (P ) and two Hexagons (H±)) satisfied by the KZ associator.

Notice that our definition of formality is weaker than the original one of Dennis Sullivan. If G is a
finitely generated group and g is the Lie algebra of its prounipotent completion, then G is 1-formal in
the sense of [28] if g is quadratically generated, that is, if there is an isomorphism

g ' L̂(H1(G))/I

where I is the closed ideal in the free pronilpotent Lie algebra L̂(H1(G)) generated by the subset

S ⊂ Λ2H1(G) = L2(H1(G)

of the degree 2 elements of the free Lie algebra L(H1(G). In light of the above, we say that G is weakly
1-formal if

g ' L̂2(H1(G))/I

where I is the closure of an homogeneous ideal in L̂(H1(G)). Then, by Morgan’s work [87], the
fundamental group of smooth complex algebraic varieties are weakly 1-formal but are not allways
1-formal. For instance, by Bezrukavnikov’s results in [11], elliptic braid groups are not 1-formal for
n ≥ 2. Another example is the fundamental group of the C∗-bundle over an elliptic curve E associated
to a line bundle of degree 1, as the Lie algebra of its unipotent fundamental group is the Heisenberg
Lie algebra

g ' L̂(X,Y ))/(ad2
X(Y ), ad2

Y (X)),

which is homogeneous but not quadratically presented. Nevertheless, if g ≥ 2, all genus g braid groups
are 1-formal.
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Then, V. Drinfeld showed that the set Ass(k) is a torsor under the action of an important and
somewhat mysterious group : the prounipotent Grothendieck-Teichmüller group, denoted GT(k).
Ass(k) is also a torsor under the action of its graded version, denoted by GRT. The starting point
into the consideration of this group is that it arises in Grothendieck’s program of studying the absolute
Galois group Gal(Q̄/Q) through its outer action on the algebraic fundamental group(oid) of the
moduli spaces of curves Mg,n. The group GT(k) has at least a profinite and a pro-` version, but
it is the easiest of the three to work with. It is then a fact that Gal(Q̄/Q) injects into the profinite
Grothendieck-Teichmüller group and it has been famously conjectured to be isomorphic to this group.
Since then, the KZ equations became popular among mathematicians and they were quickly noticed to
have relations to several other mathematical fields such as number theory, quantum group theory and
deformation quantization.

Finally, on the "iterated integral" point of view, one is brought to characterise MZVs as being
periods ofM0,n. In fact, if we denote MT(Z) for the Tannakian category of mixed Tate motives over
Z, then MZVs are periods of MT(Z) which bring us to consider their motivic versions. Motivic MZVs
(mMZVs) proved to be very important as they permit to work with a crucially useful formula due to A.
Goncharov ([59]) and F. Brown ([21]) for the coaction of the graded ring of affine functions on the
prounipotent part of the Galois group of MT(Z) over Q. As an application of these tools, F. Brown has
shown that all periods of MT(Z) are Q[ 1

2πi ]-linear combinations of MZVs, that every MZV of weight N
is a Q-linear combination of elements of the set {ζ(k1, ..., kr), where ki = 2 or 3, and k1 + · · · kr = N}
([21]). Other striking results of the use of mMZVs can be found in perturbative Quantum Field Theory
([22]) and, more recently, in perturbative Superstring Theory ([92]).

1.1.2 Generalisations I : The cyclotomic case

Similarly, one can consider the configuration space

Conf(C×, n) := {z = (z1, . . . , zn) ∈ (C×)n|zi 6= zj if i 6= j}

of n points on C×. Then Conf(C×, n) = Conf(C, n + 1)/C and thus its fundamental group PB1
n is

isomorphic to PBn+1. More generally, for anyM ∈ Z−{0} one can consider anM -twisted configuration
space

Conf(C×, n,M) := {z = (z1, . . . , zn) ∈ (C×)n|zMi 6= zMj for some i 6= j}.

In [33], B. Enriquez used the so-called universal trigonometric KZ connection, to prove that one has
an isomorphism pbMn −→ exp(̂tMn ), where pbMn is the Malcev Lie algebra of the fundamental group
PBMn ⊂ PB1

n of Conf(C×, n,M), and tMn is the holonomy Lie algebra of Conf(C×, n,M). The holonomy
of this connection along a suitable (non closed) path gives a universal pseudotwist ΨM

KZ ∈ exp(tM2 ) that
is a generating series for values of multiple polylogarithms at Mth roots of unity i.e. cyclotomic MZVs
(which will be denoted µM -MZVs), satisfies relations with ΦKZ and whose monodromy will give us
cyclotomic associator relations.

Finally, the set Ass(M,k) of so-called cyclotomic associators is a torsor under the action of the
cyclotomic analog ĜTM (k) of the group ĜT(k), which maps to ĜT(k) and whose associated Lie
algebra is isomorphic to its associated graded grtM .

As iterated integrals, µM -MZVs are shown to be periods of P1 − {0, µM ,∞}. In fact, by relying on
Deligne’s theory of the motivic fundamental group of Gm − µM and on F. Brown and A. Goncharov’s
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explicit coaction formula, C. Glanois used in [57] motivic µM -MZVs to show analog results on generating
families for µM -MZVs and studied how the periods in P1−{0, µM ,∞} relate to each other when taking
different choices for M . Now, the main difference with the classical case is that the upper bound for
the dimension of µM -MZVs of a given weight is reached in the cases6 M = 1, 2, 3, 4, 8 but it is known
to be not reached, for instance, if M = ps for a prime p ≥ 5. This means that µM -MZVs are not
enough to describe all periods of P1 − {0, µM ,∞} in this case.

Now, if we return to consider the set of cyclotomic associators one can show that if M ′ divides
M , then ΨM

KZ and ΨM ′

KZ satisfy distribution relations, analogously to C. Glanois distribution study.
By imposing these relations one obtains a subset of cyclotomic associators which is a torsor under
a certain subgroup of GTM . This subgroup can be seen as an explicit approximation of the motivic
fundamental group of Gm − µM .

1.1.3 Generalisations II : The elliptic case

The genus one universal Knizhnik–Zamolodchikov–Bernard (KZB) connection ∇KZB
1,n was introduced

in [24]. This is a flat connection over the moduli space of elliptic curves with n marked pointsM1,n,
which was independently discovered by Levin–Racinet [81] in the specific cases n = 1, 2. It restricts to
a flat connection over the configuration space

Conf(T, n) := {z = (z1, . . . , zn) ∈ Cn|zi − zj /∈ Λτ if i 6= j}/Λnτ

of n points on an (uniformized) elliptic curve Eτ := C/(Z + τZ), for τ ∈ h and Λτ = Z + τZ. More
precisely, this connection is defined on a G-principal bundle overM1,n where the Lie algebra associated
to G has as components:

1. the holonomy Lie algebra t1,n of Conf(T, n) controlling the variations of the marked points: it
has generators xi, yi, for i = 1, ..., n, corresponding to moving zi along the topological cycles
generating H1(Eτ );

2. a Lie algebra d composed by the Lie algebra sl2 with standard generators e, f, h and a Lie algebra
d+ := Lie({δ2m|m ≥ 1}) such that each δ2m acts as a highest weight element for sl2. The Lie
algebra d controls the variation of the curve inM1,n.

Now, the connection ∇KZB
1,n can be locally expressed as ∇KZB

1,n := d−∆(z|τ)dτ −∑iKi(z|τ)dzi where

1. the term Ki(−|τ) : Cn −→ t̂1,n is holomorphic on

Cn −Diagn,τ = {z = (z1, . . . , zn) ∈ Cn|zi − zj ∈ Λτ if i 6= j},

where Λτ = Z⊕ τZ, with only poles at the diagonal in Cn and the Λnτ -translates of this diagonal.
It is constructed out of a function

k(x, z|τ) :=
θ(z + x|τ)

θ(z|τ)θ(x|τ)
,− 1

x
.

This relates directly the connection ∇KZB
1,n with Zagier’s work [106] on Jacobi forms and to Brown

and Levin’s work [20].
6The case M = 6 being also known but treated differently.
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2. the term ∆(z|τ) is a meromorphic function Cn × h −→ Lie(G) with only poles at the diagonal in
Cn × h and the Λnτ -translates of this diagonal. In particular, the coefficients of δ2m in ∆(z|τ) are
Eisenstein series.

We also refer to Hain’s survey [63] and references therein for the Hodge theoretic and motivic aspects
of the story. Let us fix τ ∈ h. Recall that the Lie algebra t̄1,2(C) is isomorphic to the free Lie algebra
f2(C) generated by two elements x := x1 and y := y1. We define the elliptic KZB associators A(τ), B(τ)

as the regularized holonomies from 0 to 1 and 0 to τ of the differential equation

G′(z) = −θτ (z + adx) adx

θτ (z)θτ (adx)
(y) ·G(z), (1.1)

with values in the group exp(̂̄t1,2(C)) More precisely, this equation has a unique solution G(z) defined
over {a+ bτ, for a, b ∈]0, 1[} such that G(z) ' (−2π i z)−[x,y] at z −→ 0. In this case,

A(τ) := G(z)−1G(z + 1), B(τ) := G(z)−1e2π i xG(z + τ).

These are elements of the group exp(̂̄t1,2(C)). Then, one can construct an holomorphic map sending
each τ ∈ h to a couple e(τ) := (A(τ), B(τ)) where A(τ) (resp. B(τ)) is the regularized holonomy of
the universal elliptic KZB connection along the the straight paths from 0 to 1 (resp. from 0 to τ) in
the once punctured elliptic curve (C− Λτ )/(Λτ ) ' Conf(Eτ , 2)/Eτ . Then, B. Enriquez described and
studied in [34] the general theory of elliptic k-associators, whose set is denoted Ell(k) and for which
the couple e(τ) is an example of a C-point. Some of the main features of the so-called elliptic KZB
associators e(τ) are the following:

• They satisfy algebraic and modularity relations.

• They satisfy a differential equation in the variable τ expressed only in terms of iterated integrals
of Eisenstein series, which will be called iterated Eisenstein integrals.

• When taking τ to i∞ (which consists on computing the constant term of the q-expansion of the
series A(τ) and B(τ)), they can be expresed in terms of the KZ associator ΦKZ.

• The set Ell(k) is a torsor under the actions of the elliptic analog GTe``(k) of the (prounipotent)
group GT(k) and of its graded version GRTe``.

Next, in [35], B. Enriquez studied the coefficients of the series A(τ) and B(τ) and showed they are
the elliptic analogs of MZVs. These coefficients were called elliptic multiple zeta values (eMZVs) in
analogy to the genus 0 story. They are functions denoted I(τ) and J(τ), depending on the elliptic
parameter τ , which satisfy the following:

• when taking τ −→∞, eMZVs can be expressed only in terms of MZVs;

• they satisfy a differential equation expressed in terms of iterated Eisenstein integrals which,
analogously to the motivic coaction formula in the genus 0 cases, can be used to get results on
generating families for eMZVs and their decomposition. In particular, in ([82]) there is a complete
description of the algebras of the elliptic multiple zeta values I(τ) and J(τ) (modulo 2πi) in
terms of multiple zeta values and special linear combinations of iterated Eisenstein integrals.
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An important feature of these decompositions is that they are controlled by a special derivation algebra,
first studied by H. Tsunogai ([100]) and by A. Pollack ([90]) which is deeply connected with both the
Lie algebra of the (graded) elliptic Grothendieck-Teichmüller group and with the bi-graded Lie algebra
of the prounipotent radical of πgeom(MEM), where MEM denotes the Tannakian category of universal
mixed elliptic motives constructed by R. Hain and M. Matsumoto in [64].

1.2 Contents

The purpose of this thesis is to define a twisted version of the genus one KZB associator introduced in
[24] and [34]. The first part concerns foundational grounds which we will use to define ellipsitomic
associators. We will redefine by means of our operadic approach elliptic, cyclotomic associators. Then
we define ellipsitomic associators. Finally we concentrate in the framed case and give a definition of
genus g associators based in our operadic approach.

The second part concerns the proof of the fact that the set of ellipsitomic C-associators is not
empty, by providing an ellipsitomic KZB associator. We start by focusing on the universal ellipsitomic
KZB connection. This is a flat connection on a principal bundle over the moduli space of elliptic
curves with a Γ-structure, where Γ = Z/MZ × Z/NZ, and n marked points. It restricts to a flat
connection on the so-called Γ-twisted configuration space of points on an elliptic curve, which can be
used for proving the formality of some interesting subgroups of the pure braid group on the torus.
Then, we define twisted elliptic associators as renormalized holonomies along certain paths on a once
punctured elliptic curve with a Γ-structure. We study the monodromy of this connection and show
that it gives rise to a relation between twisted elliptic associators, the KZ associator [31] and the
cyclotomic KZ associator [33]. Moreover, twisted elliptic associators can be regarded as a generating
series for iterated Eisenstein integrals whose coefficients are elliptic multiple zeta values at torsion
points. In the case M = N , these coefficients are related to Goncharov’s work [58] and also to the
recent work [19] of Broedel–Matthes–Richter–Schlotterer. We finally conjecture that the universal
KZB connection realizes as the usual KZB connection associated to elliptic dynamical r-matrices with
spectral parameter [42, 44].

It is worth mentioning the recent work [98], where Toledano-Laredo and Yang define a similar KZB
connection. More precisely, they construct a flat KZB connection on moduli spaces of elliptic curves
associated with crystallographic root systems. The type A case coincides with the universal elliptic
KZB connection defined in [24], and we suspect that the type B case coincides with the connection
of the present paper for M = N = 2. It is interesting to point out that a common generalization
of their work and ours (for M = N) could be obtained by constructing a universal KZB connection
associated with arbitrary complex reflection groups, which shall be related to the (genus 0) universal
KZ connection associated with finite subroups of PSL2(C) ([85]).

The structure of this thesis goes as follows:

• Chapter 2 : This chapter sets the basics for the understanding of the rest of the thesis.

– In Section 2.1 we introduce the formal definition of Drinfeld associators. We set up a lot of
terminology involving the exponential group associated to a degree completed Lie algebra.

– In Section 2.2 we introduce the KZ associator, first by using the universal KZ equations and
then by using the universal KZ connection (it is the same construction under two slightly
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different languages). By doing so, we elucidate the implicit operadic nature of the associator
relations and we explain the word "universal" in a comprehensive manner. Then we use the
flatness of the universal KZ connection to reprove the formality of the braid groups and we
analyse the anatomy of the KZ associator involving multizeta values.

– In Section 2.3 we explain how all the genus 0 theory translates to its cyclotomic counterpart.

– In Section 2.4 we do the same for the elliptic counterpart.

– In Section 2.5 we give a quick reminder of the general notions of operads, operadic modules,
and moperads, in Section 2.1.

– Finally, in Section 2.6, we associate these structures to the Fulton-MacPherson compactified
configuration spaces in genus 0 and to the collections of their fundamental groupoids and
of their holonomy Lie algebras. We also recall the operadic definitions of associators and
Grothendieck-Teichmüller groups and enhance these notions into a torsor isomorphism
between these and their non-operadic (classical) versions.

• Chapter 3 : In this chapter we present the main results of this thesis. We then enumerate some
perspectives and future directions that can be undertaken after the work done here.

• Chapter 4 : This chapter is devoted to the definition of twisted elliptic associators and twisted
elliptic Grothendieck-Teichmüller groups by means of operads in groupoids and their variants.

– Section 4.1 is devoted to the corresponding - and equivalent - operadic definitions in the
genus 1 case by using operad modules instead of operads, mainly following [34].

– Next, in Section 4.2 we turn to the cyclotomic situation and proceed in the same way by
using moperads this time.

– Finally, in Section 4.3, we concentrate on the twisted elliptic (or ellipsitomic) situation
and proceed by combining the use of operad modules and the lifting techniques we used in
Sections 4.1 and 4.2. In particular we give a definition of ellipsitomic associators in terms of
elements satisfying some explicit equations as well as ellipsitomic Grothendieck-Teichmüller
groups in their k-prounipotent and graded versions.

• Chapter 5 : In this chapter we begin the study of genus g associators, for g > 1.

– In Section 5.1 we remind the operadic module structures that are associated to framed
Fulton-MacPherson compactified configuration spaces on a genus g oriented surface.

– In Section 5.2 we concentrate in the genus 0 framed case and we associate operad structures
to the collection of the corresponding framed configuration spaces an to the collection of
their fundamental groupoids. We also associate an operadic structure to the collection of
their holonomy Lie algebras. Then we give definitions of framed associators, show that
they do not form an empty set for k = C and show that they are the same as non-framed
associators.

– In Section 5.3 we give operadic definitions of genus g associators and Grothendieck-
Teichmüller groups, which we relate to their classical point of view in terms of some
elements satisfying relations. Then, we conjecture that the set of framed genus g associators
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is not empty and we give a start on the study of the framed genus g universal KZB connection
over the framed configuration space of points on a genus g surface, with the hope of showing
that the the set of genus g associators over the complex numbers is not empty.

• Chapter 6 : In this chapter we define and study the universal twisted elliptic KZB connection.

– In Section 6.1, we introduce Γ-twisted configuration spaces on an elliptic curve and define
the universal Γ-KZB connection on them.

– As in [24] the connection extends from the configuration space to the moduli space M̄Γ
1,[n]

of elliptic curves with a Γ-level structure and marked points. This is proved in Section 6.3
using some technical definitions introduced in Section 6.2 related to the derivations of the
holonomy Lie algebra tΓ1,n of the twisted configuration space in genus 1. As in the untwisted
case, the results of this section also apply to the “unordered marked points” situation.

– In Section 6.4, we provide a notion of realizations for the Lie algebras previously introduced,
and show that the universal KZB connection realizes to a flat connection intimately related
to elliptic dynamical r-matrices with spectral parameter.

• Chapter 7 : In this chapter we sketch several applications of twisted elliptic associators and
the twisted elliptic KZB connection.

– In Section 7.1, we derive from the monodromy representation the formality of the fundamental
group of the twisted configuration space of the torus, which is a subgroup of PB1,n. As in
the cyclotomic case, this formality result extends to a relative formality result for the map
B1,n −→ Γn oSn.

– Then, in Section 7.2, we show that this connection gives rise to a monodromy morphism
γn : BΓ

1,[n] −→ GΓ
n oSn. The relations between the generators give rise to twisted elliptic

associator relations, providing an example of such an object.

– In Section 7.3 we study the As,γ(τ) coefficients that were implicitely used in the definition
of the universal twisted elliptic KZB connection by relating them to the so-called Eisenstein-
Hurwitz series. We show that these are modular forms for the congruence subgroup of SL2(Z)

defining M̄Γ
1,[n] and compute the constant terms in their qN -expansion, where qN = e

2πi
N τ .

– Finally, in Section 7.4, we construct a homomorphism from the Lie algebra t̄Γ1,n o dΓ to
the twisted Cherednik algebra HΓ

n (k). This allows us to consider the twisted elliptic KZB
connection with values in representations of the twisted Cherednik algebra.

• Chapter 8 : In this chapter we give a quick definition of elliptic multiple zeta values at torsion
points in terms of iterated integrals of Eisenstein-Hurwitz series.

– In Section 8.1 we give a definition of the twisted version of Pollack’s Lie algebra of special
derivations.

– In Section 8.2 we use the action of the k-prounipotent ellipsitomic Grothendieck-Teichmüller
group on the ellipsitomic KZB associator to establish a differential equation in the variable
τ ∈ h which is satisfied by this associator and which involves exclusively Eisenstein-Hurwitz
series.
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– In Section 8.3 we use the machinery of iterated integrals developped by B. Enriquez in
[35] to give a definition of ellipsitomic multizeta values in terms of iterated integrals of
Eisenstein-Hurwitz series strongly related to multiple Hurwitz values.

Note: A part of the results figuring in this thesis consist on an ongoing collaboration by the author
and by Damien Calaque and appear in chapters 4, 6 and 7 in this thesis for sake of convenience.

Consistency

Chapters 4, 5 and 6 are essentially independent. Section 4.1 can be very iluminating for the
understanding of chapter 5. Next, Section 4.3 and all sections of chapter 6 are related to each
other in chapter 7, Section 7.2, where we use the universal twisted elliptic KZB connection
(constructed in chapter 6) to prove that twisted elliptic associators (defined in chapter 3) do
exist over the complex numbers. Finally, chapter 8 uses the results in chapter 7, Sections 7.1,
7.2 and 7.3.
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Chapter 2

Background

In the first part we will make a reminder on the most basic tools in the theory of associative
and Lie k-algebras which will be used, taking as an example the Kohno-Drinfeld Lie algebra tn

that will be used extensively throughout this thesis. The objective of this first section is to fix
all the notations that will be used throughout this thesis in a comprehensive manner, to give a
formal definition of Drinfeld k-associators and enunciate the fact that, when k = C, this set is
not empty.

In the second part we will study the KZ equation and we will give a definition of the KZ
associator from an analytic viewpoint. Then, we will make a small reminder on the basics
of connections on a G-principal bundle. We will then introduce the universal KZ connection
defined in a trivial exp(̂tn)-principal bundle over the configuration space of the complex plane.
Then we will give a geometrical definition of the KZ associator and we will prove that it provides
a Drinfeld C-associator.

In the third and fourth part we sketch the theory of the universal KZ associator in the cyclotomic
and elliptic contexts.

In the fifth and sixth sections we give in a clear manner the definitions of Grothendieck-
Teichmüller groups and associators by means of operad theory and Fulton-MacPherson com-
pactifications.

Note. The material of this chapter is standard, the author does not claim originality of
almost any result that figures in here. Bibliographical references will appear at the end of each
section where the reader can extend the work presented in here and of which the author has
been inspired to build this introduction.

Notation

• In this thesis k designates a field of characteristic zero.

• Unless otherwise stated, composition of morphisms are read from left to right.

27
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2.1 Drinfeld associators

2.1.1 Associative and Lie k-algebras

Associative algebras

We recall the definition of an associative k-algebra.

Definition 2.1.1. An associative k-algebra is a pair (A, ·) where A is a k-vector space along
with a bilinear map, called multiplication

· : A×A −→ A
(x, y) 7−→ x · y

that satisfies (x · y) · z = x · (y · z) for each x, y, z ∈ A. It is said that the algebra A is unitary
if there is a neutral element for the multiplication (that is, an element denoted 1 that satisfies
1 · x = 1 = x · 1 for all x ∈ A).

Example 2.1.2. Let us enumerate some examples of associative algebras.

1. The set of square matrices n× n with values in k forms a unitary associative algebra on
k, which is not commutative in general.

2. The set of complex numbers C forms an associative, commutative and unitary C-algebra
of real dimension 2.

3. Polynomials with coefficients in k form an infinite dimensional associative k-algebra which
is commutative and unitary.

4. In particular, the tensor space TV can be provided with the structure of an associative
k-algebra with multiplication

TV × TV −→ TV

(x, y) = ((x0, x1, . . . , xn), (y0, y1,..., ym)) 7−→ x · y := (x0, . . . , xn, y0, . . . , ym),

where xi ∈ V ⊗i, yj ∈ V ⊗j ,∀1 6 i 6 n, ∀1 6 j 6 m.

5. Let k〈〈X0, X1〉〉 be the associative k-algebra of formal series of powers in two non commu-
tative variables X0, X1. Elements of this k-algebra are of the form

f(X0, X1) =
∑

ω word in X0, X1

cω · ω

where X0 and X1 are formal symbols that do not commute, cω ∈ k, and where ω is a word
consisting only on powers of letters X0 and X1,

ω = Xn0
j0
Xn1
j1
Xn2
j2
· · ·Xnp

jp
,

where j0, . . . , jp ∈ {0, 1}, p, n0, . . . , np ∈ N. For example, ω = X3
1X0X

2
1X

9
0X1 is a word.

Let’s move on to the definition of a Lie algebra.
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Lie algebras

Definition 2.1.3. A Lie algebra over a field k is a k-vector space g provided with a k-bilinear
antisymmetric map called Lie bracket:

[−,−] : g× g −→ g

(X,Y ) 7−→ [X,Y ]

that satisfies the Jacobi identity:

[[X,Y ], Z] + [[Y, Z], X] + [[Z,X], Y ] = 0,

for each X,Y, Z ∈ g. A map of Lie k-algebras is a map between k-vector spaces

f : g −→ h

compatible with the Lie brackets of g and h, that is:

f([x, y]g) = [f(x), f(y)]h

for all x, y ∈ g. A Lie ideal i (resp. a Lie subalgebra h) of g is a vector subspace of g such that:

[g, i] ⊆ i(resp. [h, h] ⊆ h).

Given an ideal i of g one can form the Lie quotient g/i: it is the vector space g/i provided with
the bracket

[g + i, g′ + i] := [g, g′] + i.

Remark 2.1.4. Antisymmetry means [x, y] = −[y, x]. Bilinearity means

[ax+ by, z] = a[x, z] + b[y, z] and [z, ax+ by] = a[z, x] + b[z, y],

for all a, b ∈ k and all x, y, z ∈ g.

Example 2.1.5.

1. Any vector space E can be provided with the structure of a Lie algebra by establishing

∀x, y ∈ E : [x, y] = 0.

Such Lie k-algebra, where the Lie bracket is zero, is called abelian Lie algebra.

2. From an associative algebra (A, ·) over k, one can always build an Lie k-algebra <ith
underlying set A by setting, for all x, y ∈ A:

[x, y] := x · y − y · x.

This is called the commutator of the two elements x and y. It is easy to verify that this
defines a Lie algebra structure on A.
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3. As a concrete example of the previous situation, consider the spaceMn (k) of matrices
n× n with coefficients in k. This is an associative algebra provided usual matrix product,
not abelian in general. We can also give it a structure of an associative k-algebra, with
the bracket

[A,B] = AB −BA.
We denote gln (k) this Lie algebra.

Remark 2.1.6. The Ado theorem shows that any Lie k-algebra of finite dimension can be seen
as a subalgebra of gln (k). Unfortunately, the majority of Lie k-algebras which we will work
with are infinite dimensional, as in the case of a free associative k-algebra in two generators
that we define next.

Proposition 2.1.7. Let S be a set. There is a unique (up to unique isomorphism) Lie k-algebra
fS (k) provided with a map of sets π : S −→ fS (k) such that, for each Lie algebra g and each
map of sets f : S −→ g, there is a unique morphism of Lie algebras f̃ : fS (k) −→ g so that the
following diagram commutes:

S g

fS(k)

f

π
∃!f̃

that is, so that f = f̃ ◦ π. fS (k) is called the free Lie k-algebra over S.

If S = {X,Y }, we will denote from now on fS (k) = f(X,Y ).

Remark 2.1.8. Let’s take a closer look at this definition. A Lie word in symbols X1, . . . , Xn

is a formal bracket of these symbols. For example

[[X1, X4], [[X7, [X9, X2]], X1]].

The Lie algebra fS (k) must be understood as the k-vector space generated by all (linear combi-
nations of) Lie words modulo the subspace obtained by applying antisymmetry and the Jacobi
identity. Concretely, if we take S = {A,B}, then an element of fS (k) is a finite sum

f(A,B) =
∑

ωLie word inA,B

cw · ω

where cw ∈ k.

Remark 2.1.9. A Lie algebra can be presented by generators and relations: it is simply the
quotient Lie k-algebra of the free Lie k-algebra in such generators and the ideal generated by
such relations. One has to verify that the vector subspace generated by the relations is indeed
an ideal.

Every Lie algebra g is contained in an associative algebra U(g) - usually (much) larger than g -
called the universal enveloping algebra of g and where [−,−]g matches the bracket given by
the two-element commutator [x, y] := x · y − y · x.
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Definition 2.1.10. The universal enveloping k-algebra of g, denoted U(g), is the unique (up
to unique isomorphism) associative k-algebra provided with a morphism of k-Lie algebras

π : g −→ U(g)

such that for each associative algebra A and each map f : g −→ A of vector spaces, there is a
unique associative algebra morphism f̃ : U(g) −→ A such that the following diagram commutes:

g A

U(g)

f

π
∃!f̃

that is, so that f = f̃ ◦ π.

Remark 2.1.11. Specifically, U(g) is the quotient T (g)/I of tensor algebra modulo the two-
sided ideal generated by the relation

x⊗ y − y ⊗ x = [x, y].

Example 2.1.12. If g = fS (k) and S = {x1, . . . , xm} then U(g) = k〈S〉 is the free associative
algebra in symbols in S whose basis is given by the words ω = xj1 · · ·xjn where ji ∈ {1, . . . ,m}
for all i = 1, . . . , n.

Example: The Kohno-Drinfeld Lie algebra

Definition 2.1.13. The Kohno-Drinfeld Lie k-algebra, denoted tn(k), is the Lie algebra freely
generated by symbols tij, 1 6 i 6= j 6 n, modulo the ideal generated by the following relations:

tij = tji (2.1)

[tij , tkl] = 0 (2.2)

[tij , tik + tjk] = 0 (2.3)

where card{i, j, k, l} = 4. These relations are usually called infinitesimal braids relations. In
the next chapter we will justify this denomination. In the case k = C, we will use the notation
tn(C) := tn.

As an exercice one can explore the structure of this Lie algebra for low values of n.

Structure of tn(k) for n 6 3. The following facts are easy to prove :

1. The element cn :=
∑

16i<j6
tij is central in tn(k) (ie it commutes with every element of

tn(k)). One deduces that we can define the quotient t̄n(k) := tn(k)/〈cn〉.
2. The Lie k-algebras t2 (k) is the free Lie algebra on one generator and t̄2 (k) is the trivial

Lie k-algebra.



32 CHAPTER 2. BACKGROUND

3. t̄3(k) is nothing but the free associative k-algebra in two generators.

4. The Lie subalgebra of tn(k) generated by tij , where i, j ∈ [1, n], identifies with tn−1(k).

5. The Lie subalgebra of tn(k) generated by t1n, t2n..., t(n−1)n identifies with the free Lie
k-algebra fn(k).

6. There is an isomorphism of Lie k-algebras

tn(k) ' tn−1(k)⊕ fn(k).

7. Let kc3 be the abelian Lie k-algebra generated by c3 = t12 + t13 + t23. There is an
isomorphism of Lie k-algebras

t3(k) ' kc3 ⊕ f2(k)

where f2(k) is the free Lie k-algebra generated by t13 and t23 (or, equivalently, by t12 and
t23).

2.1.2 The exponential group

Completed filtered associative k-algebras

Definition 2.1.14. A topological ring is a ring with the structure of a topological space so that
the multiplication A×A −→ A is a homomorphism of topological spaces. A topological vector
space over a topological ring k is a k-vector space such that the addition and the multiplication
by scalars of the vector space are topological homomorphisms.

In this chapter, we will mainly use the standard and the discrete topologies.

We have notions of a topological associative algebra and a Lie topological algebra that will not
be recalled here.

Definition 2.1.15. An associative k-algebra A is filtered if it is equipped with a descending
sequence of ideals

A = m0 ⊃ m1 ⊃ m2 · · ·

Remark 2.1.16. A k-filtered associative algebra (A, {mi}i∈I) induces a direct system of
quotient rings

· · · −→ A/mi+1 −→ A/mi −→ · · · −→ A/m2 −→ A/m1 −→ 0.

Definition 2.1.17. The filtered completion of the filtered associative algebra (A, {mi}i∈I) is
the k-filtered associative algebra (Â, {m̂i}i∈I) where

Â := lim
←i
A/mi

=

{
a = (a0, a1, . . .) ∈

∞∏
i=1

A/mi
∣∣∣∣∣aj ≡ ai[modmi],∀j > i

}
and where, for all i ∈ I:

m̂i := {a = (a0, a1, . . .) ∈ Â|aj = 0,∀j 6 i}.
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Remark 2.1.18. One can identify the quotient k-algebras A/mi and Â/m̂i.

Proposition 2.1.19. If (A, {mi}i∈I) is a filtered associative k-algebra, then we can endow it
with a topology, called Krull topology, defined, for each point a ∈ A, by the basis of neighborhoods

{a+ mi}i∈N.

Remark 2.1.20. In case the ideals mi are equal to powers mi := Ii for the same ideal I of A,
the associated completion Â of A is usually called I-adic completion of A and its associated
Krull topology is called I-adic topology.

Proposition 2.1.21. Viewed as a filtered topological Lie k-algebra with respect to the Krull
topology, the completion (Â, {m̂i}i∈I) of an associative filtered k-algebra (A, {mi}i∈I) is precisely
its topological completion.

Proof. Let {ai}i>1 be a Cauchy sequence in A: for each open set U of A, there is an integer
NU such that, for all i, j > NU , we have ai − aj ∈ U . This is verified if, and only if, for every
integer n, there exists an integer Nn such that, for all i, j > Nn, we have

ai − aj ∈ mi.

Now, such a sequence always converges in Â towards point a = (a0, a1, . . .) ∈
∏
n>1

A/mn, where,

for all n, we have an ≡ aNn [modmn].

Conversely, every point of Â defines a Cauchy sequence in A.

Example 2.1.22. If A = k[X1, . . . , Xn] is the polynomial k-algebra on X1, . . . , Xn and I is
its maximal ideal, then the I-adic completion of A is the k-algebra

Â = k[[X1, . . . , Xn]]

of formal series over k in n commutative variables.

Degree completion

The Baker-Cambell-Hausdorff (BCH) formula is essentially useful to associate a group to any
completed Lie k-algebra (where the exponential application is not necessarily a group morphism).

Definition 2.1.23. A graded Lie k-algebra is a Lie algebra g provided with a graduation of
vector spaces:

g =

+∞⊕
n=−∞

gn

so that the Lie bracket is compatible with the graduation, that is to say:

[gi, gj ] ⊆ gi+j .
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Remark 2.1.24. If g is graded, then g induces the same graduation at the level of its associated
universal enveloping algebra U(g).

Let g =
∞⊕
n=1

gn be a positively graded Lie k-algebra so that each gn is of finite dimension.

We can equip it with a decreasing filtering of Lie ideals mn := ⊕
n6i

gi so we get a decreasing
sequence:

g = m0 ⊃ m1 ⊃ m2 ⊃ · · ·

Proposition 2.1.25. The degree completion of g is the completion of g with respect to filtering
{mi}i>1, and is identified with the following product:

ĝ :=

∞∏
n=1

gn.

Remark 2.1.26. The difference between g and ĝ lies in that the elements in ĝ can be written
as eventually infinite sums, unlike the elements of g.

Example 2.1.27. Let fS (k)n ⊂ fS (k) be the vector subspace spanned by Lie words with
(n − 1) brackets. For example f(X,Y )1 = k〈X,Y 〉, f(X,Y )2 = k〈[X,Y ]〉 y f(X,Y )3 =

k〈[X, [X,Y ]], [Y, [Y,X]]〉. We can notice that

[fS (k)n , fS (k)m] ⊂ fS (k)n+m ,

so we can build a grading fS (k) =
∞⊕
n=1

fS (k)n. Then, the degree completion of fS (k) is

f̂S (k) =
∞∏
n=1

fS (k)n. It is easy to prove that f̂S (k) ⊂ k〈〈S〉〉. If S = {X,Y }, we will denote

from now on f̂S (k) = f̂(X,Y ).

Example 2.1.28. The Kohno-Drinfeld Lie k-algebra tn(k) has a positive grading by setting
deg(tij) := 1 and we have

tn(k) =

∞⊕
m=1

tn(k)m,

where, for example, tn(k)1 =
⊕
i<j

ktij and tn(k)2 =
⊕

i<j<k

k[tij , tik]. This allows us to define its

degree completion t̂n(k).

The Baker-Cambell-Hausdorff formula

Let X,Y two elements of an associative k-algebra A. Recall the expressions of the exponential
and the logarithm in terms of series

eX :=

∞∑
n=0

Xn

n!
and log(1 +X) :=

∞∑
n=1

(−1)nXn

n
.

These are well defined if A is a completed associative k-algebra. In particular, in the algebra
k[[X,Y ]] of formal series in commutative variables, we have the relation

eXeY = eX+Y .
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However, in the algebra k〈〈X,Y 〉〉 this relation is not true in general. The goal of the Baker-
Cambell-Hausdorff formula is to fix this problem.

Definition 2.1.29. The Baker-Cambell-Hausdorff element is the formal series BCH of
k〈〈X,Y 〉〉 defined, for every X,Y ∈ k〈〈X,Y 〉〉, by

BCH(X,Y ) := log(eXeY ) = −
∞∑
n=1

1

n

1−
∞∑

k,l=0

XkY l

k!l!

n

= X + Y +
1

2
[X,Y ] +

1

12
[X, [X,Y ]] +

1

12
[Y, [Y,X]] + · · ·

One can prove that BCH(X,Y ) ∈ f̂(X,Y ).

Proposition 2.1.30. Let g be a completed Lie k-algebra. The exponential group exp(g)

associated to g is the group whose underlying set is the set of formal elements of the form
{eX , X ∈ g} (which is isomorphic to the underlying set of g) provided with the multiplication
law defined by the Baker-Cambell-Hausdorff formula:

exp(g)× exp(g) −→ exp(g)

(eX , eY ) 7−→ eBCH(X,Y ).

We have two morphisms, inverse from each other

e : g ←→ exp(g) : log

X ←→ eX

Proof. We need to show that BCH(X,Y ) converges, which is satisfied autotically because
ĝ = lim

←n
(g/mn). Exercise: Set the following equations:

BCH(X, 0) = BCH(0, X) = 0

BCH(X,−X) = 1

BCH(BCH(X,Y ), Z) = BCH(X,BCH(Y,Z)) = log(eXeY eZ),

the last equation taking place in f̂(X,Y, Z).

Remark 2.1.31. The definition of exp(g) makes sense only when the characteristic of k is
zero and when g is complete, otherwise the BCH(X,Y ) element does not make sense.

Example 2.1.32. The injection of Lie algebras

f(X,Y ) ↪→ t3 (k)

X 7−→ t12

y 7−→ t23

induces an injection of groups exp(̂fk(X,Y )) ↪→ exp
(̂
t3 (k)

)
.

Finally, if g is a pronilpotent Lie k-algebra, we denote gr(g) its associated graded Lie algebra.

We are ready to define
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2.1.3 Drinfeld associators

The first goal of this chapter will be to give a geometrical understanding of the following
definition that was introduced by Drinfeld in [31].

Definition 2.1.33. A Drinfeld k-associator is a pair (λ,Φ) where λ ∈ k× and

Φ(X,Y ) := eφ(X,Y ) ∈ exp(̂f(X,Y )) ⊂ k〈〈X,Y 〉〉

which satisfies the following equations:

Φ(X,Y ) = Φ−1(Y,X) in exp(̂f(X,Y )) (2.4)

e
±λ
2 t12Φ(t13, t12)e

±λ
2 t13Φ(t23, t13)e

±λ
2 t23Φ(t12, t23) = 1 in exp

(̂
t3 (k)

)
(2.5)

and

Φ(t13+t23, t34)Φ(t12, t23+t24) = Φ(t12, t23)Φ(t12+t13, t24+t34)Φ(t23, t34) in exp
(̂
t4 (k)

)
(2.6)

The set of Drinfeld k-associators will be denoted Ass(k).

Remark 2.1.34. The equation (2.4) is called antisymmetry relation. The two relations (2.5)
are called two hexagons relation and the relation (2.6) is called pentagon relation.

While we have taken the time to define each mathematical object involved in this definition,
we ignore - for the moment - the particular interest of this mathematical concept, which the
reason of being of those equations - at first sight arbitrary - and, above all, wether such a pair
does indeed exist.

The second objective of the following section will be then to prove the following theorem, due
to Drinfeld:

Theorem A. The set of C-associators is not empty.

In particular, the proof lies in the existence of a particular C-associator coming from the
regularized holonomy of a differential equation in two noncommutative variables called the
Knizhnik-Zamolodchikov equation, well-known in physics. The connection associated to these
equations will induce an isomorphism between the pure braid group, that is the fundamental
group of the configuration space of the complex plane, and the Kohno-Drinfeld algebra, which
is the holonomy Lie algebra of these spaces. These concepts will be introduced in the next section.

2.2 The KZ associator

In the previous section we took some time to present a formal definition of the Drinfeld
associators by means of the Kohno-Drinfeld Lie algebra and the exponential group of its
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associated degree completion. At the moment we do not know what is the reason to be of
these equations but we will dedicate some time into proving that such a set is not empty when
taking k = C.

In particular, we are going to explicit an example of such an associator through the resolution
of a certain system of differential equations in two non-commutative variables, whose geometric
version will allow us to understand the the architecture of the definition of Drinfeld associators.
We will mainly follow [31].

2.2.1 Solutions of the universal Knizhnik-Zamolodchikov equation

In this section, we will introduce the Knizhnik1-Zamolodchikov2 (KZ) equations in its universal
version. Initially, these equations, which form a system of partial differential equations in
the complex plane with regular singular points, were born in quantum field theory (especially
in condensed matter and high-energy physics) as equations that satisfy a set of additional
restrictions for the correlation functions in the Wess-Zumino-Witten model in two dimensional
field theory and which are associated to an associative k-algebra of a fixed level. The reader
interested in learning about the KZ equations in the context of quantum field theory may
consult the introduction [52] on the subject.

The universal KZ equation

The universal version of these equations was established by Drinfeld in [31] and are defined
for any type of associative k-algebra that satisfies the infinitesimal braid relations - that is,
defined in the Kohno-Drinfeld Lie algebra. Remember that the configuration space of n points
on the complex plane is the following open subspace of Cn:

Conf(C, n) := {z = (z1, . . . , zn) ∈ Cn|zi 6= zj , if i 6= j} .

Definition 2.2.1. For each n > 2, the Knizhnik-Zamolodchikov differential system over (any
open subset within) the configuration space Conf(C, n) is

(KZ)n : dW =
1

2iπ

∑
16i<j6n

tij
zi − zj

(dzi − dzj)W,

that is, for i = 1, . . . , n:

(KZ)n :
∂W

∂zi
=

1

2iπ

∑
16i<j6n

tij
zi − zj

W,

where W is a function defined in any open U ⊂ Conf(C, n) and taking values in Û (̂tn).

When n = 3, the differential system’s solutions (KZ)3 define an element of C〈〈X,Y 〉〉 and
the asymptotic behaviour of these equations when n = 3, 4 determines the relations that this

1(1962-1987) Vadim Knizhnik.
2(1952-) Alexander Zamolodchikov.
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element satisfies. It is important to emphasize that this « two stages principle » is enough
to fully define a Drinfeld associator. The importance of this remark is developed in the next
section when we integrate the geometry of Conf(C, n) into this story. For now let’s restrain
ourselves on the study of this differential system.

Definition of the KZ associator

Recall that a function f of a complex variable is analytic at a point x0 if it is developable in
entire series in any open neighborhood of x0 inside its domain set. This means that, for any
open neighborhood Dx0 of x0 in the domain set of f , there is a sequence (an)n>0 such that, for
all x ∈ Dx0 , the function f is written in the form of a convergent series

f(x) =

∞∑
n=0

an(x− x0)n.

We can easily observe that the system (KZ)3 is written in terms of the total differential

dW =
1

2iπ
[t12d log(z2 − z1) + t13d log(z3 − z1) + t23d log(z3 − z2)]W.

Proposition 2.2.2. The solutions of the system (KZ)3 are of the form

(z3 − z1)
c3
2iπG

(
z2 − z1

z3 − z1

)
,

where c3 := t12 + t13 + t23 and G is a formal series in the non commutative variables t12, t23,
with as coefficients analitical functions in the complex variable z ∈ C−{0, 1} which are solutions
of the linear differential equation

G′(z) =
1

2iπ

(
t12

z
+

t23

z − 1

)
G(z). (2.7)

Proof. The proof consists in the following stages:

1. First notice that

(z3 − z1)
u

2iπ = exp

(
log(z3 − z1)u

2iπ

)
=

∞∑
k=0

log(k(z3 − z1))uk

(2iπ)k
∈ t3

belongs to the center of t3.

2. In (KZ)3 do the variable change W = (z3 − z1)
u

2iπ × I.
3. Write z = (z2−z1)

(z3−z1) and conclude.

Let U = C − (]−∞, 0]
⋃

[1,∞[) where ] −∞, 0] and [1,∞[ are straight half-lines in R ⊂ C.
Notice that U is simply connected.

Remark 2.2.3. As a consequence of the fundamental theorem of linear differential equations,
the equation (2.7) has analytic solutions in U which are unique once a value has been specified
at any point of U .
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Equation (2.7) has two unique singularities in C which are z = 0 and z = 1. By setting w = 1/z,
we observe that this equation also has a singularity at ∞. These three singularities are regular.

Let’s analyze the asymptotic behavior of the equation (2.7) as we approach our two unique
singularities in C which are z = 0 and z = 1.

Proposition 2.2.4. Equation (2.7) has two unique solutions G0 and G1 such that

G0(z) ∼0 z
t12
2iπ (2.8)

G1(z) ∼1 (1− z)
t23
2iπ . (2.9)

In particular, G0 and G1 are not zero and therefore differ from each other by an invertible
element. The KZ associator is the quotient ΦKZ := G−1

1 G0 ∈ C〈〈X,Y 〉〉.

Remark 2.2.5. The equations (2.8) and (2.9) mean that G0(z)z− t12

2iπ (resp. G1(z)(1−z)−
t23
2iπ )

have analogous continuations in a neighborhood of 0 (resp 1) taking at 0 (resp. at 1) the value
1. We observe in the same way that z

t12
2iπ and (1− z) t23

2iπ are well defined in U .

Proof. The reader can consult the proof of Proposition 2.2.4 in [67].

One can show that ΦKZ is independent of z calculating the derivative Φ′KZ(z).

Remark 2.2.6. This definition is valid for all non-commutative symbols A and B. For each
pair (A,B), we have two functions G0(z;A,B) and G1(z;A,B). We can then define

φKZ(A,B) := G1(−;A,B)−1G0(−;A,B).

In particular, φKZ(t12, t23) = ΦKZ.

Let us reformulate Theorem A in the following way:

Theorem A. The pair (1,ΦKZ) is a Drinfeld C-associator.

Analytic proof of Theorem A

Below we reproduce Drinfeld’s original proof of Theorem A.

1) ΦKZ belongs to exp(̂t3):

Let us give the big steps of this part of the proof: first the universal enveloping algebra
Û
(̂
t3 (k)

)
has a structure of a filtered and completed Hopf k-algebra. In particular, the

coproduct ∆ is given by the completed tensor product ⊗̂. The elements of exp(̂t3) are
identified with the group-like elements (i.e. elements that verify ∆(g) = g⊗̂g) of Û (̂t3).
Therefore, it suffices to show that ∆(ΦKZ) = ΦKZ⊗̂ΦKZ. This is obtained by using remark
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2.2.6: notice that if G0 and G1 are group-like, then we can (in the case of G0) use function
G+(z) = G0(z; t12 ⊗ 1, t23 ⊗ 1)G0(z; 1⊗ t12, 1⊗ t23) to conclude.

2) Antisymmetry relation:

If we replace z by 1− z in equation (2.7), ΦKZ is replaced by its inverse which is equivalent to
swap t12 with t23 ie apply the permutation (123).

3) Pentagon relation:

Let’s start by describing the asymptotic behaviors of the solutions of the system (KZ)4. Let

U := {(z1, . . . , z4) ∈ R4|z1 < z2 < z3 < z4} ⊂ Re(Conf(C, 4))

be an open subset in the real part of the 4 point configuration space of the complex plane.
Consider the following 5 zones in U :

(Z1) z2 − z1 � z3 − z1 � z4 − z1;

(Z2) z3 − z2 � z3 − z1 � z4 − z1;

(Z3) z3 − z2 � z4 − z2 � z4 − z1;

(Z4) z4 − z3 � z4 − z2 � z4 − z1;

(Z5) z4 − z3 � z4 − z1 and z2 − z1 � z4 − z1.

How to represent these areas and how to relate them to each other? It’s here where one of
Drinfeld’s brilliant ideas intervenes: they correspond to a pentagon where each edge corresponds
to parenthesis arrangement: Vi and Vj are in the same parenthesis and Vk out of it if |zi−zj | �
|zi − zk|. This way, z2 − z1 � z3 − z1 � z4 − z1 corresponds to the pair ((••)•). We can
also say that it corresponds to a trivalent tree with four leafs as summarized in the following
image:

•((••) • )

((••) • ) •

Z1

Z2

Z3

Z4Z5

(•(••)) •
(••)(••)

•(•(••))

Lemma 2.2.7. There are five unique solutions W1, . . . ,W5 to the system (KZ)4 having the
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following asymptotic behaviors in the corresponding zones:

W1 ∼ (z2 − z1)
t12
2iπ (z3 − z1)

t13+t23
2iπ (z4 − z1)

t14+t24+t34
2iπ ;

W2 ∼ (z3 − z2)
t23
2iπ (z3 − z1)

t12+t13
2iπ (z4 − z1)

t14+t24+t34
2iπ ;

W3 ∼ (z3 − z2)
t23
2iπ (z4 − z2)

t24+t34
2iπ (z4 − z1)

t12+t13+t14
2iπ ;

W4 ∼ (z4 − z3)
t34
2iπ (z4 − z2)

t23+t34
2iπ (z4 − z1)

t12+t13+t14
2iπ ;

W5 ∼ (z2 − z1)
t12
2iπ (z4 − z3)

t34
2iπ (z4 − z1)

t13+t14+t23+t24
2iπ .

That is, we have for example

W2 = f(u, v)(z3 − z2)
t23
2iπ (z3 − z1)

t12+t13
2iπ (z4 − z1)

t14+t24+t34
2iπ ,

where u = (z3−z2)
(z4−z1) , v = (z3−z1)

(z4−z1) and f is an analytic function on a neighborhood of (0, 0) with
f(0, 0) = 1.

Proof. Let us give the steps to perform the calculation for W5:

1. Demonstrate that, in this case, one can reduce the system (KZ)4 to a three-variable
system.

2. Make the substitution W = g · (z4 − z1)T/2iπ and reduce our system to a system with two
variables. Deduce that g is a function in u and v.

3. Deduce that the system (KZ)4 is now written

dg =
1

2iπ
[t12d log(u) + t34d log(v) + dR(u, v)] · g

where R is an analytic function on a neighborhood of (0, 0). Conclude.

4. Use the technique of successive approximations to show that there is one, and only one
solution to this equation of the form

φ(u, v)u
t12
2iπ v

t34
2iπ ,

where φ is an analytic function on a neighborhood of (0, 0) such that φ(0, 0) = 1

5. Use the principle of analytic continuation to show that the Wi functions are extended
analytically to U .

Lemma 2.2.8. The asymptotic expansions W1, . . . ,W5 satisfy the following relations:

W1 = W2 · ΦKZ(t12, t23);

W2 = W3 · ΦKZ(t12 + t13, t24 + t34);

W3 = W4 · ΦKZ(t23, t34);

W4 = W5 · ΦKZ(t13 + t23, t34);

W5 = W1 · ΦKZ(t12, t23 + t34).
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Proof. Let’s prove the first identity. Let V1 = W1 · (z4 − z1)−
1

2iπ (t14+t24+t34). We have

V2 = W2 · ΦKZ(t12, t23) · (z4 − z1)−
1

2iπ (t14+t24+t34)

= W2 · (z4 − z1)−
1

2iπ (t14+t24+t34) · d4ΦKZ.

Indeed, t14 + t24 + t34 commutes with all tij for i, j < 4 and therefore with ΦKZ(t12, t23). We
have

(z4 − z1)−
1

2iπ (t14+t24+t34) = e−
1

2iπ (t14+t24+t34) log(z4−z1)

which has a series expansion and we obtain the required commutation.

On the other hand, we have V1 = V2. Indeed, if z1 < z2 < z3 < z4, then V1 and V2 are analytic
(and z4 can be eventually infinite). Additionally, V1 and V2 verify

∂V

∂zi
=



1
2iπ

∑
j 6=1

tij
z1−zj

1
2iπ

∑
j 6=i

tij
zi−zj · V −

1
2iπ · t14+t24+t34

z1−z4 if i = 2, 3

1
2iπ

∑
j 6=4

[t14,V ]
z4−zj

The first two equations and the asymptotic developments of V1 and V2 show that the two
functions match for z4 =∞. As a consequence, from the above equation one gets V1 = V2.

The rest of the equations are found in the same way.

Finally, in light of these relations, we obtain

ΦKZ(t13 + t23, t34)ΦKZ(t12, t23 + t24) = ΦKZ(t12, t23)ΦKZ(t12 + t13, t24 + t34)ΦKZ(t23, t34).

We conclude that ΦKZ satisfies the pentagon relation.

4) Two Hexagons relations:

Applying the permutation (123), we find that the relations of the two hexagons are satisfied by
ΦKZ if, and only if, only one of them is satisfied by ΦKZ. To demonstrate that ΦKZ satisfies
one of the two hexagons one proceeds in an analogous way to that we used to demonstrate the
pentagon relation: find six solutions of (KZ)3 in different regions with standard asymptotic
behaviors corresponding to the edges of an hexagon and show that these solutions have relations
that imply the required hexagon relation.

We leave the detail of this proof to the reader’s care.

2.2.2 Reminders on flat connections

We recall very quickly some definitions of the theory of vector bundles. The reader interested
in a detailed introduction illustrated on the subject may consult [72].



2.2. THE KZ ASSOCIATOR 43

Flat connections

Let X be a complex manifold and E −→ X a vector C-bundle X. Recall that Ω0(X,E) =

Γ(X,E) and that Ω1(X,E) = Γ(T ∗X ⊗ E).

Definition 2.2.9. A holomorphic connection ∇ on E −→ X is a linear map

∇ : Γ(X,E) −→ Ω1(X,E)

verifying, for all f ∈ O(X), s ∈ Γ(X,E), the Leibniz relation :

∇(f · s) = (df)⊗ s+ f · ∇(s).

Remark 2.2.10. • Be ∇1 and ∇2 two connections over E −→ X. The difference ∇1 −∇2

is O(X)-linear.

• Locally, a section s is written in the form

s = f1e1 + · · ·+ fded

where f1, . . . , fd are complex analytic functions on X and {e1, . . . , ed} is a basis of the
fiber.

• All connections ∇ over E −→ X can be written locally under the form

∇s = ddR s− Γs,

where ddR is the de Rham differential and Γ is a differential 1-form on X taking values in
the ring End(E) of endomorphisms of E.

• A section s of E −→ X is horizontal with respect to a connection ∇ if ∇s = 0 that is, if
locally s is solution of the differential system

ds = Γs.

Let’s move on to present the notion of parallel transport for a connection on a vector bundle
E −→ X. Let

γ : [0, 1] −→ X

t 7−→ γ(t)

be a continuous path in X. One can perform the pullback of the matrix Γ of differential forms
over X along γ into a matrix

A(t)dt = γ∗Γ

of differential forms over the interval [0, 1]. In light of the theory of ordinary differential
equations, there is a unique smooth map Aγ : [0, 1] −→ Autlin(E,X), where Autlin(E,X)

is the group of linear automorphisms of the bundle E −→ X, such that Aγ(0) = id and
w(t) = Aγ(t)w(0) is a solution of the differential equation

dw(t)

dt
= A(t)w(t).
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Definition 2.2.11. The parallel transport of the connection ∇ along γ is the linear isomorphism
Aγ(1) between the fiber at the initial point γ and the end point of γ. We will denote it by

Tγ : Fγ(0)'Fγ(1).

In particular, we have a map

(γ : [0, 1]→ X) 7−→
(
Tγ : Fγ(0)

'−→ Fγ(1)

)
so that if γ′ : [0, 1]→ X is such that γ(1) = γ′(0) (in which case we say that the continuous
paths γ and γ′ are juxtaposable and the path γ · γ′ is then continuous) Then

Tγ·γ′ = Tγ ◦ Tγ′ .

Definition 2.2.12. The holonomy group of ∇ based at a point x0 ∈ X is the subgroup of
Aut(Fγ(0)) generated by Tγ for all loops γ based at x0 ∈ X.

Let ∇ be a connection over a vector bundle E −→ X. We can extend ∇ into a covariant
derivative

Γ(E)
∇−→ Ω1(X,E)

∇−→ Ω2(X,E) −→ · · ·
by means of the formula

∇(ω ∧ ω′) = dω ∧ ω′ + (−1)|ω|ω ∧∇ω′

Definition 2.2.13. The curvature of the connection ∇ is the map

∇2 := ∇ ◦∇ : Γ(E) −→ Ω2(X,E).

Remark 2.2.14.

• The curvature is a map which is O(X)-linear.

• Locally, the curvature is expressed in terms of Γ by

∇2 = −ddRω + ω ∧ ω.

Before constructing explicitely the parallel transport application, let’s modify the proposed
framework a little bit by extending it to the case of the G-principal bundles, where G is a Lie
group.

G-principal bundles and associated connections

Let G be a topological group.

Definition 2.2.15. A G-principal bundle is a fiber bundle π : P −→ M together with a
continuous free and transitive right action of G on P , denoted

R : G −→ End(P )

g 7−→ (Rg : p 7→ g · p)

such that G preserves the fibers of P (i.e. if y ∈ π−1({x}) then y · g ∈ π−1({x}) for all g ∈ G).
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Remark 2.2.16.

1. This implies that each fiber is homeomorphic to the G group.

2. A principal bundle is trivial if, and only if, it admits a global section.

We can extend this definition to the case where G is a Lie group, with associated Lie k-algebra
g, and M is a differientable manifold by demanding that π to be differentiable and that the
action
G on P is also differentiable. In this way, we will demand that the notion of connection in this
setting to be « compatible » with the action of G as follows:

Definition 2.2.17. Let P −→M a G-principal bundle. A G-principal connection is defined
by a differential 1-form ω ∈ Ω1(P, g) taking values in the Lie k-algebra g associated to G such
that

1. ω is G -equivariant i.e. adg(R
∗
gω) = ω, where adg is the adjoint representation;

2. if γ ∈ g and Xγ is the fundamental vector field associated with γ by differentiation of the
action of G on P , then ω(Xγ) = γ (identically over P ).

Remark 2.2.18. Let G be a Lie group with associated Lie k-algebra g, let P −→M be a trivial
G-principal bundle and let ω ∈ Ω1(M, g) be a differential 1-form that defines a connection on
P . In this case the curvature is given by the differential 2-form with values in g defined by

Ω = dω +
1

2
[ω ∧ ω] ∈ Ω2(M, g),

where d is the external differential, [− ∧−] is the operation Ω1(M, g)× Ω1(M, g) −→ Ω2(M, g)

defined, for all pairs of tangent vectors v1 and v2 a M , by

[ω ∧ η](v1, v2) = [ω(v1), η(v2)]− [ω(v2), η(v1)]

so that we get

Ω(v1, v2) = dω(v1, v2) +
1

2
[ω ∧ ω](v1, v2) = dω(v1, v2) + [ω(v1), ω(v2)].

We will denote in the future [ω, ω] for the 1-form bracket.

regularized holonomy and regularized iterated integrals

Let us quickly explain the formulation of parallel transport in terms of path ordered exponentials.

Remark 2.2.19. Let G be a Lie group with associated Lie k-algebra g. Consider the following
general Cauchy problem: {

dϕ = αϕ

ϕ(0) = 1G
, (2.10)
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where ϕ : [0, 1] −→ G is a function and α ∈ Ω1([0, 1], g) is a differential 1-form taking values in
g. Then there is a unique solution φ of (2.10) and we can define the path ordered exponential

P exp

(∫ 1

0

α

)
:= φ(1) ∈ G.

As a consequence of Picard succesive iterations method, we can explicitely develop this element
into the so-called Dyson series:

P exp

(∫ 1

0

f(t)dt

)
= 1+

(∫ 1

0

f(t1)dt1

)
+· · ·+

(∫
06tn6···6t161

dt1 . . . dtnf(t1) . . . f(tn)

)
+· · ·

We can similarly extend this definition for every differientable manifld M considering, for
α ∈ Ω1(M, g) and γ : [0, 1]→M , the path ordered exponential

P exp

(∫
γ

α

)
= P exp

(∫
[0,1]

γ∗α

)
.

In this case, considering the trivial G-principal bundle over M , the parallel transport of the
connection ∇ = d− α along the path γ is precisely

P exp

(∫
γ

α

)
.

If γ is a piece-wise smooth path on M , then the iterated integral of the differential 1-forms
ω1, . . . , ωn ∈ Ω1(M,G) is∫

γ

ω1 · · ·ωn :=

∫
06tn6···6t161

dt1 . . . dtnf(t1) . . . f(tn)

Proposition 2.2.20. Let P −→M be the trivial G-principal over M and let ∇ be a connection
on this bundle. It is said that a connection ∇ is flat if, equivalently:

1. The curvature ∇ ◦∇ of the connection is zero;

2. the 1-form ω associated to ∇ satisfies the Maurer-Cartan equation :

dω +
1

2
[ω, ω] = 0;

3. For each pair (γ1, γ2) of homotopic paths in X we have Tγ1
= Tγ2

.

Remark 2.2.21. If this is the case, then the parallel transport of ∇ along a loop based on a
point x0 ∈ X induces a group morphism

ρ : π1(X,x0) −→ Aut(Ex0)

called monodromy morphism or a monodromy representation of the fundamental group of X
with respect to its action on the fiber of x0.

Proof. We will only show the first equivalence:
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• Step 1 =⇒ 2: A horizontal section of this connection satisfies df = −ωf . If the connection
is flat, then

0 = −d2f = d(ωf) = (dω)f − ω ∧ df = (dω + w ∧ w)f =

(
dω +

1

2
[ω, ω]

)
f

for any horizontal section. As locally there is a flat frame of the bundle, this implies that
dω + w ∧ w = 0.

• The step 2 =⇒ 1: this follows from the Frobenius theorem.

We will assume the following:

Proposition 2.2.22. Let ω a differential 1-form over a Riemann surface M with logarithmic
singularities over a finite subset S of M . Then, for all z1, z2 in M − S, the following limits
exist:

lim
t−→0

t∇(ω)sTω(γz1t ) lim
t−→0

Tω(γz2t )t−∇(ω)s .

In the next section we will give a particular example of a flat connection that is naturally
associated to the (KZ)n system. We will dicover how to retrieve multizeta values from the
parallel transport of this connection and find new relations for these numbers

2.2.3 The universal KZ connection

The objective of this section is to convince the reader of the fact that, using basic results on the
geometry of the configuration spaces, the proof of the fact that the KZ associator is a Drinfeld
associator is a consequence of the flatness of a certain connection defined on this space and
therefore, in a certain way, the manipulations of the KZ differential equations becomes visible.
This allows to have a better understanding of the architecture of the Drinfeld associators.

The differential system (KZ)n leads to an associated connection, the universal KZ connection,
which is flat in the configuration space of n points in the complex plane. Regardless of its
application to the understanding of Drinfeld associators and multizeta values, this connection
has several fields of application: for example, it provides a monodromy representation of the
fundamental group of its basis space, that is to say of the pure braid group on the plane. This
implies, in particular, the formality of this group, as we will explain below.

Let P := Conf(C, n)× exp(̂tn) be the trivial exp(̂tn)-bundle over Conf(C, n).

Definition 2.2.23. The universal KZ connection is ∇KZ
n := d − ωKZ

n , where ωKZ
n is the

differential 1-form over Conf(C, n) with values in the Kohno-Drinfeld Lie C-algebra tn given
by the following formula:

ωKZ
n :=

∑
16i<j6n

d log(zi − zj)tij .
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Remark 2.2.24. A function σ : Conf(C, n) −→ tn is a horizontal section of ∇KZ
n if, and only

if, σ is a solution of the system (KZ)n. Indeed, as ∇KZ
n is a connection defined on a trivial

exp(tn)-bundle, its horizontal sections are functions Conf(C, n) −→ tn so that σ is well defined
as a section.

Why is it universal? The explanation of the exact meaning of the word « universal » goes
through several points. Let us begin by defining the holonomy Lie algebra of a smooth variety
and its de Rham fundamental group following [26] and [37].

2.2.4 Reminders on the Riemann-Hilbert correspondence

Let X be a complex smooth variety. Let H•dR(X) be the de Rham cohomology complex of X,
let

µ : ∧2H1
dR(X) −→ H2

dR(X)

be the multiplication map, let us denote H1(X) for the dual of H1
dR(X) and let K⊥ ⊂ ∧2H1(X)

be the dual subspace of K := ker(µ) ⊂ ∧2H1
dR(X).

Let X̄ be the smooth compactification of X with D = X̄ −X a normal crossings divisor. For
simplicity we suppose that H1

dR(X) is pure of weight 2, implying that H1(X) is isomorphic to
H0(X̄,Ω1

X̄
(log(D)).

Deligne established in [26] an equivalence of tensor categories between:

• the category VBFC(X) of vector bundles with a flat connection on X with regular
singularities,

• the category LS(X) of topological local systems on X.

This is known as the Riemann-Hilbert corrrespondence.

Notice that here, for a vector space E, ∧2E identifies with the degree 2 component of the free
Lie algebra generated by E.

Now, one can attach to these tensor categories its unipotent part (see [37] for details). The R-H
correspondence then induces an equivalence between the unipotent parts of these categories:

RHuni : VBFC(X)uni
∼−→ LS(X)uni. (2.11)

This map associates to each object of VBFC(X) the local system of its horizontal sections.

Any point x ∈ X gives rise to two fiber functors F lsx : LS(X) −→ VectC and F vbx : VBFC(X) −→
VectC and to a canonical isomorphism F lsx ◦ RH ' F vbx .

Definition 2.2.25. Let X be a complex smooth variety.

• The holonomy Lie C-algebra hol(X) of X is the free Lie C-algebra over HdR
1 (X) modulo

relations in K⊥.
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• The de Rham fundamental group of X is the unipotent Tannakian fundamental group of the
category of vector bundles with flat unipotent connections on X with regular singularities
at infinity :

πdR
1 (X,x)uni := Aut⊗(F vbx ),

for the choice of a base point x ∈ X.

• The Betti fundamental group of X with base point x is the Tannakian group corresponding
to F lsx :

πB1 (X,x) := Aut⊗(F lsx ).

Remark 2.2.26. • The relations in K⊥ are all in degree 2, so hol(X) is provided with a
natural graduation.

• The R-H correspondence then provides us with a map πdR
1 (X,x)uni −→ πB1 (X,x).

Deligne then proved the following result.

Theorem 2.2.27. The Lie algebra of πdR
1 (X) coincides with the degree completion ĥol(X) of

the holonomy Lie algebra of X.

In practice it can be convenient to characterise hol(X) the following way.

Proposition 2.2.28. If H∗dR(X) is generated by H1
dR(X), then hol(X) is Koszul dual to

H∗dR(X) as commutative algebras.

Let us finish this reminder on some comments on Gauss-Manin connections in the complex
analytic context.

Let f : X −→ S be a smooth family of complex manifolds. We have a local system Rn f∗C
of complex vector spaces on S, defining a holomorphic vector bundle V := Rn f∗C⊗OS on S
with an integrable connection ∇ : V −→ V ⊗ Ω1

S of the family, so we get a connection on the
latter. We have a map

DR : Db
hr(DX) −→ Db

c(CX),

so that M 7−→ DR(M) := ωX ⊗LDX M is the analytic de Rham complex. By the R-H
correspondence the map DR is an equivalence. DR sends a O-coherent D-module (i.e. a vector
bundle with an integrable connexion) to a local system (i.e. a locally constant sheaf). The
inverse functor sends a locally constant V to the vector bundle OX ⊗C V together with the
only connexion such that V is the local system of horizontal sections in (OX ⊗C V,∇).

The Gauss-Manin connection is then defined as DR−1(Rf∗CX).

2.2.5 Universality of the KZ connection

Let us compute the holonomy Lie algebra of the configuration spaces Conf(C, n).
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1. Suppose that X = Conf(C, 2). As Conf(C, 2) ∼= C2−{z1 = z2}, we can take the following
coordinates:

x = z1 + z2

y = z1 − z2

.

In these coordinates, the only differential 1-form with logarithmic singularities on X is
d log(y). In this way, we find

hol(X) = f1(C) ∼= t2(C)

where f1 is the free Lie k-algebra on 1 generator (which is of dimension equal to 1).

2. Suppose that X = Conf(C, n). Then we have

• H1
dR(X) is generated by the 1-forms

ωij = d log(zi − zj),

where 1 6 i < j 6 n.

• (Arnold) K is generated by

ωij ∧ ωjk + ωjk ∧ ωik + ωik ∧ ωij ,

where 1 6 i < j < k 6 n.

• If {tij}i<j ∈ HdR
1 (X) is the dual basis to the basis {ωij}i<j of H1

dR(X), then K⊥ is
generated by elements

tij ∧ tkl, tij ∧ (tik + tjk),

where card(i, j, k, l) = 4.

In conclusion, the holonomy Lie C-algebra of Conf(C, n) is the Kohno-Drinfeld Lie C-
algebra tn.

In this way, we see that the system dϕ =
∑

16i<j6n
tijd log(zi − zj) is defined in a natural way in

the exp(ĥol(X))-trivial bundle over X = Conf(C, n).

In addition, this system contains the smallest amount of information necessary to be well
defined:

• Let W be a vector space and consider the trivial vector bundle Conf(C, n) ×W −→
Conf(C, n). Let’s consider the connection

∇̃ = d−
∑

16i<j6n

d log(zi − zj)Aij .

defined over the above bundle, where Aij are endomorphisms ofW . In this case, a sufficient
condition for ∇̃ to be flat is that Aij satisfy the three infinitesimal braid relations. In this
sense, the Kohno-Drinfeld Lie algebra is the « simplest » possible so that the connection
satisfies these relations.
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• Consider the connection

∇ = d−
∑

16i6=j6n
Aij(zi − zj)d(zi − zj),

where the matrices Aij(zi − zj) act in the i-th and the j-th entries of V = V1 ⊗ · · · ⊗ Vn.
In this case, the connection is flat if, and only if, the family {Aij(zi − zj)} satisfies the
Yang-Baxter equation

[Aik(zi− zk), Akj(zk − zj)] + [Aik(zi− zk), Aij(zi− zj)] + [Aij(zi− zj), Akj(zk − zj)] = 0.

In particular, if we consider the simplest possible choice of r-matrix, that is, if we consider

Aij(zi − zj) :=
tij

zi − zj
,

where tij are formal symbols, then we have

∇ is flat ⇐⇒ {Aij} satisfies the Yang-Baxter equation

⇐⇒ {tij} satisfies the infinitesimal braid relations.

2.2.6 Reminders on semi-simple Lie algebras.

Let g be a Lie k-algebra. Its adjoint representation is the k-vector space map given by

g −→ End(g).

x 7−→ (adx : y 7→ [x, y])

If g is finite dimensional, then :

• There is a well defined bilinear symmetric form

B(x, y) := Tr(ad(x) ◦ ad(y))

called Killing form, which is g-invariant under the action of Aut(g) and such that

B([x, y], z) = B(x, [y, z]),

for all x, y, z ∈ g.

• If {Xi}i6n is a basis of g and {Xi}i6n is its dual basis with respect to B, the Casimir
element is

Ω =

n∑
i=1

XiX
i ∈ Z(U(g))

i.e. commutes with all elements in g and is independent of the choice of the basis.

• If char(k) = 0 then:

g is semi-simple⇐⇒ B is non-degenerate.
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Now let g be a finite dimensional Lie C-algebra, let

S2(g) := T 2(g)/(x⊗ y − y ⊗ x)

be the symmetric algebra associated to g. Then, for an orthonormal basis of g with respect
to B, we have that T (v1, v2) = Σuau ⊗ bu ∈ S2(g) satisfies T (v1, v2) = T (vσ−1(1), vσ−1(2)). We
have Og∗ = S(g).

An element y in S2(g) is said to be g invariant if [x⊗ x, y] = 0, for all x ∈ g. The set of such
elements will be denoted S2(g)g. Then tg = Σueu ⊗ fu ∈ S2(g)g. By choosing a basis we get

[Xi, Xj ] =

n∑
k=1

ckijXk

where ckij = −ckji are the structure constants. In particular

(a� b)(c� d) = ac⊗bd;

[a⊗ b, c⊗ d] = ac⊗bd− ca⊗db 6= [a, c]� [b, d].

Let G be a connected Lie group with associated Lie algebra g. If G acts on a differientable
manifold M , then x ∈ g is represented by a first order differential operator over M and this
representation ρ is in C∞(M). If G and G′ are n dimensional and have the same structure
constants, then they are locally isomorphic. This means that the structure constants are related
to the second order partial derivatives in a neighborhood of the identity but give local properties
over the whole group : for instance, they tell if locally the multiplication is contractible.

2.2.7 Realizations of the universal KZ connection

The universal KZ connection « has realizations »: consider

• a (semi-)simple Lie C-algebra g;

• a symmetric g-invariant 2-tensor Ω =
∑
r
xr ⊗ yr ∈ g⊗ g (which is constructed from the

Casimir, coming from the Killing form associated with g),

• a non-zero integer n ∈ N>1,

• a finite dimensional g-module V ,

• a formal parameter ~ = h
2iπ ∈ C.

Let’s define
tij :=

∑
r

α(1)
r ⊗ · · · ⊗ α(n)

r ∈ (U(g))⊗n,

where α(i)
r = xr, α

(j)
r = yr and α(k)

r = 1, where k 6= i, j. Then

1. Every tij induces an endomorphism of V ⊗n that satisfies the infinitesimal braid relations.

• This fact is a consequence of the construction of tij and the g-invariance of Ω ∈ g⊗ g.

2. We have tij = tji.
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• This fact is a consequence of the symmetry of the 2-tensor tij .

We conclude that we have a morphism

exp(̂tn(C)) −→ End(V ⊗n)[[~]]

etij 7−→ ~tij

and the system
(KZ′)n dw = ~

∑
16i<j6n

d log(zi − zj)tijw

is called realization of the universal system (KZ)n associated to (g, V ).

2.2.8 Holonomy of the connection ∇KZ
3 and geometric definition of

the KZ associator

Let ε > 0. Denote X0 = t12 and X1 = t23. Let Φε(X0, X1) be the parallel transport of
the universal KZ connection with respect to the path ϕ : [0, 1] −→ C− {0, 1} such that
γ(0) = ε, γ(1) = 1− ε and γ(t) ∈ R, that is, given by the path ordered exponential

Φε(X0, X1) := P exp

(∫ γ(1)

γ(0)

(
X0

z
+

X1

z − 1

)
dz

)
=

∑
ωword inX0,X1

cω(ε) · ω

where, for j0, . . . , jn ∈ {0, 1}, ω = xj0 · · ·xjn ∈ Q〈X0, X1〉, and

cω(ε) =

∫ γ(1)

γ(0)

dt1
t1 − zj1

∫ t1

γ(0)

dt2
t2 − zj2

· · ·
∫ t−n−1

γ(0)

dtn
tn − zjn

. (2.12)

Recall that the polylogarithm function is given, for s, z ∈ C, by

Lis(z) :=

∞∑
k=1

zk

ks

and that multizeta values are the real numbers

ζ(k1, . . . , kr) :=
∑

n1>n2>...>nr>0

1

nk1
1 . . . nkrr

=
∑

n1>n2>...>nr>0

(
r∏
i=1

1

nkii

)

where k1, . . . , kr−1 ∈ N>1, kr ≥ 2.

We are going to admit the following proposition, which we will explain in the next subsection.

Proposition 2.2.29. For each word ω in X0 and X1, the scalar cω(ε) is a polynomial in
polylogarithm functions of the form Lin(ε) and in the function log(ε). In particular, if the word
ω ends in X1 (in particular ω can be written in the form ω = Xn1−1

0 X1X
n2−1
0 X1 . . . X

nk−1
0 X1,

where ni > 2, for all k > 1), then the function cω(ε) converges when ε tends to 0 and we have

lim
ε→0

cω(ε) = (−1)kζ(n1, . . . , nk).
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Corollary 2.2.30. Φε(X0, X1) has an asymptotic expansion into a homogenous polynomial
Φ(log(ε)), that is,

Φε(X0, X1)− Φ(log(ε)) −→
ε→0

0.

Proposition 2.2.31. The Drinfeld KZ associator is, equivalently, defined by:

1. the quotient ΦKZ := G−1
1 G0 ∈ C〈〈X0, X1〉〉 of Proposition 2.2.4 of the first section;

2. the regularized holonomy of the connection ∇KZ
3 between 0 and 1 (following the real part

of P1(C)− {0, 1,∞}) i.e. the limit

ΦKZ(X0, X1) := lim
ε→0

εX1Φε(X0, X1)ε−X0 ;

3. the regularization ΦKZ := Φ(0) of the polynomial Φ(log(ε)) by formally setting log(ε) = 0.

Proof. First, the three definitions make sense in light of the above paragraphs. Let’s prove that
these definitions are equivalent. We have the expression

Φε(X0, X1) = G1(1− ε)G−1
1 G0G

−1
0 (ε)

so that the following limit exists

lim
ε→0

εX1Φε(X0, X1)ε−X0 = lim
ε→0

(εX1G1(1− ε))G−1
1 G0(G−1

0 (ε)ε−X0) = G−1
1 G0

Therefore, the asymptotic expansion of Φε(X0, X1) is εX1G−1
1 G0ε

−X0 .

Monodromy of the KZ connection and geometric proof of Theorem A.

Let’s start with a crucial result that will allow us to work with the connection.

Proposition 2.2.32. The universal KZ connection is flat, that is: (∇KZ)2 = 0.

Proof. We compute:

∇2 =
∑
i<j

k<l

[tij , tkl]d(zi − zj)d(zk − zl)
(zi − zj)(zk − zl)

=
∑
i 6=j

dzidzj

∑
i 6=k
j 6=l

[tij , tkl]

(zi − zj)(zk − zl)


=

∑
i 6=j

dzidzj

∑
j 6=l

[tij , tkl]

(zi − zj)(zj − zl)
+
∑
i 6=k

[tik, tji]

(zi − zk)(zj − zi)


=

∑
i 6=j

dzidzj

∑
k 6=i,j

−[tik, tjk]

(zi − zj)(zj − zk)
+
∑
k 6=i,j

[tik, tjk]

(zi − zk)(zj − zi)


= −

∑
i 6=j

dzidzj
∑
k 6=i,j

[tik, tjk]

(zi − zj)(zj − zk)
= 0.

We conclude that the connection is flat.
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In this way, we can talk about monodromy of the connection and we will see how the Drinfeld
associator relations arise, in the case of the KZ associator, precisely from this monodromy. We
reproduce the proof of Theorem A. The element

ΦKZ(t12, t23) := lim
ε→0

εt23P exp

(∫ 1−ε

ε

(
t12

z
+

t23

z − 1

)
dz

)
ε−t12

is the regularized holonomy between 0 and 1 of the universal KZ connection, seen in the complex
projective line minus three points. Let’s prove that the pair (2iπ,ΦKZ) is a Drinfeld associator.

The case n = 2. First of all, we have

Conf(C, n) ∼= C×C− {0}
(z1, z2) 7−→ (t, w) := (z2, z1 − z2)

In this way, the KZ connection is written

∇KZ
2 = d− t12

w
dw.

The associated KZ equation is the system{
∂
∂wF = t12

w F
∂
∂tF = 0

.

Therefore, the solutions are given by

F (z1, z2) = C(z1 − z2)12,

for a certain constant C. Let

γ : [0, 1] −→ C− {0}
t 7−→ εeiπt

be the continuous path that draws a closed semi-circle from ε to −ε in C− {0}:

0 ε−ε

We immediately find that the regularized holonomy of the connection ∇KZ
2 is eiπt12 = e

λ
2 t12 for

λ = 2iπ.

The case n = 3: First, we have an isomorphism

Conf(C, 3) ∼= C×C× × (P1(C)− {0, 1,∞})

(z1, z2, z3) 7−→ (t, w, z) :=

(
z3, z1 − z3,

z1 − z2

z1 − z3

)
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By a change of coordinates, the equations (KZ)3 become:
∂
∂wF = t12+t13+t23

w F
∂
∂tF = 0
∂
∂zF = t12

z F + t23

z−1F

Remark 2.2.33. Notice that we are rephrasing the results of previous section. Indeed, the
solution in this case is

F (z1, z2, z3) = (z1 − z3)t + t13 + t23G

(
z1 − z2

z1 − z3

)
,

where G(z) solves the equation

∂

∂z
G =

t12

z
G+

t23

z − 1
G.

We are ready to start the proof:

−→ ΦKZ(t12, t23) ∈ exp(̂f(t12, t23)): For now, we only know that ΦKZ(t12, t23) ∈ C〈〈t12, t23〉〉.
To show that ΦKZ(t12, t23) ∈ exp(̂f(t12, t23) we have to prove that ΦKZ(t12, t23) is group-like,
meaning ∆ΦKZ(t12, t23) = ΦKZ(t12, t23)⊗̂ΦKZ(t12, t23). On the one hand,

∆ΦKZ(t12, t23) = ΦKZ(∆t12,∆t23) = ΦKZ(t12 ⊗ 1 + 1⊗ t12, t23 ⊗ 1 + 1⊗ t23).

On the other hand, ΦKZ(t12 ⊗ 1 + 1⊗ t12, t23 ⊗ 1 + 1⊗ t23) is the holonomy of the connection

∇ = d−
(
t12 ⊗ 1 + 1⊗ t12

z
+
t23 ⊗ 1 + 1⊗ t23

z − 1

)
dz

= d− t12 ⊗ 1 + 1⊗ t12

z
dz − t23 ⊗ 1 + 1⊗ t23

z − 1
dz,

which can also be seen as the sum of two connections in two different bundles. In this way, the
holonomy can be calculated separately. Finally, we get

∆ΦKZ(t12, t23) = ΦKZ(t12 ⊗ 1 + 1⊗ t12, t23 ⊗ 1 + 1⊗ t23) = ΦKZ(t12, t23)⊗̂ΦKZ(t12, t23).

−→ Antisymmetry: Taking the change of variables z = 1− y, the connection is written

d−
(

t12

y − 1
+
t23

y

)
dy,

whose holonomy between ε and 1− ε is Φε(t23, t12). By symmetry, this is also the holonomy
from 1− ε to ε of the original connection i.e. the inverse of the holonomy from ε and 1− ε of
the same connection. In this way, Φε(t23, t12) = Φε(t12, t23)−1. Automatically, we verify that
the same equation is preserved after asymptotic expansion and regularization.

−→ Two hexagons: Using the monodromy calculation in the case n = 2, we easily see that the
regularized holonomy of ∇KZ

3 around the singularity z = 0 (in the counterclockwise direction)
in P1(C)− {0, 1,∞} is eiπt12 .

One can easily prove the following facts
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1. If we take the path γ in the clockwise direction, we get a holonomy equal to e−iπt12 .

2. The regularized holonomy of ∇KZ
3 around the singularity z = 1 (counterclockwise direction)

in P1(C)− {0, 1,∞} is e2iπt23 .

3. Making a change of variables to be determined, the regularized holonomy of ∇KZ
3 around

the singularity z =∞ (counterclockwise direction) in P1(C)− {0, 1,∞} is e2iπt13 .

In this way, we can consider the paths

γ+ := γ+
1 γ

+
2 γ

+
3 γ

+
4 γ

+
5 γ

+
6 and γ− := γ−1 γ

−
2 γ
−
3 γ
−
4 γ
−
5 γ
−
6 ,

formed by the juxtaposition of the following 6 paths:

∞

γ1
+

γ2
+γ6

+

γ1
−

0γ6
− 1 γ2

−

γ3
+

γ3
−

γ4
−

γ4
+

γ5
+

γ5
−

Re(P1−{0, 1,∞})

Figure 2.1: Paths inM0,4 = P1 − {0, 1,∞}.

We have calculated the holonomy for each of these paths. Notice that the path γ+ is contractible
and the connection is flat so the parallel transport along γ+ is Tγ+ = 1. Also, as γ+ is composed
of 6 terms we get an equation

R12Φε(t13, t12)R13Φε(t23, t13)R23Φε(t12, t23) = 1.

Using the asymptotic expansion of Φε, we can see thatR12Φε(t13, t12)R13Φε(t23, t13)R23Φε(t12, t23)

has an asymptotic expansion which is a polynomial in ε in each degree. In this way, this
equation must be preserved for the part in the constant term of the expansion, that is, when
we formally establish log(ε) = 0.

On the other hand, by using exercise ??? of the first section, we know that t3(C) ' Cc3 ⊕
f(t12, t23)(C). This way, we obtain

e
−λ
2 t12Φ(t13, t12)e

−λ
2 t13Φ(t23, t13)e

−λ
2 t23Φ(t12, t23) = 1 en exp(̂t3(C)),

for λ = 2iπ.
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Remark 2.2.34. One has to read the juxtaposition of paths from the left to the right (i.e. in
the path γ+

1 γ
+
2 we first travel γ+

1 and then γ+
2 ). The composition of holonomies is read from

the right to the left as for the composition of functions.

One can easily show the following facts

1. The holonomy of the path γ− gives the relation of the remaining hexagon.

2. Let h ∈ C×. If we consider the connection

∇KZ
n,h = d− h

2iπ

∑
16i<j6n

tijd log(zi − zj),

and we denote ΦhKZ the regularized holonomy between 0 and 1 of ∇KZ
3,h, find λ = h is such

that (λ,ΦhKZ) is a C-associator.

The case n = 4: We will present the main steps of the proof of the pentagon relation, leaving
the detail to the care of the reader.

−→ The pentagon: After identifying Conf(C, 4) with a product of spaces involving the
space (P1 − {0, 1,∞})2 − {(z, z)}, one can interpret the KZ associator as the regularized
holonomy from 0 to 1 of the KZ connection over the space (P1 − {0, 1,∞})2 − {(z, z)}. The
path corresponding to the pentagon in

Re((P1 − {0, 1,∞})2 − {(z, z)}),

presented in the last subsection corresponding to the regions Z1, . . . , Z5 of Re(Conf(C, 4)), is
precisely the path below.

As for the two hexagons, this path is contractible so that its holonomy is equal to 1. By noticing
that we can indeed take regularized holonomy, we obtain the required pentagon relation.

2.2.9 Application I : Associator relations for multizeta values

Integral formulation of multizeta values

Recall that the multizeta values are the real numbers

ζ(k1, . . . , kr) :=
∑

n1>n2>...>nr>0

1

nk1
1 . . . nkrr

where (k1, . . . , kr) ∈ (N>2)r. These numbers have been studied since Euler (1775). The nature
(transcendence/irrationality) of these numbers is a field of much mystery and of which we do
not know much.

Proposition 2.2.35 (Kontsevich-Zagier). The multizeta values can be written as the integrals:

ζ(k1, . . . , kr) = (−1)r
∫ 1

0

∫ t1

0

· · ·
∫ tn−1

0

dtn
tn − εn

· dtn−1

tn−1 − εn−1
· · · dt1

t1 − ε1
where

(ε1, . . . , εn) =

(
0, . . . , 0

˘k1−1 times

, 1, 0, . . . , 0
˘k2−1 times

, 1, . . . , 0, . . . , 0
˘kr−1 times

, 1

)
.
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Re(z)

{z=1}

{w=1}{z=w}

{z=0}

{w=0}

Re(w)

Figure 2.2: Paths in Re((P1 − {0, 1,∞})2 − {(z, z)}).

Example 2.2.36. We have

ζ(2) =

∫ 1

0

∫ t1

0

dt2
1− t2

dt1
t1

=

∫ 1

0

∫ t1

0

dt1
t1

∑
n>1

tn−1
2 dt2 =

∫ 1

0

∑
n>1

tn1
n

dt1
t1

=
∑
n>1

1

n

∫ 1

0

tn−1
1 dt1 =

∑
n>1

1

n2

so we find the original definition of ζ(2).

Proposition 2.2.37. The Knizhnik-Zamolodchikov associator is a generating series of all
(regularized) multizeta values i.e. we have:

ΦKZ(X,Y ) =
∑

wword inX,Y

ζw · w.

where ζw is the (regularized) multizeta value associated with the word w.

Example 2.2.38. In particular, we have a computation in low degree of this series:

ΦKZ(A,B) = 1 + ζ(2)[A,B] + ζ(3)[A, [A,B]] + ζ(1, 2)[[A,B], B]

+ζ(4)[A, [A, [A,B]]] + ζ(1, 3)[A, [[A,B], B]] + ζ(1, 1, 2)[[[A,B], B], B]

+1ζ(2)2[A,B]2 + . . .

MZVs and admissible words

How are the MZVs distributed in the series of Proposition 2.2.37? To answer this question
we need to introduce the notion of admissible words. Let’s start by calculating the iterated
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integrals involved in the KZ associator for two different kinds of words.

Remark 2.2.39. To calculate the integrals (2.12), we can use the relations

1

t− 1
= −

∞∑
j=0

tj

∫
logn(t)dt

t
=

1

n+ 1
logn+1(t)∫

logn(t)tmdt =

n∑
j=0

(−1)j

m+ 1

n!

(N − j)! logn−j(t)tm+1

Example 2.2.40. Suppose that ω = X0X0X1. We are going to simplify the computations by
omitting the terms that tend toward 0 when ε tends to 0. In that case, the triple integral in cω
is

cω(ε) =

∫ γ(1)

γ(0)

dt1
t1

∫ t1

γ(0)

dt2
t2

∫ t2

γ(0)

dt3
t3 − 1

=

∫ 1−ε

ε

dt1
t1

∫ t1

ε

dt2
t2

−∑
j>0

tj+1
2

j + 1


= −

∫ 1−ε

ε

dt1
t1

∑
j>0

tj+1
1

(j + 1)2


= −

∑
j>0

(1− ε)j+1

(j + 1)3

ε→0−−−→ −ζ(3).

Notice that, in this case, cω converges when cw equals 0.

Example 2.2.41. Suppose this time that ω = X0X1X0. We calculate in this case:

cω(ε) =

∫ γ(1)

γ(0)

dt1
t1

∫ t1

γ(0)

dt2
t2 − 1

∫ t2

γ(0)

dt3
t3

=

∫ 1−ε

ε

dt1
t1

∫ t1

ε

dt2
t2 − 1

(log(t2)− log(ε))

=

∫ 1−ε

ε

dt1
t1

∑
j>0

tj+1
1

j + 1
log

(
t1
ε

)
−
∑
j>0

tj+1
1

(j + 1)2
−
∑
j>0

εj+1

j + 1
log(ε)−

∑
j>0

εj+1

(j + 1)2

 .

Omitting the terms that tend towards 0 we obtain a term in

−
∑
j>0

(1− ε)j+1

(j + 1)3
−
∑
j>0

(1− ε)j+1

(j + 1)3
−
∑
j>0

(1− ε)j+1

(j + 1)2
log(ε) ∼ −2ζ(3)− ζ(2) log(ε).

This expression diverges logarithmically with ε. This is one of the reasons why we are forced to
renormalize the holonomy: to be able to eliminate these divergent terms.

What are the words ω for which cω(ε) converges? To answer this question we have to talk
about admissible words.
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Definition 2.2.42. An admissible (or convergent) word in letters X,Y is a word ω ∈ Q〈X,Y 〉
starting with X and ending for Y of the form ω = XvY where v is any word in X and Y .

We are ready to characterize multizeta values with respect to convergent words.

Proposition 2.2.43. We have a bijective map

(N>2)r ←→ {admissible words in x, y}
(k1, . . . , kr) ←→ xk1−1yxk2−1y · · ·xkr−1y

and the value cω(ε) converges towards

ζ(k1, . . . , kr) := ζxk1−1yxk2−1y···xkr−1y.

precisely when the word w is admissible.

Remark 2.2.44. • This explains Proposition 2.2.29.

• There is a way to associate to the rest of the words (those that are not admissible) a
slightly more general notion of multizeta values called regularized multizeta values which
we will not present in here.

Calculation of the KZ Associator in low degree

Let’s calculate the terms in degree up to 2 of the associator ΦKZ. We have

Φε(t12, t23) = P exp

(∫ 1−ε

ε

(
t12

z
+

t23

1− z

)
dz

)
= 1 +

∫ 1−ε

ε

(
t12

t1
+

t23

1− t1

)
dt1

+

∫ 1−ε

ε

(∫ t1

ε

(
t212

t1t2
+

t12t23

t1(1− t2)
+

t23t12

t2(1− t1)
+

t223

(1− t2)(1− t1)

)
dt2

)
dt1

+ . . .

The degree 1 term is

t12 log

(
1− ε
ε

)
+ t23 log

(
ε

1− ε

)
.

The degree 2 terms are:∫ 1−ε

ε

(∫ t1

ε

(
t212

t1t2

)
dt2

)
dt1 =

∫ 1−ε

ε

(
t212

log(t1)− log(ε)

t1

)
dt1

=
t212

2
(log(1− ε)2 − log(ε)2)− t212 log(ε)(log(1− ε)− log(ε))

= t212

(
log(1− ε)2

2
+

log(ε)2

2
− log(ε) log(1− ε)

)
,
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and∫ 1−ε

ε

(∫ t1

ε

(
t12t23

t1(1− t2)

)
dt2

)
dt1 =

∫ 1−ε

ε

(
t12t23

log(1− t1)− log(1− ε)
t1

)
dt1

= t12t23(Li2(ε)− Li2(1− ε) log(1− ε)(log(1− ε)− log(ε))).

One can show that∫ 1−ε

ε

(∫ t1

ε

(
t23t12

t2(1− t1)

)
dt2

)
dt1 = t23t12(Li2(1− ε)− Li2(ε)− log(ε)(log(ε)− log(1− ε)))

and∫ 1−ε

ε

(∫ t1

ε

(
t223

(1− t2)(1− t1)

)
dt2

)
dt1 = t223

(
log(ε)2

2
+

log(1− ε)2

2
− log(ε) log(1− ε)

)
.

Using the Taylor expansions

ε−t23 = 1− t23 log(ε) + t223

log(ε)2

2
+ · · · ,

and

εt
12

= 1 + t12 log(ε) + t212

log(ε)2

2
+ · · · ,

and noticing that Li2(0) = 0 and Li2(1) = ζ(2), we can simplify:

ΦKZ(t12, t23) = lim
ε→0

ε−t23P exp

(∫ 1−ε

ε

(
t12

z
+

t23

1− z

)
dz

)
tt12

= lim
ε→0

1− t23 log(ε)− t12 log(ε) + t23 log(ε) + t12 log(ε) + t223

log(ε)2

2
+ t212

log(ε)2

2

+[t12, t23](Li2(ε)− Li2(1− ε))− t23t12 log(ε)2 + t223

log(ε)2

2
+ t212

log(ε)2

2

−− t23 log(t)2(t23 − t12) + log(t)2(t23 − t12)t12 − t23t12 log(ε)2 + · · ·
= lim
ε→0

(1 + [t12, t23](Li2(ε)− Li2(1− ε)) + · · · )
= 1− ζ(2)[t12, t23] + · · ·

In conclusion, ΦKZ(t12, t23) is a generating series of all multizeta values. As a corollary, we
obtain new relations between the different multizeta values coming from the pentagon and
hewagons relations of the associators:

Corollary 2.2.45. Multizeta values satisfy the Drinfeld associator relations.

Not only that, but thanks to the geometric definition of the associator KZ, we can find old
relations that go back to Euler’s works, as illustrated by the following theorem shown by Pierre
Deligne:
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Theorem 2.2.46 (Deligne, section 18 of [27]). The relation

ζ(2n) = (−1)n−1 B2n

2× (2n)!
(2π)2n

comes from the relations of antisymmetry and pentagon of the contractible path in P1(C)−
{0, 1,∞} given by

0 1 ∞

2.2.10 Application II : Formality of the pure braid group

Definition 2.2.47. Let G be a finitely generated group. It is called formal if there is a Lie
algebra isomorphism Lie(Ĝ(k)) −→ ĝr Lie(Ĝ(k)), whose associated graded morphism is the
identity.

One can then retrieve from the flatness of the universal KZ connection such an isomorphism
for G = PBn. Namely, the monodromy representation morphism

ρKZ : PBn −→ exp(̂tn)

factors through the C-prounipotent completion P̂Bn(C) of PBn and one can show the following

Proposition 2.2.48. The map

ρ̃ : P̂Bn(C) −→ exp(̂tn)

is an isomorphism of C-prounipotent groups.

Remark 2.2.49. Returning to the consideration of the holonomy Lie algebra and the de Rham
fundamental group of Conf(C, n), this result establishes an isomorphism

πTop
1 (Conf(C, n))

))��
πB

1 (Conf(C, n))
' // πdR

1 (Conf(C, n))

where πB
1 (Conf(C, n)) is the Betti fundamental group of Conf(C, n), which identifies to the C-

prounipotent completion of the topological fundamental group πTop
1 (Conf(C, n)). This provides

an inverse morphism to the map πdR
1 (Conf(C, n)) −→ πB

1 (Conf(C, n)) given by the R-H
correspondence.

This conceptual interpretation of the formality of PBn will be translated to the cyclotomic
(easily) and genus 1 (with a lot more of work) cases.
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2.3 The cyclotomic KZ associator

2.3.1 The universal cyclotomic KZ connection

Let Γ = Z/NZ and let tΓn(k) be the Lie k-algebra with generators t0i, (1 ≤ i ≤ n), and tαij ,
(1 ≤ i 6= j ≤ n, α ∈ Z/NZ), and relations:

(NS) tαij = t−αji ,

(NL) [t0i, t
α
jk] = 0 and [tαij , t

β
kl] = 0,

(N4T) [tαij , t
α+β
ik + tβjk] = 0,

(NT1) [t0i, t0j +
∑
α∈Γ t

α
ij ] = 0,

(NT2) [t0i + t0j +
∑
β∈Γ t

β
ij , t

α
ij ] = 0,

where 1 ≤ i, j, k, l ≤ n are pairwise distinct and α, β ∈ Γ. We will call it the k-Lie algebra of
infinitesimal cyclotomic braids.

The universal cyclotomic KZ connection on the trivial exp(̂tn,N (C))-bundle over

Conf(C×, n,Γ) := (C×)n − {z = (z1, . . . , zn)|zNi = zNj for some i 6= j}

is defined by the differential 1-form

ωKZ
n,N :=

n∑
i=1

 t0i
zi

+
∑

α∈Z/NZ,1≤i6=j≤n

tαij
zi − ζαzj

d zi, (2.13)

where ζ is a primitive Nth root of unity. It is a fact that this connection is flat.

2.3.2 Reminders on partial prounipotent completions

Let us recall the Enriquez’ notion of partial prounipotent completion that we will use later in
Chapter 7.

Let ϕ : G −→ H be a surjective group morphism such that GG := Kerϕ is finitely generated.

Definition 2.3.1. There is a non-connected pro-algebraic group G(ϕ,k), fitting in an exact
sequence 1 −→ G0(k) −→ G(ϕ,k) −→ H −→ 1, and a group morphism G −→ G(ϕ,k), such
that the diagram

1 // G0
//

��

G //

��

H //

��

1

1 // G0(k) // G(ϕ,k) // H // 1

commutes. The group G(ϕ,k) is called relative k-prounipotent completion of G with respect to
ϕ.

We direct the reader to the article [33] for more details on this definition as well as for the
following one.
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Definition 2.3.2. We say that the group morphism ϕ : G −→ H is formal if there exists a
group isomorphism G(k, ϕ) ' exp(gr LieG0(k)) oH, restricting to a formality isomorphism
for G0, and such that the diagram

1 // G0(k) //

��

G(k, ϕ) //

��

H //

��

1

1 // exp(ĝr LieG0(k)) // exp(ĝr LieG0(k)) oH // H // 1

commutes.

Example 2.3.3. • The morphism Bn −→ Sn is formal, where Bn is the fundamental
group of Conf(C, n)/Sn. It is interesting to say that this result follows from [74] when
k = C, and from [31] for k = Q.

• Denote

– G0 = PBΓ
n := π1(Conf(C×, n,Γ)),

– G = B1
n = π1(Conf(C×, n)/Sn) and

– ϕn,N : B1
n −→ Γn oSn.

One can show that the monodromy of the universal cyclotomic KZ connection gives us
vertical isomorphisms

1 // P̂B
Γ

n(C) //

��

B̂n(ϕn,C) //

��

Γn oSn
//

��

1

1 // exp(̂tΓn(C)) // exp(̂tΓn) o (Γn oSn) // Γn oSn
// 1

.

2.3.3 Realisations

Let g be a Lie k-algebra and let tg = Σueu ⊗ fu ∈ S2(g)g. Suppose that we have a morphism

Γ −→ Aut(g, tg);α 7→ α

i.e. αN = id. Then we have a decomposition g = l ⊕ u where l = gΓ and u =
⊕

χ∈Γ̂−{0}
gχ.

Take a decomposition tg = tl + tu where tl ∈ S2(l)l and tu ∈ S2(u)l. Let σ̄ be a generator of
Γ ⊂ U(g) o Γ.

Theorem 2.3.4. There is a unique Lie algebra morphism

U (̂tn,N ) o Γn −→ U(l)⊗ (U(g) o Γ)⊗n

t0i 7−→ N

(
t
(0i)
l +

1

2
t
(ii)
l

)
⊗ 1

tαij 7−→ 1⊗ (σα ⊗ id)(t
(ij)
g )

si 7−→ σ̄(i).
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2.4 The elliptic KZB associator

In this section we introduce the basic tools that were used on constructing the universal elliptic
KZB connection and which will be used in the second part of this thesis. We will profit this
occasion to rely all conventions for theta functions that different authors (at our knowledge)
that work on the KZB connection use at present.

2.4.1 Quick reminder on Eisenstein series and theta functions

In what follows Gk(τ) are the Eisenstein series defined for all k ≥ 2, by

Gk(τ) :=

∞∑
n=−∞

 ∞∑
m=−∞
m6=0 if n=0

1

(m+ nτ)k

 = 2ζ(k) +
2 · (2πi)k

(k − 1)!

∞∑
m=1

σk−1(m)qm,

where σα(k) =
∑
d|k d

α.

Enriquez Approach: Let H := {τ ∈ C|=(τ) > 0} be the Poincaré half-plane. The theta function
we will use is denoted (z, τ) 7→ θτ (z), for (z, τ) ∈ C× H, where

θ(z, τ) := θτ (z) :=
eπiz − e−πiz

2iπ

∏
n>1

(1− e2πi(z+nτ))(1− e2πi(−z+nτ))

(1− e2πinτ )2
.

and it is the unique holomorphic function C × H −→ C such that θτ (z + 1) = −θτ (z) =

θτ (−z), θτ (z + τ) = −e−iπτe−2π izθτ (z), ∂
∂z θτ (z)|z=0 = 1, and (θτ (−))−1(0) = Λτ = Z + τZ.

Furthermore, we have θ(z|τ + 1) = θ(z|τ) and θ(z/τ |1/τ) = (1/τ)e(πi/τ)z2

θ(z|τ). Recall that
the Dedekind η-function is given by η(τ) = q

1
24

∏
n>0(1− qn) where q = e2πiτ .

The classical odd Jacobi theta function is, for q = e2iπτ ,

ϑ1(z, τ) := −
∑

n∈Z+ 1
2

eiπτn
2+2iπn(z+ 1

2 )

= −
∑
n∈Z

eiπτ(n+ 1
2 )

2
+2iπ(n+ 1

2 )(z+ 1
2 )

and we have ϑ1(z, τ) = 2πη3(τ)θτ (z). Set ϑ̂(z, τ) = ϑ1(z,τ)
2π . This also gives a heat equation for

ϑ:
∂τ ϑ̂ = (1/4πi)∂2

z ϑ̂

Brown-Levin-Racinet-Zagier approach: The standard odd elliptic theta functions are

ϑStd
1 (u, τ) :=

∑
n∈Z

(−1)n−
1
2 e2iπu(n+ 1

2 )+iπτ(n+ 1
2 )

2

ϑStd
11 (u, τ) := i

∑
n∈Z

(−1)ne2iπu(n+ 1
2 )+iπτ(n+ 1

2 )
2
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ϑZag(u, τ) :=
∑
n∈Z

(−1)nq
1
2 (n+ 1

2 )2

e(n+ 1
2 )u

=
∑
n∈Z

(−1)neu(n+ 1
2 )+iπτ(n+ 1

2 )2

=
1

i
ϑ11(

u

2iπ
, τ),

and we can express ϑZag(u, τ) as a product via the Jacobi triple product formula (in Zagier’s
paper):

ϑZag(u, τ) = q
1
8

(
e
u
2 − e−u2

) ∞∏
n=1

(1− qn)(1− qneu)(1− qne−u).

Finally, the theta function used by Brown-Levin is

θBL(ξ, τ) =
ϑ11(ξ, τ)

η(τ)
= q1/12(z1/2 − z1/2)

∏
j>1

(1zqj)(1z1qj),

and the one used by Levin-Racinet is

θLR(ξ, τ) = iq1/8(z1/2z1/2)
∏
j>0

(1zqj)(1z1qj)(1qj).

We have

ϑ1(z, τ) = −
∑

n∈Z+ 1
2

eiπτn
2+2iπn(z+ 1

2 )

= −
∑
n∈Z

q
1
2 (u+ 1

2 )
2

ez(n+ 1
2 )eπin+πi

2

= −iϑZag(z, τ).

Kronecker series. The Kronecker series used by Zagier is the meromorphic function C ×
C× H −→ C defined by

FZag(u, v, τ) :=
ϑZag ′(0, τ)ϑZag(u+ v, τ)

ϑZag(u, τ)ϑZag(v, τ)
,

and the Kronecker series used by Enriquez is

FEn(x, z, τ) =
θ′(0, τ)θ(z + x, τ)

θ(z, τ)θ(x, τ)
=

θ(z + x, τ)

θ(z, τ)θ(x, τ)
.

Thus, as ϑZag(z) = 2πiη(τ)3θ(z, τ), we get

FZag(z, x, τ) = FEn(z, x, τ).

Next, the one used by Brown-Levin is

FBL(u, v, τ) :=
θBL ′(0, τ)θBL(u+ v, τ)

θBL(u, τ)θBL(v, τ)
,



68 CHAPTER 2. BACKGROUND

and is related to the one used by Levin-Racinet, denoted

FLR(ξ, η, τ) :=
θLR ′(0, τ)θLR(ξ + η, τ)

θLR(ξ, τ)θLR(η, τ)
,

by the formula
FLR(ξ, η, τ) = 2iπFZag(2iπξ, 2iπη, τ).

Finally, we have ϑ1(z, τ) = 2πη3(τ)θ(z, τ) and ϑ11(z, τ) = η(τ)θBL(z, τ) and ϑ11(z, τ) =

iϑZag(2iπz, τ). We have

η(τ)θBL(z, τ) = iϑZag(2iπz, τ)

In conclusion we get

• FBL(ξ, η, τ) = FLR(ξ, η, τ),

• FZag(ξ, η, τ) = FEn(ξ, η, τ), and

• FLR(ξ, η, τ) = 2iπFZag(2iπξ, 2iπη, τ).

In what follows we take Enriquez’ convention for the theta function.

2.4.2 The universal elliptic KZB connection

For τ ∈ h, denote Λτ := Z + τZ and denote, for n ≥ 1,

Diag1,n := {(z, τ) ∈ Cn × H|zij ∈ Λτ , for some i 6= j}.

The semidirect product ((Zn)2 × C) o SL2(Z) acts on (Cn × H)−Diag1,n by

• (n,m, u) ∗ (z, τ) := (z + n + τm + u(
∑
i δi), τ) for (n,m, u) ∈ (Zn)2 × C,

•
( α β
γ δ

)
∗(z, τ) := ( z

γτ+δ ,
ατ+β
γτ+δ ) for

( α β
γ δ

)
∈ SL2(Z).

The moduli spaceM1,n of elliptic curves with n marked points is defined as the quotient

M1,n := (Cn × H)−Diag1,n /((Zn)2 o SL2(Z)),

and its reduced version is

M̄1,n := (Cn × H)−Diag1,n /(((Zn)2 × C) o SL2(Z)).

Remark 2.4.1. • In [24],M1,n is denoted M̃1,n and M̄1,n is denotedM1,n. We shifted
the notations of [24] for compatibility with our conventions for Chapter 6.

• The spaceM1,1 is the universal curve over M̄1,1 = h/ SL2(Z) and for n = 2 the moduli
space M̄1,2 is the punctured universal elliptic curve over M̄1,1. This is a fibration with,
as fibers at (equivalence classes of) τ , (equivalence classes of) the punctured elliptic curves
E×τ := Eτ − {0}.

• Remark that if
C(Eτ , n) := Conf(Eτ , n)/Eτ

are the reduced configuration spaces of Eτ , then C(Eτ , 2) = E×τ .
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• More generally, the fibers of the fibration M̄1,n+1 −→ M̄1,1 are (the equivalence classes
of) the spaces Conf(E×τ , n).

For any n ≥ 0, recall that t1,n(k) is defined as the bigraded Lie k-algebra freely generated by
x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1) (for i = 1, ..., n), and tij in degree (1, 1)

(for 1 ≤ i 6= j ≤ n), together with the relations (S), (L), (4T), and the following additional
elliptic relations as well:

(Se``) [xi, yj ] = tij for i 6= j,

(Ne``) [xi, xj ] = [yi, yj ] = 0 for i 6= j,

(Te``) [xi, yi] = −∑j|j 6=i tij ,

(Le``) [xi, tjk] = [yi, tjk] = 0 if #{i, j, k} = 3,

(4Te``) [xi + xj , tij ] = [yi + yj , tij ] = 0 for i 6= j.

The
∑
i xi and

∑
i yi are central in t1,n(k), and we also consider the quotient

t̄1,n(k) := t1,n(k)/(
∑
i

xi,
∑
i

yi) .

Example 2.4.2. t̄1,2(k) is equal to the free Lie k-algebra f2(k) on two generators x = x1 and
y = y2.

Let d+ be the free Lie algebra with generators δ2m (m ≥ 1). Denote the standard generatons
e, f, h of sl2 by d := h, X := e and ∆0 := f . Denote d := d+ o sl2 their semi-direct product,
the δ2m acting as highest weight elements (see [24] for details).

Proposition 2.4.3 ([24]). There is a Lie algebra morphism d −→ Der(t1,n) inducing a Lie
algebra morphism d −→ Der(̄t1,n).

An easy consequence is that we can then form the semi-direct products

Gn := exp((t1,n o d+)∧) o SL2(C) Ḡn := exp((̄t1,n o d+)∧) o SL2(C)

Theorem 2.4.4 ([24]). There is a unique Gn-bundle Pn overM1,n with a flat universal KZB
connection, locally defined by

∇KZB
1,n := d−∆(z|τ)dτ −

n∑
i=1

Ki(z|τ)dzi,

where z = (z1, . . . , zn) ∈ Cn, for 1 ≤ i ≤ n, we have

Ki(z|τ) := −yi +
∑
j:j 6=i

k(adxi, zi − zj |τ)(tij),

with k(x, z|τ) := θ(z+x|τ)
θ(z|τ)θ(x|τ) − 1

x , and

∆(z|τ) := − 1

2πi

(
∆0 +

∑
n≥1

(2n+ 1)G2n+2(τ)δ2n −
∑
i<j

∂xk(adxi, zi − zj |τ)(tij)
)
.

This induces a unique Ḡn-bundle P̄n over M̄1,n with a flat connection denoted ∇̄KZB
1,n .
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Remark 2.4.5. • When we say the connection is locally defined as so, we mean that there
is a unique such connection such that the pull-back to X := (Cn × H) − Diag1,n is the
connection ∇KZB

1,n on the trivial Gn-bundle over X.

• There is also an unordered marked points version of this connection that will not be recalled
in here.

• By fixing τ and choosing a section Conf(Eτ , n) of a representative in the equivalence class
[(Eτ , z1, . . . , zn)] ∈M1,n, this connection restricts to a flat connection

∇KZB
1,n,τ := d−

n∑
i=1

Ki(z|τ)dzi,

on the (unique) principal exp(̂t1,n)-bundle over Conf(Eτ , n).

Let us fix τ ∈ h. Recall that the Lie algebra t̄1,2(C) is isomorphic to the free Lie algebra
f2(C) generated by two elements x := x1 and y := y1. We define the elliptic KZB associators
A(τ), B(τ) as the regularized holonomies from 0 to 1 and 0 to τ of the differential equation

G′(z) = −θτ (z + adx) adx

θτ (z)θτ (adx)
(y) ·G(z), (2.14)

with values in the group exp(̂̄t1,2(C)) More precisely, this equation has a unique solution G(z)

defined over {a+ bτ, for a, b ∈]0, 1[} such that G(z) ' (−2π i z)−[x,y] at z −→ 0. In this case,

A(τ) := G(z)−1G(z + 1), B(τ) := G(z)−1e2π i xG(z + τ).

These are elements of the group exp(̂̄t1,2(C)). A recollection of the main features of elliptic
associators is done in the first part of [35] and will not be reproduced here.

2.4.3 Universality

As in the genus 0 case, one can ask in what manner this connection is universal and now it
will be of great importance to distinguish the case where the connection is defined over the
moduli space to the one that is defined only in the configuration space. Indeed, in the genus 0
case, the moduli spaceM0,n+1 of rational curves with n+ 1 marked points is isomorphic to
the quotient of the configuration space of n points in the plane modulo the action of Aut(C)

by homographies:
M0,n+1 ' Conf(C, n)/(C∗ oC).

In the genus 1 case, however, such a relation is not true. Another issue here is that the de Rham
complex in this setup (either for the configuration space setting or the moduli space setting) is
not generated by the first cohomology group so we will not be able to apply Proposition 2.2.28.

Towards the Gauss-Manin connection ∇KZB
1,n over M1,n

In this section we give an insight on the fact that the connection ∇KZB
1,n is the universal by

explaining that it is (conjecturally) the Gauss-Manin connection overM1,n. Let us start with
the restriction of this connection to that over Conf(Eτ , n), following [37].
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Set X := Conf(Eτ , n) and x ∈ Conf(Eτ , n). Then (ommiting to explicit the basis point for
simplicity as X is arc-wise connected) we have πTop1 (X) = PB1,n and πB1 (X) = P̂B1,n(C).

Theorem 2.4.6 ([37]). • There is

– an explicit tensor functor

F : VBFC(Conf(Eτ , n))uni −→ VectC

– a natural isomorphism

VBFC(Conf(Eτ , n))uni −→ IsoVecC(F (E ,∇), F vbx (E ,∇))

(E ,∇) 7−→ i(E,∇)

between the functors F and F vbx ,

– a canonical isomorphism Aut⊗(F ) ' exp(̂tC1,n).

• The composed isomorphim

exp(̂t1,n)
∼ // Aut⊗(F )

∼ // Aut⊗(F vbx )
∼

RH
// Aut⊗(F lsx )

∼ // P̂B1,n(C)

coincides with the inverse of the completed monodromy representation map

P̂B1,n(C) −→ exp(̂t1,n)

induced by the universal KZB connection ∇KZB
1,n,τ over Conf(Eτ , n).

Now, following [63], let us show that the bundle Pn with the KZB connection is the de Rham
realization of a topological local system PTop

n .

Denote by Y the universal covering space of M̄1,n+1. This is also the universal covering space of
M̄h

1,n+1 =
(
Cn+1×h)−∆n+1. Choose a base point [Eτ , 0, z] of M̄1,n+1, where z = (z1, . . . , zn),

and zi 6= 0 for all 1 ≤ i ≤ n. Choose a lift y of it to Y . This determines an isomorphism of
Aut(Y/M̄1,n+1) with π1(M̄1,n+1, [Eτ , 0, z]).

Denote the unipotent completion of π1(Conf(E×τ , n), z) over C by Po. The natural action

π1(M̄1,n+1, [Eτ , 0, z])× π1(Conf(E×τ , n), z) −→ π1(Conf(E×τ , n), z),

(g, γ) 7−→ gγg−1

determines a left action of π1(M̄1,n+1, [Eτ , 0, z]) on Po. We can therefore form the quotient(
Po × Y

)
/π1(M̄1,n+1, [Eτ , 0, z])

by the diagonal π1(M̄1,n+1, [Eτ , 0, z])-action. This is a flat right principal Po-bundle which
we shall denote by PTop

n −→ M̄1,n+1. Its fiber over [Eτ , 0, z] is naturally isomorphic to the
unipotent completion of π1(Conf(E×τ , n)).

Since the Lie algebra po of Po can be viewed as a group with multiplication defined by the
Baker-Campbell-Hausdorff formula, we can (and will) view PTop

n as a local system of Lie
algebras.
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Choose a base point [Eτ , 0, z] of M̄1,n+1, where z = (z1, . . . , zn), and zi 6= 0 for all 1 ≤ i ≤ n.
There is a natural isomorphism

π1(M̄1,n+1, [Eτ , 0, z]) ' Γ1,n+1,

where Γ1,n is the mapping class group of a genus 1 curve with n marked points (see [13]).

The restriction of the universal elliptic KZB connection to Conf(E×τ , n) defines a homomorphism
π1(Conf(E×τ , n), z) −→ Aut(̂̄t1,n+1) whose image lies in the subgroup exp(̂̄t1,n+1) which acts on
ˆ̄t1,n+1 via the adjoint action. From the formality morphism [24, Proposition2.2], we conclude
that it induces an isomorphism π̂1(Conf(E×τ , n), z)(C) −→ exp(̂̄t1,n+1).

Identify exp(̂̄t1,n+1) with π̂1(Conf(E×τ , n), z)(C) via this isomorphism. Then one has the
monodromy representations

ρKZB : Γ1,n+1 −→ Aut(exp(̂̄t1,n+1)) and ρTop : Γ1,n+1 −→ Aut(exp(̂̄t1,n+1))

of Pn and PTop
n . To prove that PTop

n and Pn are isomorphic (seen here as principal bundles),
we have to prove that ρKZB = ρTop. Observe that if γ ∈ π1(Conf(E×τ , n), z), then ρTop(γ) and
ρKZB(γ) are both conjugation by the image of γ in Pn as the restriction of Pn and PTop

n to
Conf(E×τ , n) are isomorphic.

As explained below, rigidity explains that if the restriction to each fiber (that is, to each
configuration space) is the correct local system, then it is the correct local system over the
whole moduli space M̄1,n+1. More precisely, the marked points version of [63], Theorem 14.2
is then

Theorem 2.4.7. The exponential map induces an isomorphism of the local system over M̄1,n+1

of flat sections of the universal elliptic KZB connection on P with the locally constant sheaf
PTop
n over M̄1,n+1. Equivalently, the diagram

π1(Conf(E×τ , n), z)
ρKZB

// Aut(̂̄t1,n+1)

'
��

π1(Conf(E×τ , n), z)
ρTop

// Aut(exp(̂̄t1,n+1))

commutes.

Proof. One can apply [63, Lemma 14.1] to

• Γ = Γ1,n+1 = πTop
1 (M̄1,n+1),

• N = πTop
1 (Conf(E×τ , n), z) ' P̄B1,n+1, which has trivial center,

• N = exp(̂̄t1,n+1),

• φ = ρTop

to establish the equality of ρKZB and ρTop.

Remark 2.4.8. By combining Hain’s and Enriquez-Etingof’s results one should be able to
conclude that the universal elliptic KZB connection ∇̄KZB

1,n+1 is the Gauss-Manin connection on
M̄1,n+1.
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2.4.4 Reminders on Hecke algebras

Differential operators. The algebra of differential operators Diff(g) on g is generated by
linear forms over g denoted x∗ ∈ g∗ and differential operators denoted ∂x, for x ∈ g. By
choosing a basis we a family (xα, ∂α) where xα := x∗α is a degree 1 polynomial and ∂α is the
derivative in the direction xα. These elements have relations

• [x∗, y∗] = 0,

• [∂v, ∂w] = 0,

• [∂w, v
∗] = v∗(w).

Remark 2.4.9. Diff(g∗) is a quantization of T ∗g∗ = g× g∗ and, by identifying g with its dual,
we denote x := x∗ ∈ g and Diff(g) = Diff(g∗).

In conclusion,

Diff(g) = 〈xa, ∂a; a ∈ g〉/

 a 7→ xa, a 7→ ∂a are linear
[xa, xb] = [∂a, ∂b] = 0

[∂a, xb] = 〈a, b〉g

 .

Quantum Hamiltonian reduction. Let us briefly recall what Hamiltonian reduction is
about. Let X be a symplectic variety and let G be a Lie group acting on X with associated
Lie algebra g. The moment map is a G-equivariant map µ : X −→ g∗ such that µ∗ : g ⊂
C∞(g∗) −→ C∞(X) satisfies that for all x ∈ g, f ∈ C∞(X),

{µ∗x, f} = ~X(f) =⇒ {µ∗x, µ∗y} = ~X(µ∗y) = µ∗ ~X(y) = µ∗[X,Y ].

Then µ−1(0)/G is Poisson. Thus,

C∞((µ∗)−1(0)) = C∞(X)/(C∞(X)µ∗(g))g.

In conclusion, let A0 be a Poisson algebra and µ∗0 : g −→ A0 be a Lie algebra morphism. If g
acts on A0 by means of {µ∗0X,−}, then the Hamiltonian reduction of A0 is the Poisson algebra

Ag
0/(A

g
0µ
∗
0(g))g.

Now let A be an associative algebra which is a quantization of A0, that is, A ' A0JhK. Let
µ∗ : g −→ A be a Lie algebra morphism which is a quantization of µ∗0 i.e. we have

• µ∗ = µ∗0 + ◦(h),

• a ∗ b = a.b+ h{a, b}+ ◦(h).

Then g acts on A by the commutator [µ∗X,−] and it can be shown that (Aµ∗g)g is a two-sided
ideal of Ag so

Ag/(Agµ∗(g))g

is an associative algebra called quantum Hamiltonian reduction, as it is a quantization of the
above Hamiltonian reduction.
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Hecke algebras. Let n > 1 be a natural number. As we saw earlier, Diff(g) is a quantization
of T ∗g∗ and U(g) is a quantization of g∗. Thus, the moment map is just the coadjoint action

Diff(g) −→ g∗

i.e. induces a Lie algebra morphism

g −→ Diff(g)

a 7−→ Xa

called quantum moment map, or infinitesimal adjoint action. We also have a Lie algebra map
g −→ U(g)⊗n so we get a map

ϕ : g −→ Diff(g)⊗ U(g)⊗n := An

a 7−→ Ya := Xa ⊗ 1 + 1⊗
n∑
i=1

a(i)

where a(i) = 1⊗ · · · ⊗ a⊗ · · · ⊗ 1 and Xa =
∑
α
x[a,eα]∂α.

Proposition 2.4.10. Denote gdiag := im(ϕ). Then the vector subspace Angdiag is two-sided
ideal.

Proof. If x, y ∈ H := {x ∈ An; gdiagx ⊂ Angdiag} ⊃ Angdiag, then

• gdiag(x+ y) ⊂ Angdiag;

• gdiag(xy) ⊂ Angdiag;

• it is stable by left and right multiplication (Angdiagx ⊂ Angdiag).

We conclude that the quotient H/Angdiag is an associative algebra.

Definition 2.4.11. The Hecke algebra of (An, g
diag) is (the quantum Hamiltonian reduction):

Hn(g) = {x ∈ An;∀a ∈ g, Yax ∈ Angdiag}/Angdiag.

Remark 2.4.12. The name " Hecke algebra " here is justified because this situation is in
perfect analogy to that where usual Hecke algebras appear. If H ⊂ G are simple groups, one
can ask about the representations, which are modules over C[H] and C[G] respectively. One
then constructs H(G,H) = C[hG/h]]. If V is a C[G]-module, then Hecke showed that V H

is a H(G,H)-module. In other words, Hn(g) is the Hecke algebra associated to the quantum
moment map g −→ A.
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Classical dynamical Yang-Baxter equations. The classical dynamical Yang-Baxter equa-
tion was introduced in [44] by Felder whose construction we now recall. Suppose we have a Lie
subalgebra h of g together with an element Z ∈ (∧2g)g. A (non-modified) classical dynamical
r-matrix for the pair (g, h) is a regular h-equivariant map ρ : h∨ −→ ∧2g which satisfies the
(non-modified) classical dynamical Yang-Baxter equation (CDYBE)

CYB(ρ)−Alt(dρ) = 0

where

• CYB(ρ) := [ρ1,2, ρ1,3] + [ρ1,2, ρ2,3] + [ρ1,3, ρ2,3] = 1
2 [ρ, ρ],

• Alt(dρ) :=
∑
i h

1
i
∂ρ2,3

∂λi − h2
i
∂ρ1,3

∂λi + h3
i
∂ρ1,2

∂λi .

and where (hi) and (λi) are basis dual to each other in h and h∧ respectively.

Remark 2.4.13. Here regular means C∞, meromorphic, formal etc. depending on the context.

Assume that g is finite dimensional and that we have a reductive decomposition g = h⊕ n, i.e.,
h ⊂ g is a Lie subalgebra and n ⊂ g is a vector subspace such that [h, n] ⊂ n; assume also that
tg = th + tn, where th ∈ S2(h)h and tn ∈ S2(n)h.

We assume that for a generic h ∈ h, ad(h)|n ∈ End(n) is invertible (i.e. that the decomposition
is non-degenerate). This condition is equivalent to the nonvanishing of P (λ) := det(ad(λ∨)|n) ∈
Sdim n(h), where λ 7→ λ∨ is the map h∗ −→ h, with λ∨ := (λ ⊗ id)(th). If G is a Lie group
with Lie algebra g, an equivalent condition is that a generic element of g∗ is conjugate to some
element in h∗ (see [38]).

Let us set, for λ ∈ h∗,
r(λ) := (id⊗(adλ∨)−1

|n )(tn)

and denote h∗reg = {λ ∈ h∗|P (λ) 6= 0}. Then r : h∗reg −→ ∧2(n) is a classical dynamical r-matrix
for the pair (g, h) (see [38]).

2.4.5 Realizations of the universal elliptic KZB connection

As in the genus 0 case, the universal KZB connection has realizations.

Let g be a semi-simple Lie algebra over a field k of characteristic equal to 0 and let Hn(g) be
its associated Hecke algebra.

Proposition 2.4.14. There is a unique Lie algebra morphism t̄1,n o d −→ Hn(g), defined by

• x̄i 7−→
∑
α xα⊗e(i)

α ,

• ȳi 7−→ −
∑
α ∂α ⊗ e

(i)
α ,

• t̄ij 7−→ 1⊗ t(ij)g .

• ∆0 7−→ − 1
2 (
∑
α ∂

2
α)⊗ 1,

• X 7−→ 1
2 (
∑
α x2

α)⊗ 1,



76 CHAPTER 2. BACKGROUND

• d 7−→ 1
2 (
∑
α xα ∂α + ∂α xα)⊗ 1,

• δ2m 7−→ 1
2

∑
α1,...,α2m,α

xα1
· · · xα2m

⊗(
∑n
i=1(ad(eα1

) · · · ad(eα2m
)(eα) · eα)(i))

for m ≥ 1.

This morphism also extends to a morphism U (̄t1,n o d)o Sn −→ Hn(g)o Sn by the assignment
σ 7−→ σ.

Under the assumptions of the above subsection, one can show that the universal KZB connection
induces a classical dynamical r-matrix which is the realization of the universal KZB connection
associated to the pair (g, h).

If moreover we assume that g is simple and h is Cartan, then it can be shown that the universal
KZB connection realizes to the former KZB connection constructed by Bernard in [9] in the
context of Wess-Zumino-Witten models.

2.5 Reminders on operads, operadic modules and moper-
ads

In this section we fix a symmetric monoidal category (C,⊗,1) having small colimits and such
that ⊗ commutes with these.

2.5.1 S-modules

An S-module (in C) is a functor S : Bij −→ C, where Bij denotes the category of finite sets
with bijections as morphisms. It can also be defined as a collection (S(n))n≥0 of objects of C
such that S(n) is endowed with a right action of the symmetric group Sn for every n; one has
S(n) := S({1, . . . , n}). A morphism of S-modules ϕ : S −→ T is a natural transformation. It
is determined by the data of a collection ϕ(n) : S(n) −→ T (n) of Sn-equivariant morphisms in
C.

The category S-mod of S-modules is naturally endowed with a symmetric monoidal product
⊗ defined as follows:

(S ⊗ T )(n) :=
∐

p+q=n

(S(p)⊗ T (q))
Sn
Sp×Sq .

Here, if H ⊂ G is a group inclusion, then (−)GH is left adjoint to the restriction functor from
the category of objects carrying a G-action to the category of objects carrying an H-action.

We let the reader check that the symmetric sequence 1⊗ defined by

1⊗(n) :=

1 if n = 0

∅ else

is a monoidal unit.
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There is another (non-symmetric) monoidal product ◦ on S-mod, defined as follows:

(S ◦ T )(n) :=
∐
k≥0

T (k) ⊗
Sk

(
S⊗k(n)

)
.

Here, if H is a group and X,Y are objects carrying an H-action, then

X ⊗
H
Y := coeq

∐
h∈H

X ⊗ Y
h⊗id−→
−→
id⊗h

X ⊗ Y

 .

We let the reader check that the symmetric sequence 1S defined by

1◦(n) :=

1 if n = 1

∅ else

is a monoidal unit for ◦.

2.5.2 Operads

An operad (in C) is a unital monoid in (S-mod, ◦,1◦). The category of operads in C will be
denoted Op C.
More explicitly, an operad structure on a S-module O is the data:

• of a unit map e : 1 −→ O({1}).
• for every sets I, J and any element i ∈ I, of a partial composition

◦i : O(I)⊗O(J) −→ O (J t I − {i})

satisfying the following constraints:

• if we have sets I, J,K, and elements i ∈ I, j ∈ J , then the following diagram commutes:

O(I)⊗O(J)⊗O(K)

id⊗◦j
��

◦i⊗id // O (J t I − {i})⊗O(K)

◦j
��

O(I)⊗O (K t J − {j}) ◦i // O (K t J t I − {i, j})

• if we have sets I, J1, J2 and elements i1, i2 ∈ I, then the following diagram commutes:

O(I)⊗O(J1)⊗O(J2)

(◦i2⊗id)(23)

��

◦i1⊗id
// O (J1 t I − {i1})⊗O(J2)

◦i2
��

O (J2 t I − {i2})⊗O(J1)
◦i1 // O (J2 t J1 t I − {i1, i2})

• if we have sets I, I ′, J , i ∈ I and a bijection σ : I −→ I ′, then the following diagram
commutes:

O(I)⊗O(J)

◦i
��

O(σ) // O(I ′)⊗O(J)

◦σ(i)

��
O (J t I − {i})

O(idtσ|I−{i})// O (J t I ′ − {σ(i)})
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• if we have a set I and i ∈ I, then the following diagrams commute:

1⊗O(I)

'
''

e⊗id// O({1})⊗O(I)

◦1
��

O(I)

O(I)⊗ 1

'
��

id⊗e// O(I)⊗O({1})
◦i
��

O(I)
i 7→1

' // O (I t {1} − {i})

Example 2.5.1. Let X be an object of C. Then we define, for any finite set I, the set
End(X)(I) := HomC(X⊗I , X). Composition of tensor products of maps provide End(X) with
the structure of an operad in sets.

Given an operad in sets O, an O-algebra in C is an object X of C together with a morphism of
operads O −→ End(X).

2.5.3 Example of an operad: Stasheff polytopes

To any finite set I we associate the configuration space Conf(R, I) = {x = (xi)i∈I ∈ RI |xi 6=
xj if i 6= j} and its reduced version

C(R, I) := Conf(R, I)/Ro R>0 .

The Fulton-MacPherson compactification C(R, I) of C(R, I) (see [48]) is a disjoint union of
|I|-th Stasheff polytopes [96], indexed by SI . The boundary ∂C(R, I) := C(R, I)− C(R, I) is
the union, over all partitions I = J1

∐ · · ·∐ Jk, of

∂J1,··· ,JkC(R, I) :=

k∏
i=1

C(R, Ji)× C(R, k) .

The inclusion of boundary components provides C(R,−) with the structure of an operad in
topological spaces (where the monoidal structure is given by the cartesian product).

One can see that C(R, I) is actually a manifold with corners, and that, considering only
zero-dimensional strata of our configuration spaces, we get a suboperad Pa ⊂ C(R,−) that
can be shortly described as follows:

• Pa(I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal parenthesization
of • · · · •︸ ︷︷ ︸
|I| times

,

• the operad structure is given by substitution.

Notice that Pa is actually an operad in sets, and that Pa-algebras are nothing else than
magmas.

2.5.4 Modules over an operad: Bott-Taubes polytopes

A module over an operad O (in C) is a left O-module in (S-mod, ◦,1◦). Notice that any operad
is a module over itself. We let the reader find the very explicit description of a module in terms
of partial compositions, as for operads.
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To any finite set I we associate the configuration space Conf(S1, I) = {x = (xi)i∈I ∈ (S1)I |xi 6=
xj if i 6= j} and its reduced version

C(S1, I) := Conf(S1, I)/S1 .

The Fulton–MacPherson compactification C(S1, I) of C(S1, I) is a disjoint union of |I|-th
Bott–Taubes polytopes [15], indexed by SI . The boundary ∂C(S1, I) := C(S1, I)− C(S1, I) is
the union, over all partitions I = J1

∐ · · ·∐ Jk, of

∂J1,··· ,JkC(S1, I) :=

k∏
i=1

C(R, Ji)× C(S1, k) .

The inclusion of boundary components provides C(S1,−) with the structure of a module over
the operad C(R,−) in topological spaces.

One can see that C(S1, I) is actually a manifold with corners, and that, considering only
zero-dimensional strata of our configuration spaces, we get Pa ⊂ C(S1,−), which is a module
over Pa ⊂ C(R,−).

2.5.5 Moperads over an operad

Let O be an operad. A moperad over an operad O is an S-module P carrying

• a unital monoid structure for the monoidal product ⊗,

• and a left O-module structure for the monoidal product ◦, that are compatible in the
following sense:

– One first observes that there is a natural map (O ◦ P)⊗Q −→ O ◦ (P ⊗Q).

– Then the compatibility means that the following diagram commutes:

(O ◦ P)⊗ P //

��

P ⊗ P

""
O ◦ (P ⊗ P) // O ◦ P // P

The map (O ◦ P)⊗ P −→ P one obtains decomposes into maps

P(k)⊗ P(m0)⊗O(m1)⊗ · · · ⊗ O(mk) −→ P(m0 + · · ·+mk)

satisfying certain associativity, unit and S-equivariance relations. We leave it as an exercise
to check that, within the symmetric monoidal category of differential graded vector spaces,
this definition coincides with Willwacher’s one from [103] (from which we borrowed the name
“moperad”). Note that the monoid structure for the monoidal product ⊗ encodes precisely the
partial composition with respect to the second colour. We will denote this partial composition
by ◦0.
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2.5.6 Example of a moperad over an operad: coloured Stasheff poly-
topes

To any finite set I we associate the configuration space Conf(R>0, I) = {x = (xi)i∈I ∈
(R>0)I |xi 6= xj if i 6= j} and its reduced version

C(R>0, I) := Conf(R>0, I)/R>0 .

The Fulton–MacPherson compactification C(R>0, I) of C(R>0, I) is a disjoint union of |I|-th
Stasheff polytopes with two kinds of colours, indexed by SI . The boundary ∂C(R>0, I) :=

C(R>0, I)− C(R>0, I) is the union, over all partitions I = J0

∐
J1

∐ · · ·∐ Jk, of

∂J0,··· ,JkC(R>0, I) := C(R>0, k)× C(R>0, J0)×
k∏
i=1

C(R, Ji) .

The inclusion of boundary components provides C(R>0,−) with the structure of a C(R,−)-
moperad in topological spaces.

One can see that C(R>0, I) is a manifold with corners, and that considering only zero-
dimensional strata of our configuration spaces we get a sub-moperad Pa0 ⊂ C(R>0,−) that
can be shortly described as follows:

• Pa0(I) is the set of pairs (σ, p) with σ is a linear order on I and p a maximal parenthe-

sization of

0• · · · •︸ ︷︷ ︸
|I| times

 such that there is no action of Sn on 0, but this element can be

inside a parenthesis. This means that we allow points to be near the origin.

• The C(R,−)-moperad structure is given by substitution as above.

Forgetting the C(R,−)-moperad structure on C(R>0,−) and considering a C(R,−)-module
structure on it amounts to forbidding points to be close to the origin (i.e. the 0-strand cannot
be inside a parenthesis in this case).

2.5.7 Prounipotent completion and fake pull-back of operads in groupoids

Let k be a Q-ring. We denote by CoAlgk the symmetric monoidal category of complete filtered
topological coassociative cocommutative counital k-coalgebras, where the monoidal product is
given by the completed tensor product ⊗̂k over k.

Let Cat(CoAlgk) be the category of small CoAlgk-enriched categories. It is symmetric
monoidal as well, with monoidal product ⊗ defined as follows:

• Ob(C ⊗ C ′) := Ob(C)×Ob(C ′).

• HomC⊗C′
(
(c, c′), (d, d′)

)
:= HomC(c, d)⊗̂k HomC′(c

′, d′).

Let us now consider the symmetric monoidal category Grpd of groupoids, with symmetric
monoidal structure given by the cartesian product. We have a symmetric monoidal functor

Grpd −→ Cat(CoAlgk)

G 7−→ G(k)
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defined as follows:

• Objects of G(k) are objects of G.
• For a, b ∈ Ob(G),

HomG(k)(a, b) = ̂k ·HomG(a, b) .

Here k ·HomG(a, b) is equipped with the unique coalgebra structure such that the elements
of HomG(a, b) are grouplike (meaning that they are diagonal for the coproduct and that
their counit is 1), and the “ ̂ ” refers to the completion with respect to the topology
defined by the sequence (HomIk(a, b)

)
k≥0

, where:

– Ik is the category having the same objects as G and morphisms lying in the k-th
power (for the composition of morphisms) of kernels of the counits of k ·HomG(a, b)’s.

• For a functor F : G −→ H, F (k) : G(k) −→ H(k) is the functor given by F on objects
and by k-linearly extending F on morphisms.

Being symmetric monoidal, this functor sends operads in groupoids to operads in Cat(CoAlgk).

Example 2.5.2. For instance, viewing Pa as an operad in groupoid (with only identities as
morphisms), then Pa(k) is the operad in Cat(CoAlgk) with same objects as Pa, and whose
morphisms are

HomPa(k)(n)(a, b) =

k if a = b

0 else

with k being equipped with the obvious coproduct ∆(1) = 1⊗ 1 and counit ε(1) = 1.

The functor we have just defined has a right adjoint

G : Cat(CoAlgk) −→ Grpd ,

that we can describe as follows:

• For C in Cat(CoAlgk), objects of G(C) are objects of C.

• For a, b ∈ Ob(G), HomG(C)(a, b) is the subset of grouplike elements in HomC(a, b).

Being right adjoint to a symmetric monoidal functor, it is lax symmetric monoidal, and thus it
sends operads (resp. modules, resp. moperad) to operads (resp. modules, resp. moperad).

We thus get a k-prounipotent completion functor G 7→ Ĝ(k) := G
(
G(k)

)
for operads (resp. mod-

ules, resp. moperad) in groupoids.

Finally, let P,Q be two operads (resp. modules, resp. moperad) in groupoids. If we are given a
morphism f : Ob(P) −→ Ob(Q) between the operads (resp. operad modules, resp. moperads)
of objects of P and Q, then (following [47]) we can define an operad (resp. operad module,
resp. moperad) f?Q in the following way:

• Ob(f?Q) := Ob(P),
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• Hom(f?Q)(n)(p, q) := HomQ(n)(f(p), f(q)).

In particular, f?Q inherits the operad structure of P for its operad of objects and that of Q
for the morphisms.

Remark 2.5.3. Notice that this is not a pull-back in the category of operads in groupoids.

2.5.8 Pointed versions

Observe that there is an obvious operad Unit defined by

Unit(n) =

1 if n = 0, 1

∅ else

By convention, all our operads O will be pointed in the sense that they will come equipped with
a specific operad morphism Unit −→ O. Morphisms of operads are required to be compatible
with this pointing. Actually, all operads appearing in this paper are such that O(n) ' 1 if
n = 0, 1.

Now, if P is an O-module, then it naturally becomes a Unit-module as well, by restriction. By
convention, all our modules will be pointed as well, in the sense that they will come equipped
with a specific Unit-module morphism Unit −→ P. Morphisms of modules are required to
be compatible with the pointing. Again, all modules appearing in this paper are such that
P(n) ' 1 if n = 0, 1.

Finally, there is a nice moperad Minut over Unit, which is such that Minut(n) = 1 for all
n ≥ 0. By convention, all our moperads will be pointed, in the sense that they will come
equipped with a specific unit-moperad morphism Minut −→ Q. Morphisms of moperads are
required to be compatible with the pointing.

Remark 2.5.4. In the category of sets, Minut is the sub-Unit-moperad of Pa0 that consists
only of the left-most maximal parenthesization.

The main reason for these rather strange conventions is that we need the following features,
that we have in the case of compactified configuration spaces:

• For operads, modules and moperads, we want to have “deleting operations” O(n) −→
O(n− 1) that decrease arity.

• For modules and moperads, we want to be able to see the operad “inside” them, i.e. we
want to have distinguished morphism O −→ P of S-modules.

Example 2.5.5. For instance, being a Pa-moperad, Pa0 comes together with a morphism of
S-modules Pa −→ Pa0. We let the reader check that it sends a parenthesized permutation p

to 0(p).
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2.5.9 Group actions

Let G be a group and O be an operad. We say an O-module P carry a G-action if

• for every n ≥ 0, Gn acts Sn-equivariantly on P(n), from the left.

• for every m ≥ 0, n ≥ 0, and 1 ≤ i ≤ n, the partial composition

◦i : P(n)⊗O(m) −→ P(n+m− 1)

is equivariant along the group morphism

Gn −→ Gn+m−1

(g1, . . . , gn) 7−→ (g1, . . . , gi−1, gi, . . . , gi︸ ︷︷ ︸
m times

, gi+1, . . . , gn)

If P is a moperad, we additionally require that the partial composition

◦0 : P(n)⊗ P(m) −→ P(n+m)

is Gn+m-equivariant.

A morphism P −→ Q of O-modules (or O-moperads) with G-action is said G-equivariant if,
for every n ≥ 0, the map P(n) −→ Q(n) is Gn-equivariant.

2.6 Grothendieck-Teichmüller groups

Initially, Grothendieck-Teichmüller groups and associators were, in the genus 0, cyclotomic and
genus 1 cases, constructed by using braided monoidal categories, braided modules categories
and elliptic structures over braided monoidal categories respectively. Already in V. Drinfeld’s
work, associators had an implicit operadic nature (made explicit in [5]) which permits to define
associators as formality isomorphisms between operads closely related to the little disks operad.
More specifically, there is an operad in groupoids PaB encapsulating the combinatorics of
parenthesized braidings and an operad in groupoids GPaCD encapsulating the combinatorics of
parenthesized chord diagrams. The former is obtained (roughly) by considering a parenthesized
version of the (pure) braid group on the torus. The latter is obtained from the collection
t(k) of Lie (k)-algebras tn(k), for n ≥ 1, which has a natural operad structure. In this scope,
the (naive) Grothendieck-Teichmüller group consists on the group of automorphisms of PaB

which are the identity on objects, the graded Grothendieck-Teichmüller group is the group
of automorphisms of GPaCD which are the identity on objects, and, by denoting P̂aB(k)

the k-prounipotent completion of PaB, then the set of k-associators consists on the set of
isomorphisms P̂aB(k) −→ GPaCD of operads in k-prounipotent groupoids which are the
identity on objects. It can be shown that these operadic point of view is compatible with the
classic one, namely that there is a one-to-one correspondence between the operadic definition
of these objects and the objects defined in the literature in terms of elements satisfying certain
equations.
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Let us mention that in [47], B. Fresse developped a very general rational homotopy theory for
operads in order to understand from a homotopical viewpoint, a deep relationship between
operads and Grothendieck-Teichmüller groups which was first foreseen by M. Kontsevich in his
work on deformation quantization process in mathematical physics.

More specifically, after developing a general theory permitting to endow the category of operads
in simplicial sets (and, further, of Hopf cooperads) with a (nice enough) model category
structure, the author uses an application of homotopy spectral sequences to show that the
Grothendieck-Teichmüller group has a topological interpretation as a group of homotopy
automorphisms associated to the little 2-disc operad. A similar characterisation of the set of
associators is also done in the author’s work.

2.6.1 Compactified configuration space of the plane

To any finite set I we associate a configuration space

Conf(C, I) = {z = (zi)i∈I ∈ CI |zi 6= zj if i 6= j} .

We also consider its reduced version

C(C, I) := Conf(C, I)/Co R>0.

We then consider the Fulton–MacPherson compactification C(C, I) of C(C, I). The boundary
∂C(C, I) = C(C, I)−C(C, I) is made of the following irreducible components: for any partition
I = J1

∐ · · ·∐ Jk there is a component

∂J1,··· ,JkC(C, I) ∼= C(C, k)×
k∏
i=1

C(C, Ji) .

The inclusion of boundary components provides C(C,−) with the structure of an operad in
topological spaces.

2.6.2 The operad of parenthesized braids

We have inclusions of topological operads

Pa ⊂ C(R,−) ⊂ C(C,−) .

Then it makes sense to define

PaB := π1

(
C(C,−),Pa

)
,

which is an operad in groupoids.

Example 2.6.1 (Description of PaB(2)). Let us first recall that Pa(2) = S2, and that
C(C, 2) ' S1. Besides the identity morphism in PaB(2) going from (12) to (12), we have an
arrow R1,2 in PaB(2) going from (12) to (21) which can be depicted as follows3:

3We actually have another arrow, that can be obtained from the first one as (R2,1)−1 according to the notation that
is explained after Theorem 2.6.3, and which can be depicted as an undercrossing braid.
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1

2

2

1
1

2

Two incarnations of R1,2

Example 2.6.2 (Notable arrows inPaB(3)). Let us first recall that Pa(3) = S3×{(••)•, •(••)}
and that C(R, 3) ∼= S3 × [0, 1]. Therefore, we have an arrow Φ1,2,3 (the identity path in [0, 1])
from (12)3 to 1(23) in PaB(3). It can be depicted as follows:

(1

1

2)

(2

3

3)

1 2 3

Two incarnations of Φ1,2,3

The following result is borrowed from [47, Theorem 6.2.4], even though it perhaps already
appeared in [5] in a different form.

Theorem 2.6.3. As an operad in groupoids having Pa as operad of objects, PaB is freely
generated by R := R1,2 and Φ := Φ1,2,3 together with the following relations:

(H1) R1,2Φ2,1,3R1,3 = Φ1,2,3R1,23Φ2,3,1, as arrows from (12)3 to 2(31) in PaB(3),

(H2) (R2,1)−1Φ2,1,3(R3,1)−1 = Φ1,2,3(R23,1)−1Φ2,3,1, as arrows from (12)3 to 2(31) in PaB(3),

(P) Φ12,3,4Φ1,2,34 = Φ1,2,3Φ1,23,4Φ2,3,4, as arrows from ((12)3)4 to 1(2(34)) in PaB(4).

We now briefly explain the notation we have been using in the above statement, which is quite
standard. In this article, we write the composition of paths from left to right (and we draw the
braids from top to bottom). If X is an arrow from p to q in PaB(n), then

• for any r ∈ Pa(k), the identity of r in PaB(k) is also denoted r.

• for any r ∈ Pa(k), we write X1,...,n for r ◦1 X ∈ PaB(n+ k − 1).

• for any σ ∈ Sn+k−1 we define Xσ1,...,σn := (X1,...,n) · σ.

• for any r ∈ Pa(k), Xr,k+1,...,k+n−1 := X ◦1 r ∈ PaB(n+ k − 1).

• we allow ourselves to combine these in an obvious way.

We let the reader figuring out that this notation is unambiguous as soon as we specify the
starting object of our arrows. For example, the pentagon (P) and the first hexagon (H1)
relations can be respectively depicted as
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((1 2) 3) 4

1 (2 (3 4))

=

((1 2) 3) 4

1 (2 (3 4))

(P)

and

(1

2

2)

(3

3

1)

=

(1

2

2)

(3

3

1)

(H1)

or, as commuting diagrams (giving the name of the relations)

(12)(34)

Φ12,3,4

$$

(12)3
Φ1,2,3

//

R1,2

zz

1(23)

R1,23

$$
1(2(34))

Φ1,2,34
::

Φ2,3,4

��

((12)3)4 and (21)3

Φ2,1,3

$$

(23)1

Φ2,3,1

zz
1((23)4)

Φ1,23,4
// (1(23))4

Φ1,2,3

OO

2(13)
R1,3

// 2(31)

2.6.3 The operad of chord diagrams

In [5, 47] it is shown4 that the collection of Kohno-Drinfeld Lie k-algebras tn(k) defined in the
introduction is provided with the structure of an operad in the category grLiek of positively
graded finite dimensional Lie algebras over k, with symmetric monoidal strucure is given by
the direct sum ⊕. Partial compositions are described as follows:

◦k : tI(k)⊕ tJ(k) −→ tJtI−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J
tpj if k = i∑

p∈J
tip if j = k

4Even though the author of [5] does not use the concept of an operad.
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Observe that we have a lax symmetric monoidal functor

Û : grLiek −→ Cat(CoAlgk)

sending a positively graded Lie algebra to the degree completion of its universal envelopping
algebra, which is a complete filtered cocommutative Hopf algebra, viewed as a CoAlgk-enriched
category with only one object.

We then consider the operad of chord diagrams CD(k) := Û(t(k)) in Cat(CoAlgk).

Remark 2.6.4. This denomination comes from the fact that morphisms in CD(k)(n) can be
represented as linear combinations of diagrams of chords on n vertical strands, where the chord
diagram corresponding to tij can be represented as

i j1 n

1 ni j

and the composition is given by vertical concatenation of diagrams. Partial compositions can
easily be understood as “cabling and removal operations” on strands (see [5, 47]). Relations (L)
and (4T) defining each tn(k) can be represented as follows:

j ki l

i lj k

=

j ki l

i lj k

(L)

i j k

i j k

+

i j k

i j k

=

i j k

i j k

+

i j k

i j k

(4T)

2.6.4 The operad of parenthesized chord diagrams

Recall that the operad CD(k) has only one object in each arity. Hence we have an obvious
terminal morphism of operads ω1 : Pa = Ob(Pa(k)) −→ Ob(CD(k)), and thus we can consider
the operad

PaCD(k) := ω?1CD(k)
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of parenthesized chord diagrams. Here is a self-explanatory example of how to depict a morphism
in PaCD(k)(3):

f ·

(i j) k

i (k j)

where f ∈ CD(k)(3).

Example 2.6.5 (Notable arrows of PaCD(k)). We have the following arrows in PaCD(k)(2):

H1,2 := t12·

1

1

2

2

=:

1

1

2

2

X1,2 = 1·

1

2

2

1

We also have the following arrow in PaCD(k)(3):

a1,2,3 = 1·

(1

1

2)

(2

3

3)

Remark 2.6.6. The elements H1,2, X1,2 and a1,2,3 are generators of the operad PaCD(k)

and satisfy the following relations:

(P) a12,3,4a1,2,34 = a1,2,3a1,23,4a2,3,4,

(H) X12,3 = a1,2,3X2,3(a1,3,2)−1X1,3a3,1,2,

(Inv) H2,1 = X1,2H1,2(X1,2)−1,

(SH) H12,3 = (a1,2,3)−1H2,3a1,2,3 + (X2,1)−1(a2,1,3)−1H1,3a2,1,3X2,1.

In particular, even if PaCD(k) does not have a presentation in terms of generators and
relations (as is the case fot PaB), one can shown that PaCD(k) has a universal property with
respect to the generators H1,2, X1,2 and a1,2,3 and the above relations (see [47, Theorem 10.3.4]
for details).

2.6.5 Drinfeld associators

Let us first introduce some terminology that we use in this paragraph, as well as later in the
paper:
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• Grpdk denote the (symmetric monoidal) category of k-prounipotent groupoids (which is
the image of the completion functor G 7→ Ĝ(k)).

• for C being Grpd, Grpdk, or Cat(CoAlgk), the notation

Aut+
Op C (resp. Iso+

Op C)

refers to those automorphisms (resp. isomorphisms) which are the identity on objects.

In the remainder if this section we recall some well known results on the operadic point of
view on associators and Grothendieck-Teichmüller groups, which will be useful later on. Even
though the statements and proofs of all the results in this subsection can be found in [47], it is
worth mentionning that a "pre-operadic" approach was initiated by Bar-Natan in [5].

Definition 2.6.7. A Drinfeld k-associator is an isomorphism between the operads P̂aB(k)

and GPaCD(k) in Grpdk, which is the identity on objects. We denote by

Ass(k) := Iso+
Grpdk

(P̂aB(k), GPaCD(k))

the set of k-associators.

Theorem 2.6.8. There is a one-to-one correspondence between the set of Drinfeld k-associators
and the set Ass(k) of couples (µ, ϕ) ∈ k× × exp(̂f2(k)), such that

(S) ϕ3,2,1 = (ϕ1,2,3)−1,

(H) ϕ1,2,3eµt23/2ϕ2,3,1eµt31/2ϕ3,1,2eµt12/2 = eµ(t12+t13+t23)/2,

(P) ϕ1,2,3ϕ1,23,4ϕ2,3,4 = ϕ12,3,4ϕ1,2,34,

where ϕ1,2,3 = ϕ(t12, t23) is viewed as an element of exp(̂t3(k)) via the inclusion f̂2(k) ⊂ t̂3(k)

sending x to t12 and y to t23.

Two observations are in order:

• the free Lie k-algebra f2(k) in two generators x, y is graded, with generators having degree
1, and its degree completion is denoted by f̂2(k).

• the k-prounipotent group exp(̂f2(k)) is thus isomorphic to the k-prounipotent completion
F̂2(k) of the free group F2 on two generators.

This Theorem was first implicitely shown by Drinfeld in [31]. An explicit proof can be found
in [47, Theorem 10.2.9], and relies on the universal property of PaB from Theorem 2.6.3.
In particular, a morphism F : P̂aB(k) −→ GPaCD(k) is uniquely determined by a scalar
parameter µ ∈ k and ϕ ∈ exp(̂f2(k)) such that we have the following assignment in the
morphism sets of the parenthesized chord diagram operad PaCD:

• F (R) = eµt12/2,

• F (Φ) = ϕ(t12, t23) ,

where R and Φ are the ones from Examples 2.6.1 and 2.6.2.
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Example 2.6.9 (The KZ Associator). The first associator was constructed by Drinfeld with
the help of the monodromy of the KZ connection and is known as the KZ associator ΦKZ.
It is defined as the the renormalized holonomy from 0 to 1 of G′(z) = ( t12

z + t12

z−1 )G(z), i.e.,
ΦKZ := G−1

0+G1− ∈ exp(̂t3(C)), where G0+ , G1− are the solutions such that G0+(z) ∼ zt12 when
z −→ 0+ and G1−(z) ∼ (1− z)t23 when z −→ 1−. We have

ΦKZ(V,U) = ΦKZ(U, V )−1, ΦKZ(U, V )eπiV ΦKZ(V,W )eπiWΦKZ(W,U)eπiU = 1,

where U = t12 ∈ f2(C) ' t̄3(C) := t3(C)/(t12 + t13 + t23), V = t23 ∈ t̄3(C) and U + V +W = 0,
and

Φ12,3,4
KZ Φ1,2,34

KZ = Φ1,2,3
KZ Φ1,23,4

KZ Φ2,3,4
KZ

(relation in exp(̂t4(C))) so (2πi,ΦKZ) is an element of Ass(C).

2.6.6 Grothendieck–Teichmuller group

Definition 2.6.10. The Grothendieck–Teichmüller group is defined as the group

GT := Aut+
Op Grpd(PaB)

of automorphisms of the operad in groupoids PaB which are the identity of objects. One defines
similarly the k-pro-unipotent version

ĜT(k) := Aut+
Op Grpdk

(
P̂aB(k)

)
There are also pro-` and profinite versions, denoted GT` and ĜT, that we will not consider in
this paper.

We can also characterize elements of GT and ĜT(k) as solutions of certain explicit algebraic
equations. This characterization proves that the above operadic definition of GT coincides
with the one given by Drinfeld in his original paper [31]. In this article we will focus on the
k-pro-unipotent version of this group in genus 0 and 1, and twisted situations.

Definition 2.6.11. Drinfeld’s Grothendieck–Teichmüller group ĜT(k) consists of pairs

(λ, f) ∈ k× × F̂2(k)

which satisfy the following equations:

(BS) f(x, y) = f(y, x)−1,

(BH) xν1f(x1, x2)xν2f(x2, x3)xν3f(x3, x1) = 1,

(BP) f(x13x23, x34)f(x12, x23x24) = f(x12, x23)f(x12x13, x23x34)f(x23, x34) in P̂B4(k),

where x1, x2, x3 are 3 variables subject only to x1x2x3 = 1, ν = λ−1
2 , and xij is the elementary

pure braid Pij from the introduction. The multiplication law is given by

(λ1, f1)(λ2, f2) = (λ1λ2, f2(f1(x, y)xλ1f1(x, y)−1, yλ1)f1(x, y)).
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Theorem 2.6.12. There is an isomorphism between the groups ĜT(k) and ĜT(k).

This was first implicitely shown by Drinfeld in [31]. An explicit proof of this theorem can be
found for example in [47, Theorem 11.1.7]. In particular, one obtains the couple (λ, f) from an
automorphism F ∈ ĜT(k) as follows. We have

F


1

2

2

1

 =


1

1

2

2



ν

·

1

2

2

1

=


1

2

2

1



2ν+1

(2.15)

F


(1

1

2)

(2

3

3)


= f


(1

(1

2)

2)

3

3

,

(1

(1

2)

2)

3

3


·

(1

1

2)

(2

3

3)

(2.16)

In other words, if we set λ = 2ν + 1, we get the assignment

• F (R1,2) = (R1,2)λ,

• F (Φ1,2,3) = f(x12, x23) · Φ1,2,3.

Remark 2.6.13. It is important to notice that the profinite, pro-`, k-pro-unipotent versions of
the Grothendieck–Teichmüller group do not coincide with the profinite, pro-`, k-pro-unipotent
completions of the“thin” Grothendieck–Teichmüller group GT which only consists of the pairs
(1, 1) and (−1, 1). We have morphisms

GT −→ ĜT� GT` ↪→ ĜT(Q`) and GT −→ ĜT(k) .

2.6.7 Graded Grothendieck–Teichmuller group

Definition 2.6.14. The graded Grothendieck–Teichmüller group is the group

GRT(k) := Aut+
Op Grpdk

(GPaCD(k))

of automorphisms of GPaCD(k) that are the identity on objects.

Remark 2.6.15. When restricted to the full subcategory Cat(CoAlgconn
k ) of CoAlgk-enriched

categories for which the hom-coalgebras are connected, the functor G leads to an equivalence
between Cat(CoAlgconn

k ) and Grpdk. Hence there is an isomorphism

GRT(k) ' Aut+
Op Cat(CoAlgk)(PaCD(k)) .

Again, the operadic definition of GRT(k) happens to coincide with the one originaly given by
Drinfeld.
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Definition 2.6.16. Let GRT1 be the set of elements in g ∈ exp(̂f2(k)) ⊂ exp(̂t3(k)) such that

• g3,2,1 = g−1 and g1,2,3g2,3,1g3,1,2 = 1, in exp(̂t3(k))),

• t12 + Ad(g1,2,3)−1(t23) + Ad(g2,1,3)−1(t13) = t12 + t13 + t23, in t̂3(k)),

• g1,2,3g1,23,4g2,3,4 = g12,3,4g1,2,34, in exp(̂t4(k))),

One has the following multiplication law on GRT1:

(g1 ∗ g2)(A,B) := g1(Ad(g2(A,B))(A), B)g2(A,B) .

Drinfeld showed in [31] that the above GRT1 is stable under ∗, that it defines a group structure
on it, and that rescaling transformations g(x, y) 7→ λ · g(x, y) = g(λx, λy) define an action of
k× of GRT1 by automorphisms.

Theorem 2.6.17. There is a group isomorphism GRT(k) ∼= k× o GRT1.

This was first implicitely shown by Drinfeld in [31]. An explicit proof of this theorem can be
found for example in [47, Theorem 10.3.10]. In particular, we obtain the couple (λ, g) from an
automorphism G ∈ GRT(k) by the assignment

• G(X1,2) = X1,2,

• G(H1,2) = λH1,2,

• G(a1,2,3) = g(t12, t23) · a1,2,3.

2.6.8 Torsors

Recall first that there is a left free and transitive group action of ĜT(k) on Ass(k), defined by

(λ, f) ∗ (µ,Φ) := (λµ,Φ(A,B)f(eµA,Φ(A,B)−1eµBΦ(A,B))) = (µ′,Φ′).

Recal also that there is a right free and transitive group action of GRT(k) on Ass(k) defined
as follows: for g ∈ GRT1(k) and (µ,Φ) ∈M(k), (µ,Φ) ∗ g := (µ, Φ̃), where

Φ̃(t12, t23) = Φ((t12,Ad(g)t23))g,

and for c ∈ k×,(µ,Φ) ∗ c := (cµ, c ∗ Φ), where (c ∗ Φ)(A,B) = Φ(cA, cB). This makes
(ĜT(k),Ass(k),GRT(k)) into a torsor.

Proposition 2.6.18. There is a torsor isomorphism

(ĜT(k),Ass(k),GRT(k)) −→ (ĜT(k),Ass(k),GRT(k)) (2.17)

Proof. On the one hand, in [47, Theorem 10.3.13] it is shown that the natural left free and
transitive action of ĜT(k) over Ass(k) coincides with the action of GT(k) over Ass(k) via
the correspondence of Theorem 2.6.12. Thus, both actions are compatible. On the other
hand, in [47, Theorem 11.2.1], it is shown that the natural right free and transitive action of
GRT(k) over Ass(k) coincides with the action of GRT(k) over Ass(k) via the correspondence
of Theorem 2.6.17. Thus, both actions are also compatible.



Chapter 3

Results

The contributions below focus on questions related to the higher genus and the twisted elliptic
avatars of the V. Drinfeld’s story of KZ equations, associators and the group GT.

One the one hand, in Part I we make use of the theory of the Fulton-MacPherson compactifica-
tion, combined with operads, moperads ([103]) and operadic modules ([46]) to describe in a
conceptual manner twisted and higher genus versions of associators, Grothendieck-Teichmüller
groups and their graded versions.

On the other hand, in part II we focus on the twisted elliptic case to show the existence of
a so-called twisted elliptic C-associator arising from a flat universal KZB connection defined
on a principal bundle over the moduli space of elliptic curves with a level structure. The
theory of such a connection has immediate applications as to establishing the formality of some
subgroups of the pure braid group on the torus and producing representations of Cherednik
algebras. Analogously to the elliptic case, the coefficients of the generating series of the twisted
elliptic KZB associator will then be called twisted elliptic multiple zeta values (teMZVs for
short).

3.1 Operadic structures on associators and Grothendieck-
Teichmüller groups

As said, the set of k-associators is in a one-to-one correspondence with the set of isomorphisms
P̂aB(k) −→ GPaCD of operads in k-prounipotent groupoids which are the identity on
objects. More generally, to any orientable compact surface Σg of genus g ≥ 2, one can
associate a (framed) configuration space of n points on Σg from which to obtain arbitrary genus
definitions of Grothendieck-Teichmüller groups and associators. More specifically, one can
consider the operad PaBg of genus g parenthesized braidings associated to the fundamental
groupoids of the Fulton-MacPherson compactified (framed) configuration spaces Conf(Σg, n)

of Σg, based on the collection of sets of parenthesized permutations. Next, the “holonomy"
Lie algebra tg,n of Conf(Σg, n) became available ([33]) and can be naturally endowed with

93
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the structure of a t-module. Then, a version of this Lie algebra (taking into account the
framing of the configuration spaces) will permit us to define a GPaCD-module GPaCDg

of genus g parenthesized chord diagrams. The genus g Grothendieck-Teichmüller group
GTg will consist of group of automorphisms of the PaB-module PaBg, the genus g graded
Grothedieck-Teichmüller group GRTg will consist of group of automorphisms of the GPaCD-
module GPaCDg and the set Assg of genus g associators will consist of the isomorphisms of
modules P̂aBg(k) −→ GPaCDg which are the identity on objects. The main result of these
constructions is that, seen as a PaB-module, PaBg has a nice presentation and we extract
from it a characterisation of the set Assg of genus g associators in terms of elements satisfying
some equations in Theorem 5.3.13.

Further results are obtained in the elliptic, cyclotomic and twisted elliptic cases. In [25], we give
yet a new version of these operadic point of view on associators by taking a purely topological
point of view. Starting with the (reduced) twisted configuration spaces of the complex cylinder
and the torus, denoted respectively Conf(C×, n,N) and Conf(T, n,Γ), for M,N ≥ 1 and
Γ = Z/MZ×Z/NZ, one can construct the Fulton-MacPherson compactification of these spaces.
Then by considering, for all n ≥ 1, the collection of their fundamental groupoids based on
well chosen versions of collections of parenthesized permutations, they will be endowed with a
PaB-moperad (see [103] for the definition of a moperad over an operad) and a PaB-operadic
module structure respectively, denoted PaBN and PaBΓ

e``. Both PaBN and PaBΓ
e`` have nice

presentations by generators and relations. Similarly to the genus 1 case, one can construct from
the Lie algebras tn,N and tΓ1,n, a GPaCD-moperad and a GPaCD-module denoted GPaCDN

and GPaCDΓ
e`` respectively. Then Grothendieck-Teichmüller groups and associators in this

scope will be constructed as above1. We eventually get the following theorem.

Theorem 3.1.1. The following maps are bitorsor isomorphisms

(ĜTe``(k),Ell(k),GRTe``(k)) −→ (ĜTe``(k),Ell(k),GRTe``(k)) (3.1)

(ĜT
Γ
(k),AssΓ(k),GRTΓ(k)) −→ (ĜT

Γ
(k),AssΓ(k),GRTΓ(k)). (3.2)

Moreover, there is a torsor (ĜT
Γ

e``(k),EllΓ(k),GRTΓ
e``(k)) which allows us to define twisted

elliptic counterparts ĜT
Γ

e``(k), EllΓ(k), and GRTΓ
e``(k) of Grothendieck-Teichmüller groups

and associators in their non-operadic characterization.

3.2 The twisted elliptic KZB associator

We define a twisted version of the genus one KZB connection introduced in [24]. This is a flat
connection on a principal bundle over the moduli space of elliptic curves with a level structure
and n marked points.

Consider the group Γ := Z/MZ× Z/NZ. and consider the following (finite index) subgroup of
SL2(Z):

1Let us remark that a very interesting continuation of the exploration of these operadic structures should be to adapt
Fresse’s model category structures to operadic modules to give a homotopical characterisation of GTe``(Q) in terms of
homotopy automorphisms associated to little disks on the torus.
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SLΓ
2 (Z) :=

{(a b

c d

)
∈ SL2(Z)|a ≡ 1 mod M , d ≡ 1 mod N , b ≡ 0 mod N , c ≡ 0 mod M

}
.

The quotient Y (Γ) := H/SLΓ
2 (Z) is a complex orbifold whose points classify isomorphism

classes of pairs (E, φ) where E is an elliptic curve and φ : Γ −→ E is an injective group
morphism that is orientation preserving. Such an elliptic curve with additional structure will
be called Γ-structured elliptic curve. More generally, one can construct the moduli spaceMΓ

1,n

of Γ-structured elliptic curves with n ordered marked points.

Let E be an elliptic curve over C and consider the connected unramified Γ-covering p : Ẽ −→ E

corresponding to the canonical surjective group morphism ρ : π1(E) = Z2 −→ Γ sending the
generators of Z2 to their respective classes in Γ. By choosing an uniformization of E, we define
the Γ-twisted configuration space associated to Ẽ as

Conf(E,n,Γ) = (Cn −Diagτ,n,Γ)/(Z + τZ)n

where Diagτ,n,Γ := {(z1, . . . , zn) ∈ Cn|zij := zi − zj ∈ (1/M)Z + (τ/N)Z for some i 6= j}.
Then, the spaces Conf(E,n,Γ) are (roughly) fibers at τ of fibrations MΓ

1,n −→ Y (Γ). The
holonomy Lie algebra of Conf(Eτ,Γ, n,Γ) will be denoted tΓ1,n and has generators x1, . . . , xn,
y1, . . . , yn and tαij (α ∈ Γ, 1 ≤ i 6= j ≤ n).
As in the elliptic case, one can define a Lie algebra dΓ, which has two components: the first is
sl2 and the second is a free (bigraded) Lie algebra dΓ

+ generated by δs,γ ’s (s ≥ 0, γ ∈ Γ) with
relations δs,γ = (−1)sδs,−γ . The δs,γ also act as highest weight elements for sl2.

Proposition 3.2.1. We have a bigraded Lie algebra morphism ρ : dΓ −→ Der(tΓ1,n).

We can then construct a group GΓ
n whose Lie algebra has as components the holonomy Lie

algebra tΓ1,n and the so called twisted derivation algebra dΓ.

Let e, h and f form the standard basis of sl2 and write ξs,γ := ρ(δs,γ) and ∆0 := ρ(f). Let
γ̃ = (c0, c) ∈ (1/M)Z + (τ/N)Z be any lift of γ ∈ Γ and consider an element [(z, τ)] ∈MΓ

1,n.

Theorem 3.2.2. There is a unique GΓ
n-bundle Pn,Γ overMΓ

1,n (given locally by sections) with
a flat universal KZB connection, locally defined by

∇KZB
n,Γ := d−∆(z|τ)dτ −

n∑
i=1

Ki(z|τ)dzi

where, for 1 ≤ i ≤ n, we have

Ki(z|τ) := −yi +
∑
j:j 6=i

∑
γ∈Γ

kγ(adxi, z|τ)(tγij)

with kγ(x, z|τ) := e−2πicx θ(z−γ̃+x|τ)
θ(z−γ̃|τ)θ(x|τ) − 1

x , and

∆(z|τ) := − 1

2πi

(
∆0 +

∑
s≥0,γ∈Γ

1

2
As,γ(τ)ξs,γ −

∑
i<j

∂xkγ(adxi, z|τ)(tγij)
)
,

with ∂xk−γ(x, 0|τ) :=
∑
s≥0As,γ(τ)xs.
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Some facts about the construction of the connection in the above theorem:

1. The connection ∇KZB
n,Γ restricts to a flat connection ∇KZB

n,τ,Γ := d−∑iKi(z|τ)dzi locally
defined on a principal exp(̂tΓ1,n)-bundle Pτ,n,Γ over Conf(E,n,Γ). This will allow us to
establish the formality of the fundamental group of Conf(E,n,Γ).

2. One can see that the term ∂xk0(x, 0|τ) = (θ′/θ)′(x) + 1/x2 permits to retrieve classical
Eisenstein series and that for any γ ∈ Γ− {0}, the expansion of the term ∂xk−γ(x, 0|τ)

will also be given in terms of (a slightly different version of) Eisenstein series.

3. The universal twisted elliptic KZB connection realizes as the usual KZB connection
associated to elliptic dynamical r-matrices with spectral parameter [42, 44] and produces
representations of Cherednik algebras related with cyclotomic double affine Hecke algebras
([16]).

Let t̄Γ1,2 be the Lie C-algebra generated by x, y and tα, for α ∈ Γ, such that [x, y] =
∑
α∈Γ t

α. We
define the twisted elliptic KZB associator as the couple eΓ(τ) := (AΓ(τ), BΓ(τ)) ∈ exp(̂̄tΓ1,2)×
exp(̂̄tΓ1,2) consisting in the renormalized holonomies from 0 to 1/M and 0 to τ/N respectively
as paths in E − {torsion points}, of the differential equation

J ′(z) = FΓ(z) · J(z) for FΓ(z) := −
∑
α∈Γ

e−2πiax θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα). (3.3)

with values in the group exp(̂̄tΓ1,2), where α̃ = (a0, a) ∈ (1/M)Z + (τ/N)Z is a lift of α ∈ Γ. In
[25], after giving a general definition of the set EllΓ(k) of twisted elliptic k-associators (with
the use of the theory of operads, see below), we show the following result:

Theorem 3.2.3. Let EllΓKZB := EllΓ(C)×Ass(C) {2πi,ΦKZ}. There is an analytic map

h −→ EllΓKZB .

τ 7−→ eΓ(τ)

This means that, for each τ ∈ h, the element (2πi,ΦKZ, A
Γ(τ), BΓ(τ)) is a twisted elliptic

C-associator.

As a consequence, the set EllΓ(C) is non-empty and there is an action of the twisted version

ĜT
Γ

e``(k) of the elliptic prounipotent Grothendieck-Teichmüller group on it. Finally, we
establish a differential equation in the direction of τ for the ellipsitomic KZB associators.
Namely, if we denote ¯̃

ξ
(2)
s,γ for the derivation given by

• ¯̃
ξ

(2)
s,γ(x) = −(adx)s+1(t−γ) + (− adx)s+1(tγ),

• ¯̃
ξ

(2)
s,γ(tα) = [−((adx)stα−γ + (− adx)stα+γ) + (adx)st−γ + (− adx)stγ , tα],

then we have the following result.

Theorem 3.2.4. We have

2πi
∂

∂τ
AΓ(τ) =

−∆0 −
1

2

∑
γ∈Γ

∑
s>0

As,γ(τ)
¯̃
ξ(2)
s,γ

AΓ(τ),
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2πi
∂

∂τ
BΓ(τ) =

−∆0 −
1

2

∑
γ∈Γ

∑
s>0

As,γ(τ)
¯̃
ξ(2)
s,γ

BΓ(τ).

Notice that this differential equation only involves the Eisenstein-Hurwitz series that we defined
in Section 8.3.

3.3 Perspectives

This section presents an overview of the possible continuations of the results of this thesis.

The first goal is to pursue the study of the general theory of twisted elliptic associators and
elliptic multiple zeta values at torsion points. Two complementary directions of this goal are
detailed in a separate manner. The first one involves a complete study of the (prounipotent)
twisted elliptic Grothendieck-Teichmüller group, its graded version and their actions on the
set of twisted elliptic associators. The second consists of a full study of the coefficients arising
from the twisted elliptic KZB associator, namely what we call twisted elliptic MZVs (teMZVs
in short).

The second goal is to study the rational homotopy of operadic PaB-modules and elliptic
Grothendieck-Teichmüller groups.

3.3.1 Twisted elliptic (graded) Grothendieck-Teichmüller groups

In [25] we mainly expressed twisted (graded) Grothendieck-Teichmüller groups and associators
in their operadic versions (we also gave definitions of these objects in terms of elements
satisfying some equations). Nevertheless, one needs to understand the intrinsic nature of these
two groups and this set in order to study for example the decomposition of twisted elliptic
MZVs. Indeed, as we will see in chapter 8 where we establish the differential equation satisfied
by the twisted elliptic KZB associator, one needs to isolate some components of the twisted
elliptic Grothendieck-Teichmüller group and have an explicit formula for the action of this
group on the set of twisted elliptic k-associators.

The action of the twisted elliptic Grothendieck-Teichmüller group GTΓ
e`` and its

graded version on EllΓ(k). Based on the definition of GTΓ
e`` and its profinite, pro-` and

proalgebraic variants, defined by considering different versions of the PaB-module PaBΓ
e``,

we study the relations between these groups and their corresponding versions in the genus 0,
cyclotomic and elliptic cases. In the proalgebraic case, we aim to obtain a semidirect product
structure for ĜT

Γ

e``(k), analog to that obtained in the elliptic case. We will then fully describe
the action of this group on twisted elliptic k-associators. We hope to construct a morphism
of torsors from the scheme of (cyclotomic) associators to its twisted elliptic analogue, which
will permit us to establish the existence of twisted elliptic associators at extensions of Q by
roots of unity. Next, we concentrate on the graded version GRTΓ

e``(k) of the twisted elliptic
Grothendieck-Teichmüller group. In particular, we will aim to establish the existence of the
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prounipotent radical RΓ
e``(k) of GRTΓ

e``(k) whose associated Lie algebra should be isomorphic
to the twisted version of the special derivation algebra which will be constructed in chapter
8 from the definition of the twisted derivation algebra dΓ constructed in chapter 6. Special
attention will be taken on the relation between this Lie algebra and the Lie algebra of the
prounipotent radical of πgeom1 (MEM).

Further investigations on the twisted elliptic KZB associator. Once we haveex-
plicitely constructed the action of ĜT

Γ

e``(k) and GRTΓ
e``(k) on EllΓ(k), we will be able to

fully establish the differential equation for the twisted elliptic KZB associator in terms of the
Eisenstein-Hurwitz series found in chapter 7. Next, combined with a full study of the genus,
cusps (by using the Riemann-Hurwitz theorem) and mapping class group of the moduli space
of once punctured Γ-structured elliptic curves for different choices of finite abelian groups Γ,
we should be able to study the modular properties and asymptotic behaviour of the twisted
elliptic KZB associator at all cusps of this moduli space. This will be of great importance when
attacking the study of teMZVs as we will explain below.

Zariski closures, distribution relations and Galois groups actions for EllΓ(k). With
a good understanding of the twisted elliptic mapping class group π1(MΓ

1,n) at hand, we will
aim to compute its Zariski closure in the automorphism groups of the prounipotent completions
of some subgroups of the (pure) braid groups on the torus by studying the relation between

the action of the group ĜT
Γ

e``(k) on these prounipotent completions and the action of its
graded counterpart. Next, if we take Γ′ = Z/M ′Z× Z/N ′Z such that M ′ divides M and N ′

divides N , one should be able to study distribution relations satisfied by EllΓ
′
(k) and EllΓ(k)

and show that, when imposing these distribution relations, one obtains a subset of twisted
elliptic associators which will be a torsor under the action of some subgroups of ĜT

Γ

e``(k) and
GRTΓ

e``(k). Special importance will be given to study the relation between these subgroups
and the (geometric) fundamental group of the once punctured Γ-structured elliptic curve.
Finally, we sketch some relations between the twisted versions of Teichmüller groupoids in
genus one, the arithmetic fundamental group π1((MΓ

1,1)L) (for different kinds of congruence
subgroups and for L an extension of Q by roots of unity) and the profinite twisted elliptic

Grothendieck-Teichmüller group ĜT
Γ

e``.

3.3.2 Further investigations on elliptic MZVs at torsion points

The twisted elliptic KZB associator eΓ(τ) has an expression in terms of iterated integrals. The

twisted elliptic MZVs IΓ

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr
; τ

)
and JΓ

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr
; τ

)
, for

n1, . . . , nr > 0 and α1, ..., αr ∈ Γ, are defined equivalently as the coefficients of the (modified)
ellipsitomic KZB associators and as regularized iterated integrals of the function FΓ defined
above.

A first remark is that our approach to teMZVs is somewhat different to that in the recent work
[19], where the authors use iterated integrals and the functions FΓ(z) to construct teMZVs
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and generalises to the case of any surjective morphism Z2 −→ Γ sending the generators of Z2

to their respective classes modulo M and N .

Relations of teMZVs with the twisted special derivation algebra. In a joint effort
with N. Matthes, we aim to investigate the relation of our teMZVs with those defined in ([19])
related to the non-planar part of the four-point one-loop open-string amplitude. In particular,
by using the twisted version of H. Tsunogai’s special derivation algebra, by relating it to the
untwisted special derivation algbra, and by representing teMZVs as iterated integrals over well
adapted Eisenstein series, we aim to derive the number of indecomposable elements of given
weight and length for teMZVs. We also hope to get new interesting relations in the twisted
special derivation algebra. Then, together with J. Broedel and O. Schlotterer, we will provide
relations for teMZVs over a wide range of weights and lengths by computational methods.

Modularity properties and asymptotic behaviour of teMZVs. By combining the
results on the asymtotic behaviour at cusps and the differential equation for the twisted elliptic
KZB associator done in Project 1, we will deduce the asymptotic behaviour of teMZVs. We
will aim to retrieve µN -MZVs and multiple Hurwitz values when degenerating teMZVs to the
cusp i∞ and all other cusps of our modular curve. By the results in [19], we know this will
be the case. We hope that by taking special cases of the group Γ, for instance M = 5 and
different choices of N , we will retrieve some of the remaining periods of P1 − {0, µ5,∞} which
are known not to be µ5-MZVs.

Motivic aspects of the twisted elliptic KZB connection and teMZVs. In a broader
sense, we aim to study some of the Hodge-de Rham theoretic aspects ofMΓ

1,1. One can see
MΓ

1,2 is the Γ-punctured universal curve over MΓ
1,1. The Lie algebra tΓ1,n should be closely

related to the local system over the moduli space of Γ-structured elliptic curves with a non-zero
tangent vector at the origin. With this in mind, an interesting task to do is to explicit the
Q-de-Rham structure of this local system as was done in R. Hain’s notes [63]. We aim to
compute the restriction of the twisted elliptic KZB connection to various loci, such as the
punctured first order neighbourhood of the Tate curve and a punctured formal neighbourhood
of the identity section. We then explore Hodge theoretic aspects of this connection such as
computing limit mixed Hodge structures relevant regions ofMΓ

1,1. We hope to relate in the
mid-term these constructions to motivic aspects of teMZVs and to universal mixed elliptic (and
modular) motives.

3.3.3 Rational homotopy of operadic PaB-modules and elliptic Grothendieck-
Teichmüller groups

Following the operadic point of view on elliptic associators and Grothendieck-Teichmüller
groups, it is natural enough to study the homotopy aspects of these objets. The motivation to
do this comes from the fact that, by Bezrukavnikov’s results in [11], the configuration spaces
Conf(Σg, n) of a genus g orientable surface Σg are 1-formal but not formal in general. In other
words, they have non trivial higher homotopies. Now, for some years now, a way of studying
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higher homotopies on spaces has come with the introduction of higher categorical structures.
The link between these two realms of mathematics has been straightened in particular by P.
Safronov, who has studied in [91] the relation between shifted Poisson structures and classical
(dynamical) r-matrixes. A natural quesiton to ask is then if a homotopical characterisation of
GTe`` will shed some light on the study of higher homotopies of the operadic module (over the
little disks operad D2) of little disks on the torus, denoted D1,2.

A rationalization of the module of little disks on the torus. The first goal for achieving
this study will consist on constructing a good rationalization of the module of little disks on
the torus. First of all, as Conf(T, n) is not formal (see [Bezr]), we have to work with the de
Rham algebra Ω∗(Conf(T, n)) instead of H∗(Conf(T, n)). We hope to be able to overcome this
issue by stuying the de Rham algebra Ω∗(Conf(T, n)) given in [20] and relating it with that
contained in Kriz work [78] together with recent work by C. Sibilia in his PhD thesis. Let
C∗CE(t1,n) be the Chevalley-Eilenberg cochain complex of t1,n. The first step is to obtain a
quasi-isomorphism

C∗CE(t1,n) −→ Ω∗(Conf(T, n))

which would be enhanced into a Hopf dg-comodule quasi-isomorphism C∗CE(t1) −→ Ω∗(Conf(T,−)).

This will lead to a rationalization of the module of little disks on the torus.

Homotopy theory of Hopf comodules. Next, it will be necessary to build a general
homotopy theory for Hopf cooperadic comodules. Operadic modules are easier to work with
than operads by their intrinsic linear nature (oposed as to that of operads). By this reason,
the construction of model category structures on operadic modules in simplicial sets and their
Λ-operadic versions should be within reach in the mid-term. The next step would be to use
homotopy spectral sequences techniques in this scope to get a homotopical interpretation of
GTe`` in terms of the fundamental group (so in terms of the 1-truncation of the full homotopy
theory) of Conf(T, n). The final outcome of this study will then be constructing injective
mappings

Ell(τ)Q −→ IsoHo(ModD2
)((D1,2)∧Q, LG•Ω

∗(D1,2))

and

(GTell)Q −→ AutHo(ModD2
)((D1,2)∧Q).

where Ho(ModD2
) is the homotopy category of D2-modules, (D1,2)∧Q is a rationalization of the

D2-module D1,2 related with Sullivan’s models and LG•Ω∗(D1,2) is a module obtained from
the de Rham complex of the D2-module D1,2.
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Chapter 4

Operad structures on associators
and Grothendieck-Teichmüller
groups

4.1 Modules associated with configuration spaces (elliptic
associators)

4.1.1 Compactified configuration space of the torus

Let T be the topological torus. To any finite set I we associate a configuration space

Conf(T, I) = {z = (zi)i∈I ∈ TI |zi 6= zj if i 6= j} .

We also consider its reduced version

C(T, I) := Conf(T, I)/T .

We then consider the Fulton–MacPherson compactification C(T, I) of C(T, I). The boundary
∂C(T, I) = C(T, I)−C(T, I) is made of the following irreducible components: for any partition
I = J1

∐ · · ·∐ Jk there is a component

∂J1,··· ,JkC(T, I) ∼= C(T, k)×
k∏
i=1

C(C, Ji).

The inclusion of boundary components provide C(T,−) with the structure of a module over
the operad C(C,−) in topological spaces.

103
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4.1.2 The PaB-module PaBe`` of parenthesized elliptic (or beak) braids

In a similar manner as in §2.6.2, we have inclusions of topological modules1

Pa ⊂ C(S1,−) ⊂ C(T,−) .

Then it makes sense to define

PaBe`` := π1

(
C(T,−),Pa

)
,

which is a PaB-module in groupoids.

Example 4.1.1 (Structure of PaBe``(2)). As in Example 2.6.1 we have an arrow R1,2 going
from (12) to (21). Additionnally, we also have two automorphisms of (12), denoted A1,2 and
B1,2, corresponding to the following loops on C(T, 2):

A1,2

1 2 1 2

B1,2

21

1 2

By global translation of the torus, these are the same loops as the following

2

1 A1,2

21

21

21

B1,2

In particular, A1,2R1,2 and B1,2(R2,1)−1, which are morphisms from (12) to (21), correspond
to the following paths C(T, 2):

A1,2R1,2

1 2 12 1

1

2

2

B1,2(R2,1)−1

Remark 4.1.2. The arrows A1,2 and B1,2 correspond to A±1,2 in [34, §1.3].

Thus as A1,2 can be depicted with the point indexed by 1 going to the left we will also formally
depict A1,2 and B1,2 as follows:

1The second one depends on the choice of an embedding S1 ↪→ T: we choose by convention the “horinzontal” one.
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1

1

2

2

A+

1

1

2

2

A−

One can rephrase [34, Proposition 1.3] in the following way:

Theorem 4.1.3. As a PaB-module in groupoids having Pa as Pa-module of objects, PaBe``

is freely generated by A := A1,2 and B := B1,2, together with the following relations:

(N1) Φ1,2,3A1,23R1,23Φ2,3,1A2,31R2,31Φ3,1,2A3,12R3,12 = Id(12)3,

(N2) Φ1,2,3B1,23(R23,1)−1Φ2,3,1B2,31(R31,2)−1Φ3,1,2B3,12(R12,3)−1 = Id(12)3,

(E) R1,2R2,1 =
(
Φ1,2,3B1,23(Φ1,2,3)−1, (R2,1)−1Φ2,1,3(A2,13)−1(Φ2,1,3)−1(R1,2)−1

)
,

as automorphisms of (12)3 in PaBe``(3).

Proof. Let Q be the PaB-module with the above presentation. We first show that there
is a morphism of PaB-modules Q −→ PaBe``. We have already seen that there are two
automorphisms A,B of (12) in PaBe``(2) (see Example 4.1.1). We have to prove that they
indeed satisfy the relations (N1), (N2) and (E).

Relations (N1) and (N2) are satistfied: the first nonagon relation (N1) can be depicted as
follows:

(1

(1

2)

2)

3

3

=

(1

(1

2)

2)

3

3

A+

A+

A+

(N1)

It is satisfied in PaBe``, expressing the fact that when all (here, three) points move in the
same direction on the torus, this corresponds to a constant path in the reduced configuration
space of points on the torus. The same is true with the second nonagon relation (N2).
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Relation (E) is satisfied: below one sees the path that is obtained from the right-hand-side of
the mixed relation (E):

• Φ1,2,3B1,23(Φ1,2,3)−1 is the path

1

1

3

3

B1,23

2

2

• (R2,1)−1Φ2,1,3(A2,13)−1(Φ2,1,3)−1(R1,2)−1 is the path

31 2132

One easily sees on the picture that the path is homotopic to the pure braiding of the first two
points, that is R1,2R2,1, by means of the following picture

321

Thus, by the universal property of Q, there is a morphism of PaB-modules Q −→ PaBe``,
which is the identity on objects. To show that this map is in fact an isomorphism, it suffices to
show that it is an isomorphism at the level of automorphism groups of objects arity-wise, as
all groupoids are connected. Let n ≥ 0, and p be the object (· · · ((12)3) · · · · · · )n of Q(n) and
PaBe``(n). We want to show that the induced morphism

AutQ(n)(p) −→ AutPaBe``(n)(p) = π1

(
C(T, n), p

)
is an isomorphism.



4.1. ELLIPTIC ASSOCIATORS 107

On the one hand, as C̄(T, n) is a manifold with corners, we are allowed to move the basepoint
p to a point preg which is included in the simply connected subset obtained as the image of2

Dn,τ := {z ∈ Cn|zj = aj+bjτ, aj , bj ∈ R, 0 < a1 < a2 < ... < an < a1+1, 0 < b1 < b2 < ... < bn < b1+1}

in C(T, n), where T = C/Z + τZ. We then have an isomorphism of fundamental groups
π1(C̄(T, n), p) ' π1(C(T, n), preg).

On the other hand, in [34, Proposition 1.4], Enriquez constructs a universal elliptic structure
PaBEn

e`` , that by definition carries an action of the (algebraic version of the) reduced braid
group on the torus B1,n in the following sense:

• PaBEn
e`` is a category.

• for every object p of Pa(n), there is a corresponding object [p] in PaBEn
e`` , and [p] = [q] if

p and q only differ by a permutation (but have the same underlying parenthesization).

• there are group morphisms B1,n−̃→AutPaBEne``
(p) −→ Sn.

Moreover, one has by constuction of PaBEn
e`` that AutQ(n)(p) is the kernel of the map

AutPaBEne``
([p]) −→ Sn. One can actually show that we have a commuting diagram

PB1,n
' //

��

AutQ(n)(p) //

��

π1

(
C(T, n), p

)
��

π1 (C(T, n), preg)
'oo

��
B1,n

' //

��

AutPaBEne``
(p) //

��

π1

(
C(T, n)/Sn, [p]

)
��

π1 (C(T, n)/Sn, [preg])
'oo

��
Sn Sn Sn Sn

where all vertical sequences are short exact sequences. Thus, in order to show that the map
AutQ(n)(p) −→ π1

(
C(T, n), p

)
is an isomorphism, we are left to show that

B1,n −→ π1(C(T, n), preg)

is indeed an isomorphism. But this map is nothing else than the map constructed in [12,
Theorem 5], identifying the algebraic and topological versions of the braid group on the
torus.

Remark 4.1.4. It is probably best to picture the nonagon relation by means of the following
relation (this is relation 25 in [24]), which is equivalent to (N1), and that expresses a kind of
ribbon description for A12,3:

2We have already done so for theproof of relation (E).
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(1

(1

2)

2)

3

3

A12,3 =

(1

(1

2)

2)

3

3

A1,23

A2,13

(N1bis)

4.1.3 The CD(k)-module of elliptic chord diagrams

For any n ≥ 0, recall that t1,n(k) is defined as the bigraded Lie k-algebra freely generated by
x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1) (for i = 1, ..., n), and tij in degree (1, 1)

(for 1 ≤ i 6= j ≤ n), together with the relations (S), (L), (4T), and the following additional
elliptic relations as well:

(Se``) [xi, yj ] = tij for i 6= j.

(Ne``) [xi, xj ] = [yi, yj ] = 0 for i 6= j.

(Te``) [xi, yi] = −∑j|j 6=i tij .

(Le``) [xi, tjk] = [yi, tjk] = 0 if #{i, j, k} = 3.

(4Te``) [xi + xj , tij ] = [yi + yj , tij ] = 0 for i 6= j.

The
∑
i xi and

∑
i yi are central in t1,n(k), and we also consider the quotient

t̄1,n(k) := t1,n(k)/(
∑
i

xi,
∑
i

yi) .

Example 4.1.5. t̄1,2(k) is equal to the free Lie k-algebra f2(k) on two generators x = x1 and
y = y2.

Both t1,n and t̄1,n are acted on by the symmetric group Sn, and one can show that the
S-modules in grLiek

te``(k) := {t1,n(k)}n≥0 and t̄e``(k) := {̄t1,n(k)}n≥0
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actually are t(k)-modules in grLiek. Partial compositions are defined as follows:

◦k : t1,I(k)⊕ tJ(k) −→ t1,JtI−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J
tpj if k = i∑

p∈J
tip if j = k

(xi, 0) 7−→


xi if k 6= i∑

p∈J
xp if k = i

(yi, 0) 7−→


yi if k 6= i∑

p∈J
yp if k = i

We call te``(k), resp. t̄e``(k), the module of infinitesimal elliptic braids, resp. of infinitesimal
reduced elliptic braids.

We finally define the CD(k)-module CDe``(k) := Û (̄te``(k)) of elliptic chord diagrams. As in
the genus 0 situation, morphisms in CDe``(k)(n) can be represented as chords on n vertical
strands with extra chords correponding to the generators xi and yi as in the following picture:

A+ and A−

The relations elliptic relations introduced above can be represented as follows, analogously as
for the genus 0 case:

A−

A+

−
A+

A−

=
A+

A−

−
A−

A+

=

(Se``)

A±

A±

=
A±

A±

(Ne``)

A+

A−

i

− A−

A+

i

= −
∑
j;j 6=i

i j

(Te``)
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A±

=

A±

(Le``)

A±

+
A±

=

A±

+

A±

(4Te``)

Remark 4.1.6. The relation between (a closely related version of) CDe``(k) and the elliptic
Kontsevich integral was studied in Philippe Humbert’s thesis [66].

4.1.4 The PaCD(k)-module of parenthesized elliptic chord diagrams

As in the genus zero case, the module of objects Ob(CDe``(k)) of CDe``(k) is terminal. Hence
we have a morphism of modules ω2 : Pa = Ob(Pa(k) −→ Ob(CDe``(k)) over the morphism of
operads ω1 from §2.6.4, and thus we can define the PaCD(k)-module3

PaCDe``(k) := ω?2CDe``(k) ,

in Cat(CoAssk), of so-called parenthesized elliptic chord diagrams.

Example 4.1.7 (Notable arrows in PaCDe``(k)(2)). We have the following arrows X1,2
e`` , Y

1,2
e``

in PaCDe``(k)(2)

X1,2
e`` = x1·

1

1

2

2

Y 1,2
e`` = y1·

1

1

2

2

Remark 4.1.8. The elements X1,2
e`` , Y

1,2
e`` are generators of the PaCD(k)-module PaCDe``(k)

and satisfy the following relations in EndPaCDe``(k)(3)((12)3):

(Inv) X2,1
e`` = (X1,2)−1X1,2

e``X
1,2, Y 2,1

e`` = (X1,2)−1Y 1,2
e`` X

1,2,

(Red) X1,∅
e`` = Y 1,∅

e`` = 0,

(IN1) X12,3
e`` + a1,2,3X1,23X23,1

e`` (a1,2,3X1,23)−1 +X12,3(a3,1,2)−1X31,2
e`` (X12,3(a3,1,2)−1)−1 = 0,

(IN2) Y 12,3
e`` + a1,2,3X1,23Y 23,1

e`` (a1,2,3X1,23)−1 +X12,3(a3,1,2)−1Y 31,2
e`` (X12,3(a3,1,2)−1)−1 = 0,

(IE) H1,2 = [a1,2,3X1,23
e`` (a1,2,3)−1, X1,2a2,1,3Y 2,13

e`` (a2,1,3)−1(X1,2)−1].
3Recall that PaCD(k) is defined as ω?1CD(k).
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4.1.5 Elliptic associators

Let us introduce some terminology, complementing the one of §2.6.5. If P −→ Q is a morphism
between operads in C,M is a module over P , and N is a module over Q, then we will consider
operadic module mophismsM−→ N in the category of P-modules (via the restriction functor),
and will simply refer to them as module morphisms if the context is clear.

For an operad O in C, we denote Mod(O) the category of O-modules.

Given the choice of an automorphism g of O, we will denote by Aut+
(Mod(O),g)(M) the

group of automorphisms of the O-module M with respect to the automorphism g and
Iso(Mod(P,Q),Φ)(M,N ), for the set of isomorphisms beween modulesM and N with respect to
an operad isomorphism Φ between P and Q.
The superscript “+” still indicates that we consider morphisms that are the identity on objects.

Definition 4.1.9. An elliptic associator over k is a couple (F,G) where F is a k-associator
and G is an isomorphism between the P̂aB(k)-module P̂aBe``(k) and the GPaCD(k)-module
GPaCDe``(k) which is the identity on objects and which is compatible with F :

Ell(k) := Iso+

(P̂aB(k),GPaCD(k))
(P̂aBe``(k), GPaCDe``(k)).

Let us denote by {−} the Lie algebra morphism tn(k) −→ t̄1,n(k) sending tij ∈ tn(k) to
tij ∈ t̄1,n(k). Its induced group morphism exp(̄tn(k)) −→ exp(̂̄t1,n(k)) will be denoted the
same way.

The following theorem identifies our definition of elliptic associators to the original one defined
by Enriquez in [34].

Theorem 4.1.10. There is a one-to-one correspondence between the set Ell(k) and the set
Ell(k) of quadruples (µ,Φ, A+, A−), where (µ,Φ) ∈ Ass(k) and A± ∈ exp(̂̄t1,2(k)), such that:

α1,2,3
± α2,3,1

± α3,1,2
± = 1, where α± = {Φ1,2,3}A1,23

± {e±µ(t12+t13)/2}, (4.1)

{eµt12} =
(
{Φ}A1,23

− {Φ}−1, {e−µt12/2Φ2,1,3}(A2,13
+ )−1{(Φ2,1,3)−1e−µt12/2}

)
. (4.2)

Proof. An associator F corresponds uniquely to a couple (µ,Φ) ∈ Ass(k) and an isomorphism
G between P̂aBe``(k) and GPaCDe``(k) sends the arrows A1,2 and B1,2 of End

P̂aBe``(k)(2)
(12)

to A+ ·X1,2
e`` and A− ·Y

1,2
e`` with A± ∈ exp(̂̄t1,2) (recall that ˆ̄t1,2 is the completed free Lie algebra

in two generators). The image of relations (N1), (N2) and (E) are precisely the relations (4.1)
and (4.2).

Example 4.1.11 (Elliptic KZB Associators). Let us fix τ ∈ h. Recall that the Lie algebra
t̄1,2(C) is isomorphic to the free Lie algebra f2(C) generated by two elements x := x1 and
y := y1. We define the elliptic KZB associators A(τ), B(τ) as the renormalized holonomies
from 0 to 1 and 0 to τ of the differential equation

G′(z) = −θτ (z + adx) adx

θτ (z)θτ (adx)
(y) ·G(z), (4.3)
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with values in the group exp(̂̄t1,2(C)) More precisely, this equation has a unique solution G(z)

defined over {a+ bτ, for a, b ∈]0, 1[} such that G(z) ' (−2π i z)−[x,y] at z −→ 0. In this case,

A(τ) := G(z)−1G(z + 1), B(τ) := G(z)−1e2π i xG(z + τ).

These are elements of the group exp(̂̄t1,2(C)). More precisely, Enriquez showed in [34] that the
element (2πi,ΦKZ, A(τ), B(τ)) is in Ell(C).

4.1.6 Elliptic Grothendieck–Teichmüller group

Definition 4.1.12. The (k-prounipotent version of the) elliptic Grothendieck–Teichmüller
group is defined as the group

ĜTe``(k) := Aut+

(Mod(P̂aB(k)))
(P̂aBe``(k))

of automorphisms of the P̂aB(k)-module P̂aBe``(k) which are the identity on objects.

Again, we now show that our definition coincides with the original one defined by Enriquez
in [34]. Recall that the set ĜTe``(k) is the set of tuples (λ, f, g±), where (λ, f) ∈ ĜT(k),
g± ∈ F̂2(k) such that

(f(σ2
1 , σ

2
2)g±(X,Y )(σ1σ

2
2σ1)±

λ−1
2 σ±1

1 σ±1
2 )3 = 1, (4.4)

u2 = (g−, u
−1g−1

+ u−1) (4.5)

(identities in ̂̄B1,3(k)) where u = f(σ2
1 , σ

2
2)−1σλ1 f(σ2

1 , σ
2
2), and g± = g±(X,Y ).

For (λ, f, g±), (λ′, f ′, g′±) ∈ ĜTe``(k), we set

(λ, f, g±)(λ′, f ′, g′±) := (λ′′, f ′′, g′′±),

where g′′±(X,Y ) = g±(g′+(X,Y ), g′−(X,Y )). This gives ĜTe``(k) a group structure. Moreover,
for (λ, f, g+, g−) ∈ ĜTell(k) and (µ,Φ, A+, A−) ∈ Ell(k), we set

(λ, f, g+, g−) ∗ (µ,Φ, A+, A−) := (µ′,Φ′, A′+, A
′
−)

where A′± := g±(A+, A−). In [34], it is shown that this defines a left free and transitive group
action of ĜTe``(k) on Ell(k).

Proposition 4.1.13. There is a group isomorphism between ĜTe``(k) and ĜTe``(k).

Proof. Suppose that we have an automorphism G of P̂aBe``(k) which is the identity on objects.
Then, by Theorem 4.1.3, such an automorphism is given by the data of an automorphism of
the operad P̂aB(k), given by the pair (λ, f) ∈ ĜT(k), and the images of the two generators
A,B ∈ Aut

P̂aBe``(k)(2)
(12). Let us denote G(A) = g+(X,Y )A and G(B) = g−(X,Y )B, where

g± ∈ ̂̄PB1,2(k) ' F̂2(k). Then the obtained tuple (λ, f, g±) satisfies relations (4.4) and (4.5).
Next, we show that this map is a group morphism. For this we show that the composition
of automorphisms in Aut+

Mod(P̂aB(k))
(P̂aBe``(k)) corresponds to the composition law of the
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group GTe``(k). We already know that the composition of automorphisms F1 and F2 in
Aut+

Op Ĝ(P̂aB(k)) corresponds to the composition law in GT(k), that is, the associated couples

(λ, f1) and (µ, f2) in k× × F̂2(k) satisfy

(F1 ◦ F2)(R1,2) = (R1,2)λµ

(F1 ◦ F2)(Φ1,2,3) = F1(F2(Φ1,2,3)) = F1(f2(x, y) · Φ1,2,3)

= F1(f2(x, y))F1(Φ1,2,3)

= (f2(xλ, f1(x, y)yλf1(x, y)−1)f1(x, y)) · Φ1,2,3,

(here F2 is generated by x := σ2
1 and y := σ2

2). We also already showed that any two
automorphisms G and H in the group Aut+

Mod(P̂aB(k))
(P̂aBe``(k)), depending on F1 and F2

respectively, are associated to couples (g+(X,Y ), g−(X,Y )) and (h+(X,Y ), h−(X,Y )) which
represent automorphisms of the parenthesized word (12) in the groupoid P̂aBe``(k)(2) i.e. in
F̂2(k)) (recall that F̂2(k) ' ̂̄PB1,2(k) is nothing but the k-prounipotent completion of the free
group with generators X and Y ). We then have

(H ◦G)(A) = H(g+(X,Y )) = g+(H(X), H(Y )) = g+(h+(X,Y ), h−(X,Y )).

Likewise, we find (G ◦ H)(B) = g−(h+(X,Y ), h−(X,Y )) which concludes the proof, as the
composite of operadic module morphisms F ◦G is compatible with the composition of operad
morphisms F1 ◦ F2. The fact that that the underlying sets of ĜTe``(k) and ĜTe``(k) are
isomorphic is a consequence of the fact that the set of elliptic associators is non empty, that
there are free and transitive left actions of ĜTe``(k) on Ell(k) and of ĜTe``(k) on Ell(k)

and the fact that there is a one-to-one correspondence between Ell(k) and Ell(k) so we get a
composite of bijections

GTe``(k) −→ Ell(k) −→ Ell(k) −→ ĜTe``(k).

This finishes the proof.

4.1.7 Graded elliptic (graded) Grothendieck–Teichmüller group

Definition 4.1.14. The graded elliptic Grothendieck-Teichmüller group is the group

GRTe``(k) := Aut+
(Mod(PaCD(k))(PaCDe``(k))

of automorphism group of the PaCD(k)-module PaCDe``(k) which are the identity on objects.

Notice that there is an isomorphism

Aut+
(Mod(PaCD(k))(PaCDe``(k)) ' Aut+

(Mod(GPaCD(k))(GPaCDe``(k)).

Define GRTell1 (k) to be the set of tuples (g, u+, u−), such that g ∈ GRT1(k), u± ∈ ˆ̄t1,2(k),
satisfying

Ad(g1,2,3)(u1,23
± ) + Ad(g2,1,3)(u2,13

± ) + u3,12
± = 0, (4.6)
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[Ad(g1,2,3)(u1,23
± ), u3,12

± ] = 0, (4.7)

[Ad(g1,2,3)(u1,23
+ ),Ad(g2,1,3)(u2,13

− )] = t12, (4.8)

as relations in ˆ̄t1,3(k). Set (g1, u
1
+, u

1
−) ∗ (g2, u

2
+, u

2
−) := (g, u+, u−), where

u±(x1, y1) := u1
±(u2

+(x1, y1), u2
−(x1, y1)) (4.9)

The group k× acts on GRTell1 (k) by rescaling

c · (g, u±) := (c · g, c · u±),

where c · g is as above and

• (c · u+)(x1, y1) := u+(x1, c
−1y1),

• (c · u−)(x1, y1) := cu−(x1, c
−1y1).

We then set GRTell(k) := GRTell1 (k) o k×. This defines a group structure on GRTell(k).

Moreover, there is an right group action of GRTell1 (k) on Ell(k) given as follows : for (g, u±) ∈
GRTell1 (k) and (µ,Φ, A±) Ell(k), we set (µ,Φ, A±) ∗ (g, u±) := (µ, Φ̃, Ã±), where

Ã±(x1, y1) := A±(u+(x1, y1), u−(x1, y1))

and, for c ∈ k×, we set (µ,Φ, A±)∗c := (µ, c∗Φ, c]A±), where (c]A±)(x1, y1) := A±(x1, y1). In
[34] this action is shown to be free and transitive. Notice that Ã± = θ(A±), where θ ∈ Aut(̂̄tk1,2)

is x1 7→ u+(x1, y1) and y1 7→ u−(x1, y1).

Proposition 4.1.15. There is a group isomorphism between GRTe``(k) and GRTe``(k).

Proof. The map GRTe``(k) −→ GRTe``(k) is constructed as follows. Let F be an automor-
phism in Aut+

Mod(PaCD(k))(PaCDe``(k)) depending on an operad automorphism Ψ in GRT(k).
We have

• Ψ(X1,2) = X1,2,

• Ψ(H1,2) = λH1,2,

• Ψ(a1,2,3) = g(t12, t23)a1,2,3,

• F (X1,2
e``) = u+(x, y) · Id1,2,

• F (Y 1,2
e`` ) = u−(x, y) · Id1,2.

where (λ, g) ∈ GRT(k), u± ∈ ˆ̄t1,2(k). In light of relations of Remark 4.1.8, we obtain that the
tuple (λ, g(t12, t23), u+(x, y), u−(x, y)) satisfies relations (4.6), (4.7) and (4.8). The assignment
(Ψ, F ) 7→ (λ, g(t12, t23), u+(x, y), u−(x, y)) defines a map GRTe``(k) −→ GRTe``(k). First
we show that this map is a group morphism. For this we show that the composition of
automorphisms in Aut+

Mod(GPaCD(k))(GPaCDe``(k)) corresponds to the composition law of
the group GRTe``(k). We already know that the composition of automorphisms Φ and Ψ in
Aut+

Op Ĝ(GPaCD(k)) corresponds to the composition law in GRT(k), that is, the associated

couples (λ, f1) and (µ, f2) in k× × exp(̂̄t3(k)) satisfy

(Φ ◦Ψ)(H1,2) = λµH1,2
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(Φ ◦Ψ)(a1,2,3) = f2(λt12, f1(t12, t23) · λt23 · f1(t12, t23)−1)f1(t12, t23) · a1,2,3.

We also already showed that any two automorphisms G and H in the group
Aut+

Mod(GPaCD(k))(GPaCDe``(k)), depending on Φ and Ψ respectively, are associated to
couples (g+(x, y), g−(x, y)) and (h+(x, y), h−(x, y)) which represent automorphisms of the
parenthesized word (12) in the groupoid GPaCDe``(k)(2) i.e. in exp(̂̄t1,2(k)) where x = x1

and y = y1 (recall that t̄1,2(k) is nothing but the free Lie algebra over k with generators x and
y). We then have

(H ◦G)(X1,2
e``) = H(g+(x, y) · Id1,2) = g+(H(x), H(y)) · Id1,2 = g+(h+(x, y), h−(x, y)) · Id1,2 .

Likewise, we find (G ◦H)(Y 1,2
e`` ) = g−(h+(x, y), h−(x, y)) · Id1,2 which concludes the proof, as

the composite of operadic module morphisms F ◦ G is compatible with the composition of
operad morphisms Φ ◦Ψ.

Next, this morphism is a bijection. This is a consequence of the fact that there exists a
composite of bijections

GRTe``(k) −→ Ell(k) −→ Ell(k) −→ GRTe``(k).

4.1.8 Torsors

Finally, we enhance the above bijections into a torsor result.

Theorem 4.1.16. There is a torsor isomorphism

(ĜTe``(k),Ell(k),GRTe``(k)) −→ (ĜTe``(k),Ell(k),GRTe``(k)) (4.10)

Proof. This is a summary of most of the above results. First of all, we know that
(ĜTe``(k),Ell(k),GRTe``(k)) has a natural torsor structure and that (ĜTe``(k),Ell(k),GRTe``(k))

is a torsor by [34]. Next, we proved in Proposition 4.1.13 that there are group isomorphisms
between ĜTe``(k) and ĜTe``(k) and in Proposition 4.1.15 that there are group isomorphisms
between GRTe``(k) and GRTe``(k). Thus, it is sufficient to show that the actions of ĜTe``(k)

on Ell(k) and of ĜTe``(k) on Ell(k) are compatible and that the actions of ĜRTe``(k) on
Ell(k) and of GRTe``(k) on Ell(k) are compatible. Under the correspondence of Theorem
4.1.13, the image of the natural action of ĜTe``(k) on Ell(k) is exactly the action of ĜTe``(k)

on Ell(k). Both actions are then compatible. Under the correspondence of Theorem 4.1.15,
the image of the natural action of GRTe``(k) on Ell(k) is exactly the action of GRTe``(k) on
Ell(k). Both actions are then compatible.
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4.2 Moperads associated with twisted configuration spaces
(cyclotomic associators)

4.2.1 Compactified configuration space of the annulus

For each finite set I, let us consider the configuration space of C×:

Conf(C×, I) :=
{
z = (zi)i∈I ∈ (C×)I |zi 6= zj ,∀i 6= j

}
.

Now consider its reduced version

C(C×, I) := Conf(C×, I)/R>0 .

We clearly have an isomorphism between C(C×, n) and C(C, n + 1). We then consider the
Fulton-MacPherson compactification C(C×, n) of C(C×, n). The boundary ∂C(C×, n) =

C(C×, n) − C(C×, n) is made of the following irreducible components: for any partition
[[0, n]] = J0

∐ · · ·∐ Jk such that 0 ∈ Jm, for some 0 ≤ m ≤ k, there is a component

∂J1,··· ,JkC(C×, n) ∼= C(C×, k)× C(C×, Jm)×
k∏

i=1;i6=m
C(C, Ji) .

The inclusion of boundary components for which m = 0 provides C(C×,−) with the structure
of a moperad over the operad C(C,−) in topological spaces.

4.2.2 The PaB-moperad of parenthesized braids with a frozen strand

We have inclusions of topological moperads

Pa0 ⊂ C(R>0,−) ⊂ C(C×,−) .

over
Pa ⊂ C(R,−) ⊂ C(C,−) .

We then define
PaB1 := π1

(
C(C×,−),Pa0

)
,

which is a moperad over the operad in groupoids PaB.

Example 4.2.1 (Description of PaB1(1)). First observe that C(C×, 1) ' C(C, 2) ' S1.
Moreover, Pa0 = {(01)}. Hence PaB1(1) ' Z: it has only one object (01) and is freely
generated by an automorphism E0,1 of (01), and can be depicted as an elementary pure braid:

0 1

0 1

0 1

Two incarnations of E0,1
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Example 4.2.2 (Notable arrow inPaB1(2)). Let us first recall that Pa0(2) = S2×{(••)•, •(••)}
and that C(R>0, 2) ∼= S2 × [0, 1]. Hence we have an arrow Ψ0,1,2 (the identity path in [0, 1])
from (01)2 to 0(12) in PaB1(2), which can be depicted as follows:

(0

0

1)

(1

2

2)

0 1 2

Two incarnations of Ψ0,1,2

Remark 4.2.3. Recall from §2.5.8 that, being a PaB-moperad, PaB1 comes together with a
morphism of S-modules PaB −→ PaB1. In pictorial terms, this morphism sends a parentesized
braid with n strands to a parenthesized braid with n+ 1 strands by adding a frozen stand labelled
by 0 on the left. For instance, the images of R1,2 (a morphism in PaB(2)) and of Φ1,2,3 (a
morphism in PaB(3)) can be respectively depicted as follows:

0

0

(1

(2

2)

1)

0

0

((1

(1

2)

(2

3)

3))

Theorem 4.2.4. As a PaB-moperad having Pa0 as Pa-moperad of objects, PaB1 is freely
generated by E := E0,1 ∈ PaB1(1) and Ψ := Ψ0,1,2 ∈ PaB1(2) together with the following
relations:

(MP) Ψ01,2,3Ψ0,1,23 = Ψ0,1,2Ψ0,12,3Φ1,2,3, as arrows from ((01)2)3 to 0(1(23)) in PaB1(3),

(O) E01,2 = Ψ0,1,2R1,2(Ψ0,2,1)−1E0,2Ψ0,2,1R2,1(Ψ0,1,2)−1, as arrows from (01)2 to (01)2 in
PaB1(2).

Proof. We proceed in a similar way as in the elliptic case, using this time the results of [33,
§4.4]. Let Q1 be the PaB-moperad with the above presentation. From Examples 4.2.1 and
4.2.2 we deduce that, as a PaB-moperad in groupoid, PaB1 contains two morphisms E = E0,1

(in PaB1(1)) and Ψ = Ψ0,1,2 (in PaB1(2)). One easily shows, using the following pictures,
that they satisfy mixed pentagon and octogon relations, (MP) and (O):

((0 1) 2) 3

0 (1 (2 3))

=

((0 1) 2) 3

0 (1 (2 3))

(MP)
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and

(0

(0

1)

1)

2

2

=

(0

(0

1)

1)

2

2

(O)

Therefore, by the universal property ofQ1, there is a morphism of PaB-moperadsQ1 −→ PaB1,
which is the identity on objects. In order to show that this is an isomorphism, it suffices to
show that it is an isomorphism at the level of automorphism groups of an object arity-wise
because all groupoids involved are connected. Let n ≥ 0, let p be the object (· · · (01)2 · · · · · · )n
of Q1(n) and PaB1(n). We want to show that the induced group morphism

AutQ1(n)(p) −→ AutPaB1(n)(p) = π1

(
C̄(C×, n), p

)
is an isomorphism.

On the one hand, we can replace the base-point p with preg = (1, 2, . . . , n) ∈ C(C×, n), as
they are in the same path-connected component. Moreover, since the Fulton–MacPherson
compactification does not change the homotopy type of our configuration spaces, we get an
isomorphism

π1(C̄(C×, n), p) ' π1(C(C×, n), preg) .

On the other hand, in [33, §4.4], Enriquez proves several useful facts:

• Given a braided module categoryM over a braided monoidal category C, an object X of
C, and an object M ofM, there is a group morphism

B1
n −→ AutM(M ⊗X⊗n) ,

where, by convention, M ⊗ X⊗n comes equipped with the left-most parenthesization
((M ⊗X)⊗ ...)⊗X, and B1

n = Bn+1×Sn+1Sn.

• There is a universal braided module category PaB1,Enr generated by a single object 0,
over the universal braided monoidal category PaBEnr generated by a single object •.
Hence objects of PaB1,Enr are parenthesizations of 0 • · · · •, and thus p determines an
object (which we abusively still denote p).

• the morphism B1
n −→ AutPaB1,Enr (p) is an isomorphism.
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One can moreover see that, by construction, AutQ1(n)(p) is exactly the kernel subgroup

ker
(
AutPaB1,Enr(n)(p) −→ Sn

)
' PBn+1 .

Hence we have a commuting diagram

PB1
n

' //

��

AutQ1(n)(p) //

��

π1

(
C(C×, n), p

)
��

π1 (C(C×, n), preg)
'oo

��
B1
n

' //

��

AutPaB1,Enr (p) //

��

π1

(
C(C×, n)/Sn, [p]

)
��

π1 (C(C×, n)/Sn, [preg])
'oo

��
Sn Sn Sn Sn

where all vertical sequences are short exact sequences. Thus, in order to get that the map
AutQ1(n)(p) −→ π1

(
C(C×, n), p

)
is an isomorphism, we are left to prove that the composite map

B1
n −→ π1(C(C×, n), preg) is indeed an isomorphism. But this map is, by its very construction,

the isomorphism (from [95, 102]) exhibiting a presentation by generators and relations of the
braid group of a handlebody.

4.2.3 Compactified twisted configuration space of the annulus

Consider, for N ≥ 1, the additive group Γ = Z/NZ. To every finite set I let us associate the
so-called Γ-twisted configuration space

Conf(C×, I,Γ) = {z = (zi)i∈I ∈ (C×)I |zi 6= ζzj ,∀i 6= j,∀ζ ∈ µN}

(µN is the set of complex Nth roots of unity) and its reduced version

C(C×, I,Γ) := Conf(C×, I,Γ)/R>0 .

Remark 4.2.5. Observe that Conf(C×, I,Γ), resp. C(C×, I,Γ), is an ΓI-covering space of
Conf(C×, I), resp. C(C×, I), the covering map being given by (zi)i∈I 7→ (zNi )i∈I .

There are also inclusions

Conf(C×, I,Γ) ↪→ Conf(C×, I × µN ) and C(C×, I,Γ) ↪→ C(C×, I × µN )

given by (zi)i∈I 7→ (ζzi)(i,ζ)∈I×µN . This allows us to define the compactification C(C×, I,Γ) of
C(C×, I,Γ), as the closure of C(C×, I,Γ) inside C(C×, I × µN ). The irreducible components
of its boundary ∂C(C×, I,Γ) = C(C×, I,Γ)− C(C×, I,Γ) can be described as follows. For an
arbitrary partition J0

∐ · · ·∐ Jk of {0} t I there is a component

∂J1,··· ,JkC(C×, I,Γ) ∼= C(C×, k,Γ)× C(C×, Jm,Γ)×
k∏

i=1;i 6=m
C(C, Ji) ,

where m ∈ {0, . . . , k} is the index such that 0 ∈ Jm. The inclusion of boundary components
such that m = 0 provides C(C×,−,Γ) with the structure of a moperad over the operad C(C,−)

in topological spaces.
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We let the reader check that the covering map C(C×, I,Γ) −→ C(C×, I) from Remark 4.2.5
extends to a continuous map φn : C(C×, I,Γ) −→ C(C×, I) between their compactifications,
and thus leads to a morphism of moperads.

Finally, one observes that the natural action of ΓI on each C(C×, I × µN ), given by

(α · z)(j,ζ) := z(
j,e

2iπαj
N ζ

)

induces an action of Γ on the moperad C(C×,−,Γ), in the sense of §2.5.9.

4.2.4 The Pa-moperad of labelled parenthesized permutations

Borrowing the notation from the previous subsection, we define PaΓ
0 (n) := φ−1

n

(
Pa0(n)

)
.

Explicitly, PaΓ
0 (n) is the set of parenthesized permutations of {0, 1, . . . , n} that fix 0 and that

are equipped with a label {1, . . . , n} −→ Γ.
Notation. As a matter of notation, we will write the label as an index attached to each
1, . . . , n. For instance, (02α)10 belongs to PaΓ

0 (2) for every α ∈ Γ.
Observe that the S-module (in sets) PaΓ

0 carries the structure of a Pa-moperad. Indeed, it is
a fiber product

PaΓ
0 = Pa0 ×

C(C×,−)

C(C×,−,Γ)

in the category of Pa-moperads (in topological spaces). Here are two self-explanatory examples
of partial compositions:

(02α)1β ◦2 (12)3 = (0((2α3α)4α))1β and (02α)1β ◦0 (02α)10 = (((02α)10)4α)3β .

Remark 4.2.6. As we have seen in §2.5.8 of the previous Section, our conventions are such that
the Pa-moperad structure on PaΓ

0 gives in particular a morphism of Pa-modules Pa −→ PaΓ
0 .

One can see that it is the map that sends a parenthezised permutation p to 0(p) together with
the trivial label function i 7→ 0.

Finally, PaΓ
0 is acted on by Γ in the following way: for n ≥ 0, Γn only acts on the labellings, via

the group law of Γ. For instance, if f : {1, . . . , n} −→ Γ and α ∈ Γn, then (α · f)(i) = f(i) +αi.

4.2.5 The PaB-moperad of twisted parenthesized braids

We define
PaBΓ := π1

(
C(C×,−,Γ),PaΓ

0

)
.

It is a PaB-moperad (in groupoids), that carries an action of the group Γ. The maps
φn : C(C×, n,Γ) −→ C(C×, n) induce a PaB-moperad morphism PaBΓ −→ PaB1.

Example 4.2.7 (Description of PaBΓ(1)). First observe that PaΓ
0 (1) −→ Pa0(1) is the

terminal map µN ' {01α|α ∈ Γ} −→ {01} = ∗. Then observe that the map C(C×, 1,Γ) −→
C(C×, 1) is nothing but the path-connected Γ-cover S1 −→ S1. Hence we in particular have
morphisms E0,1

α , α ∈ Γ from 01α to 01α+1 in PaBΓ(1), being the unique lift of E0,1 that starts
at 01α ∈ PaΓ

0 (1). Pictorially:
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0 10

0 11

0
z1

e2iπ/Nz1

0 zN1

z zN

Two incarnations of E0,1
0

In the above picture, on the right we have pictured a path in the twisted configuration space,
together with its image under the covering map, which is a loop. Diagrammatically (see the
left of the above picture), we depict it as a pure braid (a loop in the base configuration space)
together with appropriate base points (which uniquely determines the lift in the covering
twisted configuration space).

Example 4.2.8 (Notable arrow in PaBΓ(2)). Let Ψ0,1,2
0 be the unique lift of Ψ0,1,2 (a morphism

in PaB1(2)) starting at (010)20. It can be depicted as follows:

(0

0

10)

(10

20

20)

Remark 4.2.9. As in Remark 4.2.3, one sees from §2.5.8 there is a morphism of S-modules
PaB −→ PaBΓ. In pictorial terms, it sends a parentesized braid with n strands to a labelled
parenthesized braid with n+ 1 strands by adding a frozen stand labelled by 0 on the left and
choosing the trivial label. For instance, the images R1,2

0 of R1,2 and Φ1,2,3
0 of Φ1,2,3 can be

respectively depicted as follows:

0

0

(10

(20

20)

10)

0

0

((10

(10

20)

(20

30)

30))

We are now ready to provide an explicit presentation for the PaB-moperad PaBΓ:

Theorem 4.2.10. As a PaB-moperad in groupoids with a Γ-action having PaΓ
0 as PaΓ

0 -
moperad of objects, PaBΓ is freely generated by E0 := E0,1

0 and Ψ0 := Ψ0,1,2
0 together with the

following relations:

(MP) Ψ01,2,3
0 Ψ0,1,23

0 = Ψ0,1,2
0 Ψ0,12,3

0 Φ1,2,3, as arrows from ((010)20)30 to 0(10(2030))) in PaBΓ(3),

(tO) E01,2
0 = Ψ0,1,2

0 R1,2(Ψ0,2,1
0 )−1E0,2

0 α · (Ψ0,2,1
0 R2,1(Ψ0,1,2

0 )−1), as arrows from (010)20 to
(010)21 in PaBΓ(2), and where α = (0, 1) ∈ Γ2.
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Proof. Let QΓ be the PaB-moperad with the above presentation, and recall that Q1 is the
PaB-moperad with the presentation of Theorem 4.2.4. Our first goal is to show that there is a
morphism QΓ −→ PaBΓ of PaB-moperads, commuting with the Γ-action. We have already
seen in the Examples above that there are morphisms E0 := E0,1

0 and Ψ0 := Ψ0,1,2
0 , in PaBΓ(1)

and PaBΓ(2), respectively. We have to prove that they satisfy the mixed pentagon and twisted
octogon relation, (MP) and (tO).

These relations are the unique lifts of the similar relations (MP) and (O) in PaB1 from Theorem
4.2.4, starting at ((010)20)30 and (010)20, respectively. They can be depicted as follows:

((010) 20) 30

0 (10 (2030))

=

((010) 20) 30

0 (10 (2030))

(MP)

and

(0

(0

10)

10)

20

21

=

(0

(0

10)

10)

20

21

(tO)

By universal property of QΓ there is a Γ-equivariant morphism of PaB-moperads QΓ −→ PaBΓ,
which is the identity on objects. As before, in order to show that this is an isomorphism, it
suffices to show that it is an isomorphism at the level of automorphism groups of an object
arity-wise (because all groupoids involved are connected). Let n ≥ 0, let p̃ be the object
(· · · (010)20 · · · · · · )n0 of QΓ(n) and PaBΓ(n), which lifts the object p = (· · · (01)2 · · · · · · )n of
Q1(n) ' PaB1(n). We want to show that the induced group morphism

AutQΓ(n)(p̃) −→ AutPaBΓ(n)(p0) = π1

(
C̄(C×, n), p̃

)
is an isomorphism.
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We claim that it fits into a commuting diagram

AutQΓ(n)(p̃) //

��

π1

(
C(C×, n,Γ), p̃

)
��

π1 (C(C×, n), p̃reg)
'oo

��
AutQ1(n)(p)

' //

��

π1

(
C(C×, n), p

)
��

π1 (C(C×, n)), f(preg))
'oo

��
Γn Γn Γn

where only the left-most vertical arrows remain to be described.
The morphism AutQ1(n)(p) −→ Γn. Let ∗ be the terminal operad in groupoids. We have a
∗-moperad structure on the following S-module in groupoids: Γ = {Γn}n≥0, where we view a
group as a groupoid with only one object, and where the action of the symmetric group is by
permutation. The moperad structure is described as follows:

• ◦0 : Γn × Γm −→ Γn+m is the concatenation of sequences.

• for every i 6= 0, ◦i : Γn −→ Γn+m−1 is the partial diagonal

(α1, . . . , αn) 7−→ (α1, . . . , αi−1, αi, . . . , αi︸ ︷︷ ︸
m times

, αi+1, . . . , αn) .

We let the reader check that sending E to 1 ∈ Γ and Ψ to (0, 0) ∈ Γ2 defines a moperad
morphism PaB1 −→ Γ along the terminal operad morphism PaB −→ ∗. This in particular
induces a group morphism

AutQ1(n)(p) −→ Γn

for every n ≥ 0. Heuristically, this morphism counts, for every i, and modulo N , the number of
times that E0,i appears in an element of AutQ1(n)(p). It is obviously surjective, and we let the
reader check that the following triangle commutes:

AutQ1(n)(p)
' //

((

π1

(
C(C×, n), p

)
��

Γn

The morphism AutQΓ(n)(p̃) −→ AutQ1(n)(p). We have a Γ-equivariant morphism of PaB-
moperads QΓ −→ Q1, where Γ acts trivially on Q1, which forgets the label on objects, and
sends the generators E0 and Ψ0 to E and Ψ, respectively. It obviously fits into a commmuting
square

QΓ //

��

PaBΓ

��
Q1 // PaB1

of PaB-moperads. This induces in particular a group morphism

AutQΓ(n)(p̃) −→ AutQ1(n)(p)
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for every n ≥ 0, that fits into a commuting square

AutQΓ(n)(p̃) //

��

π1

(
C(C×, n,Γ), p̃

)
��

AutQ1(n)(p)
' // π1

(
C(C×, n), p

)
We now turn to the proof of the fact that the left-most vertical sequence is a short exact
sequence, which shows that

AutQΓ(n)(p̃) −→ AutPaBΓ(n)(p0) = π1

(
C̄(C×, n), p̃

)
is an isomorphism.
This morphism is injective. Indeed, an automorphism of p̃ in QΓ(n) can be represented by a
finite sequence S̃ of R’s, Φ’s, E0’s, Ψ0’s, and their images under the action of Γn. The image
of such an automorphism under QΓ −→ Q1 is represented by the corresponding finite sequence
S of R’s, Φ’s, E’s and Ψ’s. Every modification of S using the relations (MP) and (O) can be
lifted (uniquely) to a modification of S̃ using (MP), (tO), or their images under the action of
Γn. Hence, if an automorphism has trivial image, then it must be trivial.
The sequence is exact. We already know from the commuting diagram that the image of
AutQΓ(n)(p̃) in AutQ1(n)(p) lies in the kernel of AutQ1(n)(p) −→ Γn. We finally can show that
the image is exactly the kernel. Indeed:

• Using (O), every element g in AutQ1(n)(p) can be written represented by a product of Φ’s,
R’s, Ψ’s and E’s, where the only E’s appearing are of the form E0,i.

• Such an element admits a unique lift to a morphism g̃ in QΓ(n), with source being p̃
(one just replace Φ’s, R’s, Ψ’s and E’s in the expression for g by Φ’s, R’s, Ψ0’s and E0’s,
maybe acted on by Γn in order to get the correct starting objects).

• An element g as above lies in

ker
(

AutQ1(n)(p) −→ Γn
)

if and only if for every i, the number of occurence of E0,i (counted in an algebraic way) is
a multiple of N . This tells us in particular that the target of the lifted morphism shall be
the same as its source, so that g̃ lies in the kernel.

This ends the proof of the Proposition.

4.2.6 Infinitesimal cyclotomic braids

Let Γ = Z/NZ, I a finte set, and let tΓI (k) be the Lie k-algebra with generators t0i, (i ∈ I),
and tαij , (i 6= j ∈ I, α ∈ Z/NZ), and relations:

(NS) tαij = t−αji ,

(NL) [t0i, t
α
jk] = 0 and [tαij , t

β
kl] = 0,
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(N4T) [tαij , t
α+β
ik + tβjk] = 0,

(NT1) [t0i, t0j +
∑
α∈Z/NZ t

α
ij ] = 0,

(NT2) [t0i + t0j +
∑
β∈Z/NZ t

β
ij , t

α
ij ] = 0,

where i, j, k, l ∈ I are pairwise distinct and α, β ∈ Z/NZ. We will call it the k-Lie algebra of
infinitesimal cyclotomic braids.

The above definition is obviously functorial with respect to bijections, exhibiting tΓ(k) as an
S-module. It moreover also has the structure of a t(k)-moperad, where partial compositions
are defined as follows: for i ∈ I,

◦k : tΓI (k)⊕ tJ(k) −→ tΓJtI−{i}(k)

(0, tpq) 7−→ t0pq

(tαjk, 0) 7−→


tαjk if i /∈ {j, k}∑

r∈J
tαrk if j = i∑

r∈J
tαjr if k = i

(t0i, 0) 7−→


t0j if j 6= i∑

p∈J
t0p if j = i

and

◦0 : tΓI (k)⊕ tΓJ(k) −→ tΓJtI(k)

(0, t0p) 7−→ t0p

(0, tαpq) 7−→ tαpq
(tαjk, 0) 7−→ tαjk
(t0i, 0) 7−→ t0i +

∑
j∈J

t0ji

We will call tΓ(k) the moperad of infinitesimal cyclotomic braidings.

We then consider the CD(k)-moperad of cyclotomic chord diagrams CDΓ(k) := Û(tΓ(k)) in
Cat(CoAlgk).

Remark 4.2.11. Morphisms in CDΓ(k)(n) can be represented as linear combinations of
diagrams of chords on n+ 1 vertical strands, together with a labelling of the last n strands by
elements of Γ. Thus, borrowing the representation of such chord diagrams from [17] (where the
relation to Vassiliev invariants has been explored), the infinitesimal cyclotomic braid relations
can be depicted as follows:

aa
=

aa

a
=

a

(NS)
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a

b

−a− b

+

a

−a b

−b

=

−a

a+ b

−b + a

−a

b

−b

(N4T)

+
∑
a

a

−a

= +
∑
a

a

−a (NT1)

a

−a +
∑
b

a

b− a

−b

= a

−a

+
∑
b

b

a− b

−a

(NT2)

Since CDΓ(k) has only one object in each arity, then we have an obvious terminal morphism
of moperads ω3 : PaΓ

0 −→ Ob(CDΓ(k)), over the operad morphism ω1 : Pa −→ Ob(CD(k))

from §2.6.4. Hence we can consider the moperad

PaCDΓ(k) := ω?3CDΓ(k)

of parenthesized cyclotomic chord diagrams, over the operadPaCD(k) = ω?1CD(k) inCat(CoAssk).

Example 4.2.12 (Notable arrows ofPaCDΓ(k)). We have the following arrows in PaCDΓ(k)(1)

and PaCDΓ(k)(2), respectively:

K0,1 = t01·

0

0

10

10

=

0

0

10

10

b0,1,2 = 1·

(0

0

10)

(10

20

20)

Remark 4.2.13. Again, there is an action of Γ on PaCDΓ(k) and the elements K0,1 and
b0,1,2 are generators of the PaCD(k)-moperad PaCDΓ(k) and satisfy the following relations

• b01,2,3b0,1,23 = b0,1,2b0,12,3a1,2,3,

• K01,2 = b0,1,2X1,2(b0,2,1)−1K0,2α ·
(
b0,2,1X2,1(b0,1,2)−1

)
, for α = (0, 1) ∈ Γ2,

• b0,1,2X1,2(b0,2,1)−1α · (b0,2,1X2,1(b0,1,2)−1) = 1,

• K0,1 +
∑N
α=1 α · (Ad(b0,1,2)(H1,2

0 )) + Ad
(
b0,1,2X1,2(b0,2,1)−1

)
(K0,2) = 0.
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4.2.7 Cyclotomic associators

We borrow an expand the terminology from §2.6.5 and §4.1.5.

If P −→ Q is a morphism between operads in C, M is a P-moperad, and N a Q-moperad,
then we will consider moperad mophismsM−→ N in the category of P-moperads (via the
restriction functor), and will simply refer to them as moperad morphisms if the context is clear.

For an operad O in C, we denote Mop(O) the category of O-moperads. Given the choice of an
automorphism g of O, we will denote by Aut+

(Mop(O),g)(M) the group of automorphisms of the
O-moperadM with respect to the automorphism g and Iso+

(Mop(P,Q),Φ)(M,N ), for the set of
isomorphisms beween moperadsM and N with respect to an operad isomorphism Φ between
P and Q.
In addition to the superscript “+”, we may also add a superscript “Γ” when only considering
morphisms that are Γ-equivariant.

The rest of this section can be seen as an operadic reformulation of (some parts of) [33].

Definition 4.2.14. A cyclotomic associator is a couple (F,G) where F is in Ass(k) and G

is a Γ-equivariant isomorphism between the P̂aB(k)-moperad P̂aB
Γ
(k) and the GPaCD(k)-

moperad GPaCDΓ(k) which is the identity on objects and which is compatible with F . Denote
by

AssΓ(k) := Iso+

(P̂aB(k),GPaCD(k))
(P̂aB

Γ
(k), GPaCDΓ(k))Γ

the set of cyclotomic associators.

Denote Ψ0,1,2 := Ψ(t01, t
0
12, ..., t

N−1
12 ), Ψ0,1,2

a := θ(a) · Ψ0,1,2 = Ψ(t01, t
a
12, ..., t

a+N−1
12 ) and

Ψ0,2,1
a := (12) ·Ψ0,1,2

a = Ψ(t02, t
a
21, ..., t

a+N−1
21 ) = Ψ(t02, t

a
12, ..., t

a+1−N
12 ). Denote t02,N (k) for the

free Lie algebra f(k)(t001, t
0
12, ..., t

N−1
12 ). We have the following theorem:

Theorem 4.2.15. There is a one-to-one correspondence between elements of AssΓ(k) and
those of the set AssΓ

1 (k) consisting on triples (λ,Φ,Ψ) ∈ ×k×× exp(̂t03(k))× exp(̂t02,N (k)), such
that (λ,Φ) ∈ Ass(k) and Ψ satisfies

(MP) Ψ01,2,3Ψ0,1,23 = Ψ0,1,2Ψ0,12,3{Φ1,2,3},
(O) {e λN t01}Ψ0,1,2

0 {eλ2 t012}(Ψ0,2,1
0 )−1{e λN t02}Ψ0,2,1

a {eλ2 ta12}Ψ0,1,2
a = 1,

where a = 1̄ ∈ Z/NZ.

Proof. Let F̃ be a k-associator P̂aB(k) −→ GPaCD(k) and let G̃ be an isomorphism

P̂aB
Γ
(k) −→ GPaCDΓ(k)

of (P̂aB(k), GPaCD(k))-moperads which is the identity on objects and which is compati-
ble with F̃ . It corresponds to a unique morphism G : PaBΓ −→ GPaCDΓ(k). From the
presentation of PaBΓ, we know that G̃ is uniquely determined by the images of E0,1

0 ∈
Hom

P̂aB
Γ

(k)(1)
(010, 011) and Ψ0,1,2

0 ∈ Hom
P̂aB

Γ
(k)(2)

((010)20, 0(1020)) at the morphisms level.

Thus, there are elements u ∈ exp(̂tΓ1 (k)) and v ∈ exp(̂tΓ2 (k)) such that G(E0,1
0 ) = u · E0,1

0
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and G(Φ0,1,2
0 ) = v · Φ0,1,2

0 . Now, we have a Lie algebra isomorphism tΓ2 (k) ' k(c) ⊕
f(k)(t01, t

0
12, ..., t

N−1
12 ) where c = t001 + t002 +

∑
a∈Γ t

a
12. Thus, u is of the form eλ1c and v

is of the form eλ2cf(t01, t
0
12, ..., t

N−1
12 ). Now, we know that the image of E0,1

0 in PaB1 induced
by the projection z −→ zN is E0,1. Thus, we can identify λ1 = λ

N and then u = e
λ
N t01 .

Finally, the fact that Φ0,1,2
0 is Γ-invariant ensures that v is of the form f(t01, t

0
12, ..., t

N−1
12 ).

Once we simplified this way u and v, the images of the Octogon and Mixed Pentagon relation
in GPaCDΓ(k) imply relations (MP) and (O) in the above theorem.

Example 4.2.16 (Cyclotomic KZ Associator). Consider the differential equation

d

d z
H(z) =

 t01

z
+

∑
α∈Z/NZ

tα12

z − ζα

H(z), (4.11)

where ζ is a primitive Nth root of unity, and let H0+ , H1− be the solutions such that H0+(z) ∼
zt01 when z −→ 0+ and H1−(z) ∼ zt

1
12 when z −→ 1−. Then the renormalized holonomy

ΨKZ = H−1
1−H0+ ∈ exp(̂t02,N ) from 0 to 1 of the above differential equation is the cyclotomic KZ

associator constructed by Enriquez in [33]. More precisely, Enriquez showed that the quadruple
(−1, 2iπ,ΦKZ,ΨKZ) is in AssΓ(C).

4.2.8 Cyclotomic Grothendieck-Teichmüller groups

Definition 4.2.17. The (k-pro-unipotent version of the) cyclotomic Grothendieck-Teichmüller
group is defined as the group

ĜT
Γ
(k) := Aut+

(Mop(P̂aB(k))
(P̂aB

Γ
(k))Γ

of automorphisms of the P̂aB(k)-moperad P̂aB
Γ
(k) which are Γ-equivariant and which are the

identity on objects.

Notice that such an automorphism depends on an automorphism of P̂aB(k) i.e. on an
element Φ of ĜT(k). Let F̂2(φN ,k) be the partial k-pro-unipotent completion of the free
group F2 with respect to the surjective group morphism φN : F2 −→ Z/NZ sending x to
1 and y to 0 and P̂4(φ3,N ,k) the partial k-pro-unipotent completion of P4 with respect
to the map φ3,N : B4 ×S4

S3 −→ Z/NZ × S3 induced by the (Z/NZ × S3)-fold map
Conf(C×, 3,Γ) −→ Conf(C, 3)/S3 where S3 is interpreted as the subgroup of the group S4 of
permutations of 0, ..., 3 which fix 0. Denote k(N)× = (Z/NZ)× × k×. See [33] for more details
on the subject of partial pro-unipotent completions. Finally, recall that PBn,N has generators
xN0,i and xαij := x−α0,i xijx

α
0,i. In particular, the generators of PB2,N will be denoted by X := xN

and y(α) := x−αyxα for 0 ≤ α ≤ N − 1.

In [33], the author constructed a cyclotomic version of the Grothendieck-Teichmüller group

which we now recall. Define ĜT
Γ
(k) to be the set of elements (λ, µ, f, g) ∈ k× × k(N)× ×

F̂2(k)× F̂2(φN ,k), satisfying (λ, f) ∈ ĜT(k) and

(O) xµg(x, y)y
λ+1

2 g(x−1y−1)−1(x−1y−1)µg(x−1y−1, y)y
λ−1

2 g(x, y)−1 = 1 in F̂2(φN ,k),
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(MP) g(x02x12, x23)g(x01, x12x13) = g(x01, x12)g(x01x02, x13x23)f(x12, x23) in P̂4(φ3,N ,k).

The set ĜT
Γ
(k) has a internal composition law defined by

(λ1, µ1, f1, g1) ∗ (λ2, µ2, f2, g2) = (λ, µ, f, g),

given as follows. Write y(α) = xαyx−α and identify (λ, µ, f, g) with (a, k, f, g) where µ =

(a, k) ∈ k(N) so λ = ã+Nk. Then (a1, k1, f1, g1)(a2, k2, f2, g2) = (a, k, f, g), where a = a1a2,
k is such that ã+Nk = (ã1 +Nk1)(ã2 +Nk2), f(x, y) is given by

f(x, y) = f2(xλ1 , f1(x, y)yλ1f1(x, y)−1) · f1(x, y),

and

g(X|y(0), . . . , y(N − 1)) = g1(X|y(0), . . . , y(N − 1))·

g2

(
X ã1+Nk1 |Ad(g1(X|y(0), . . . , y(N − 1)))(y(0)ã1+Nk1),

Ad
(
Xk1g1(X|y(ã1), . . . , y(ã1 +N − 1))

)
(y(ã1)ã1+Nk1), . . . ,

Ad
(
X(N−1)k1g1(X|y((N − 1)ã1), . . . , y((N − 1)ã1 +N − 1))

)
((y(N − 1)ã1)ã1+Nk1)

)
.

The group ĜT
Γ
(k) acts on AssΓ(k) on the left as follows:

(λ, µ, f, g) ∗ (a′, λ′,Φ′,Ψ′) = (µ̄a′, [µ]λ′,Φ′′,Ψ′′), (4.12)

where
Φ′′(t12, t23) := Φ′(t12, t23)f(eλ

′t12 ,Ad(Φ′(t12, t23))(eλ
′t23)),

Ψ′′(t012|t023, . . . , t
N−1
23 ) := Ψ′(t012|t023, . . . , t

N−1
23 )

g
(
λ′t012|Ad

(
Ψ′(t012|t023, . . . , t

N−1
23 )

)
(λ′t023),

Ad
(
(λ′/N)t012Ψ′(t012|ta

′

23, . . . , t
a′+N−1
23 )

)
(λ′ta

′

23), . . . ,

Ad
(
(N − 1)(λ′/N)t012Ψ′(t012|t(N−1)a′

23 , . . . , t
(N−1)a′+N−1
23 )

)
(λ′t(N−1)a′

23 )
)

(recall that λ = [µ], so if µ = (a, k), then λ = ã+Nk; also µ̄ = a). It was shown in [33] that
this action is free and transitive.

Proposition 4.2.18. There is a group isomorphism between ĜT
Γ
(k) and ĜT

Γ
(k).

Proof. The map GTΓ(k) −→ GTΓ(k) is constructed as follows. Suppose that we have an

automorphism G of P̂aB
Γ
(k) which is the identity on objects and which is compatible with

an automorphism F of the operad P̂aB(k). F is given by the pair (λ, f) ∈ ĜT(k), and G

is determined by the images of the two generators E0 and Ψ0, in PaBΓ(1) and PaBΓ(2),
respectively. Thus, an automorphism (F,G) in GTΓ(k) is uniquely determined by elements
(λ, µ, f, g) ∈ k× × k(N)× × F̂2(k)× F̂2(φN ,k) such that

• F (R1,2) = (R1,2)λ,



130 CHAPTER 4. ASSOCIATORS AND GROTHENDIECK-TEICHMÜLLER GROUPS

• F (Φ1,2,3) = f(x12, x23) · Φ1,2,3,

• G(Ψ0,1,2
0 ) = g(xN |y(0), . . . , y(N − 1)) ·Ψ0,1,2

0 ·,
• G(E0,1

0 ) = µ · E0,1
0 .

The relation between a and λ was explained in the proof of Theorem 4.2.15. Then, the defining

relations in the presentation of P̂aB
Γ
(k) imply that the tuple (λ, µ, f, g) satisfies relations (O)

and (MP). The assignment (Ψ, F ) 7→ (λ, µ, f, g) then defines a map GTΓ(k) −→ GTΓ(k).

Let’s now prove that this map is a group morphism. We will show that the composition

of automorphisms in Aut+

Mop(P̂aB(k))
(P̂aB

Γ
(k)) corresponds to the composition law of the

group GTΓ(k). As before, the composition of automorphisms F1 and F2 in Aut+

Op Ĝ(P̂aB(k))

corresponds to the composition law in GT(k), that is, the associated couples (λ, f1) and (µ, f2)

in k× × F̂2(k) satisfy
(F1 ◦ F2)(R1,2) = (R1,2)λµ

(F1 ◦ F2)(Φ1,2,3) = Φ1,2,3 · (f2(xλ, f1(x, y)yλf1(x, y)−1) · f1(x, y)),

(here F2 is generated by x := σ2
1 and y := σ2

2). We also already showed that any two automor-

phisms G and H in the group Aut+

Mop(P̂aB(k))
(P̂aB

Γ
(k)), depending on Ψ1 and Ψ2 respectively,

are associated to couples (µ1, g1(xN |y(0), . . . , y(N − 1))) and (µ2, g2(xN |y(0), . . . , y(N − 1)))

where g1 and g2 are elements of in F̂2(φN ,k). Analogously to relation (2.15), as E0,1
0 is an

arrow from (010)20 to (01α)20 for some primitive element α ∈ Γ, then E0,1
0 is sent via G to

(E0,1
0 )kN · E0,1

0 for some k ∈ Z.

Let us now place ourselves in the group A = Aut
P̂aB

Γ
(k)(2)

((010)20, (010)20). In A, we have

xN01 = ((E0,1
0 )N )2 = µ((E0,1

0 )N , 2) = µ ◦0 (E0,1
0 )N

We then have F (xN01) = (xN01)λ for some invertible λ ∈ k×. Next, let us compute F (x0
12). Again,

analogously to relation (2.16), in A, the element (x0
12)2 can be decomposed as

(010)20
Φ0,1,2

// 0(1020)
µ(0,(R1,2

0 )2) // 0(1020)
(Φ0,1,2)−1

// (010)20.

Then, as
F (Φ0,1,2) = Φ0,1,2 · g1(x01|x0

12, . . . , x
N−1
12 )

and
F (0(R0

12)2) = F (µ(0, (R0
12)2) = µ(0, F ((R0

12)2)) = (x0
12)2λ′ ,

we obtain, for λ = 2λ′ + 1

F (x0
12) = g1(x01|x0

12, . . . , x
N−1
12 ) · (x0

12)λ · g−1
1 (x01|x0

12, . . . , x
N−1
12 )

Next, as xα12 = α · x0
12 for α ∈ Γ, by Γ-equivariance we wave

F (xα12) = α · F (x0
12)

= α · (g1(xN01|x0
12, . . . , x

N−1
12 ) · (x0

12)λ · g−1
1 (xN01|x0

12, . . . , x
N−1
12 ))

= g1(α · xN01|α · x0
12, . . . , α · xN−1

12 ) · α · (x0
12)λ · g−1

1 (α · xN01|α · x0
12, . . . , α · xN−1

12 )

= g1(xαN01 |xα12, . . . , x
α+N−1
12 ) · (xα12)λ · g−1

1 (xN01|xα12, . . . , x
α+N−1
12 )

= Ad(g1(xαN01 |xα12, . . . , x
α+N−1
12 ))(xα12)λ).
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Finally we obtain

(F ◦G)(Ψ0,1,2) = F (Ψ0,1,2 · g2(xN01|x0
12, . . . , x

N−1
12 ))

= Ψ0,1,2 · g1(xN01|x0
12, . . . , x

N−1
12 ) · g2(F (xN01)|F (x0

12), . . . , F (xN−1
12 ))

= Ψ0,1,2 · g1(xN01|x0
12, . . . , x

N−1
12 )

· g2(λ · xN01|λ · g1(x01|x0
12, . . . , x

N−1
12 ) · (x0

12)λ · λ · g−1
1 (xN01|x0

12, . . . , x
N−1
12 ),

. . . , λ · g1(xN01|xN−1
12 , . . . , x2N−2

12 ) · x(N−1)λ
12 · λ · g−1

1 (xN01|xN−1
12 , . . . , x2N−2

12 ))

= Ψ0,1,2 · λ · g1(xN01|x0
12, . . . , x

N−1
12 )

· g2(xN01|g1(x01|x0
12, . . . , x

N−1
12 ) · x0

12 · g−1
1 (xN01|x0

12, . . . , x
N−1
12 ),

. . . , g1(xN01|xN−1
12 , . . . , x2N−2

12 ) · xN−1
12 · g−1

1 (xN01|xN−1
12 , . . . , x2N−2

12 )))

which is nothing but the composition law in the group GTΓ(k). This concludes the proof, as
the composite of moperad morphisms F ◦ G is compatible with the composition of operad
morphisms Φ ◦Ψ. Now, the fact that the defining sets in GTΓ(k) and GTΓ(k) are isomorphic
is a straightforward consequence of the composite of bijections

GTΓ(k) −→ AssΓ(k) −→ AssΓ(k) −→ GTΓ(k).

This finishes the proof.

Definition 4.2.19. The graded cyclotomic Grothendieck–Teichmüller group is the group

GRTΓ(k) := Aut+
(Mop(PaCD(k),Φ)(PaCDΓ(k))Γ

of Γ-equivariant automorphisms of the PaCD(k)-moperad PaCDΓ(k) which are the indentity
on objects.

Definition 4.2.20. Define GRTΓ
(1̄,1)(k) as the set of pairs (Φ,Ψ) with Φ ∈ GRT1(k) and

Ψ ∈ exp(̂tΓ3 (k)), such that

Ψ0,1,2(Ψ0,2,1)−1Ψ(t02|t112, t
0
12, . . . , t

2−N
12 )Ψ(t01|t112, . . . , t

N
12)−1 = 1, (4.13)

t01 +

N∑
α=1

Ad(Ψ(t01|tα12, . . . , t
α+N−1
12 ))(tα12) + Ad

(
Ψ0,1,2Ψ−1

0,2,1

)
(t02) = 0, (4.14)

as equalities in t̂Γ2 (k), where t01 +
∑n
α=0 t

α
12 + t02 = 0, and

Ψ01,2,3Ψ0,1,23 = Ψ0,1,2Ψ0,12,3Φ1,2,3, (4.15)

as an equality in exp(̂tΓ3 (k)). GRTΓ
(1̄,1)(k) is a group when equipped with the product

(Φ1,Ψ1) ∗ (Φ2,Ψ2) = (Φ,Ψ),

where

• Φ(t12, t23) = Φ2(t12, t23)Φ1(t12,Ad Φ2(t12, t23)(t23)),

• Ψ0,1,2 = Ψ1

(
t01|Ad((Ψ0,1,2

2 ))(t012), . . . ,Ad(Ψ2(t01|tN−1
12 , . . . , t2N−2

12 ))(tN−1
12 )

)
·Ψ0,1,2

2 · .
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The action of (Z/NZ)××k× by automorphisms of tΓ3 (resp. t3) given by (c, γ) · t0i = γt0i, (c, γ) ·
tαij = γtcαij (resp. (c, γ) · tij = γtij) induces its action by automorphisms of GRTΓ

(1̄,1)(k). We
denote by GRTΓ(k) the corresponding semidirect product.

GRTΓ
(1̄,1)(k) acts on AssΓ(k) from the right by (Φ,Ψ) ∗ (h, k) = (Φ′,Ψ′), where

Φ′(t12, t23) = h(t12, t23)Φ(t12,Ad(h(t12, t23))(t23)), (4.16)

Ψ′(t01|t012, . . . , t
N1
12 ) = k(t01|t012, . . . , t

N1
12 ) (4.17)

Ψ
(
t01|Ad

(
k(t01|t012, . . . , t

N−1
12 )

)
(t012), . . . ,Ad

(
k(t01|tN−1

12 , . . . , t
2(N−1)
12 )

)
(tN−1

12 )
)
.

This action preserves each AssΓ
(a,λ)(k), and it extends to an action of GRTΓ(k) on AssΓ(k),

which is compatible with the action of (Z/NZ)× × k× on (Z/NZ)× k and commutes with the
left action of GTΓ(k) on AssΓ(k).

Proposition 4.2.21. There is a group isomorphism between GRTΓ(k) and GRTΓ(k).

Proof. The map GRTΓ(k) −→ GRTΓ(k) is constructed as follows. Let F be an automorphism
in Aut+

Mop(GPaCD(k))(GPaCDΓ(k)) depending on an operad automorphism Ψ in GRT(k).
We have

• Ψ(X1,2) = X1,2,

• Ψ(H1,2) = λH1,2,

• Ψ(a1,2,3) = f(t12, t23) · a1,2,3,

• F (b0,1,2) = g(t01|t012, . . . , t
N−1
12 ) · b0,1,2,

• F (K0,1) = µK0,1.

where (λ, f) ∈ GRT(k) and (µ, g) ∈ k(N)× × exp(̂t3(k)). In light of relations of Remark
4.2.13, the tuple (λ, f, g) satisfies relations (4.13), (4.14) and (4.15). The assignment (Ψ, F ) 7→
(λ, g(t12, t23), u+(x, y), u−(x, y)) then defines a map GRTΓ(k) −→ GRTΓ(k).

Let’s now prove that the composition of automorphisms in Aut+
Mop(GPaCD(k))(GPaCDΓ(k))

corresponds to the composition law of the group GRTΓ(k). We already know that the
composition of automorphisms Φ and Ψ in Aut+

Op Ĝ(GPaCD(k)) corresponds to the composition

law in GRT(k), that is, the associated couples (λ, f1) and (µ, f2) in k× × exp(̂̄t3(k)) satisfy

(Φ ◦Ψ)(H1,2) = λµH1,2

(Φ ◦Ψ)(11,2,3) = 11,2,3 · f1(t12, t23) · f2(λt12, f1(t12, t23) · λt23 · f1(t12, t23)−1).

We also already showed that any two automorphisms F and G in the group
Aut+

Mop(GPaCD(k))(GPaCDΓ(k)), depending on Φ and Ψ respectively, are associated to ele-
ments φ1(t01|t012, . . . , t

N−1
12 ) and φ2(t01|t012, . . . , t

N−1
12 ) which represent automorphisms of the

parenthesized word (010)20 in the groupoid GPaCDΓ(k)(2) i.e. in exp(̂̄tΓ2 (k)). Let us now
place ourselves in the group A = AutGPaCDΓ(k)(3)((010)20). In A, we have

t01 = (K0,1)2 = µ(K0,1, 2) = µ ◦0 K0,1
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We then have F (t01) = λt01 for some invertible λ ∈ k×. Next, let us compute F (t012). Again in
the group A, the element t012 can be decomposed as

(010)20

10,1,2 // 0(1020)
µ(0,H0

12) // 0(1020)
1
−1
0,1,2 // (010)20.

Then, as
F (10,1,2) = 10,1,2 · φ1(t01|t012, . . . , t

N−1
12 )

and
F (0, H0

12) = F (µ(0, H0
12) = µ(0, F (H0

12)) = λt012,

we obtain
F (t012) = φ1(t01|t012, . . . , t

N−1
12 ) · λt012 · φ−1

1 (t01|t012, . . . , t
N−1
12 )

Next, as tα12 = α · t012 for α ∈ Γ, by Γ-equivariance we wave

F (tα12) = α · F (t012)

= α · (φ1(t01|t012, . . . , t
N−1
12 ) · λt012 · φ−1

1 (t01|t012, . . . , t
N−1
12 ))

= φ1(α · t01|α · t012, . . . , α · tN−1
12 ) · λα · t012 · φ−1

1 (α · t01|α · t012, . . . , α · tN−1
12 )

= φ1(t01|tα12, . . . , t
α+N−1
12 ) · λtα12 · φ−1

1 (t01|tα12, . . . , t
α+N−1
12 )

Finally we obtain

(F ◦G)(b0,1,2) = F (b0,1,2 · φ2(t01|t012, . . . , t
N−1
12 ))

= b0,1,2 · φ2(F (t01)|F (t012), . . . , F (tN−1
12 ))

= b0,1,2 · φ2(λ · t01|λ · φ1(t01|t012, . . . , t
N−1
12 ) · λt012 · λ · φ−1

1 (t01|t012, . . . , t
N−1
12 ),

. . . , λ · φ1(t01|tN−1
12 , . . . , t2N−2

12 ) · λtN−1
12 · λ · φ−1

1 (t01|tN−1
12 , . . . , t2N−2

12 ))

= b0,1,2 · λ · φ2(t01|φ1(t01|t012, . . . , t
N−1
12 ) · t012 · φ−1

1 (t01|t012, . . . , t
N−1
12 ),

. . . , φ1(t01|tN−1
12 , . . . , t2N−2

12 ) · tN−1
12 · φ−1

1 (t01|tN−1
12 , . . . , t2N−2

12 )))

which is nothing but the composition law in the group GRTΓ(k). This concludes the proof,
as the composite of moperad morphisms F ◦G is compatible with the composition of operad
morphisms Φ◦Ψ. Now, the fact that the defining sets in GRTΓ(k) and GRTΓ(k) are isomorphic
is a straightforward consequence of the composite of bijections

GRTΓ(k) −→ AssΓ(k) −→ AssΓ(k) −→ GRTΓ(k).

This finishes the proof.

4.2.9 Torsors

Finally, we promote this correspondence into a torsor isomorphism.

Theorem 4.2.22. There is a torsor isomorphism

(ĜT
Γ
(k),AssΓ(k),GRTΓ(k)) −→ (ĜT

Γ
(k),AssΓ(k),GRTΓ(k)). (4.18)
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Proof. This is a summary of most of the above results. First of all, we know that
(ĜT

Γ
(k),AssΓ(k),GRTΓ(k)) has a natural torsor structure and that (ĜT

Γ
(k),AssΓ(k),GRTΓ(k))

is a torsor by [33]. Next, we proved in Proposition 4.2.18 that there are group isomorphisms

between ĜT
Γ
(k) and ĜT

Γ
(k) and in Proposition 4.2.21 that there are group isomorphisms

between GRTΓ(k) and GRTΓ(k). Thus, it is sufficient to show that the actions of ĜT
Γ
(k)

on AssΓ(k) and of ĜT
Γ
(k) on AssΓ(k) are compatible and that the actions of ĜRT

Γ
(k) on

AssΓ(k) and of GRTΓ(k) on AssΓ(k) are compatible. Under the correspondence of Theorem

4.2.18, the image of the natural action of ĜT
Γ
(k) on AssΓ(k) is exactly the action of ĜT

Γ
(k)

on AssΓ(k). Both actions are then compatible. Under the correspondence of Theorem 4.2.21,
the image of the natural action of GRTΓ(k) on AssΓ(k) is exactly the action of GRTΓ(k) on
AssΓ(k). Both actions are then compatible.

4.3 Modules associated with twisted configuration spaces
(ellipsitomic associators)

4.3.1 Compactified twisted configuration space of the torus

Consider the group Γ = Z/MZ × Z/NZ, let T be the topological torus and consider the
connected Γ-covering p : T̃ −→ T corresponding to the canonical surjective group morphism
ρ : π1(T) = Z2 −→ Γ senging the generators of Z2 to their corresponding reduction in Γ. To
any finite set I with cardinality n we associate the Γ-twisted configuration space

Conf(T, I,Γ) := {z = (z1, . . . , zn) ∈ T̃I |p(zi) 6= p(zj) if i 6= j} ,

and let C(T, I,Γ) := Conf(T, I,Γ)/T̃ be its reduced version. We then consider the Fulton-
MacPherson compactification C(T, n,Γ) of C(T, n,Γ) in the same way as before by means of
the well-defined map

C(T, n,Γ) ↪→ C(T, (MN)n).

The boundary ∂C(T, n,Γ) = C(T, n,Γ)−C(T, n,Γ) is made of the following irreducible compo-
nents: for any partition J1

∐ · · ·∐ Jk of {1, ..., n} there is a component

∂J1,··· ,JkC(T, n,Γ) ∼=
k∏
i=1

(C(C, Ji))× C(T, k,Γ) .

The inclusion of boundary components provides C(T,−,Γ) with the structure of a module over
the operad C(C,−) in topological spaces.

4.3.2 The PaB-module parenthesized twisted elliptic braids

We have inclusions of topological modules

Pa ⊂ C(S1,−) ⊂ C(T,−)
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over
Pa ⊂ C(R,−) ⊂ C(C,−) .

Denote by i : Pa −→ C(S1,−) the inclusion morphism. Let Γ = Z/MZ×Z/NZ and for every set
In of cardinality n, consider the collection of all (N×M)n-fold maps φn : C(T,Γ, n) −→ C(T, n).
We get a collection of diagrams

PaΓ
n

//

��

C(T,Γ, n)

φn
��

Pan
in // C(T, n)

where we define PaΓ
n := i?nφn i.e. as the pull-back of the fold map along the inclusion map. For

example, elements of PaΓ
n are Γ-labelled parenthesized permutations of length n and PaΓ is an

operad module over Pa. Then it makes sense to define

PaBΓ
e`` := π1

(
C(T,Γ,−),PaΓ

)
,

which is a PaB-module.

Example 4.3.1 (Notable arrows in PaBΓ
e``(2)). Write 0 := (0̄, 0̄). Let R1,2

0 and Φ1,2,3
0 be the

unique lifts of R1,2 and Φ1,2,3 ∈ PaB starting at 1020 and (1020)30 respectively. These paths
can be depicted as follows:

R1,2
0 =

10

20

20

10

and Φ1,2,3
0 =

(10

10

20)

(20

30

30)

Next, for 1 ≤ i 6= j 6= k ≤ n and α ∈ Γ, let θ(αi) · Ri,j0 and θ(αi) · Φi,j,k
0 be the unique lifts

of Ri,j and Φi,j,k ∈ PaB starting at iαj0 and (iαj0)k0 respectively. Additionnally, we also
have two morphisms, A1,2

0 and B1,2
0 from (1020) to (1(1̄,0̄)20) and from (1020) to (1(0̄,1̄)20)

respectively which are the following paths

A0
1,2

B0
1,2

They can be alternatively depicted as follows:
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10

1(1̄,0̄)

20

20

A1,2
0

10

1(0̄,1̄)

20

20

B1,2
0

Now let p, q ≥ 1. We introduce the following notation:

(A1,2
0 )(p,0)1 :=

→∏
k=0,...,p−1

(θ((k̄, 0̄)1)·A1,2
0 ) = A1,2

0 (θ((1̄, 0̄)1)·A1,2
0 )(θ((2̄, 0̄)1)·A1,2

0 ) · · · (θ((p− 1, 0̄)1)·A1,2
0 ),

which is an element in HomPaBΓ
e``(2)((10, 20), (1(p̄,0̄), 20)) and

(B1,2
0 )(0,q)1 :=

→∏
k=0,...,q−1

(θ((0̄, k̄)1)·B1,2
0 ) = Bi(θ((0̄, 1̄)1)·B1,2

0 )(θ((0̄, 2̄)1)·B1,2
0 ) · · · (θ((0̄, q − 1)1)·B1,2

0 )

which is an element in HomPaBΓ
e``(2)((10, 20), (1(0̄,q̄), 20)).

Theorem 4.3.2. As a PaB-module (in groupoid) having PaΓ as Pa-module of objects, PaBΓ
e``

is freely generated by A0 := A1,2
0 and B0 := B1,2

0 together with the following relations:

(tN1) (A)(M,0) = Id1020,30 , where

A := Φ1,2,3
0 A1,23

0 θ((1̄, 0̄)1)(R1,23
0 Φ2,3,1

0 A2,31
0 θ((1̄, 0̄)2)(R2,31

0 Φ3,1,2A3,12
0 θ((1̄, 0̄)3R

3,12
0 )),

(tN2) (B)(0,N) = Id1020,30 , where

B := Φ1,2,3
0 B1,23

0 θ((0̄, 1̄)1)(R1,23
0 Φ2,3,1B2,31

0 θ((0̄, 1̄)2)(R2,31
0 Φ3,1,2B3,12

0 θ((0̄, 1̄)3R
3,12
0 )),

(tE) R1,2
(1̄,1̄)

R2,1
(1̄,1̄)

= Φ1,2,3B1,23
0 θ((0̄, 1̄)1)((Φ1,2,3

0 )−1(R1,2
0 )−1Φ2,1,3

0 (A2,13
0 )−1θ((−1, 0̄)2)X) where

X = (Φ2,1,3
0 )−1(R2,1

0 )−1Φ1,2,3
0 (B1,23

0 )−1θ((0̄,−1)1)((Φ1,2,3
0 )−1R1,2

0 Φ2,1,3
0 A2,13

0 Y )

and

Y = θ((1̄, 0̄)2)((Φ2,1,3
0 )−1R2,1

0 )

as arrows from (1020)30 to (1020)30 in PaBΓ
e``(3).

Proof. Let QΓ be the PaB-module with the above presentation, Q be the PaB-module with
the presentation in Theorem 4.1.3, let n ≥ 1 and let p ∈ QΓ(n). By universal property of QΓ,
there is a morphism of PaB-modules QΓ −→ PaBΓ

e`` which is the identity on objects. Indeed,
relations (tN1), (tN2), (tE) are satisfied by PaBΓ

e``.

For instance, A can be depicted as follows
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(10

(1α

20)

2α)

30

3α

A1,23

α

A2,31

α

A3,12

α

and the right hand side of relation (tE) can be pictured as follows in the open twisted
configuration space:

As before, we are left to prove that the morphism AutQΓ(n)(p) −→ AutPaBΓ
e``(n)(p) is a group

isomorphism.

On the one hand, by definition ofPaBΓ
e``, we know that AutPaBΓ

e``(n)(p) is exactly the fundamen-
tal group π1(C̄(T, n,Γ), p), where p is in the boundary of C̄(T, n,Γ). By the same argument as
before, we have isomorphisms π1(C̄(T, n,Γ), p) ' π1(C(T, n,Γ), preg) and π1(C̄(T, [n],Γ), [p]) '
π1(C(T, [n],Γ), [preg]). Consider the Γn−1-cover map f : C(T, n,Γ) −→ C(T, n). Now, one can
identify AutPaBΓ

e``(n)(p) with the kernel of the surjective map AutPaBe``(n)(f(p)) −→ Γn/Γ

and the isomorphism AutQ(n)(f(p)) −→ AutPaBe``(n)(f(p)) commutes with the projections to
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Γn/Γ. We obtain a commutative diagram

AutQΓ(n)(p) //

��

π1

(
C(T, n,Γ), p

)
��

π1 (C(T, n,Γ), preg)oo

��
AutQ(n)(f(p)) //

��

π1

(
C(T, n), f(p)

)
��

π1 (C(T, n), f(preg))

��

oo

Γn/Γ Γn/Γ Γn/Γ

Thus, in order to show that AutQΓ(n)(p) −→ AutPaBΓ
e``(n)(p) is an isomorphism, it suffices to

show that AutQΓ(n)(p) is isomorphic to the kernel of the projection AutQ(n)(f(p)) −→ Γn/Γ.

Let us first show that the map φ : AutQΓ(n)(p) −→ AutQ(n)(f(p)) is injective. By definition,
QΓ is generated in the morphisms level by A1,2

0 and B1,2
0 . The map φ sends A1,2

0 and B1,2
0 to

the generators A and B in PaBe``(2).

An element of AutQΓ(n)(p) will be given by some string, which we will denote g, in the generators
A± of PaBΓ

e`` and the liftings of R,Φ ∈ PaB. Let g be the image by φ of some string h in
AutQΓ(n)(p). Now, to ask g to be trivial means that there is a finite number of operations
involving only relations (N1), (N2),and (E) in PaBe`` taking the string g to the identity map.
But these relations in PaBe`` are the images of the corresponding relations, seen as relations in
PaBΓ

e``. Thus, we conclude that the procedure that takes f to the identity map is in fact the
image of a procedure taking h to the identity map in AutQΓ(n)(p). This shows the injectivity
of φ.

Finally, the map φ is surjective in the kernel of the projection φ1 : AutQ(n)(f(p)) −→ Γn/Γ.
Recall the presentation of B̄1,n : its generators are σi (i = 1, ..., n− 1), Ai, Bi (i = 1, ..., n), Cjk
(1 ≤ j < k ≤ n) and its relations are:

• σiσi+1σi = σi+1σiσi+1 , for i = 1, ..., n− 2,

• σiσj = σjσi, for 1 ≤ i < j ≤ n,
• σ−1

i Xiσ
−1
i = Xi+1, σiYiσi = Yi+1, for i = 1, ..., n− 1,

• (σi, Xj) = (σi, Yj) = 1, for i ∈ {1, ..., n− 1}, j ∈ {1, ..., n}, j 6= i, i+ 1,

• σ2
i = Ci,i+1Ci+1,i+2C

−1
i,i+2, for i = 1, ..., n− 1,

• (Ai, Aj) = (Bi, Bj) = 1, for any i, j, A1 = B1 = 1,

• (Bk, AkA
−1
j ) = (BkB

−1
j , Ak) = Cjk, for 1 ≤ j < k ≤ n,

• (Ai, Cjk) = (Bi, Cjk) = 1, for 1 ≤ i ≤ j < k ≤ n,

with Xi = AiA
−1
i+1, Yi = BiB

−1
i+1 for i = 1, ..., n (we set An+1 = Bn+1 = Ci,n+1 = 1). In

particular, these relations imply

• Cjk = σj,j+1...k...σj+n−k,j+n−k+1...nσj,j+1...n−k+j+1...σk−1,k...n,

where σi,i+1...j = σj−1...σi. Recall that AutQ(n)(f(p)) is nothing but the kernel of B1,n −→ Γ

sending Xi to the class of (1, 0), Yi to the class of (0, 1) and σi to the class of (0, 0). Thus,
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the kernel kerφ1 is generated by elements AMi , BNi and R1,2
α . If we denote z0

i for the marked
points of the form zi = ai + τbi, where 0 < an < · · · < a1 < 1/M and 0 < bn < · · · < b1 < 1/N

and zαi for z0
i + α̃ with α ∈ Γ, then the orbit of z0

i is Γ · z0
i = {z0

i + α;α ∈ Γ}. Then, we can
represent the elements AM := AM1 and BN = BN1 in the open twisted configuration space as
follows

z2
0

z1
0

z1
(0,1)

BN

z1
(1,0)

AM

These elements AM and BN are precisely the images of the generators A1,2
0 and B1,2

0 in QΓ.
Thus, any string in AutQ(n)(f(p)) contained in the kernel of φ1 is the image of some string
in AutQΓ(n)(p). In conclusion, the map φ : AutQΓ(n)(p) −→ AutQ(n)(f(p)) is a bijection in
the kernel of φ1. So, by commutativity of the above diagram, we obtain an isomorphism
AutQΓ(n)(p) −→ AutPaBΓ

e``(n)(p) which lead us to the fact that the morphism QΓ −→ PaBΓ
e``

of PaB-modules is an isomorphism.

We obtain a PaB(k)-module in Cat(CoAssk) denoted PaBΓ
e``(k) := ∆k(PaBΓ

e``). Now
consider its associated inverse system of PaB(m)(k)-modules given, for all m ∈ N, by

(PaBΓ
e``)

(m)
k := PaBΓ

e``(k)/(Im(k) ·PaBΓ
e``(k)).

By taking the inverse limit over m of these inverse system, we get a P̂aB(k)-module in
Cat(CoAssk)

P̂aB
Γ

e``(k) := lim
←−

((PaBΓ
e``)

(m)
k ).

4.3.3 The Lie algebras tΓ1,n(k) and t̄Γ1,n(k) of infinitesimal twisted ellip-
tic braidings

In this paragraph, Γ can be replaced by any finite abelian group (with the additive notation).

Definition 4.3.3. For any integer n ≥ 1 we define tΓ1,n(k) to be the bigraded k-Lie algebra
with generators x1, . . . , xn in degree (1, 0), y1, . . . , yn in degree (0, 1), tαij (α ∈ Γ, 1 ≤ i 6= j ≤ n)
in degree (1, 1), and relations

(NS) tαij = t−αji , for i 6= j ,

(NL) [tαij , t
β
kl] = 0, for card{i, j, k, l} = 4,

(N4T) [tαij , t
α+β
ik + tβjk] = 0, for card{i, j, k} = 3,
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(Ell1) [xi, yj ] = [xj , yi] =
∑
α∈Γ t

α
ij, for i 6= j

(Ell2) [xi, xj ] = [yi, yj ] = 0

(NEll1) [xi, yi] = −∑j:j 6=i
∑
α∈Γ t

α
ij ,

(NEll2) [xi, t
α
jk] = [yi, t

α
jk] = 0, for card{i, j, k} = 3,

(NEll3) [xi + xj , t
α
ij ] = [yi + yj , t

α
ij ] = 0, for i 6= j,

for all α, β ∈ Γ. We will call tΓ1,n(k) the k-Lie algebra of infinitesimal twisted elliptic braidings.

Observe that
∑
i xi and

∑
i yi are central in tΓ1,n. Then we denote by t̄Γ1,n(k) the quotient of

tΓ1,n(k) by
∑
i xi and

∑
i yi, and the natural morphism tΓ1,n(k) −→ t̄Γ1,n(k) ; u 7→ ū. There is an

action θ : Γn −→ Aut(tΓ1,n(k)) given by θ(αi) : tβij 7→ tβ+α
ij , and with tβkl, for k, l 6= i), xk and

yk invariant for arbitrary k arbitrary. It restricts to an action on t̄Γ1,n(k).

Proposition 4.3.4. For any group morphism ρ : Γ1 −→ Γ2 we have a comparison morphism
φ : tΓ1

1,n(k) −→ tΓ2
1,n(k) defined by xi 7→ xi, yi 7→ yi, and

tαij 7−→
1

# ker(ρ)

∑
β∈coker(ρ)

t
ρ(α)+β
ij .

Proof. Let us prove that relation [xi, yj ] =
∑
α∈Γ t

α
ij , where i 6= j, is preserved by φ. On the

one hand [φ(xi), φ(yj)] =
∑
α∈Γ2

tαij . On the other hand

φ([xi, yj ]) =
∑
α∈Γ1

φ(tαij) =
∑
α∈Γ1

1

# ker(ρ)

∑
β∈coker(ρ)

t
ρ(α)+β
ij =

∑
α∈Γ2

tαij .

The last equality holds because ρ(α) is in the image of ρ and β is not. The fact that remaining
relations are preserved is immediate.

When ρ is not surjective it depends on the choice of a section coker(ρ) −→ Γ2. Comparison
morphisms commute with insertion-corpoduct morphisms. Moreover, both are bigraded and
pass to the quotient by

∑
i xi,

∑
i yi. When k = C we write tΓ1,n := tΓ1,n(C) and t̄Γ1,n := t̄Γ1,n(C).

Lemma 4.3.5. tΓ1,n(k) admits the following presentation : generators are xi, yi (i = 1, . . . , n)
tαij (α ∈ Γ) and relations are

• tαij = t−αji (i 6= j) ;,

• [tαij , t
β
kl] = 0 (card{i, j, k, l} = 4),

• [tαij , t
α+β
ik + tβjk] = 0 (card{i, j, k} = 3),

• [xi, yj ] = [xj , yi] =
∑
α∈Γ t

α
ij (i 6= j)

• [xi, xj ] = [yi, yj ] = 0 ;

• [
∑
j

xj , yi] = [
∑
j

yj , xi] = 0 (for any i)

• [xi, t
α
jk] = [yi, t

α
jk] = 0 (card{i, j, k} = 3),
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Proof. If xi, yi and tαij satisfy the initial relations, then

[
∑
j

xj , yi] = [xi, yi] + [
∑
j 6=i

xj , yi] = −
∑
j:j 6=i

∑
α∈Γ

tαij +
∑
j:j 6=i

∑
α∈Γ

tαij = 0.

Now, if xi, yi and tαij satisfy the above relations, then relations [
∑
j

xj , yi] = 0 and [xj , yi] =∑
α∈Γ t

α
ij , for i 6= j, imply that [xi, yi] = −∑j:j 6=i

∑
α∈Γ t

α
ij . Now, relations [

∑
k

xk, yj ] = 0 and

[
∑
k

xk, xi] = 0 imply that [
∑
k

xk,
∑
α∈Γ t

α
ij ] = 0. Thus, as [xi, t

α
jk] = 0 if card{i, j, k} = 3, we

obtain relation [xi + xj , t
α
ij ] = 0, for i 6= j. In the same way we obtain [yi + yj , t

α
ij ] = 0, for

i 6= j.

The t(k)-module tΓ1 (k) of infinitesimal twisted elliptic braidings

The collection tΓ1 (k) of the Lie algebras tΓ1,n, for n ≥ 1 is provided with the structure of a
t(k)-module in Liek when endowed with the partial operadic module composition structures
given as follows.

◦k : tΓ1,I(k)⊕ tJ(k) −→ tΓ1,JtI−{i}(k)

(0, tαβ) 7−→ tαβ

(tαij , 0) 7−→


tαij if k /∈ {i, j}∑

p∈J
tαpj if k = i∑

p∈J
tαip if j = k

(xi, 0) 7−→


xi if k 6= i∑

p∈J
xp if k = i

(yi, 0) 7−→


yi if k 6= i∑

p∈J
yp if k = i

These operadic compositions also induce an operad module structure on the collection of the
Lie algebras t̄Γ1,n(k). We will call t̄Γ1 (k) the module of infinitesimal twisted elliptic braidings
and, for CDΓ

e``(n) := Û (̂̄tΓ1,n(k)), the corresponding module in associative algebras CDΓ
e`` :=

{CDΓ
e``(n)}n≥1 will be called the module of Γ-labelled elliptic chord diagrams. The elements

of the module CDΓ
e`` can be depicted as Γ-labelled elliptic chords on n vertical strands. Thus,

by combining the different representations we used in the cyclotomic and elliptic cases, we can
depict the labelled elliptic chord relations as follows (we denote A+ = x and A− = y):

A−

A+

−
A+

A−

=
A+

A−

−
A−

A+

(Ell1b)
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=
∑
a∈Γ

a

−a

A±

A±

=
A±

A±

(Ell2b)

A+

A−

i

− A−

A+

i

= −
∑
j;j 6=i

∑
a∈Γ

a

−a

i j

(NEll1)

A±

a

−a

=

A±

a

−a (NEll2)

A±

a

−a

+

A±

a

−a

=

A±

a

−a +

A±

a

−a (NEll3)

Remark 4.3.6. We expect to study the relation between CDΓ
e`` and Vassiliev invariants in the

near future.

Let ĈD
Γ

e``(n) be the I-adic completion of CDΓ
e``(n) with respect to the augmentation ideal

I. Since we are in possession of a Pa(k)-module PaΓ(k), a ĈD(k)-module ĈD
Γ

e``(k) in

Cat(CoAssk) and of an operad module morphism ω4 : PaΓ −→ Ob(ĈD
Γ

e``(k)), we are ready
to define the PaCD(k)-module

PaCDΓ
e``(k) := ω?4ĈD

Γ

e``(k)

in Cat(CoAssk) of parenthesized Γ-labelled elliptic chord diagrams.

We have Ob(PaCDΓ
e``(k)) := PaΓ and

MorPaCDΓ
e``(k)(n)(p, q) := Mor

ĈD
Γ

e``(k)(n)
(pt, pt) = Û (̂tΓ1 (k)).

Example 4.3.7 (Notable arrows in PaCDΓ
e``(k)(2) and PaCDΓ

e``(k)(3)). We have the fol-
lowing arrows in PaCDΓ

e``(k)(2) and PaCDΓ
e``(k)(3)
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X1,2
0 = 1·

10

20

20

10

H1,2
0 = t012·

10

10

20

20

a1,2,3
0 =

(10

10

20)

(20

30

30)

X1,2
0,e`` = x1·

10

1(1̄,0̄)

20

20

Y 1,2
0,e`` = y1·

10

1(0̄,1̄)

20

20

Remark 4.3.8. The elements Xe``
1,2 , Y

e``
1,2 are generators of the PaCD(k)-module PaCDΓ

e``(k)

and satisfy the following relations

(tN1) Ã(M,0) = 1, where

Ã = a1,2,3
0 X1,23

e`` θ((1̄, 0̄)1)(X1,23
0 a2,3,1

0 X2,31
e`` θ((1̄, 0̄)2)(X2,31

0 Z1))

and
Z1 = a3,1,2

0 X3,12
e`` θ((1̄, 0̄)3)X3,12

0

(tN2) B̃(0,N) = 1, where

B̃ = a1,2,3
0 Y 1,23

e`` θ((1̄, 0̄)1)(X1,23
0 a2,3,1

0 Y 2,31
e`` θ((1̄, 0̄)2)(X2,31

0 Z2)),

and
Z2 = a3,1,2

0 Y 3,12
e`` θ((1̄, 0̄)3)X3,12

0

(tM) X1,2
0 X2,1

0 = a1,2,3
0 Y 1,23

0,e``θ((0̄, 1̄)1)((a1,2,3
0 )−1X1,2

0 a2,1,3
0 (X2,13

0,e``)
−1θ((−1, 0̄)2)X), where

X = (a2,1,3
0 )−1X1,2

0 a1,2,3
0 (Y 1,23

0,e``)
−1θ((0̄,−1)1)((a1,2,3

0 )−1X1,2
0 a2,1,3

0 X2,13
0,e``Y ),

and
Y = θ((1̄, 0̄)2)((a2,1,3

0 )−1X1,2
0 )

as arrows from (1020)30 to (1020)30 in PaBΓ
e``(3).

4.3.4 Twisted elliptic associators

Fix Γ := Z/MZ× Z/NZ.

Definition 4.3.9. A twisted elliptic k-associator is a couple (F,G) where F is in Ass(k) and

G is a Γ-equivariant isomorphism between the P̂aB(k)-module P̂aB
Γ

e``(k) and the GPaCD(k)-
module GPaCDΓ

e``(k) which is the identity on objects and which is compatible with F . We
denote the set of twisted elliptic k-associators by

EllΓ(k) := Iso+

(P̂aB(k),GPaCD(k))
(P̂aB

Γ

e``(k), GPaCDΓ
e``(k))Γ.
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Theorem 4.3.10. There is a one-to-one correspondence between elements of EllΓ(k) and
those the set EllΓ(k) consisting on quadruples (µ,Φ, A+, A−), where (µ,Φ) ∈ Ass(k) and
A± ∈ exp(̂̄tΓ1,2(k)), such that:

(tN1) (Ã+)(M,0) = 1 where

Ã+ = {Φ1,2,3}A1,23
+ θ((1̄, 0̄)1)({eµ(t012+t013)/2}{Φ2,3,1}A2,31

+ θ((1̄, 0̄)2)({eµ(t023+t012)/2}Z))

and
Z = {Φ3,1,2}A3,12

+ θ((1̄, 0̄)3{eµ(t031+t032)/2})

(tN2) (Ã−)(0,N) = 1 where

Ã− = {Φ1,2,3}A1,23
− θ((0̄, 1̄)1)({e−µ(t012+t013)/2}{Φ2,3,1}A2,31

− θ((0̄, 1̄)2)({e−µ(t023+t012)/2}Z))

and
Z = {Φ3,1,2}A3,12

− θ((0̄, 1̄)3{e−µ(t031+t032)/2})

(tM) {eµt012} = {Φ}A1,23
− θ((0̄, 1̄)1)({Φ}−1{e−µt012/2}{Φ2,1,3}(A2,13

+ )−1θ((−1, 0̄)2X)), where

X = {(Φ2,1,3)−1}{e−µt012/2}{Φ}(B1,23
− )−1θ((0̄,−1)1)({Φ}−1{eµt12/2(Φ2,1,3)}(A2,13

+ Y ))

and
Y = θ((1̄, 0̄)2)({(Φ2,1,3)−1eµt12/2})

Proof. This fact is a consequence of Theorem 4.3.2. Indeed, any morphism from P̂aB
Γ

e``(k) to

an operad Q is determined completely by the images of the generators of P̂aB
Γ

e``(k) satisfying
the images in Q of relations (tN1), (tN2) and (tE), which, for the case Q = GPaCDΓ

e``(k), are
precisely the relations in the above theorem.

In Section 7.2 we will give an example of such mathematical object.

Definition 4.3.11. The (k-pro-unipotent version of the) twisted elliptic Grothendieck–Teichmüller
group is defined as the group

ĜT
Γ

e``(k) := Aut+

Mod(P̂aB(k))
(P̂aB

Γ

e``(k))Γ

of automorphisms of the P̂aB(k)-module P̂aB
Γ

e``(k) which are Γ-equivariant and which are the
identity on objects.

Definition 4.3.12. The graded twisted elliptic Grothendieck-Teichmüller group is the group

GRTΓ
e``(k) := Aut+

Mod(PaCD(k))(PaCDΓ
e``(k))Γ

of automorphisms the PaCD(k)-module PaCDΓ
e``(k) which are Γ-equivariant and which are

the identity on objects.

Theorem 4.3.13. The set EllΓ(C) is non empty.
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Proof. In Section 9 we will construct an element in this set.

Now, any automorphism (F,G) in GTΓ
e``(k) is defined as follows

• F (R1,2
0 ) = (R1,2

0 )λ,

• F (Φ1,2,3
0 ) = f(x12, x23) · Φ1,2,3

0 ,

• G(A0) = g+(X,Y, Pα;α ∈ Γ),

• G(B0) = g−(X,Y, Pα;α ∈ Γ).

where (λ, µ, g+, g−) ∈ k×× F̂2(k)× ̂̄PB
Γ

1,2(k)× ̂̄PB
Γ

1,2(k). The fact that (λ, f) ∈ ĜT(k) is clear

and g± ∈ ̂̄PB
Γ

1,2(k) satisfy the following relations:

(
f(σ2

1 , σ
2
2)g+(X,Y, Pα;α ∈ Γ)θ((1̄, 0̄)1) · (σ1σ2(σ1σ

2
2σ1)

λ−1
2 )
)(3M,0)

= 1, (btN1)(
f(σ2

1 , σ
2
2)g−(X,Y, Pα;α ∈ Γ)θ((0̄, 1̄)1) · (σ−1

1 σ−1
2 (σ1σ

2
2σ1)−

λ−1
2 )
)(0,3N)

= 1, (btN2)

u2 = g−θ((0̄, 1̄)1)(u−1g−1
+ θ((−̄1, 0̄)1)(u−1g−1

− θ((0̄, −̄1)1)((ug+θ((1̄, 0̄)1)u))), (btE)

as identities in ̂̄BΓ

1,3(k), where u = f(σ2
1 , σ

2
2)−1σλ1 f(σ2

1 , σ
2
2), g± = g±(X,Y, Pα;α ∈ Γ).

Let us define ĜT
Γ

e``(k) as the set of all (λ, µ, g+, g−) ∈ k× × F̂2(k) × ̂̄PB
Γ

1,2(k) × ̂̄PB
Γ

1,2(k)

satisfying relations (btN1), (btN2) and (btE).

The image of the categorical composition of ĜT
Γ

e``(k) and endows ĜT
Γ

e``(k) with a group
structure which can explicitely be described as follows.

For (λ, f, g±), (λ′, f ′, g′±) ∈ ĜT
Γ

e``(k), we set

(λ, f, g±)(λ′, f ′, g′±) := (λ′′, f ′′, g′′±)

where (λ′′, f ′′) is as in (2.6.11) and

g′′±(X,Y, Pα;α ∈ Γ) = g±(g′+(X,Y, Pα;α ∈ Γ), g′−(X,Y, Pα;α ∈ Γ), (Pα)λ;α ∈ Γ).

Proposition 4.3.14. There is a group isomorphism ĜT
Γ

e``(k) and ĜT
Γ

e``(k).

Proof. This is a consequence of Theorem 4.3.2. Indeed, from the presentation of P̂aB
Γ

e``

(induced by the presentation of PaBΓ
e`` via the morphism PaBΓ

e`` −→ P̂aB
Γ

e``) we know that

an automorphism F of P̂aB
Γ

e`` which is the identity on objects is completely determined by
the images of its generators satisfying relations (tN1), (tN2) and (tE), which are precisely the

defining relations of ĜT
Γ

e``(k).

Recall that the image of the action of ĜT(k) on Ass(k) under correspondences 2.6.8 and

2.6.12 yields an action of ĜT(k) on Ass(k), defined as in 2.6.8. For (λ, f, g+, g−) ∈ ĜT
Γ

ell(k)

and (µ,Φ, A+, A−) ∈ EllΓ(k), we set

(λ, f, g+, g−) ∗ (µ,Φ, A+, A−) := (µ′,Φ′, A′+, A
′
−)



146 CHAPTER 4. ASSOCIATORS AND GROTHENDIECK-TEICHMÜLLER GROUPS

where A′± := g±(A+, A−, (Pα)λ;α ∈ Γ). This is precisely the image of the action of ĜT
Γ

e``(k)

on EllΓ(k) under the above correspondence.

The image of the group law in GRTΓ
e``(k) is described as follows.

Define (GRTΓ
ell)1(k) as the set of all (g, u+, u−), such that g ∈ GRT1(k), u± ∈ ˆ̄tΓ1,2(k), satisfying

the following relations:

M−1∑
i=0

(θ((̄i, 0̄)123) ·
(
g1,2,3u1,23

+ θ((1̄, 0̄)1)(g1,2,3)−1 + g2,1,3u2,13
+ θ((1̄, 0̄)2)(g2,1,3)−1 + u3,12

+

)
= 0,

(tN1)
N−1∑
i=0

(θ((0̄, ī)123) ·
(
g1,2,3u1,23

− θ((0̄, 1̄)1)(g1,2,3)−1 + g2,1,3u2,13
− θ((0̄, 1̄)2)(g2,1,3)−1 + u3,12

−
)

= 0,

(tN2)
g1,2,3u1,23

+ θ((1̄, 0̄)1)(g1,2,3)−1u3,12
+ −u3,12

+ θ((1̄, 0̄)3) ·
(
g1,2,3u1,23

+ θ((1̄, 0̄)1)(g1,2,3)−1
)

= 0, (tL1)

g1,2,3u1,23
− θ((0̄, 1̄)1)(g1,2,3)−1u3,12

− −u3,12
− θ((0̄, 1̄)3) ·

(
g1,2,3u1,23

− θ((0̄, 1̄)1)(g1,2,3)−1
)

= 0, (tL2)

t012 =g1,2,3u1,23
+ θ((1̄, 0̄)1) ·

(
(g1,2,3)−1g2,1,3u2,13

− θ((0̄, 1̄)2)(g2,1,3)−1
)

(tE)

− g2,1,3u2,13
− θ((0̄, 1̄)2) ·

(
g2,1,3)−1g1,2,3u1,23

+ θ((1̄, 0̄)1)(g1,2,3)−1
)

(relations in ˆ̄tΓ1,3(k)). Set (g1, u
1
+, u

1
−) ∗ (g2, u

2
+, u

2
−) := (g, u+, u−), where

u±(x, y, tα;α ∈ Γ) := u1
±(u2

+(x, y, tα;α ∈ Γ), u2
−(x, y, tα;α ∈ Γ), tα;α ∈ Γ), (4.19)

where t̄Γ1,2(k) is viewed as the Lie algebra generated by x, y, tα, for α ∈ Γ, with relation
[x, y] =

∑
α∈Γ t

α.

The group k× acts on (GRTΓ
ell)1(k) by

u±(x, y, tα;α ∈ Γ) := u1
±(u2

+(x, y, tα;α ∈ Γ), u2
−(x, y, tα;α ∈ Γ), tα;α ∈ Γ), (4.20)

where

• c · g is as above,

• (c · u+)(x, y, tα;α ∈ Γ) := u+(x, c−1y, ctα;α ∈ Γ),

• (c · u−)(x, y, tα;α ∈ Γ) := cu−(x, c−1y, ctα;α ∈ Γ).

We then set GRTΓ
ell(k) := (GRTΓ

ell)1(k) o k×. The image in GRTΓ
ell(k) of the group law in

GRTΓ
e``(k) is exactly the group law defined by (4.19) and (4.20).

One can establish then the following torsor conjecture.

Conjecture 4.3.15. The triple (ĜT
Γ

e``(k),EllΓ(k),GRTΓ
e``(k)) is a torsor.

If the above conjecture is true, then a consequence is that there is torsor isomorphism

(ĜT
Γ

e``(k),EllΓ(k),GRTΓ
e``(k)) −→ (ĜT

Γ

e``(k),EllΓ(k),GRTΓ
e``(k)). (4.21)



Chapter 5

Operads and higher genus
associators

This chapter consists of the first part of a study devoted to the rational homotopy theory
of modules over (framed) E2-operads associated to genus g oriented surfaces. On the one
hand, we aim to study the characterization of the elliptic Grothendieck-Teichmüller group
as the group of homotopy automorphisms in the homotopy category of D2-modules of some
rationalization of the module D1,2 of little 2-disks on a torus. On the other hand, we aim
to study the characterization of higher genus Grothendieck-Teichmüller groups as groups of
homotopy automorphisms in the homotopy category of D2-modules of some rationalization of
the module Df

g,2 of framed little 2-disks on a compact orientable genus g topological surface Σg.

In this chapter we will concentrate on the higher genus story. After briefly recalling framed
Fulton-MacPherson compactifications and their associated operadic structures, we introduce
a full suboperad PaBf ⊂ π1(Df

2 ) of framed parenthesized braidings by restricting the object
sets of the groupoid so that B(PaBf )

∼−→ B(π1(Df
2 )). We then construct the corresponding

operad PaCDf of parenthesized framed chord diagrams, framed associators and framed
Grothendieck-Teichmüller groups in terms of PaBf and PaCDf .

We then turn to the genus g situation and we introduce a full submodule PaBf
g ⊂ π1(Df

g,2) of
genus g framed parenthesized braidings by restricting the object sets of the groupoid so that
B(PaBf

g )
∼−→ B(π1(Df

g,2)).

Next, we define the PaCDf -module PaCDf
g of genus g parenthesized framed chord diagrams.

Finally, we give operadic definitions of genus g associators and (graded) Grothendieck-Teichmüller
groups, extract from them explicit equations for this objects and conjecture the existence of
such an associator by means of the framed genus g universal KZB connection yet to be defined.

It should be interesting to relate the Lie algebra of our genus g graded Grothendieck-Teichmüller
group to the higher genus Kashiwara-Vergne Lie algebra krv(g,n+1) which is being studied in
the recent work [4].

147
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5.1 Operad structures on framed FM compactifications

Let n > 1 and consider the Fulton-MacPherson compactification FMk(n) of Conf(Rk, n).
These spaces assemble into an operad FMk := FM(Conf(Rk,−)), which is known to be weakly
equivalent to the little k-disks operad Dk. The interior of FMk(n) is the reduced configuration
space C(Rk, n).

Now, let M be a closed smooth manifold of dimension k. Consider the configuration space of
M

Conf(M,n) = {(x1, . . . , xn) ∈Mn;xi 6= xj if i 6= j}.

The spaces Conf(M,n) are weakly equivalent to their Fulton-MacPherson compactification
FMM (n) := FM(Conf(M,n)). When M is parallelizable, the spaces FMM (n) form a right
FMk-module FMM . Otherwise, we need to introduce the framed versions of all the above
geometric objects. This consists on seting a choice of trivialization of the tangent bundle of
M in order to specify in which direction we will insert the disks on M constructed by the
Fulton-MacPherson compactification.

LetM be a Riemannian closed oriented1 compact k-manifold and consider the bundle projection
πM : SO(M) → M , where SO(M) is the principal GLk-bundle of special orthogonal linear
frames on M . The framed configuration space Conff (M,n) of n distinct points in M is

Conff (M,n) := {(x, f1, . . . , fn) ∈ Conf(M,n)× SO(M)×n|fi ∈ π−1
M (xi)}.

This is the same to define Conff (M,n) as the pullback of the diagram

SO(M)×n

��
Conf(M,n) // M×n

so Conff (M,n) −→ Conf(M,n) is a principal SO(k)×n-bundle. IfM is parallelizable, Conff (M,n)

is isomorphic to Conf(M,n)×SO(k)×n. For instance, this is the case when M = Rk or M = T.
The symmetric group Sn acts on Conff (C, [n]) by relabelling the indexes of the marked points.
The map Conff (C, [n]) := Conff (C, n)/Sn −→ Conf(C, [n]) is a locally trivial bundle with
fiber SO(2)×n.

We have framed versions of the little k-disks spaces which are Sn-equivariant homotopy
equivalent to framed configuration spaces of Rk:

Df
k(n)

∼−→ Conff (Rk, n).

There is a Sn-equivariant homotopy equivalence similar to the one above in the case for
manifolds but with very restrictive assumptions (see [96] for more details).

Let G be a topological group and (O, {◦m,ni }m,n) be an operad in left G-spaces and suppose
that the partial operadic compositions ◦m,ni in O are G-equivariant. The semidirect-product

1In the case of non-oriented manifolds one can only consider the bundle projection O(M) →M .
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operad GnO is the topological operad defined by (GnO)(n) := Gn ×O(n) and with partial
operadic compositions denoted ◦̃m,ni and given, for g = (g1, . . . , gm), g′ = (g′1, . . . , g

′
n) and

1 6 i 6 m by

(g, x1)◦̃m,ni (g′, x2) := (g′′, x1 ◦m,ni (gi · x2)) ∈ Gn+m−1 ×O(n+m− 1),

where g′′ = (g1, . . . , gi−1, gig
′
1, . . . , gig

′
m, gi+1, . . . , gn). Consider the framed Fulton-MacPherson

compactified configuration spaces

FMf
k(n) := SO(k)× FMk(n).

The interior of FMf
k(n) is Conff (Rk, n). The SO(k)-action is compatible with the operad

structure of FMk(n). Thus, these spaces form an operad FMf
k := SO(k) n FMk called framed

Fulton-MacPherson operad, which turns out to be weakly equivalent to the framed little k-disks
operad. The partial composition morphisms can be pictured as follows:

◦23,2

2
α

β α+ β1

2
2

311

43

Summarizing the above results, we get

Df
k(n)

' //

��

Conff (Rk, n)

��

FMf
k(n)

'oo

��
Dk(n)

' // Conf(Rk, n) FMk(n)
'oo

where the horizontal arrows are Sn-equivariant homotopy equivalences and the vertical arrows
are SO(k)×n-principal bundles. This diagram does not enhance into an operad map.

Nevertheless, in [39], an operad morphism φ : FMk −→ Dk was constructed and it is easy to
verify that φ is ewuivariant for the action of SO(k) on these two operads and by construction,
the data of the framings are compatible with this map (since the rotation of a disk will preserve
that disk). Thus, we can construct a square

Df
k

��

FMf
k

'oo

��
Dk FMk

'oo

(5.1)
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where the horizontal arrows are weak equivalences of operads in topological spaces (see [39] for
details).

Now, if M is an oriented k-manifold, then the collection of its framed Fulton-MacPherson
compactifications forms a right FMf

k-module denoted FMf
M where each space FMf

M (n) is a
principal SO(k)×n-bundle over FMM (n). Then we also have

Df
M (n)

' //

��

Conff (M,n) FMf
M (n)

'oo

��
DM (n)

' // Conf(M,n) FMM (n)
'oo

(5.2)

where again the horizontal maps are Sn-equivariant homotopy equivalences. If M is paralleliz-
able, then the semi-direct product in the below spaces becomes an usual product and we get a
square

Df
M

��

FMf
M

'oo

��
DM FMM

'oo

(5.3)

If M is not parallelizable the first line of this square does not hold but we still have a weak
equivalence FMf

M
'−→ Df

M of modules over FMf
k
'−→ Df

k .

The case of genus g orientable surfaces

We now concentrate in the case k = 2 (i.e. compact oriented topological surfaces). Let g ≥ 0

and n > 0 be integers. For a compact topological oriented surface Σg of genus g without
boundary, we consider the space Conf(Σg, n) of configurations of n points in Σg. It is homotopy
equivalent to the space D2,g(n) of n little 2-disks with disjoint interiors on Σg

D2,g(n)
∼−→ Conf(Σg, n).

This map can be represented as follows (in the case g = 2)

× ×

×

The surfaces Σg are not parallelizable for g > 1 so we consider the framed versions of the above
spaces. Namely, the collection Df

2,g of spaces of framed little 2-disks on Σg has the structure of
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an operadic module over the framed little 2-disks operad Df
2 . We can represent the action of

Df
2 on Df

2,g as follows (in the case g = 2):

◦23,2

2
α

β α+ β1

2
2

311

43

In particular, if g = 1, as T is pararellizable so the space Df
2,1(n) is isomorphic to D2,1(n)×

SO(2)×n. Now let Σg be a genus g closed connected oriented surface with a smooth and
semi-algebraic manifold structure and consider its framed Fulton-MacPherson compactification
FMf

2,g(n). The space FMf
2,g(n) is a manifold with corners whose interior is Conff (Σg, n) and the

insertion of boundary components of FMf
2,g with respect to the direction of the frame endows

the collection FMf
2,g of these spaces with the structure of a FMf

2 -module. More explicitely,
FMf

2,g(n) is obtained from the pullback

SO(2)×n

��
FMΣg (n) // Σ×ng

where SO(2) −→ Σg is the frame bundle over Σg for some specified Riemannian metric.

5.2 Operads associated to framed configuration spaces (framed
associators)

5.2.1 Framed configuration spaces on C

The fundamental group of the unordered framed configuration space Conff (C, [n]) was studied in
[71] and is isomorphic to the framed braid group Bfn generated by elements σ1, σ2, . . . , σn−1, f1, f2, . . . , fn

together with relations

(B1) σiσi+1σi = σi+1σiσi+1 if i ∈ [n− 2],

(B2) (σi, σj) = 1 if |i− j| > 1,

(FB1) fifj = fjfi for all i, j,

(FB2) σifj = fσi(j)σi for all i, j.
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The space Conff (C, [n]) is an Eilenberg-Maclane space of type K(Bfn, 1)and the group Bfn
is a semidirect product Zn n Bn where the action of Bn on Zn is given by a(ri, ...., rn) =

(rσ(1), rσ(2), ..., rσ(n)). If fr11 , fr22 , · · · , frnn , α ∈ Bfn with α ∈ Bn then the ri’s are called framings.
The product in this notation is given by

(fr11 fr22 · · · frnn α)(fs11 fs22 · · · fsnn β) = f
r1+sα(1)

1 f
r2+sα(2)

2 · · · frn+sα(n)
n αβ

The fundamental group PBfn of Conff (C, n) at any basepoint is the direct product PBfn =

Zn × PBn. One can represent such braids as ribbon braids as we will see in the following
subsection.

5.2.2 The operad PaBf of framed parenthesized braidings

The boundary ∂ FMf
2 (n) = FMf

2 (n) − Conff (R2, n) of FMf
2 (n) is made of the following

irreducible components: for any decomposition n = n1 + · · ·+ nk there is a component

∂n1,··· ,nk FMf
2 (n) ∼=

k∏
i=1

FMf
2 (ni)× FMf

2 (n) .

The inclusion of boundary components provide FMf
2 with the structure of an operad FMf

2 in
topological spaces and we have inclusions inclusions of topological operads

Pa ⊂ Conff (R,−) ⊂ FMf
2 .

The operad in groupoids of framed parenthesized braidings is defined as

PaBf := π1(FMf
2 ,Pa).

Notable arrows in PaBf (1), PaBf (2) and PaBf (3). We have an arrowR1,2 ∈ HomPaBf (2)(12, 21)

and an arrow Φ1,2,3 ∈ HomPaBf (3)((12)3, 1(23)) which correspond to the very same paths as in
the unframed case. In particular, R1,2 can be represented as follows

There is also a braid F 1 ∈ EndPaBf (1)(1) corresponding to the framing. In PaBf (3) it can be
represented as follows
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This should be considered as a single ribbon braid being twisted 360 degrees and the blue
strand is the transport of a point lying in the surface of this ribbon braid.

Recall the definition of the operad CoB of coloured braids from [47, Subsection 5.2.8]. As
in the case of the operad PaB, the operad PaBf can be defined as the fake pullback of the
framed version CoBf of CoB and we have a presentation of PaBf in terms of generators
and relations. Namely, as an operad in groupoids having Pa as operad of objects, PaBf is
generated by F := F 1 ∈ PaBf (1), R := R1,2 ∈ PaBf (2) and Φ =: Φ1,2,3 ∈ PaBf (3) together
with relations (H1), (H2), (P) and the following relation:

(F) R1,2R2,1F 1F 2 = F 12 as arrows from (12) to (12) in PaBf (2).

The proof of this result can be found in [14, Lemma 7.4]. In particular, one can represent
relation (F) by means of the following picture:

= ◦ ◦

F 1 F 2 R12R21F 12

5.2.3 The non-symmetric operad PBf of framed braidings

Let us now introduce two non-symmetric operads that will be of use in Lemma 5.3.7.

The collection PBf := {PBfn}n≥1 can be endowed with the structure of a non-symmetric operad
given by partial compositions

◦i : PBfn×PBfm −→ PBfn+m−1 (5.4)

(b, b′) 7−→ b ◦i b′ (5.5)
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where b ◦i b′ is defined by replacing the i-labelled strand in b by the braid b′ made very thin.
Via the homotopy equivalence between framed little disks and framed configuration spaces we
presented in the last section, one checks that the above operadic composition for PBf is induced
by that on Df2 . In the same way, one can construct an non-symmetric operad in groupoids Bf

in the following way :

• The objects of Bf (n) are unnumbered maximal parenthesizations of lenght n. In particular,
this means that for every object p of Pa(n), there is a corresponding object [p] in Bf (n),
and [p] = [q] if p and q only differ by a permutation (but have the same underlying
parenthesization).

• Bf is freely generated by F := F 1 ∈ Bf (1), R := R1,2 ∈ Bf (2) and Φ := Φ1,2,3 ∈ Bf (3)

together with relations (H1), (H2), (P) and the following relation:

(F) R1,2R2,1F 1F 2 = F 12 as arrows from (••) to (••) in Bf (2).

• Bf is the image of PaBf via the forgetful map Op −→ NsOp sending an operad to a
non-symmetric operad.

• It follows that there are group morphisms Bfn −̃→AutBf (n)(p) −→ Sn, the left one being
an isomorphism.

For example, arrows in AutBf (3)((••)•) can be depicted as follows:

(•

(•

•)

•)

•

•

;

(•

(•

•)

•)

•

•

(5.6)

We let the reader depict the generators F ∈ Bf (1), R ∈ Bf (2) and Φ ∈ Bf (3) accordingly.

5.2.4 The operad PaCDf (k) of parenthesized framed chord diagrams

Let tfn(k) denote the graded Lie algebra over k generated by tij , 1 ≤ i, j ≤ n with relations

(FT1) tij = tji,

(FT2) [tij , tkl] = 0 if {i, j} ∩ {k, l} = ∅,
(FT3) [tij , tik + tjk] = 0 if {i, j} ∩ {k} = ∅.

This means we have a decomposition tfn(k) =
⊕n

i=1 ktii⊕ tn(k). In other words, this translates
into insertion-coproduct morphisms as for each map φ : {1, ...,m} −→ {1, ..., n}, there exists a
Lie algebra morphism tfn −→ tfm, defined by (tij)

φ :=
∑
i′∈φ−1(i),j′∈φ−1(j) ti′j′ .

Remark 5.2.1. The above definition coincides with that appearing in [8], indeed it is isomorphic
to the graded Lie algebra over k generated by tij, 1 ≤ i 6= j ≤ n and tk, 1 ≤ k ≤ n, with
relations

(T1,T2,T3) tij = tji; [tij , tkl] = 0 if #{i, j, k, l} = 4; [tij , tik + tjk] = 0 if #{i, j, k} = 3,
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(FT2’) [ti, tj ] = 0 for 1 ≤ i, j ≤ n,
(FT3’) [ti, tjk] = 0 for all i, j, k.

The collection of the framed Lie algebras tfn(k), for n ≥ 1 is provided with the structure of an
operad in (positively graded finite dimensional) Lie algebras over k, denoted tf (k) and given
by the following operadic partial compositions:

◦k : tfI (k)⊕ tfJ(k) −→ tfJtI−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J
tpj if k = i∑

p∈J
tip if j = k

In other words, under the correspondence of Remark 5.2.1, this is the same as the following
composition:

◦k : tfm(k)⊕ tfn(k) −→ tfn+m−1(k)

(0, tαβ) 7−→ tα+k−1β+k−1

(0, tα) 7−→ tα+k−1

(tij , 0) 7−→



ti+n−1j+n−1 if k < i < j
i+n−1∑
p=i

tpj+n−1 if k = i < j

tij+n−1 if i < k < j
j+n−1∑
p=j

tip if i < j = k

tij if i < j < k

(ti, 0) 7−→


ti+n−1 if k < i
i+n−1∑
p=i

tp if k = i

ti if i < k

for 1 ≤ i, j, k ≤ m with i < j and 1 ≤ α, β ≤ n. We can then construct the operad
CDf (k) := Û (̂tf (k)) in Cat(CoAlgk) called the operad of framed chord diagrams.

Remark 5.2.2. This denomination comes from the fact that morphisms in CDf (k)(n) can be
represented as linear combinations of diagrams of chords on n vertical strands, where the chord
diagram corresponding to tij can be represented as in the unframed case, the chord corresponding
to ti as

i n1

1 i n
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and the composition is given by vertical concatenation of diagrams. Partial compositions can
easily be understood as “cabling and removal operations” on strands (see [5, 47]). Relations
(T1,T2,T3) can be described as in the in the unframed case and the remaining relations defining
each tn(k) can be represented as follows:

ji

i j

=

ji

i j

(FT1)

ji

i j

=

ji

i j

;

j ki

i j k

=

j ki

i j k

(FT2)

Let ĈD
f
(n) be the I-adic completion of CDf (n) with respect to the augmentation ideal I.

Since we are in possession of operads Pa(k) and ĈD
f
(k) in Cat(CoAssk) and of an operad

morphism ω : Pa −→ Ob(ĈD
f
(k)), we are ready to define the operad

PaCDf (k) := ω?ĈD
f
(k)

in Cat(CoAssk) of parenthesized framed chord diagrams. We have

• Ob(PaCDf (k)) := Pa,

• MorPaCDf (k)(n)(p, q) := Mor
ĈD

f
(k)(n)

(pt, pt) = Û (̂tfn(k)).

Example 5.2.3 (Notable arrows in PaCDf (k)(1), PaCDf (k)(2) and PaCDf (k)(3)). We
have the following arrow P 1, in PaCDf (k)(1)

P 1 = t11·

1

1

as well as the following arrows in PaCDf (k)(2)

P 1,2 := t11·

1

1

2

2

H1,2 := t12·

1

1

2

2

=

1

1

2

2

X1,2 = 1·

1

2

2

1
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We also have the following arrow in PaCD(k)(3):

a1,2,3 = 1·

(1

1

2)

(2

3

3)

Remark 5.2.4. The elements a1,2,3, X1,2, H1,2 and Pi are generators of PaCD(k), satisfy
the pentagon and the two hexagons relations and the following relation:

(iF) P 1,2H1,2X1,2P 2,1(X1,2)−1H1,2 = P 12 as arrows from (12) to (12) in PaBf (2).

5.2.5 Framed associators

Definition 5.2.5. We define the set of framed k-associators to be the set

Assf (k) := Iso+
Op Grpdk

(P̂aB
f
(k), GPaCDf (k))

if isomorphisms between P̂aB
f
(k) and GPaCDf (k) which are the identity on objects.

An immediate consequence of [14, Lemma 7.4] is then

Proposition 5.2.6. There is a one-to-one correspondence between the set of framed k-
associators Assf (k) and the set Assf (k) of triples (λ, µ, ϕ) where (µ, ϕ) ∈ Ass(k) and λ ∈ k×

such that

(F) eλ(t1+t2+2t12) = eλ(t1+t2)+µt12 .

Corollary 5.2.7. By taking µ = 2λ, on can establish a bijection between the set of framed
associators and the set of associators.

Moreover, by [14, Lemma 7.7], the there is a group isomorphism

ĜT(k) ' ĜT
f
(k) := Aut+

Op Grpdk
(P̂aB

f
(k))

and the fact that tfn(k) =
⊕n

i=1 kti ⊕ tn(k) gives us a further isomorphism

GRT(k) ' GRTf (k) := Aut+
Op Grpdk

(PaCDf (k)).

Proposition 5.2.8. The set Assf (C) is non empty.

We will prove this statement in the following subsection.



158 CHAPTER 5. OPERADS AND HIGHER GENUS ASSOCIATORS

5.2.6 The framed universal KZ connection

Define the framed universal KZ connection on the trivial exp(̂tfn)-principal bundle over
Conff (C, n) as the connection given by the holomorphic 1-form

wf KZ
n :=

∑
16i6n

tii d log(λi) +
∑

16i<j6n

dzi − dzj
zi − zj

tij ∈ Ω1(Conff (C, n), tfn),

which takes its values in tfn and where λi ∈ C× is a fiber coordinate, for all 1 ≤ i ≤ n.

Theorem 5.2.9. The connection ∇f KZ
n := d−wf KZ

n is flat.

Proof. Let w1 :=
∑

16i6n
ti d log(λi) and w2 :=

∑
16i<j6n

dzi−dzj
zi−zj tij . We want to show that

[w1 + w2, w1 + w2] = 0. We have

[w1 + w2, w1 + w2] = [w1, w1] + [w2, w2] + [w1, w2] + [w2, w1]

= 2[w1, w2]

since [w1, w1] = 0 because the relation (FT1), [w2, w2] = 0 because of flatness of the unframed
KZ connection, and [w2, w1] + [w2, w1] = 2[w1, w2]. Next, because of relation (FT2), we have

[w1, w2] = [ti d log(λ),
dzi − dzj
zi − zj

tij ] +
∑

16i<j6n

[tj d log(λ),
dzi − dzj
zi − zj

tij ].

And finally, ∑
16i<j6n

[ti d log(λ),
dzi − dzj
zi − zj

tij ] +
∑

16i<j6n

[tj d log(λ),
dzi − dzj
zi − zj

tij ] = 0

In particular, by sending fk to tkk, we get morphism of splitting short exact sequences

1 // kn //

��

P̂B
f

n(k)

��

// P̂Bn(k)

��

// 1

1 // kn // exp(̂tfn(k)) // exp(̂tn(k)) // 1

(5.7)

showing that P̂B
f

n(k) −→ exp(̂tfn(k)) is a k-pro-unipotent group isomorphism. Similarly we get
an isomorphism

B̂
f

n(k) −→ exp(̂tfn(k)) oSn.

Proof of Proposition 5.2.8. Let x ∈ Conff (C, n) and let T f,KZ
x be the parallel transport mor-

phism associated to ωKZ
f,n. Then

T f,KZ
x (fi) = e2iπλi ∈ exp(̂tfn).
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5.3 Modules associated to framed configuration spaces (genus
g associators)

5.3.1 Configuration spaces of surfaces

Define the pure braid group with n strands in genus g as the fundamental group of Conf(Σg, n),
PBg,n := π1(Conf(Σg, n)). The corresponding braid group is then Bg,n = π1(Conf(Σg, [n])),
where Conf(Σg, [n]) = Conf(Σg, n)/Sn. Algebraically, according to [7], Bg,n is presented by
generators Xa, Ya, σi (1 ≤ a ≤ g, 1 ≤ i ≤ n− 1) and relations

(B1),(B2) σiσi+1σi = σi+1σiσi+1 if i ∈ [n− 2], (σi, σj) = 1 if |i− j| > 1,

(BG1) (Xa, σi) = (Ya, σi) = 1 if i > 1, 1 ≤ a ≤ g,
(BG2) (σ−1

1 Xaσ
−1
1 , Xa) = (σ−1

1 Yaσ
−1
1 , Ya) = 1 if 1 ≤ a ≤ g,

(BG3) (σ−1
1 Xaσ

−1
1 , Xb) = (σ−1

1 Xaσ
−1
1 , Yb) = (σ−1

1 Yaσ
−1
1 , Xb) = (σ−1

1 Yaσ
−1
1 , Yb) = 1 if a < b,

(BG4) (σ1(Xa)−1σ1, (Ya)−1) = σ2
1 if 1 ≤ a ≤ g,

(BG5)
∏

1≤a≤g(Xa, (Ya)−1) = σ1 · · ·σ2
n−1 · · ·σ1.

The morphism Bg,n −→ Sn is given by Xa, Ya 7→ 1, σi 7→ si := (i, i + 1). It is proved in [7]
that PBg,n is the kernel of this map and is generated by Xi

a, Y
i
a (1 ≤ i ≤ n, 1 ≤ a ≤ g), where

Zia = σ−1
i−1 · · ·σ−1

1 Zaσ
−1
1 · · ·σ−1

i−1 for Z any of the letters X,Y .

The geometric interpretation of the presentation of Bg,n for g ≥ 1 is constructed as follows2

• Generators : We represent Σg as a polygon L of 4g sides with the standard identification
of edges. We can consider braids as paths on L, which we draw with the usual “over and
under” information at the crossing points. and we represent the generators of Bg,n realized
as braids on L.

Pi Pi+1

a

αα
α

ββi
i

i

i

i

i

i
β

bi

a b σ
i i i

P
n

P
1 P

n
P

1

Notice that in the braid ai (respectively bi) the only non trivial string is the first one,
which goes through the the wall αi (the wall βi). Remark also that σ1 . . . , σn−1 are the
classical braid generators on the disk so relations (B1), (B2) hold.

2We borrow the drawings from [7].
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• Relations (BG1-BG3) : The fact that these relations hold is trivial and is explained
in [7].

• Relation (BG4) : Indeed, there is a homotopy between σ−1
1 arσ

−1
1 br and brσ−1

1 arσ1

represented in the following picture:

β
r

α
r

β
r

β
r

β
r

α
r

α
rα

r

���� �������� ��

• Alternative fundamental domain and relation (BG5) : Let sr and tr be the first
string of ar and br respectively, where 1 ≤ r ≤ 2g.

We can obtain a new fundamental domain, denoted L1 with vertex P1, by cutting L along
the paths s1, t1, . . . , sg, tg and by glueing the pieces along the edges of L as we can see in
the following picture, for g = 2:

P1 P1

P1

P1

P1

P1

P1

P1

P1

1
t

1
t

1
t

s
2

s
2

s
2

2
t

2
t

2
t

1
α

β
1

α
2

β
2

1
α

β
1

α
2

β
2

α

1
s s

s

1
1

α
2

β

β

1

2

1

On L1 it is clear that [a1, b
−1
1 ] · · · [ag, b−1

g ] is equivalent to the braid represented as follows

P1

P1

g

n
P1 P

t

t

s
1

1

This braid is equivalent to the braid σ1σ2 . . . σ
2
n−1 . . . σ2σ1 so (BG5) in PBg,n.
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5.3.2 Framed configuration spaces on surfaces

In this section we assume g > 1. In [8], the authors showed that the fundamental group PBfg,n
of Conff (Σg, n) can be exhibed as a non-splitting central extension

1 −→ Zn −→ PBfg,n
βn−→ PBg,n −→ 1 (5.8)

where βn is the morphism induced by the projection map Conff (Σg, n) −→ Conf(Σg, n) (i.e.
βn consists in forgetting the framing). Conff (Σg, n) is an Eilenberg-Maclane space of type
(PBfg,n, 1). This short exact sequence extends to the following non-split short exact sequence

1 −→ Zn −→ Bfg,n
β̂n−→ Bg,n −→ 1 , (5.9)

where β̂n consists in forgetting the framing. Conff (Σg, [n]) is an Eilenberg-Maclane space of
type (Bfg,n, 1).

The framed pure braid group PBfg,n is generated by Ai,j and fk where 1 ≤ i ≤ 2g+n−1, 2g+1 ≤
j ≤ 2g + n, i < j, 1 ≤ k ≤ n together with the following relations

(PR1) A−1
i,jAr,sAi,j = Ar,s if (i < j < r < s) or (r+ 1 < i < j < s) or (i = r+ 1 < j < s for even

r < 2g or r > 2g),

(PR2) A−1
i,jAj,sAi,j = Ai,sAj,sA

−1
i,s if (i < j < s) ;

(PR3) A−1
i,jAi,sAi,j = Ai,sAj,sAi,sA

−1
j,sA

−1
i,s if (i < j < s) ;

(PR4) A−1
i,jAr,sAi,j = Ai,sAj,sA

−1
i,sA

−1
j,sAr,sAj,sAi,sA

−1
j,sA

−1
i,s if (i+ 1 < r < j < s) or (i+ 1 = r <

j < s for odd r < 2g or r > 2g)

(ER1) A−1
r+1,jAr,sAr+1,j = Ar,sAr+1,sA

−1
j,sA

−1
r+1,s if r odd and r < 2g ;

(ER2) A−1
r−1,jAr,sAr−1,j = Ar−1,sAj,sA

−1
r−1,sAr,sAj,sAr−1,sA

−1
j,sA

−1
r−1,s if r even and r < 2g,

(C) the fk are central

(FTR) [A−1
2g,2g+k, A2g−1,2g+k] · · · [A−1

2,2g+k, A1,2g+k] =

A2g+1,2g+k · · ·A2g+k−1,2g+kA2g+k,2g+k+1 · · ·A2g+k,2g+n f
2(g−1)
k

where 1 ≤ k ≤ n, and where we set A2g+1,2g+1 = A2g+n,2g+n = 1.

The group Bfg,n is generated by A1, B1, . . . , Ag, Bg, σ1, . . . , σn−1, f1, . . . , fn together with the
following relations (B1), (B2), (FB1), (FB2) and

(FBG1) ciσj = σjci for all j ≥ 2, ci = Ai or Bi and i = 1, . . . , g

(FBG2) ciσ1ciσ1 = σ1ciσ1ci for ci = Ai or Bi and i = 1, . . . , g

(FBG3) Aiσ1Bi = σ1Biσ1Aiσ1 for i = 1, . . . , g

(FBG4) ciσ−1
1 cjσ1 = σ−1

1 cjσ1ci for ci = Ai or Bi, cj = Aj or Bj and 1 ≤ j < i ≤ g

(FBG5)
∏g
i=1[A−1

i , Bi] = σ1 · · ·σn−2σ
2
n−1σn−2 · · ·σ1f

2(g−1)
1
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5.3.3 The PaBf -module of parenthesized framed genus g braids

Consider the framed Fulton-MacPherson compactification FMf
2,g(n) of Conff (Σg, n).

The boundary ∂ FMf
2,g(n) = FMf

2,g(n) − Conff (Σg, n) is made of the following irreducible
components: for any decomposition n = n1 + · · ·+ nk there is a component

∂n1,··· ,nk FMf
2,g(n) ∼=

k∏
i=1

FMf
2 (ni)× FMf

2,g(n) .

The inclusion of boundary components provide FMf
2,g with the structure of a module over

the operad FMf
2 in topological spaces. Given a choice of an embedding S1 ↪→ Σg, we have

inclusions
Pa(n) ⊂ C

f
(S1, n) ⊂ FMf

2,g(n).

We then define
PaBf

g := π1(FMf
2,g,Pa) ,

which is a PaBf -module in groupoids.

Example 5.3.1. Structure of PaBf
g (1). As opposed to the unframed reduced genus 1 case,

we have non trivial arrows in arity 1. More precisely, we have 2g automorphisms, Ai and
Bi ∈ EndPaBfg (1)(1), for all 1 6 i 6 g, that can be depicted as follows:

1

1

Ai

1

1

Bi (5.10)

and correspond to the following paths in Σg. We fix the marked points in the first A-cycle, thus
A1 and B1 correspond to the paths:

P1 P1

P1

B1

A1
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All other Ai and Bi are depicted in the same way.

Example 5.3.2. Notable arrows in PaBf
g (2).

We have 2g automorphisms, A1,2
i and B1,2

i ∈ EndPaBfg (2)(12), for all 1 6 i 6 g, that can be
depicted as follows:

1

1

2

2

Ai

1

1

2

2

Bi (5.11)

and correspond to the following paths in Conff (Σg, 2) Again, we fix the marked points in the
first A-cycle, thus A1,2

1 correspond to the path:

A1
1,2

P2P1 P1
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Next, the map B1,2
1 corresponds to the path:

P1

P1

P2

P2P1

B1
1,2

P1

P1

All other A1,2
i and B1,2

i are depicted along the same representation as that for B1,2
1 .

Moreover, we also have arrows

1

1

2

2

Ai

1

1

2

2

Bi

We let the reader draw the corresponding paths in Conff (Σg, 2).

Remark 5.3.3. By doubling the only braid in Ai ∈ PaBf
g (1), which amounts to taking

◦1(Ai, id12) ∈ PaBf
g (2), we get an arrow A12

i depicted as follows:

1

1

2

2

Ai

It is then a fact that

A12
i (A1,2

i )−1 =

1

1

2

2

Ai ·


1

1

2

2

Ai


−1

=

1

1

2

2

Ai (5.12)
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This means that even if, contrary to the reduced genus 1 case, A1,2
i is not equal to

1

1

2

2

Ai

one can retrieve the latter arrow from the composite A12
i (A1,2

i )−1.

Definition 5.3.4. Let CoBf
g the CoBf -module in groupoids with S-module of objects S and

where, for n > 1, the morphisms of CoBf
g (n) consists of isotopy classes of genus g framed

braids (i.e. elements of the braid group Bfg,n) α together with a colouring bijection i 7→ αi

between the index set i ∈ {1, . . . , n} which leaves the last strand uncoloured and the strands
αi ∈ {α1, . . . , αn} of our braid α and the data of a special braid corresponding to the framing.

The following theorem can be undestood as a rephrasing of the MacLane-Joyal-Street coherence
theorem for framed genus g D2-modules.

Theorem 5.3.5. As a PaBf -module in groupoids having Pa as Pa-module of objects, PaBf
g

is isomorphic freely generated by A1,2
i and B1,2

i , for all 1 6 i 6 g, in PaBf
g (2), together with

relations

(Red) A1,∅
i := Ai, B

1,∅
i := Bi, A

∅,2
i := Id1, B∅,2i := Id1 in PaBf

g (1),

(D1) Φ1,2,3A1,23
i R1,23Φ2,3,1A2,31

i R2,31Φ3,1,2A3,12
i R3,12 = A

(12)3
i ,

(D2) Φ1,2,3B1,23
i (R23,1)−1Φ2,3,1B2,31

i (R31,2)−1Φ3,1,2B3,12
i (R12,3)−1 = B

(12)3
i ,

for all 1 ≤ i ≤ g, and the following relation:

(gE) R1,2R2,1(F 1)2(g−1) =
∏g
i=1

(
Φ1,2,3B1,23

i (Φ1,2,3)−1, (R2,1)−1Φ2,1,3(A2,13
i )−1(Φ2,1,3)−1(R1,2)−1

)
as arrows from (12)3 to (12)3 in PaBf

g (3).

Remark 5.3.6. An easy consequence of the above theorem is that PaBf
g identifies with the

fake pullback ω?CoBf
g of the CoBf -module CoBf

g along the forgetful functor ω : Pa −→ S,

Proof. Let Q be the PaBf -module with the above presentation. We first show that there
is a morphism of PaBf -modules Q −→ PaBf

g . We have already seen that there are 2g

automorphisms Ai, Bi of (1) in PaBf
g (1) (see Example 5.3.1) and 2g automorphisms A1,2

i , B1,2
i

of (12) in PaBf
g (2) (see Example 5.3.2). We have to prove that they indeed satisfy the relations

(D1), (D2) and (gE).

Relations (D1) and (D2) are satistfied: the first decagon relation (D1) can be depicted as
follows:
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(1

(1

2)

2)

3

3

A
(12)3
i

=

(1

(1

2)

2)

3

3

A12,3
i

Ai23, 1

A3,12
i

(D1)

It is satisfied in PaBf
g , expressing the fact that when all (here, three) points move along a

generating generating loop on Σg, this corresponds to the path in the framed configuration
space of points on Σg twisting the three points. The same is true with the second decagon
relation (D2).

Relation (gE) is satisfied: Relation (gE) is more difficult to draw so we sketch the way to think
of the right-hand-side. Align the points in a generating cycle of the genus g surface (this means
that they are in the boundary of the compactified framed configuration space). Then if a point
travels through a cycle, its corresponding framing will naturally start to spin as one can see in
the following picture, for g = 2

−π/2
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and for g = 4

π/8

−3π/4

If we consider a polygon with 4g sides corresponding to a genus g surface, then for each marked
point travelling through the generating cycles, the framing attached to that point will be
twisted by an angle of π− π

g . Next, one can interpret the path on the right hand side of (gE) as
the following path. As we already took care of the behaviour of the framing we will neglect this
information in the picture.

(
Φ1,2,3B1,23

1 (Φ1,2,3)−1, (R2,1)−1Φ2,1,3(A2,13
1 )−1(Φ2,1,3)−1(R1,2)−1

)
corresponds to the following picture

P1

P2

P3

P3P2 P1

One can see that, if i 6= j, then the paths corresponding to a Ai cycle and a Bj cycle do not
intersect.

Another possible way to interpret this goes as follows: if we suppose that the marked points
were chosen to be in the A1-cycle of Σg, the right hand side of (gE) can be drawn as follows:
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P1

P1

P1

P1P1

In conclusion, one can then easily see that if we take a point and make it travel around all the
generating cycles concerned in the right-hand-side of relation (gE), the corresponding framing
will make 2g× (g−1)

g = 2(g− 1) complete spins and the first point P1 will have done a complete
loop around the second point P2. This is exactly the left-hand-side of equation (gE).

Thus, by the universal property of Q, there is a morphism of PaBf -modules Q −→ PaBf
g ,

which is the identity on objects. To show that this map is in fact an isomorphism, it suffices to
show that it is an isomorphism at the level of automorphism groups of objects arity-wise, as
all groupoids are connected. Let n ≥ 0, and p be the object (· · · ((12)3) · · · · · · )n of Q(n) and
PaBf

g (n). We want to show that the induced morphism

AutQ(n)(p) −→ AutPaBfg (n)(p) = π1

(
Conf

f
(Σg, n), p

)
is an isomorphism.

On the one hand, as Conf
f
(Σg, n) is a manifold with corners, we are allowed to move the

basepoint p to a point preg which is included in the fundamental domain L1 described in
subsection 5.3.1. We then have an isomorphism of fundamental groups π1(Conf

f
(Σg, n), p) '

π1(Conff (Σg, n), preg).

On the other hand, one can construct a non-symetric module Q̃ in groupoids over Bf carrying
an action of the (algebraic version of the) framed braid group Bfg,n on Σg in the following sense:

• for each n ≥ 1, Q̃(n) is a groupoid with maximal parenthesizations of unnumbered elements
as objects.

• Q̃ is freely generated by A1,2
i := A•,•i and B1,2

i := B•,•i in Q̃(2), for all 1 6 i 6 g, satisfying
relations (Red), (D1), (D2) and (gE).
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• in Lemma 5.3.7 we show that there are group morphisms Bfg,n −̃→AutQ̃(n)(p) −→ Sn,
the left one being an isomorphism.

In the same way the collection {PBfg,n}n≥1 of pure genus g braids owns a non-symmetric
PBf -module structure denoted PBfg .

Moreover, one the forgetful map Op −→ NsOp between the category of operads and the
category of non-symmetric operads induces a map Q −→ Q̃. Then, one has by constuction of
Q̃ that AutQ(n)(p) is the kernel of the map AutQ̃(n)([p]) −→ Sn. One can actually show that
we have a commuting diagram

PBfg,n
' //

��

AutQ(n)(p) //

��

π1

(
Conf

f
(Σg, n), p

)
��

π1

(
Conff (Σg, n), preg

)
'oo

��

Bfg,n
' //

��

AutQ̃(n)([p])
//

��

π1

(
Conf

f
(Σg, n)/Sn, [p]

)
��

π1

(
Conff (Σg, n)/Sn, [preg]

)
'oo

��
Sn Sn Sn Sn

where all vertical sequences are short exact sequences. Thus, in order to show that the map
AutQ(n)(p) −→ π1

(
Conf

f
(Σg, n), p

)
is an isomorphism, we are left to show that

Bfg,n −→ π1

(
Conff (Σg, n)/Sn, [preg]

)
is indeed an isomorphism. But this map is nothing else than the map constructed in [8, Theorem
13], identifying the algebraic and topological versions of the framed braid group on Σg.

Lemma 5.3.7. Let Q̃ be the operadic Bf -module with unnumbered maximal paranthesizations
as objects and with generators A1,2

i := A•,•i and B1,2
i := B•,•i , for all 1 6 i 6 g, in Q̃(2)

satisfying relations (Red), (D1), (D2) and (gE).

Let p be the object in Q̃(n) given by right parenthesization p := (•(•(•(. . . ((••)) . . .). Then
there is a unique group isomorphism

φn : Bfg,n −→ AutQ̃(n)(p),

such that

• Ai 7→ A1,2...n
i , for all 1 6 i 6 g ;

• Bi 7→ B1,2...n
i , for all 1 6 i 6 g ;

• σi 7→ Ri,i+1 ; for all 1 6 i 6 n− 1 ;

• fi 7→ F i, for all 1 6 i 6 n ;

where A1,2...n ∈ AutQ̃(n)(p) is obtained from A1,2, F i is obtained from F 1 and Ri,i+1 ∈
AutQ̃(n)(p) is obtained from R1,2 by some finite sequences of arrows involving the associator
and the operadic module morphisms since the parenthesizations are unmarked.
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In particular, by applying a finite sequence of associators one can show that the above lemma
remains true for all possible choices of base points p ∈ Q̃(n).

Let us sketch the proof of this Lemma (a complete proof will be done un subsequent works).

Proof. For simplicity, we omit the associativity constraints. One can show by induction that
the image of Aki := σk−1A

k−1
i σk−1 is

R12...(k−1),kA
1,2...(n−1)
i Rk,12...(k−1)

therefore the image of A1
i · · ·Aki is A±

X⊗k,X⊗n−k
. We will thus reduce to the cases n=2,3 in the

rest of the proof.

φn is a well-defined group morphism: Let us first show that there is indeed such a group
morphism. First of all, the braid relations are preserved as there are morphisms from B3 to
both groups (the first one is classic, the second one is induced by the fact that Q̃ is a Bf -module.

Notice that, by removing the third braid in relation (D1), we obtain relation

A1,2
i R1,2A2,1

i R2,1 = A12
i

which can be depicted as follows:

1

1

2

2

A12 =

1

1

2

2

A1,2

A2,1

(D1bis)

Then, one shows that relations (FBG1-4) are satisfied by the same reasoning that [34, Proposition
1.3] in the following way: for each 1 6 i 6 g, take X+

1 := Ai and X−1 := (Bi)
−1. Then relations

(FBG1-3) are equivalent to

(σ±1
1 X±1 )2 = (X±1 σ

±1
1 )2, (X±1 , σi) = 1 for i = 2, . . . , n− 1, (X−1 , (X

+
2 )−1) = σ2

1 ,

and are thus preserved by φn. Relation (FBG4) is preserved by naturality in AutQ̃(n)(p).

Thus, we have a group morphism

φn is surjective: The fact that the map φn is surjective is a consequence of the fact that all the
defining relations in Q̃(n) come from the defining relations of Bfg,n and the oepradic module
partial compositions.
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φn is injective: Let us now show the injectivity of this map. Let Q̄ be the oeprad module
with same objects as Q̃ and; for every object p of Q̄(n), we define AutQ̄(n)(p) := Bfg,n. Next
we have a map Q̃ −→ Q̄ sending the generations A1,2

i to Ai and B
1,2
i to Bi in B

f
g,2. Indeed,

if we denote X+
1 := Ai and X−1 := (Bi)

−1, then we have relations (σ±1
2 σ±1

1 X±1 )3 = X±123,
(X−1 , (σ1X

+
1 σ1)−1) = σ2

1 and
∏g
i=1(Bi, (σ1Aiσ1)−1) = σ2

1f
2(g−1)
1 show that relations (Red),

(D1), (D2) and (gE) are preserved.

Then, as PaBf acts on both of these operadic modules we conclude that there is a map
AutQ̃(n)(p) −→ AutQ̄(n)(p). In order to prove the injectivity of φ, we are left to prove that the
composite

Bfg,n −→ AutQ̃(n)(p) −→ AutQ̄(n)(p)

is the identity morphism, which is true as, by construction of both maps.

This means that any fD2-module morphism φ : PaBf
g −→ P , is determined (up to isomorphism)

by Ai, Bi and the above three relations. As in the framed genus 0 situation, we have a PaBf (k)-
module in Cat(CoAssk) denoted PaBf

g (k) := ∆k(PaBf
g ). Now consider its associated inverse

system of (PaBf )(m)(k)-modules given, for all m ∈ N, by

(PaBf
g )(m)(k) := PaBf

g (k)/(Im(k) ·PaBf
g (k)).

By taking the inverse limit over m of these inverse system, we get a P̂aB
f
(k)-module in

Cat(CoAssk)

P̂aB
f

g (k) := lim
←−

((PaBf
g )(m)(k)).

5.3.4 The PaCD(k)-module of parenthesized genus g chord diagrams

Let us consider g > 0 and n ≥ 0 and define tg,n(k) as the k-Lie algebra with generators
xia, y

i
a, tij for i 6= j ∈ [n], 1 ≤ a ≤ g satisfying relations (T1), (T2), (T3) and

(G1,G2) [xia, x
j
b] = 0 and [yia, y

j
b ] = 0 if i 6= j

(G3) [xia, y
j
b ] = δabtij if i 6= j;

(G4) [xia + xja, tij ] = [xka, tij ] = 0 if {i, j} ∩ {k} = ∅;

(G5) [yia + yja, tij ] = [yka , tij ] = 0 if {i, j} ∩ {k} = ∅;

(G6)
g∑
a=1

[xia, y
i
a] +

∑
j:j 6=i tij = 0;

The Lie algebra tg,n(k) is equipped with a grading given by deg(xai ) = (1, 0), deg(yai ) = (0, 1).
The total degree defines a positive grading on tg,n(k); we denote by t̂g,n(k) the corresponding
completion. If k = C, we will denote tg,n(k) := tg,n.

Theorem 5.3.8. (Bezrukavnikov, Enriquez) There is a monodromy morphism PBg,n −→
exp(̂tg,n) inducing an isomorphism of Lie algebras Lie(PBg,n)C

∼−→ t̂g,n.
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The collection tg(k) := {tg,n(k)}n≥1 is provided by the structure of a tg(k)-module in Liek as
follows. The S-module tg(k) inherits the structure of a module over the operad t in Liek with
respect to the collection of maps given on the generators as follows:

◦k : tg,I(k)⊕ tJ(k) −→ tg,JtI−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J
tpj if k = i∑

p∈J
tip if j = k

(xai , 0) 7−→


xai if k 6= i∑

p∈J
xap if k = i

(yai , 0) 7−→


yai if k 6= i∑

p∈J
yap if k = i

Since we are in possession of operad modules Pa(k) and ĈDg(k) in Cat(CoAssk) and of an
operad module morphism f : Pa −→ Ob(ĈDg(k)), we are ready to define thePaCD(k)-module

PaCDg(k) := f?ĈDg(k)

in Cat(CoAssk) of parenthesized genus g chord diagrams. We have Ob(PaCDg(k)) := Pa

and MorPaCDg(k)(n)(p, q) := Mor
ĈDg(k)(n)

(pt, pt) = Û (̂tg,n(k)).

Example 5.3.9 (Notable arrows in PaCDg(k)(2)). We have the following arrows Xi, Yi in
PaCDg(k)(1)

Xi = x1
i ·

1

1

Yi = y1
i ·

1

1

and X1,2
i , Y 1,2

i in PaCDg(k)(2)

X1,2
i = x1

i ·

1

1

2

2

Y 1,2
i = y1

i ·

1

1

2

2

Remark 5.3.10. The elements X1,2
i , Y 1,2

i are generators of the PaCD(k)-module PaCDg(k)

and satisfy the following relations

(Red) X∅,2i = Y ∅,2i = 0, X1,∅
i := Xi, Y

1,∅
i := Yi,

(D1) a1,2,3X1,23
i X1,23a2,3,1X2,31

i X2,31a3,1,2X3,12
i X3,12 = X

(12)3
i ,

(D2) a1,2,3Y 1,23
i X1,23a2,3,1Y 2,31

i X2,31a3,1,2Y 3,12
i X3,12 = Y

(12)3
i ,

(gE) X1,2X2,1P
2(g−1)
1 =

(
a1,2,3Y 1,23

i (a1,2,3)−1, X2,1a2,1,3(X2,13
i )−1(a2,1,3)−1X1,2

)
.
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5.3.5 The PaCDf(k)-module of parenthesized genus g framed chord
diagrams

Let tfg,n(k) denote the graded Lie algebra over k generated by tij , 1 ≤ i, j ≤ n, xia, yia for
1 ≤ i ≤ n, 1 ≤ a ≤ g with relations (FT1), (FT2), (FT3), (G1), (G2), (G3) and the following
relation

(FG4) [xia + xja, tij ] = [xka, tij ] = 0 if {i, j} ∩ {k} = ∅, for 1 ≤ i ≤ n, 1 ≤ a ≤ g;

(FG5) [yia + yja, tij ] = [yka , tij ] = 0 if {i, j} ∩ {k} = ∅, for 1 ≤ i ≤ n, 1 ≤ a ≤ g ;

(FG6)
g∑
a=1

[xia, y
i
a] +

∑
j:j 6=i tij + 2(g − 1)tii = 0, for 1 ≤ i ≤ n, 1 ≤ a ≤ g;

The map PBfg,n −→ exp(̂tfg,n(k)) sends the fk to tkk and all other generators as in the unframed
case. It induces a morphism of short exact sequences

1 // kn //

��

P̂B
f

g,n(k)

��

// P̂Bg,n(k)

��

// 1

1 // kn // exp(̂tfg,n(k)) // exp(̂tg,n(k)) // 1

(5.13)

This shows that the map P̂B
f

g,n(k) −→ exp(̂tfg,n(k)) is a k-pro-unipotent group isomorphism.
Later on we will derive this result from the flatness of a connection defined over Conff (Σg, n).

The S-module tfg (k) := {tfg,n(k)}n≥1 inherits the structure of a module over the operad tf in
Liek with respect to the collection of maps given on the generators as follows:

◦k : tfg,I(k)⊕ tfJ(k) −→ tfg,JtI−{i}(k)

(0, tαβ) 7−→ tαβ

(tij , 0) 7−→


tij if k /∈ {i, j}∑

p∈J
tpj if k = i∑

p∈J
tip if j = k

(xai , 0) 7−→


xai if k 6= i∑

p∈J
xap if k = i

(yai , 0) 7−→


yai if k 6= i∑

p∈J
yap if k = i
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Let 1 ≤ i, j, k ≤ m with i < j, then

tfg(k)◦m,nk : tfg,n(k)⊕ tfm(k) −→ tfg,m−1+n(k)

(0, tαβ)) 7−→ tα+k−1β+k−1

(0, tα)) 7−→ tα+k−1

(xai , 0) 7−→


xai+n−1 if k < i∑i+n−1
p=i xap if i = k

xai if i < k

(yai , 0) 7−→


yai+n−1 if k < i∑i+n−1
p=i yap if i = k

yai if i < k

(tij , 0) 7−→



ti+n−1j+n−1 if k < i < j∑i+n−1
p=i tpj+n−1 if k = i < j

tij+n−1 if i < k < j∑j+n−1
p=j tip if i < j = k

tij if i < j < k

(ti, 0) 7−→


ti+n−1 if k < i
i+n−1∑
p=i

tp if k = i

ti if i < k

We can then construct the CDf (k)-module CDf
g (k) := Û (̂tfg (k)) of genus g framed chord

diagrams.

Let ĈD
f

g (n) be the I-adic completion ofCDf
g (n) with respect to the augmentation ideal I. Since

we are in possession of operad modules Pa(k) and ĈD
f

g (k) in Cat(CoAssk) and of an operad

module morphism ω : Pa −→ Ob(ĈD
f
(k)), we are ready to define the PaCDf (k)-module

PaCDf
g (k) := ω?ĈD

f

g (k)

in Cat(CoAssk) of parenthesized framed genus g chord diagrams. We have Ob(PaCDf
g (k)) :=

Pa and MorPaCDf
g (k)(n)(p, q) := Mor

ĈD
f

g (k)(n)
(pt, pt) = Û (̂tfg (k)).

Example 5.3.11 (Notable arrows in PaCDf
g (k)(1) and PaCDf

g (k)(2)). We have the following
arrows Xi, Yi in PaCDf

g (k)(1)

Xi = xi·

1

1

Yi = yi·

1

1

and X1,2
i , Y 1,2

i in PaCDf
g (k)(2)
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X1,2
i = xi·

1

1

2

2

Y 1,2
i = yi·

1

1

2

2

We leave the reader the care of drawing the chord diagrams corresponding to the relations
(FG4-6) accordingly.

5.3.6 Genus g associators

Definition 5.3.12. A genus g associator over k is couple (F,G) where F ∈ Assf (k) is

a k-associator and G is an isomorphism between the P̂aB
f
(k)-module P̂aB

f

g (k) and the
GPaCDf (k)-module GPaCDf

g (k) which is the identity on objects and which is compatible
with F . We denote its set by

Assg(k) := Iso+

(P̂aB
f
(k),GPaCDf (k))

(P̂aB
f

g (k), GPaCDf
g (k)).

Theorem 5.3.13. There is a one-to-one correspondence between elements of Assg(k) and
elements of the set Assg(k) consisting on tuples (µ,Φ, A1, . . . , Ag, B1, . . . , Bg) where (µ,Φ) ∈
Ass(k) and Ai, Bi ∈ exp(̂tfg,2), for i = 1, ..., g, such that, for 1 ≤ i ≤ g we have

α1,2,3
i α2,3,1

i α3,1,2
i = A

(12)3
i , where , αi = {Φ1,2,3}A1,23

i {eµ(t12+t13)/2}, (5.14)

β1,2,3
i β2,3,1

i β3,1,2
i = B

(12)3
i , where βi = {Φ1,2,3}B1,23

i {e−µ(t12+t13)/2}, (5.15)

{eµt12+2(g−1)µt1} =

g∏
i=1

(
{Φ}B1,23

i {Φ}−1, {e−µt12/2Φ2,1,3}(A2,13
i )−1{(Φ2,1,3)−1e−µt12/2}

)
.

(5.16)

Proof. Let (F,G) ∈ Assg(k). An automorphism F of PaBf corresponds uniquely to a couple
(µ,Φ) ∈ Ass(k) as, by setting µ = 2λ, one can neglect the term λ intervening in Assf (k).
An automorphism G of PaBf

g is uniquely given as follows. The generators A1,2
i and B1,2

i in
Aut

P̂aBg(k)(2)
(12) are sent via G to Ai+ and Ai− respectively, with A± ∈ exp(̂tg,2). The image

of relations (D1), (D2) and (gE) are precisely the relations (5.14, (5.15)) and (5.16) under this
correspondence.

Conjecture 5.3.14. The set of genus g C-associators Assfg (C) is not empty.

We will give some comments on this conjecture in the following subsection

5.3.7 Towards the genus g KZB associator

Let us recall the construction from [36] of the universal genus g KZB connection (defined over
the configuration spaces). Endow the surface Σg with a complex structure and denote C the
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resulting smooth closed complex curve. We have an isomorphism

π1(C, x)
∼−→ πg := 〈Aa, Ba, 1 ≤ a ≤ g|

g∏
a=1

(Aa, Ba) = 1〉.

and each path from x to y in C induces an isomorphism π1(C, x) −→ π1(C, y) We have

PBg,n = π1(Conf(C, n), x)

where x := (x1, . . . , xn) ∈ Conf(C, n).

Define the map ρ0 : PBg,n −→ exp(̂f⊕ng ) by means of the following composite

PBg,n = π1(Conf(C, n), x) −→ π1(Cn, x) =
∏
i∈[n]

π1(C, xi) −→ πng −→ Fng −→ exp(̂fg)
n,

where Fg is the free group with generators γa, 1 ≤ a ≤ g, πg −→ Fg is the composite

πg −→ πg/N −→ Fg

where πg −→ πg/N is the quotient morphism, where N is the normal subgroup generated by the
Aa, 1 ≤ a ≤ g and πg/N −→ Fg, B̄a 7→ γa is the isomorphism induced from the presentation
of πg/N , where Fg −→ exp(̂fg) is the assignment γa 7→ exp(xa).

According to [36], the principal G-bundle with flat connection on X = Cfn(C) corresponding
to ρ0 is then i∗(Pn), where i : X −→ Cn is the inclusion and

(Pn −→ Cn) = (P0
1 −→ C)n ×exp(̂fg)n exp(̂tg,n),

where (P0
1 −→ C) is the principal exp(̂fg)-bundle with flat connection corresponding to the

above morphism πg −→ Fg −→ exp(̂fg).

Denote the set of flat connections of degree 1 by

F1 = {α ∈ Ω1(Cn − (diagonals),Pn ×ad t̂g,n[1])|dα = α ∧ α = 0}

and denote its subset of holomorphic flat connections by

Fhol1 = {α ∈ H0(Cn,Ω1,0
Cn ⊗ (Pn ×ad t̂g,n[1])(∗Diag))|dα = α ∧ α = 0}

with Diag =
∑
i<j Diagij and Diagij ⊂ Cn is the diagonal corresponding to zi = zj . Then

Enriquez showed the following:

Theorem 5.3.15. There is an element αKZ ∈ Fhol1 given by

αKZBg,n =

n∑
i=1

αi, (5.17)

where αi ∈ H0(C,K
(i)
C ⊗ (Pn ×ad t̂g,n[1])(

∑
j:j 6=i ∆ij)) expands as αi ≡

∑
1≤a≤g ω

(i)
a yia modulo

⊕̂q≥2tg,n[1, q].
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As in [36], K(i)
C = O�i−1

C �KC �O
�n−i
C , ω(i)

a = 1⊗i−1 ⊗ ωa ⊗ 1⊗n−i, where (ωa)1≤i≤g are the
holomorphic differentials such that

∫
Aa
ωb = δab and Aa, Ba are the images of Aa, Ba under

πg −→ πabg ' H1(C,Z).

Recall the universal g-KZB connection over the configuration space Conf(Σg, n) is a particular
explicit element αKZ ∈ Fhol1 can be constructed as a sum

αKZB
g,n =

n∑
i=1

αi, (5.18)

where αi ∈ H0(C,K
(i)
C ⊗ (Pn ×ad t̂g,n[1])(

∑
j:j 6=i ∆ij)) expands as αi ≡

∑
1≤a≤g ω

(i)
a yia modulo

⊕̂q≥2tg,n[1, q].

Consider integers (g, n) in hyperbolic position (i.e. 2 − 2g − n < 0) and let S be a genus
g topological compact oriented surface, x1, ..., xn n marked points on it. Now let X be a
Riemann surface modeled on S with genus g and n marked points. As X is hyperbolic, the
Uniformisation Theorem says that X is isomorphic to a quotient h/Γ of the Poincaré half-plane
h by a discrete subgroup Γ of PSL(2,R). Fix τ ∈ h and consider a uniformization Σg of X.
This corresponds to a point κ in the moduli spaceMg,n. Such a point can be described by
3g + n− 3 parameters. Enriquez chowed that, under this uniformization, the one form αKZ

induces a flat connection
∇KZB
g,n,κ := d−αKZB

g,n,κ

over Conf(Σg,κ, n). Now, the fundamental group π1(Σ×g,κ, z0) of Σ×g,κ := Σg,κ− 0 is the nothing
but the free group F (x1, y1, x2, y2, ..., xg, yg) on 2g generators. Now choose a non-zero tangent
vector −→v 0 of Σg,κ at 0. Then, flatness of ∇KZBg,n,κ implies the existence of a Q-algebra map

T g,KZB
−−→v 0,

−→v 0
: Q[π1(Σ×g,τ ,−−→v 0,

−→v 0)] −→ Q〈〈x1, y1, x2, y2, ..., xg, yg〉〉

γ 7−→ T g,KZB
−−→v 0,

−→v 0
(γ) :=

∞∑
k=0

Reg

∫
γ

αKZB
g,n,κ

Definition 5.3.16. The non-framed genus g KZB associator is the tuple

eg(κ) := (A1(κ), B1(κ), . . . , Ag(κ), Bg(κ))

where

Ai(κ) := T g,KZB
−−→v 0,

−→v 0
(γai )

Bi(κ) := T g,KZB
−−→v 0,

−→v 0
(γbi )

where γai and γbi are the generating loops in πB1 (Σg,κ).

We do not know what kind of monodromy relations these associators may have. In particular,
if we want to relate them to our operadic definition of genus g associators we need to extend
the universal KZB connection to its framed version.

We then have
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Conjecture 5.3.17. There is a flat universal framed KZB connection ∇f KZB
g,n,κ defined on the

principal exp(̄tfg,n)-bundle over Conff (C, n) constructed as above such that

• its pullback of ∇f KZB
g,n,κ to the associated exp(̄tfg,n)-bundle over Cn is

∇f KZB
g,n,κ := d−αfKZBg,n

where
αfKZBg,n := αKZBg,n +

∑
16i6n

ti d log(λi);

• the 1-form αfKZBg,n is (C×)n-basic and the induced connection on the exp(̄tg,n)-bundle over
Conf(C, n) given above coincides with the universal genus g KZB connection in theorem
5.3.15.

Let κ represent a point in the moduli spaceMg,n. In the case g = 2 i.e. the hyperelliptic case,
we can write κ = (τ1, τ2). Let (2iπ,ΦfKZ) be the framed KZ associator coming from the framed
universal KZ connection defined above.

If this conjecture holds, then a consequence should be that (2iπ,Φf
KZ, e

f
g (κ)), where efg (κ) =

(Af1 (κ), Bf1 (κ), . . . , Afg (κ), Bfg (κ)) is the framed version of the above genus g KZB associator, is
a genus g framed C-associator.

5.3.8 Genus g Grothendieck-Teichmüller groups

Let us finish this chapter by quickly giving definitions of Grothendieck-Teichmüller groups in
genus g by means of the operadic point of view of these objects.

Definition 5.3.18. The (k-prounipotent version of the) genus g Grothendieck–Teichmüller
group is defined as the group

ĜT
f

g (k) := Aut+
(Mod(P̂aB

{
(k)))

(P̂aB
f

g (k))

of automorphisms of the P̂aB
f
(k)-module P̂aB

f

g (k) which are the identity on objects.

The presentation ofPaBf
g then implies the following: each automorphism F ofPaBf

g compatible
with an automorphism G of PaBf is uniquely defined by

• G(R1,2) = (R1,2)λ,

• G(Φ1,2,3) = Φ1,2,3 · f(x, y),

• F (A1,2
i ) = g+

i (x1, y1, . . . , xg, yg),

• F (B1,2
i ) = g−i (x1, y1, . . . , xg, yg),

where (λ, f) ∈ ĜT
f
(k) and gi± ∈ P̂Bg,2(k). These elements satisfy relations induced by (Red),

(D1), (D2) and (gE) which will be left to be studied in a subsequent work.
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Definition 5.3.19. The graded genus g Grothendieck-Teichmüller group is the group

GRTg(k) := Aut+(Mod(PaCD(k))(PaCDg(k))

of automorphisms of the PaCDf (k)-module PaCDf
g (k) which are the identity on objects.

Notice that there is an isomorphism

Aut+
(Mod(PaCDf (k))

(PaCDf
g (k)) ' Aut+

(Mod(GPaCDf (k))
(GPaCDf

g (k)).
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Chapter 6

On the universal twisted elliptic
KZB connection

6.1 Bundles with flat connections on Γ-twisted configura-
tion spaces

6.1.1 Principal bundles over Γ-twisted configuration spaces

Let Γ := Z/MZ × Z/NZ and let E be an elliptic curve over C and consider the connected
unramified Γ-covering p : Ẽ −→ E corresponding to the canonical surjective group morphism
ρ : π1(E) ∼= Z2 −→ Γ where π1(E) ∼= Z2 is the natural choice of such an isomorphism. Let us
then define the twisted configuration space

Conf(E,n,Γ) := {z = (z1, . . . , zn) ∈ Ẽn|p(zi) 6= p(zj) if i 6= j} ,

and C(E,n,Γ) := Conf(E,n,Γ)/Ẽ its reduced version. Notice that C(E,n,Γ) is just the inverse
image of C(E,n) under the surjection pn : Ẽn −→ En.

Let us fix a uniformization Ẽ ' Eτ , where τ ∈ H: Eτ = C/Λτ , with Λτ = Z + τZ. Then
E ' Eτ,Γ, where Eτ,Γ = C/Λτ,Γ and Λτ,Γ := (1/M)Z× (τ/N)Z. Therefore

Conf(E,n,Γ) ' (Cn −Diagτ,n,Γ)/Λnτ ,

where
Diagτ,n,Γ := {(z1, . . . , zn) ∈ Cn|zij := zi − zj ∈ Λτ,Γ for some i 6= j} .

We now define a principal exp(̂tΓ1,n)-bundle Pτ,n,Γ over Conf(E,n,Γ) as the quotient(
(Cn −Diagτ,n,Γ)× exp(̂tΓ1,n)

)
/Λnτ .

In other words, it is the restriction on Conf(E,n,Γ) of the bundle over Cn/Λnτ for which a
section on U ⊂ Cn/Λnτ is a regular map f : π−1(U) −→ exp(̂tΓ1,n) such that

183
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• f(z + δi) = f(z),

• f(z + τδi) = e−2πixif(z).

Here π : Cn −→ Cn/Λnτ is the canonical projection and δi is the ith vector of the canonical
basis of Cn.

Since the e−2πix̄i ’s in exp(̂̄tΓ1,n) pairwise commute and their product is 1, then the image
of Pτ,n,Γ under the natural morphism exp(̂tΓ1,n) −→ exp(̂̄tΓ1,n) is the pull-back of a principal
exp(̂̄tΓ1,n)-bundle P̄τ,n,Γ over C(E,n,Γ).

6.1.2 Variations

The first variation we are interested in concerns unordered configuration spaces.

The symmetric group Sn acts freely by automorphisms of Conf(E,n,Γ) by σ ∗ (z1, . . . , zn) :=

(zσ−1(1), . . . , zσ−1(n)). This descends to a free action of Sn on C(E,n,Γ). We then defined the
unordered twisted configuration spaces

Conf(E, [n],Γ) := Conf(E,n,Γ)/Sn and C(E, [n],Γ) := C(E,n,Γ)/Sn .

The symmetric group Sn also obviously acts on the Lie algebra tΓ1,n. One can then define,
keeping the notation of the previous paragraph, a principal exp(̂tΓ1,n) oSn-bundle Pτ,[n],Γ over
Conf(E, [n],Γ): it is the restriction on Conf(E, [n],Γ) of the bundle over Cn/Λnτ oSn for which
a section on U ⊂ Cn/Λnτ oSn is a regular map f : π−1(U) −→ exp(̂tΓ1,n) oSn such that

• f(z + δi) = f(z),

• f(z + τδi) = e−2πixif(z),

• f(σ ∗ z) = σf(z).

In more compact form:

Pτ,[n],Γ =
(
(Cn −Diagτ,n,Γ)× exp(̂tΓ1,n) oSn

)
/(Λnτ oSn) .

Remark 6.1.1. As before, Pτ,[n],Γ descends to a principal exp(̂̄tΓ1,n) oSn-bundle P̄τ,[n],Γ over
the reduced unordered twisted configuration space C(E, [n],Γ).

The second variation concerns ordinary configuration spaces of the base E = Eτ,Γ of the
covering map Eτ −→ Eτ,Γ.

Recall from §4.3.3 that the group Γn acts on t̂Γ1,n via θ. Hence one has a principal exp(̂tΓ1,n)oΓn-
bundle

P(τ,Γ),n :=
(
(Cn −Diagτ,n,Γ)× exp(̂tΓ1,n) o Γn

)
/Λnτ,Γ

over Conf(E,n) ' Cn−Diagτ,n,Γ/Λ
n
τ,Γ. Here the action of Λnτ on t̂Γ1,n is given by the morphism

Λτ −→ Γ , a+ bτ 7→ (ā, b̄) .

Remark 6.1.2. In a similar way as before, the above bundle obviously descends to a principal
exp(̂̄tΓ1,n) o (Γn/Γ)-bundle P̄(τ,Γ),n over the reduced ordinary configuration space C(E,n).
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In concrete terms, a section over U ⊂ Cn/Λτ,Γ of P(τ,Γ),n is a regular map f : π−1(U) −→
exp(̂tΓ1,n) o Γn such that

• f(z + δi/M) = (1̄, 0̄)if(z),

• f(z + τδi/N) = (0̄, 1̄)ie
−2πixi
N f(z).

Remark 6.1.3. We leave to the reader the task of combining the two variations.

6.1.3 Flat connections on Pτ,n,Γ and its variants

A flat connection ∇τ,n,Γ on Pτ,n,Γ is the same as an equivariant flat connection on the trivial
exp(̂tΓ1,n)-bundle over Cn −Diagτ,n,Γ, i.e., a connection of the form

∇τ,n,Γ := d−
n∑
i=1

Ki(z|τ)dzi ,

where Ki(−|τ) : Cn −→ t̂Γ1,n are meromorphic with only poles at Diagτ,n,Γ, and such that for
any i, j:

(a) Ki(z + δj |τ) = Ki(z|τ),

(b) Ki(z + τδj |τ) = e−2πiad(xj)Ki(z|τ),

(c) [∂i −Ki(z|τ), ∂j −Kj(z|τ)] = 0.

Moreover, the image of ∇τ,n,Γ under t̂Γ1,n −→ ˆ̄tΓ1,n is the pull-back of a (necessarily flat)
connection ∇̄τ,n,Γ on P̄τ,n,Γ if and only if:

(d) K̄i(z|τ) = K̄i(z + u
∑
i δi|τ) for any u ∈ C and

∑
i K̄i(z|τ) = 0.

Similarly, the image of ∇τ,n,Γ under t̂Γ1,n −→ t̂Γ1,n o Γn is the pull-back of a (necessarily flat)
connection ∇(τ,Γ),n on P(τ,Γ),n if and only if:

(e) Ki(z +
δj
M |τ) = θ((1̄, 0̄)j)Ki(z|τ),

(f) Ki(z +
τδj
N |τ) = θ((0̄, 1̄)j)e

−2πi
N ad(xj)Ki(z|τ),

Remark 6.1.4. Observe that (e) implies (a), and that (f) implies (b).

Finally, the image of ∇τ,n,Γ under t̂Γ1,n −→ t̂Γ1,n o Sn is the pull-back of a (necessarily flat)
connection ∇τ,[n],Γ on P̄τ,[n],Γ if and only if:

(g) Ki((ij) ∗ z) = (ij) ·Ki(z).

6.1.4 Constructing the connection

We now construct a connection satisfying properties (d) to (g). Let us take the same conventions
for theta functions as in [24]. Observe that for any α̃ = (a0, a) ∈ Λτ,Γ, the term e−2πiax(θ(z −
α̃) + x)/ (θ(z − α̃)θ(x)) only depends on the class α = (ā0, ā) ∈ Γ of α̃ mod Λτ . The we set

kα(x, z|τ) := e−2πiax θ(z − α̃+ x|τ)

θ(z − α̃|τ)θ(x|τ)
− 1

x
= e−2πiaxk(x, z − α̃|τ) +

e−2πiax − 1

x
,
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where k(x, z|τ) := θ(x+z)
θ(x)θ(z) − 1

x (as in [24]), and

Kij(z|τ) :=
∑
α∈Γ

kα(adxi, z|τ)(tαij) , Ki(z|τ) := −yi +
∑
j:j 6=i

Kij(zij |τ) .

In the rest of the section we fix τ ∈ H and drop it from the notation. Recall from [24] that
k(x, z ± 1) = k(x, z) and

k(x, z ± τ) = e∓2πixk(x, z) +
e∓2πix − 1

x
.

Proposition 6.1.5. The Kij(z)’s have the following equivariance properties:

Kij(z + 1/M) =θ((1̄, 0̄)i)(Kij(z)), (6.1)

Kij(z − τ/N) =e−
2πi
N ad(xi)θ((0̄, −̄1)i)(Kij(z)) + θ((0̄, −̄1)i)(

∑
α∈Γ

e−2πiadxi − 1

adxi
(tαij)). (6.2)

Proof. The first equation comes from a straightforward verification. Let us show the second
relation. On the one hand, we have

Kij

(
z − τ

N

)
=

∑
α∈Γ

kα

(
ad(xi), z −

τ

N

)
(tαij)

=

(∑
α∈Γ

e
−2iπa
N ad(xi)k

(
ad(xi), z −

τ

N
− α̃

)
+
e
−2iπa
N ad(xi) − 1

ad(xi)

)
(tαij)

=

(∑
α∈Γ

e
−2iπ(a−1)

N ad(xi)k(ad(xi), z − α̃) +
e
−2iπ(a−1)

N ad(xi) − 1

ad(xi)

)
(t
α−(0,1̄)
ij )

= θ(0,−1)

(∑
α∈Γ

e
−2iπ(a−1)

N ad(xi)k(ad(xi), z − α̃) +
e
−2iπ(a−1)

N ad(xi) − 1

ad(xi)

)
(tαij)

On the other hand,

e
−2iπ
N ad(xj)Kij(z) = e

−2iπ
N ad(xj)

(∑
α∈Γ

kα(ad(xi), z)

)
(tαij)

= e
2iπ
N ad(xi)

(∑
α∈Γ

e
−2iπa
N ad(xi)k(ad(xi), z − α̃) +

e
−2iπa
N ad(xi) − 1

ad(xi)

)
(tαij)

=

(∑
α∈Γ

e
−2iπ(a−1)

N ad(xi)k(ad(xi), z − α̃) +
e
−2iπ(a−1)

N ad(xi) − e 2iπ
N ad(xi)

ad(xi)

)
(tαij)

so

∑
α∈Γ

e
−2iπ(a−1)

N ad(xi)k(ad(xi), z − α̃) = e
−2iπ
N ad(xj)Kij(z)−

∑
α∈Γ

e
−2iπ(a−1)

N ad(xi) − e 2iπ
N ad(xi)

ad(xi)
(tαij)
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By putting these two equations together we finally get

Kij

(
z − τ

N

)
= θ(0,−1)e

−2iπ
N ad(xj)KΓ

ij(z)

+
∑
α∈Γ

−e−2iπ(a−1)
N ad(xi) + e

2iπ
N ad(xi) + e

−2iπ(a−1)
N ad(xi) − 1

ad(xi)
(tαij)

= θ(0,−1)e
−2iπ
N ad(xj)Kij(z) + θ(0,−1)

(∑
α∈Γ

e
2iπ
N ad(xi) − 1

ad(xi)
(tαij)

)
.

Now recall that e
2iπ
N

ad(xi)−1
ad(xi)

= 1−e
−2iπ
N

ad(xj)

ad(xj)
and 1−e

−2iπ
N

ad(xj)

ad(xj)
(tij) =

(
1 − e−2iπ

N ad(xj)
)

(yi).
We thus have

Ki

(
z+

τ

N
δj

)
= −yi +

∑
j′ 6=i,j

Kij′(zij′) +Kij

(
zij −

τ

N

)
and therefore we get the announced relation

Ki

(
z +

τ

N
δj

)
= θ((0, 1̄)j)e

−2iπ
N ad(xj)Ki(z).

Consequently the Ki(z)’s satisfy conditions (e) and (f) above (and thus also (a) and (b)).

Moreover, the Ki(z)’s also satisfy conditions (d). Indeed, the first part of (d) is immediate and
kα(x, z) + k−α(−x,−z) = 0, therefore Kij(z) +Kji(−z) = 0, and thus

∑
iKi(z) = −∑i yi.

Finally, from their very definition, the Ki(z)’s also satisfy condition (g).

In the next paragraph we show that the flatness condition (c) is satisfied.

6.1.5 Flatness of the connection

Proposition 6.1.6. [∂i −Ki(z), ∂j −Kj(z)] = 0, i.e., condition (c) is satisfied.

Proof. First we have

∂i(Kj(z))− ∂j(Ki(z)) = ∂iKji(zji)− ∂jKij(zij) = ∂i(Kij(zij) +Kji(zji)) = 0

since Kij(z) +Kji(−z) = 0. Therefore we have to prove that [Ki(z),Kj(z)] = 0. As in [24] it
follows from the universal classical dynamical Yang-Baxter equation:

− [yi,Kjk] + [Kji,Kki] + c.p.(i, j, k) = 0 , (CDYBE)

which we now prove (here Kij := Kij(zij)). For any f(x) ∈ C[[x]] we have

[yk, f(adxi)(t
α
ij)] =

∑
β∈Γ

f(adxi)− f(−adxj)

adxi + adxj
[−tβki, tαij ],

[yi, f(adxj)(t
α
jk)] =

∑
β∈Γ

f(adxj)− f(adxi + adxj)

−adxi
[−tβij , tαjk],
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[yj , f(adxk)(tαki)] =
∑
β∈Γ

f(−adxi − adxj)− f(−adxi)

−adxj
[−tβjk, tαki].

It follows that the l.h.s. of (CDYBE) is now∑
α,β∈Γ

(
kα(−adxj , zij)kβ(−adxk, zik)− kα(adxi, zij)kβ−α(−adxk, zjk)

+kβ(adxi, zik)kβ−α(adxj , zjk) +
kβ−α(adxj , zjk)− kβ−α(adxi + adxj , zjk)

adxi

+
kβ(adxi, zik)− kβ(adxi + adxj , zik)

adxj
− kα(adxi, zij)− kα(−adxj , zij)

adxi + adxj

)
[tαij , t

β
ik] ,

and thus (CDYBE) follows from the identity

kα(−v, z)kβ(u+ v, z′)− kα(u, z)kβ−α(u+ v, z′ − z) + kβ(u, z′)kβ−α(v, z′ − z)

+
kβ−α(v, z′ − z)− kβ−α(u+ v, z′ − z)

u
+
kβ(u, z′)− kβ(u+ v, z′)

v

−kα(u, z)− kα(−v, z)
u+ v

= 0 .

This last identity can be written as(
kα(−v, z)− 1

v

)(
kβ(u+ v, z′) +

1

u+ v

)
−
(
kα(u, z) +

1

u

)(
kβ−α(u+ v, z′ − z) +

1

u+ v

)
+

(
kβ(u, z′) +

1

u

)(
kβ−α(v, z′ − z) +

1

v

)
= 0 ,(6.3)

which (taking into account that kα(x, z) + (1/x) = e−2πiax (k(x, z − α̃) + (1/x))) is a conse-
quence of equation (3) of [24].

We have therefore proved:

Theorem 6.1.7. ∇τ,n,Γ is a flat connection on Pτ,n,Γ, and its image under t̂Γ1,n −→ ˆ̄tΓ1,n is the
pull-back of a flat connection ∇̄τ,n,Γ on P̄τ,n,Γ.

6.2 Lie algebras of derivations and associated groups

6.2.1 The Lie algebras d̃Γ
0 and d̃Γ

Let fΓ be the free Lie algebra with generators x, tα (α ∈ Γ). Let p, q > 0. We define d̃p,q0 to be
the subspace of fΓ ⊕ (fΓ)⊕|Γ| consisting of elements

(D,C), where C = (Cα)α∈γ ,

such that degx(D) + degt(D) = degx(Cα) + degt(Cα) = p and degt(D)− 1 = degt(Cα) = q for
every α ∈ Γ, and that satisfy the following of linear equations:

(i) Cα(x, tβ) = C−α(−x, t−β) in fΓ,

(ii) [x,D(x, tβ)] +
∑
α[tα, Cα(x, tβ)] = 0 in fΓ,
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(iii) [D(x1, t
β
13), y2] + c.p.(1, 2, 3) = 0 in tΓ1,3,

(iv) [D(x1, t
β
12) +D(x1, t

β
13)− [Cα(x2, t

β
23), y1], tα23] = 0 in tΓ1,3,

(v) [Cα(x1, t
γ
12), tα+β

13 + tβ23] + [tα+β
13 , Cα+β(x1, t

γ
13)] + [tβ23, Cβ(x2, t

γ
23)] commutes with tα12 in

tΓ1,3.

Remark that (i) and (ii) imply another relation

(vi) D(x, tβ) = −D(−x, t−β) ,

which is very useful for computations. Then d̃Γ
0 := ⊕p,q(d̃Γ

0 )p,q.

We then define a Lie bracket 〈, 〉 on fΓ ⊕ (fΓ)⊕|Γ| as follows:

〈(D,C), (D′, C ′)〉 := (δC(D′)− δC′(D), [C,C ′] + δC(C ′)− δC′(C)) ,

where δC ∈ Der(fΓ) is the derivation

• x 7→ 0, tα 7→ [tα, Cα],

• δC acts on (fΓ)⊕|Γ| componentwise on a direct sum : δC(C ′)α = δC(C ′α),

• the bracket is understood componentwise as well: [C,C ′]α = [Cα, C
′
α].

We let the reader check that d̃Γ
0 is stable under 〈, 〉, and becomes a bigraded Lie algebra1.

We now define d̃Γ as the quotient of the free product d̃Γ
0 ∗ sl2 by the relations [ẽ, (D,C)] = 0,

[h̃, (D,C)] = (p− q)(D,C), and (adp f̃)(D,C) = 0 if (D,C) ∈ d̃Γ
0 is homogeneous of bidegree

(p, q). Here

ẽ =

(
0 1

0 0

)
, h̃ =

(
1 0

0 −1

)
and f̃ =

(
0 0

1 0

)
form the standard basis of sl2. If we respectively give degree (1,−1), (0, 0) and (−1, 1) to ẽ, h̃
and f̃ then d̃Γ becomes Z2-graded.

We then define d̃Γ
+ := ker(d̃Γ −→ sl2), which is (Z>0)2-graded. One observes that it is positively

graded and finite dimensional in each degree. Thus, it is a direct sum of finite dimensional
sl2-modules.

6.2.2 The Lie algebras dΓ
0 and dΓ

We write dΓ
0 for the free bigraded Lie algebra generated by δs,γ ’s (s ≥ 0, γ ∈ Γ) in degree

(s+ 1, s) with relations
δs,γ = (−1)sδs,−γ ,

for all s ≥ 0 and γ ∈ Γ.

We then define dΓ as the quotient of the free product dΓ
0 ∗ sl2 by the relations [ẽ, δs,γ ] = 0,

[h̃, δs,γ ] = sδs,γ and ads+1(f̃)(δs,γ) = 0; and dΓ
+ as the kernel of dΓ −→ sl2. As above, we have

dΓ = dΓ
+ o sl2, and dΓ

+ is positively graded (actually (Z>0)2-graded).

1The proof is straightforward but quite long. We do not give it since we do use another simpler Lie algebra below.
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We now give examples of elements in d̃Γ
0 that are of some use below. For any s ∈ N and γ ∈ Γ,

we set
Ds,γ :=

∑
p+q=s−1

∑
β∈Γ

[(adx)ptβ−γ , (−adx)qtβ ]

and
(Cs,γ)α := (adx)stα−γ + (−adx)stα+γ .

Observe that (Ds,γ , Cs,γ) = (−1)s(Ds,−γ , Cs,−γ).

The following result tells us that δs,γ 7→ (Ds,γ , Cs,γ) defines a bigraded Lie algebra morphism
dΓ

0 −→ d̃Γ
0 , that obviously extends to dΓ −→ d̃Γ.

Proposition 6.2.1. (Ds,γ , Cs,γ) ∈ (d̃Γ
0 )s+1,1.

Proof. First observe that relations (i) and (vi) are obviously satisfied.

To prove (ii) it suffices to notice that in the free Lie algebra with three generators x, t1, t2 we
have

[t1, (adx)st2] + [t2, (− adx)st1] =
∑

p+q=s−1

[x, [(− adx)qt1, (adx)pt2]] .

Let us prove (iii). In tΓ1,n we compute for #{i, j, k} = 3,

[yk, (adxi)
ptαij ] = −

∑
k+l=p−1

∑
β

(adxi)
k[tβik, (adxi)

ltαij ]

=
∑

k+l=p−1

∑
β

(adxi)
k(− adxj)

l[tβik, t
α−β
kj ] =

∑
k+l=p−1

∑
β

[(adxi)
ktβik, (− adxj)

ltα−βkj ] .

Therefore, in tΓ1,3, we have

[y1, D(x2, t
β
23)] =

∑
k+l+m=s−2

∑
α,β

[[(adx2)ktβ21, (− adx3)ltα−β−γ13 ], (− adx2)mtα23]

+
∑

k+l+m=s−2

∑
α,β

(−1)l+m+1[(adx2)ktα−γ23 , [(adx2)ltβ21, (− adx3)mtα−β13 ]] .

Then [y1, D(x2, t
β
23)] + c.p.(1, 2, 3) = 0 follows from the Jacobi identity.

Let us prove (iv). On the one hand we have

[D(x1, t
β
12) +D(x1, t

β
13), tα23] =

=
∑

p+q=s−1

∑
β∈Γ

[[(adx1)ptβ−γ12 , (−adx1)qtβ12] + [(adx1)ptβ−γ13 , (−adx1)qtβ13], tα23]

= −
∑

p+q=s−1

∑
β∈Γ

(
[(adx1)p[tα+β−γ

13 , tα23], (−adx1)qtβ12] + [(adx1)ptβ−γ12 , (−adx1)q[tα+β
13 , tα23]]

+[(adx1)p[tβ−γ12 , tα23], (−adx1)qtα+β
13 ] + [(adx1)ptα+β−γ

13 , (−adx1)q[tβ12, t
α
23]]
)

= [tα23,
∑

p+q=s−1

∑
β∈Γ

(adx1)p[tα+β−γ
13 , (−adx1)qtβ12] + (adx1)p[tβ12, (−adx1)qtα+β+γ

13 ]]
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= [tα23,
∑

p+q=s−1

∑
β∈Γ

(adx2)p(−adx3)q[tα+β−γ
13 + (−1)stα+β+γ

13 , tβ12]] .

On the other hand, we have

[Cα(x2, t
β
23), y1] = [(adx2)stα−γ23 + (−adx2)stα+γ

23 , y1]

= −
∑

p+q=s−1

∑
β∈Γ

(adx2)p(− adx3)q[tβ12, t
α+β−γ
31 + (−1)stα+β+γ

31 ] .

Therefore (iv) is satisfied.

Let us prove (v). We have

[Cα(x1, t
γ
12), tα+β

13 + tβ23] = [(adx1)stα−γ12 + (− adx1)stα+γ
12 , tα+β

13 + tβ23]

= (adx2)s[tα+γ
12 + (−1)stα−γ12 , tα+β

13 ] + (adx1)s[tα−γ12 + (−1)stα+γ
12 , tβ23]

= (adx2)s[tα+β
13 , tβ−γ23 + (−1)stβ+γ

23 ] + (adx1)s[tβ23, t
α+β−γ
13 + (−1)stα+β+γ

13 ] .

Therefore, by defining A = tβ−γ23 + (−1)stβ+γ
23 and B = tα+β−γ

13 + (−1)stα+β+γ
13 we have

[tα12, [Cα(x1, t
γ
12), tα+β

13 + tβ23]] = [tα12, [t
α+β
13 , (adx2)sA] + [tβ23, (adx1)sB]]

= [[tα12, t
α+β
13 ], (− adx3)sA] + [tα+β

13 , (− adx3)s[tα12, A]]

+[[tα12, t
β
23], (− adx3)sB] + [tβ23, (− adx3)s[tα12, B]]

= [[tβ23, t
α
12], (− adx3)sA] + [tα+β

13 , (− adx3)s[B, tα12]]

+[[tα+β
13 , tα12], (− adx3)sB] + [tβ23, (− adx3)s[A, tα12]]

= [[tβ23, (adx2)sA] + [tα+β
13 , (adx1)sB], tα12] .

This finishes the proof.

Remark 6.2.2. We do not know if dΓ
0 −→ d̃Γ

0 is injective or not.

6.2.3 Derivations of tΓ1,n and t̄Γ1,n

Lemma 6.2.3. We have a bigraded Lie algebra morphism d̃Γ
0 −→ Der(tΓ1,n), taking (D,C) ∈ d̃Γ

0

to the derivation ξ(D,C) :

xi 7−→ 0,

yi 7−→
∑
j:j 6=i

D(xi, t
β
ij),

tαij 7−→ [tαij , Cα(xi, t
β
ij)].

This induces a bigraded Lie algebra morphism d̃Γ
0 −→ Der(̄tΓ1,n).
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Proof. We have to prove that defining relations of tΓ1,n are preserved by ξ := ξ(D,C). First
observe that relations [xi, xj ] = [xi + xj , t

α
ij ] = [xi, t

α
jk] = [tαij , t

α
kl] = 0 are obviously preserved.

Then conditions (i) and (ii) respectively imply that tαij = t−αji and [xi, yj ] =
∑
α t

α
ij are preserved.

Condition (vi) implies that [xi, yj ] = [xj , yi] is preserved, and (vi) together with (iii) imply that
[yi, yj ] = 0 is preserved. Therefore it follows from the centrality of

∑
i xi and ξ(

∑
i xi) = 0 that

ξ([xi, yi]) = ξ(−
∑
j:j 6=i

[xj , yi]) = ξ(
∑
j;j 6=i

∑
α

tαij).

Condition (iv) ensures that [yi, t
α
jk] = 0 is preserved, and together with (vi) it implies that

[yi + yj , t
α
ij ] = 0 is preserved. Finally condition (v) implies that the twisted infinitesimal braid

relations are preserved, and the first part of the statement follows.

For the second part of the statement it remains to prove that the centrality of
∑
i yi is preserved.

This follows directly from the identity ξ(
∑
i yi) = 0 that we now prove. Relation (vi) implies

that for any i 6= j one has D(xi, t
β
ij) = −D(−xi, t−βij ) = −D(xj , t

β
ji) in tΓ1,n (the last equality

happens since degt(D) = degt(Cα) + 1 > 0), and hence

ξ(
∑
i

yi) =
∑
i6=j

D(xi, t
β
ij) =

∑
i<j

D(xi, t
β
ij)−

∑
j<i

D(xj , t
β
ji) = 0 .

We are done (the compatibility with bracket and grading are easy to check).

The last part of the statementis a consequence of the fact that ξ(
∑
i yi) = ξ(

∑
i xi) = 0, that

we have already proved.

We now prove that this morphism extends to a Lie algebra morphism d̃Γ −→ Der(tΓ1,n):

Proposition 6.2.4. We have a bigraded Lie algebra morphism d̃Γ −→ Der(tΓ1,n) taking (D,C) ∈

d̃Γ
0 to ξ(D,C) and g =

(
a b

c d

)
∈ sl2 to the derivation

ξg : tαij 7→ 0,
(
xi yi

)
7→
(
xi yi

)(a b

c d

)
.

This induces a bigraded Lie algebra morphism d̃Γ −→ Der(̄tΓ1,n).

In what follows we write d := h̃, X := ẽ and ∆0 := f̃ and d̃ := ξh̃, X̃ := ξẽ and ∆̃0 := ξf̃ .

Proof. It is obvious that for any g, g′ ∈ sl2, ξg defines a derivation of the same degree of tΓ1,n,
and that ξ[g,g′] = [ξg, ξg′ ]. Hence we have a bigraded Lie algebra morphism sl2∗ d̃Γ

0 −→ Der(tΓ1,n).
Let us prove that it factorizes through the quotient d̃Γ.

It is relatively clear that [X̃, ξ(D,C)] = 0 and [d̃, ξ(D,C)] = (p − q)(D,C) if (D,C) ∈ (d̃Γ
0 )p,q.

Thus it remains to prove that (ad ∆̃0)p(ξ(D,C)) = 0 if (D,C) ∈ (d̃Γ
0 )p,q. We do this now. Let

us write ξ := ξ(D,C) and A := (ad ∆̃0)p(ξ). Then after an easy computation one obtains on
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generators:

A(xi) =− p∆̃p−1
0 ξ(yi) = −p∆̃p−1

0 (
∑
j:j 6=i

D(xi, t
β
ij)),

A(yi) =∆̃p
0ξ(yi) = ∆̃p

0(
∑
j:j 6=i

D(xi, t
β
ij)),

A(tαij) =∆̃p
0ξ(t

α
ij) = ∆̃p

0([tαij , Cα(xi, t
β
ij)]).

Finally remark that we have an increasing filtration on tΓ1,n defined by deg(xi) = 1 and
deg(tαij) = deg(yi) = 0. ∆0 decreases the degree by 1 and vanishes on degree zero elements. The
result then follows from the fact that degx(Cα) = p−q < p and degx(D) = p−q−1 < p−1.

Now composing with dΓ
0 −→ d̃Γ

0 (resp. dΓ −→ d̃Γ) one obtains a Lie algebra morphism
dΓ

0 −→ Der(tΓ1,n) (resp. dΓ −→ Der(tΓ1,n)). We write ξs,γ := ξ(Ds,γ ,Cs,γ) for the image of δs,γ .
We then have tΓ1,n o dΓ = (tΓ1,n o dΓ

+) o sl2, with tΓ1,n o dΓ
+ positively graded (since both tΓ1,n

and dΓ
+ are (Z≥0)2-graded) and a sum of finite dimensional sl2-modules. Therefore we can

construct the semi-direct product group

GΓ
n := exp(tΓ1,n o dΓ

+)∧ o SL2(C), (6.4)

where exp(tΓ1,no dΓ
+)∧ is the exponential group associated to the degree completion of tΓ1,no dΓ

+.

Similarly, we define ḠΓ
n := exp(̄tΓ1,n o dΓ

+)∧ o SL2(C).

Notice that one can also define semi-direct product groups G̃Γ
n := exp(tΓ1,n o d̃Γ

+)∧ o SL2(C)

and ˜̄GΓ
n := exp(̄tΓ1,n o d̃Γ

+)∧ o SL2(C). We therefore have the following commutative diagram:

GΓ
n

��

// G̃Γ
n

��

ḠΓ
n

// ˜̄GΓ
n.

(6.5)

Lemma 6.2.5. The kernel of d̃Γ
0 −→ Der(tΓ1,n) (n ≥ 2) is the space of elements (0, C) for

which Cα is proportional to tα, and ker(dΓ
0 −→ Der(tΓ1,n)) = Cδ0,0.

Proof. Let us first prove it for n = 2. Recall that t̄Γ1,2 = tΓ1,2/(x1 + x2, y1 + y2), so it is the Lie
algebra generated by x (the class of x1), y (the class of y1) and tα’s (classes of tα12’s) with the
relation [x, y] =

∑
α∈Γ t

α. Then the derivation ξ(D,C) associated to (D,C) ∈ d̃Γ
0 is given by

x 7→ 0, y 7→ D(x, tβ), tα 7→ [tα, Cα(x, tβ)].

This derivation vanishes if and only if D = 0 and Cα is proportional to tα. Finally, the result
for n ≥ 2 follows from the fact that

ξ
(2)
(D,C) = (u 7→ u1,2,∅,...,∅) ◦ ξ(n)

(D,C) ◦ (u 7→ u1,...,n),

where ξ(n)
(D,C) denotes the derivation of tΓ1,n associated to (D,C).
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6.2.4 Comparison morphisms

Let ρ : Γ1 −→ Γ2 a group morphism. We have a comparison morphism d̃Γ1
0 −→ d̃Γ2

0 , (D,C) 7→
(Dρ, Cρ) defined by

Dρ := D

x, ∑
γ∈coker(ρ)

tρ(β)+γ

# ker(ρ)

 , (Cρ)α := Cα

x, ∑
γ∈coker(ρ)

tρ(β)+γ

# ker(ρ)

 .

When ρ is not surjective it depends on the choice of a section coker(ρ) −→ Γ2. It extends to
d̃Γ1 −→ d̃Γ2 by sending the generators of sl2 to themselves. These comparison morphisms are
compatible with the morphisms d̃Γi −→ Der(tΓi1,n), for i = 1, 2. Namely, there is a commutative
diagram

d̃Γ1 n tΓ1
1,n

��

// tΓ1
1,n

��
d̃Γ2 n tΓ2

1,n
// tΓ2

1,n

Finally, we have comparison morphisms for the corresponding groups that fit into a commutative
diagram

G̃Γ1
n

��

// G̃Γ2
n

��
˜̄GΓ1
n

// ˜̄GΓ2
n .

(6.6)

Notice that the image of (Ds,γ , Cs,γ) under a comparison morphism is no longer of this
form except if ρ is injective. In this case (and in this case only) we have a comparison
morphism tΓ1

1,n o dΓ1 −→ tΓ2
1,n o dΓ2 taking xi’s, yi’s, d, X and ∆0 to themselves, and tαij to∑

β∈coker(ρ) t
ρ(α)+β
ij and δs,γ to

∑
β∈coker(ρ) δs,ρ(γ)+β . In particular we have a canonical natural

inclusion G0
n −→ GΓ

n (which descends to an inclusion Ḡ0
n −→ ḠΓ

n).

6.3 Bundles with flat connections on moduli spaces

6.3.1 On some subgroups of SL2(Z) and moduli spaces

Consider the group Γ := Z/MZ× Z/NZ and consider the following (finite index) subgroup of
SL2(Z):

SLΓ
2 (Z) :=

{(
a b

c d

)
∈ SL2(Z)

∣∣ a ≡ 1 mod M,d ≡ 1 mod N, b ≡ 0 mod N and c ≡ 0 mod M

}
.

We write Y (Γ) for the set of equivalences classes of pairs (E, φ) where E is an elliptic curve
and φ : Z/MZ× Z/NZ −→ E is an injective group morphism that is orientation preserving
i.e. such that the basis ( ddt |t=0

(tφ(1̄, 0̄)), ddt |t=0
(tφ(0̄, 1̄)) of T0E is direct. Then, one can see

that Y (Γ) = H/ SLΓ
2 (Z) and therefore inherits the structure of a complex orbifold.
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Remark 6.3.1. The biggest congruence subgroup on which the connection we will construct
in this section is well defined and flat is the subgroup S̃L

Γ

2 (Z) of SL2(Z) consisting of matrices(
a b

c d

)
∈ SL2(Z) such that Mb ≡ 0 mod N and Nc ≡ 0 mod M . Nevertheless, in order

to retrieve the twisted elliptic KZB connection defined at the level of configuration spaces, it
suffices to consider the usual congruence subgroup SLΓ

2 (Z) ⊂ S̃L
Γ

2 (Z).

Recall the following standard group actions:

• The group SL2(Z) acts on Cn × H:(
a b

c d

)
∗ (z|τ) :=

(
z

cτ + d

∣∣aτ + b

cτ + d

)
.

This obviously descends to an action of SL2(Z) on Cn ×H/C, where C acts diagonally on
Cn: u · (z|τ) := (z + u

∑
i δi|τ).

• The group (Zn)2 acts on Cn × H:

(m, n) ∗ (z|τ) := (z + m + τn|τ) .

It obvioulsy descends to an action of (Zn)2/Z2 on Cn × H/C, where Z2 is the diagonal
subgroup in (Zn)2 = (Z2)n.

• Finally, there is a right action of SL2(Z) on (m,n) ∈ Z2 by automorphisms:(
a b

c d

)
:
(
n m

)
−→

(
n m

)(a b

c d

)
.

We can thus form the semi-direct products (Zn)2 o SL2(Z) and ((Zn)2/Z2) o SL2(Z)

A few observations are then in order:

• The above actions are compatible in the sense that we have a left action of (Zn)2 oSL2(Z)

on Cn × H, which descends to an action of
(
(Zn)2/Z2

)
o SL2(Z) on (Cn × H)/C, where

Z2 is embedded in (Zn)2 via the diagonal map. One can think of translation by C as a
left or right action as it commutes with the G-action.

• The action of (Zn)2 preserves the subset

Diagn,Γ := {(z|τ) ∈ Cn × H|z ∈ Diagτ,n,Γ} .

• The action of the subgroup SLΓ
2 (Z) ⊂ SL2(Z) also preserves Diagn,Γ.

We are thus ready to define several variants of Y (Γ) “with marked points”:

• We define the quotient

M̄Γ
1,n := (Zn)2 o SLΓ

2 (Z) \
(
(Cn × H)−Diagn,Γ

)
/C

and call it the moduli space of Γ-structured elliptic curves with n ordered marked points.
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• It has a non-reduced variant

p :MΓ
1,n :=

(
(Cn × H)−Diagn,Γ

)
/(Zn)2 o SLΓ

2 (Z)� M̄Γ
1,n .

• One can also define the moduli space of Γ-structured elliptic curves with n unordered
marked points

M̄Γ
1,[n] := M̄Γ

1,n/Sn

and its non-reduced variant
MΓ

1,[n] :=MΓ
1,n/Sn .

Remark 6.3.2. We have M̄Γ
1,1 = M̄Γ

1,[1] = Y (Γ), and MΓ
1,1 =MΓ

1,[1] is the universal curve
over it. The fiber of MΓ

1,n −→ Y (Γ) (resp. M̄Γ
1,n −→ Y (Γ)) at (the class of) τ is precisely

the twisted (resp. reduced twisted) configuration space Conf(Eτ,Γ, n,Γ) (resp. C(Eτ,Γ, n,Γ)).
Moreover, the map

h : M̄Γ
1,2 −→ M̄Γ

1,1

factors through (and is open in) MΓ
1,1. We can interpret M̄Γ

1,2 as the Γ-punctured universal
curve over Y (Γ).

6.3.2 Principal bundles over MΓ
1,n and M̄Γ

1,n

In this §, GΓ
n is defined as in (6.4) and we define a principal GΓ

n-bundle Pn,Γ overMΓ
1,n whose

image under the natural morphism GΓ
n −→ ḠΓ

n is the pull-back of a principal ḠΓ
n-bundle P̄n,Γ

over M̄Γ
1,n. Let us fix the notation first: for u ∈ C× and v, wi ∈ C (i = 1, . . . , n),

ud :=

(
u 0

0 u−1

)
, evX :=

(
1 v

0 1

)
.

Since [X, xi] = 0 then it makes sense to define evX+
∑
i wixi := evXe

∑
i wixi . In particular, we

have Ad(ud)(xi) = uxi and Ad(ud)(yi) = yi/u (∀i), Ad(ud)(X) = u2X and Ad(ud)(∆0) =

∆0/u
2. Let π : Cn × H −→M1,n be the canonical projection.

Proposition 6.3.3. There exists a unique principal GΓ
n-bundle Pn,Γ overMΓ

1,n for which a
section on U ⊂MΓ

1,n is a function f : π−1(U) −→ GΓ
n such that

f(z + δi|τ) = f(z|τ),

f(z + τδi|τ) = e
−2πixi
N f(z|τ),

f(z, τ + 1) = f(z|τ),

f(
z

τ
| − 1

τ
) = τde

2πi
τ (X+

∑
i zixi)f(z|τ).

Moreover, the image of Pn,Γ under GΓ
n −→ ḠΓ

n is the pull-back of a unique principal ḠΓ
n-bundle

P̄n,Γ over M̄Γ
1,n for which a section on U ⊂ M̄Γ

1,n is a function f : (p ◦ π)−1(U) −→ M̄Γ
1,n

satisfying the above conditions (with xi’s replaced by x̄i’s) and such that f(z+v
∑
i δi|τ) = f(z|τ)

for any v ∈ C.
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Proof. First recall that for Γ = 0 this is precisely [24, Proposition 3.4]. Then observe that we
have an obvious map ι :MΓ

1,n −→M0
1,n. Therefore we define Pn,Γ (resp. P̄n,Γ) to be the image

under the natural inclusion G0
n −→ GΓ

n (resp. Ḡ0
n −→ ḠΓ

n) of ι∗Pn,0 (resp. ι∗P̄n,0).

We thus proved existence. Unicity is obvious.

In other words, there exists a unique non-abelian 1-cocycle (cg)g∈(Zn)2oSL2(Z) on Cn × H with
values in GΓ

n such that c(δi,0) = 1, c(0,δi) = e−2πixi , cS = 1 and

cT (z|τ) = τde(2πi/τ)(X+
∑
j zjxj) = e2πi(τX+

∑
j zjxj)τd ,

where S =

(
1 1

0 1

)
and T =

(
0 −1

1 0

)
are the generators of SL2(Z). Here cocycle means (as

in [24]) that cg’s are holomorphic functions Cn × H −→ GΓ
n satisfying the cocycle condition

cgg′(z|τ) = cg(g
′ ∗ (z, τ))cg′(z|τ).

Remark 6.3.4. Notice that we do have a (Zn)2 o SL2(Z)-cocycle (since our bundle is define
as the pull-back of a bundle onM0

1,1) but the cocycle defining Pn,Γ is its restriction to (Zn)2 o
SLΓ

2 (Z).

6.3.3 Connections on Pn,Γ and P̄n,Γ

A connection on Pn,Γ is the same as an equivariant connection on the trivial GΓ
n-bundle over

Cn × H−Diagn,Γ. Namely, it is of the form ∇n,Γ := d− η(z|τ), where η is a tΓ1,n o dΓ-valued
meromorphic one-form on Cn × H with only poles on Diagn,Γ, and the equivariance condition
reads: for any g ∈ (Zn)2 o SLΓ

2 (Z),

g∗η = (dcg(z|τ))cg(z|τ)−1 + Ad(cg(z|τ))(η(z|τ)) . (6.7)

We now construct such a connection. For any γ ∈ Γ we define gγ(x, z|τ) := ∂xkγ(x, z|τ),

ϕγ(x|τ) =
∑
s≥0

As,γ(τ)xs := g−γ(x, 0|τ) .

Then we set

∆(z|τ) := − 1

2πi

∆0 +
1

2

∑
s≥0,γ∈Γ

As,γ(τ)δs,γ −
∑
i<j

gij(zij |τ)

 ,

where gij(z|τ) :=
∑
α∈Γ gα(adxi, z|τ)(tαij). And finally, with Ki(z|τ)’s as in §6.1.3, we define

η(z|τ) := ∆(z|τ)dτ +
∑
i

Ki(z|τ)dzi.

Remark 6.3.5. One can see that ϕ0(x) = (θ′/θ)′(x) + 1/x2 and that for any γ ∈ Γ− {0}

ϕγ(x) = ∂x

(
e2πicx θ(γ̃ + x)

θ(γ̃)θ(x)
− 1

x

)
,

where γ̃ = (c0, c) ∈ Λτ,Γ − Λτ is any lift of γ.
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Proposition 6.3.6. The equivariance identity (6.7) is satisfied for any g ∈ (Zn)2 o SL2(Z).

Before proving this statement, let us notice that the SL2(Z)-equivariance is stronger than
what we need (the SLΓ

2 (Z)-equivariance), but easier to prove. The action of SL2(Z) moves
the poles while SLΓ

2 (Z) fixes them. In both cases, it makes sense to prove this proposition for
meromorphic forms on Cn × h.

Proof. For g = (δj , 0), the identity translates into Ki(z + δj |τ) = Ki(z|τ) (i = 1, . . . , n) and
∆(z + δj |τ) = ∆(z|τ), which are immediate.

For g = (0, δj), the identity translates into Ki(z + τδj |τ) = e−2πiad(xj)Ki(z|τ) (∀i) and

∆(z + τδj |τ) +Kj(z + τδj |τ) = e−2πiad(xj)∆(z|τ). (6.8)

The first equality is proved in §6.1.3, and we prove the second one now. First remember that
for any τ ∈ H, z ∈ C− ( 1

MZ + τ
NZ)) and α ∈ Γ, we have the following identity in C[[x]]:

e−2πix(gα(x, z)− 1/x2) + 1/x2 − 2πi(kα(x, z + τ) + 1/x) = gα(x, z + τ) . (6.9)

Then we can compute 2πi
(
Kj(z + τδj |τ)− e−2πiad(xj)∆(z|τ)

)
: it is equal to

2πi

∑
k:k 6=j

kα(adxj , zjk + τ)− yj

+∆0+
1− e−2πiadxj

adxj
(yj)+

1

2

∑
s≥0,
γ∈Γ

As,γδs,γ−e−2πiadxj
∑
k<l

gkl(zkl) ,

and therefore using

1− e−2πiadxj

adxj
(yj)− 2πiyj =

(
e−2πiadxj − 1

(adxj)2
+

2πi

adxj

)∑
α∈Γ

∑
k:k 6=j

tαjk


together with (6.9) we obtain

∆0 +
1

2

∑
s≥0,γ∈Γ

As,γδs,γ −
∑
k<l
k,l 6=j

gkl(zkl)−
∑
k:k 6=j
α∈Γ

gα(adxj , zjk + τ)(tαjk) ,

which is precisely equal to −2πi∆(z + τδj).

For g = S, the identity translates into Ki(z|τ + 1) = Ki(z) (∀i) and ∆(z|τ + 1) = ∆(z). Both
equalities obviously follow from θ(z|τ + 1) = θ(z|τ).

For g = T , the identity translates into

1

τ
Ki(

z

τ
| − 1

τ
) = Ad (cT (z|τ)) (Ki(z|τ)) + 2πixi (6.10)

for all i ∈ {1, . . . , n} and

1

τ2

(
∆(

z

τ
| − 1

τ
)−

∑
i

ziKi(
z

τ
| − 1

τ
)

)
= Ad (cT (z|τ)) (∆(z|τ)) +

d

τ
− 2πiX . (6.11)
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Let us check (6.10) first. Ad(e2πi(
∑
j zjxj+τX)τd)(−yi) + 2πixi equals

−Ad(e2πi
∑
j zjxj )(yi/τ) = −yi

τ
− e2πiad(

∑
j zjxj) − 1

ad(
∑
j zjxj)

([
∑
j

zjxj ,
yi
τ

])

= −yi
τ
− e2πi

∑
j zjadxj − 1∑
j zjadxj

(
∑
j:j 6=i
α∈Γ

zji
τ
tαij) = −yi

τ
−
∑
j:j 6=i

e2πizijadxi

zijadxi
(
∑
α∈Γ

zji
τ
tαij) .

Therefore we have

− yi
τ

= Ad(cT (z|τ))(−yi) + 2πixi −
∑
j:j 6=i

e2πizijadxi

adxi
(
∑
α∈Γ

tαij
τ

) . (6.12)

Now substituting (x, z) = (adxj , zj) in

1

τ
(kα(x,

z

τ
| − 1

τ
) = e2πizxkα(τx, z|τ) +

e2πizx − 1

τx
, (6.13)

then applying to tαij , summing over j 6= i and α ∈ Γ, and adding up (6.12) we obtain (6.10) by
using that

e2πizijadxikα(τadxi, zij |τ)(tαij) = Ad(e2πi(τX+
∑
j zjxj)τd)(kα(adxi, zij |τ)(tαij)).

We now check (6.11). Differentiating (6.13) w.r.t. x and dividing by τ , we get

1

τ2
gα(x,

z

τ
| − 1

τ
) = e2πizxgα(τx, z|τ) +

2πiz

τ2
kα(x,

z

τ
| − 1

τ
) +

1 + 2πizx− e2πizx

τ2x2
.

Now substituting (x, z) = (adxi, zij), applying to tαij , and summing over α ∈ Γ we obtain

1

τ2
gij(

z

τ
| − 1

τ
) = Ad(cT (z|τ)) (gij(z|τ)) +

2πizij
τ2

Kij(
zij
τ
| − 1

τ
)

+

(
1 + 2πizijadxi − e2πizijadxi

τ2(adxi)2

)
(
∑
α∈Γ

tαij) .

Then taking the sum over i < j one gets

1

τ2

∑
i<j

gij(
z

τ
| − 1

τ
) = Ad(cT (z|τ))

∑
i<j

gij(z|τ)

+
2πi

τ2

∑
i

ziKi(
z

τ
| − 1

τ
) +B(z) , (6.14)

where

B(z) :=
∑
i

2πiziyi
τ2

+
∑
i<j

(
1 + 2πizijadxi − e2πizijadxi

τ2(adxi)2

)
(
∑
α

tαij).

Lemma 6.3.7. Ad (cT (z|τ)) (∆0) = ∆0

τ2 + 2πid
τ − (2πi)2( 1

τ

∑
i zixi + X) +B(z).

Proof of the lemma. We first compute

Ad (cT (z|τ)) (∆0) = Ad(e2πi(τX+
∑
i zixi))(

∆0

τ2
) = Ad(e2πi

∑
i zixi)(

∆0

τ2
+

2πid

τ
− (2πi)2X)

= Ad(e2πi
∑
i zixi)(

∆0

τ2
) +

2πid

τ
− (2πi)2(

1

τ

∑
i

zixi + X) .

It remains to show that Ad(e2πi
∑
i zixi)(∆0

τ2 ) = ∆0

τ2 +B(z). The proof of this fact goes along
the same lines of computation as in [24, pp.16-17].
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Using the above lemma and equation (6.14), one sees that equation (6.11) follows from

Ad(cT (z|τ)(
∑
s,γ

As,γ(τ)δs,γ) =
∑
s,γ

As,γ(−1

τ
)δs,γ .

This last equality is proved using [xi, δs,γ ] = 0 = [X, δs,γ ], [d, δs,γ ] = sδs,γ , and, since ϕγ(x| −
1
τ ) = τ2ϕγ(τx|τ), we get As,γ(− 1

τ ) = τs+2As,γ(τ).

We therefore have:

Theorem 6.3.8. ∇n,Γ defines a connection on Pn,Γ. Moreover, its image under GΓ
n −→ ḠΓ

n

is the pull-back of a connection ∇̄n,Γ on P̄n,Γ.

Proof. The first part follows from Proposition 6.3.6 above. For the second part, we need to
prove the three following identities:

• ∑i K̄i(z|τ) = 0;

• K̄i(z + u
∑
j δj |τ) = K̄i(z|τ), for all i;

• ∆̄(z + u
∑
j δj |τ) = ∆̄(z|τ).

The first two equalities have already been proven, and the last one is obvious.

6.3.4 Flatness

In this paragraph we prove the flatness of ∇n,Γ (and thus of ∇̄n,Γ).

Proposition 6.3.9. For any i ∈ {1, . . . , n} we have [∂τ −∆(z|τ), ∂i −Ki(z|τ)] = 0.

In what follows, we often drop τ from the notation when it does not lead to any confusion.

Proof. Let us first prove that ∂τKi(z) = ∂i∆(z). This follows from the identity ∂zgα(x, z) =

2πi∂τkα(x, z), which is proved as follows (here α̃ = (a0, a) is any lift of α):

∂zgα(x, z) = ∂z∂xkα(x, z) = ∂z∂x

(
e−2πiaxk(x, z − α̃) +

e−2πiax − 1

x

)
= e−2πiax∂z∂xk(x, z − α̃)− 2πiae−2πiax∂zk(x, z − α̃)

= 2πie−2πiax∂τk(x, z − α̃)− 2πiae−2πiax∂zk(x, z − α̃)

= 2πi∂τ
(
e−2πiaxk(x, z − α̃)

)
= 2πi∂τkα(x, z).

It remains to prove that [∆(z),Ki(z)] = 0.

Let us first prove it in the case n = 2. Namely, we will prove that

[∆0 +
1

2

∑
s≥0,γ∈Γ

As,γδs,γ −
∑
α∈Γ

gα(adx1, z)(t
α
12) , y2 +

∑
β∈Γ

kβ(adx1, z)(t
β
12)] = 0. (6.15)
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One the one hand,

[∆0 +
1

2

∑
s≥0,γ∈Γ

As,γδs,γ −
∑
α∈Γ

gα(adx1, z)(t
α
12) , y2]

= [y1,
∑
α∈Γ

gα(adx1, z)(t
α
12)]− 1

2

∑
α,γ∈Γ

∑
p,q

aγp,q[adp x1(tα−γ12 ), adq x1(tα12)] ,

where
ϕγ(u)− ϕ−γ(v)

u+ v
=
∑
p,q

aγp,qu
pvq .

On the other hand, we have

[∆0,
∑
β

kβ(adx1, z)(t
β
12)] = [y1,

∑
β

gβ(adx1, z)(t
β
12)]+

∑
p,q

∑
α,β∈Γ

bα,βp,q (z)[adp x1(tα12), adq x1(tβ12)] ,

where the series
∑
p,q b

α,β
p,q (z)upvq is given by

1

2

(
1

v2
(kβ(u+ v, z)− kβ(u, z)− v∂ukβ(u, z))− 1

u2
(kα(u+ v, z)− kα(v, z)− u∂vkα(v, z))

)
.

Therefore the l.h.s. of (6.15) equals

1

2

∑
p,q

∑
α,β∈Γ

cα,βp,q (z)[adp x1(tα12), adq x1(tβ12)]

 ,

where
∑
p,q c

α,β
p,q u

pvq(z) is given by

1

v2
(kβ(u+ v, z)− kβ(u, z)− vgβ(u, z))− 1

u2
(kα(u+ v, z)− kα(v, z)− ugα(v, z))

+
ϕβ−α(u)− ϕα−β(v)

u+ v
+ kα(u+ v, z)ϕα−β(v)− kβ(u+ v, z)ϕβ−α(u)

+kβ(u, z)gα(v, z)− gβ(u, z)kα(v, z) ,

which can be rewritten as(
gβ−α(u, z − z′)− 1

u2

)(
kα(u+ v, z′) +

1

u+ v

)
−
(
gα−β(v, z′ − z)− 1

v2

)(
kβ(u+ v, z) +

1

u+ v

)
+

(
gα(v, z′)− 1

v2

)(
kβ(u, z) +

1

u

)
−
(
gβ(u, z)− 1

u2

)(
kα(v, z′) +

1

v

)
(6.16)

with z = z′. Thus to end the proof of equation (6.15) the following lemma is sufficient:

Lemma 6.3.10. Expression (6.16) equals zero.

Proof of the lemma. The case α = β = 0 follows from an explicit computation. Then we chose
lifts α̃ = (a0, a) and β̃ = (b0, b) of α and β, respectively. One has

kα(x, z) + 1/x = e−2iπax (k(x, z − α̃) + 1/x) and

gα(x, z)− 1/x2 = e−2iπax
(
g(x, z − α̃)− 1/x2

)
− 2iπb (kα(x, z) + 1/x) .
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Therefore (6.16) equals

−2iπ(a− b)
((

kα(v, z′) +
1

v

)(
kβ(u, z) +

1

u

)
+

(
kβ−α(u, z − z′) +

1

u

)(
kα(u+ v, z′) +

1

u+ v

)
+

(
kα−β(v, z′ − z)− 1

v

)(
kβ(u+ v, z) +

1

u+ v

))
,

which vanishes because of (6.3).

Let us now assume that n > 2.

Let tΓn,+ ⊂ tΓ1,n be the subalgebra generated by xi, tαjk (i, j, k = 1, . . . , n, j 6= k, α ∈ Γ).

We have functions Eij(z) with values in tΓn,+ defined by Eij(z) = [∆0, kij ] − [yi, gij ], which
decomposes as eij(z) +

∑
k 6=i,j eijk(z), where eij(z) takes its values in

Spanp,q,α,β [(adxi)
p(tαij), (adxj)

q(tβij)]

and eijk(z) takes its values in Spanα,β C[adxi, adxj ][t
α
ij , t

β
jk]. Explicitly,

eij(z) =
∑
α,β

∑
p,q

bα,βp,q (zij)[adpxi(t
α
ij), adqxi(t

β
ij)] ,

where bα,βp,q (z) is as before, and

eijk(z) =
∑
α,β

(
kα(adxi, zij)− kα(−adxj , zij)

(adxi + adxj)2
− gα(−adxj , zij)

adxi + adxj

)
[tαij , t

β
ik].

On the other hand, we have Yijk(z) ∈ tΓn,+ defined by Yijk(z) = [yi, gjk]. It takes its values in
Spanα,β C[adxi, adxj ][t

α
ij , t

β
jk]. Explicitly,

Yijk(z) = −
∑
α,β

gβ(adxj , zjk)− g−β(adxk,−zjk)

adxj + adxk
[tαij , t

β
jk]

(remember that gα(u, z) = g−α(−u,−z)). We have

[∆(z),K1(z)] =
∑
i>1

(
[∆0, k1i]− [y1, g1i] + [

1

2

∑
α

δϕα , k1i]− [g1i, k1i]

)
− [

1

2

∑
α

δϕα , y1]

−
∑

1<i<j

([g1i, k1j ] + [g1j , k1i] + [gij , k1i + k1j ])

=
∑
i>1

(
e12 + [

1

2

∑
α

δϕα , k12]− [g12, k12]− [
1

2

∑
α

δϕα , y1]

)
1i

(6.17)

+
∑

1<i<j

(e1ij + e1ji − Y1ij − [gij , k1i + k1j ]− [g1i, k1j ]− [g1j , k1i])

where {−}1i is the natural morphism tΓ1,2 −→ tΓ1,n, u1 7→ u1, u2 7→ ui (u = x, y), tα12 7→ tα1i. It
is easy to see that the line (6.17) equals

∑
i>1 ([∆(z1i),K1(z1i)])1i which is zero as we have

seen before (case n = 2).
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Therefore [∆(z),K1(z)] equals∑
1<i<j

∑
α,β

(kα(adx1, z1i)− kα(−adxi, z1i)− gα(−adxi, z1i)(adx1 + adxi)

(adx1 + adxi)2
[tα1i, t

β
1j ]

−kβ(adx1, z1j)− kβ(−adxj , z1j)− gβ(−adxj , z1j)(adx1 + adxj)

(adx1 + adxj)2
[tα1i, t

β
1j ]

−gβ−α(adxi, zij)− gα−β(adxj ,−zij)
adxi + adxj

[tα1i, t
β
1j ]

− (kα(adx1, z1i)gβ−α(−adxj , zij)− kβ(adx1, z1j)gβ−α(adxi, zij)) [tα1i, t
β
1j ]

− (kβ(−adxj , z1j)gα(−adxi, z1i)− kα(−adxi, z1i)gβ(−adxj , z1j)) [tα1i, t
β
1j ]
)
,

which is zero because of Lemma 6.3.10.

We have therefore proved (Proposition 6.1.6 and Proposition 6.3.9 above):

Theorem 6.3.11. The connection ∇n,Γ is flat, and thus so is ∇̄n,Γ.

Let us now show how the universal KZB connexion over moduli spaces coincides with the one
defined over configuration spaces.

Remark 6.3.12. The connection ∇n,Γ defined above is an extension to the twisted moduli space
MΓ

1,n of the connection ∇n,τ,Γ defined over the twisted configuration space Conf(Eτ,Γ, n,Γ)

from Section 6.1.3.

Indeed, the pull-back of the principal GΓ
n-bundle with flat connection (Pn,Γ,∇n,Γ) along the

inclusion
Conf(Eτ,Γ, n,Γ) ↪→MΓ

1,n

of the fiber at (the class of) τ in Y (Γ) admits a reduction of structure group to

exp(tΓ1,n) ⊂ GΓ
n

as we will now explain.

Let us first pull-back the principal GΓ
n-bundle with flat connection (Pn,Γ,∇n,Γ) along the

projection
CΓ(n) :=

(
(Cn × H)−Diagn,Γ

)
/(Zn)2 �MΓ

1,n .

The resulting flat bundle admits a reduction of structure group to

NΓ
n := exp(tΓ1,n o dΓ

+)∧ oN+ ⊂ GΓ
n ,

where N+ ⊂ SL2(C) is the connected subgroup with Lie algebra C∆0.

Let us then further pull-back this principal NΓ
n-bundle to the fiber

Conf(Eτ,Γ, n,Γ) ↪→ CΓ(n)

at τ ∈ H of the projection CΓ(n) −→ H. The resulting flat bundle admits a further restriction
of structure group to exp(tΓ1,n) ⊂ NΓ

n. One easily sees from our explicit formulæthat it coincides
with (Pτ,n,Γ,∇τ,n,Γ) constructed in Section 6.1.3.

Similarly, the connection ∇̄n,Γ is an extension to the twisted moduli space M̄Γ
1,n of the connection

∇̄n,τ,Γ defined over the reduced twisted configuration space C(Eτ,Γ, n,Γ).
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6.3.5 Variations

Let us first consider the unordered variants

MΓ
1,[n] :=MΓ

1,n/Sn and M̄Γ
1,[n] := M̄Γ

1,n/Sn ,

where, as before, the action of Sn is again by permutation on Cn.

Proposition 6.3.13. 1. There exists a unique principal GΓ
n oSn-bundle P[n],Γ overMΓ

1,[n],
such that a section over U ⊂MΓ

1,[n] is a function

f : π̃−1(U) −→ GΓ
n oSn

satisfying the conditions of Proposition 6.3.3 as well as f(σz|τ) = σf(z|τ) for σ ∈ Sn (here
π̃ : (Cn × H)−Diagn,Γ −→MΓ

1,[n] is the canonical projection).
2. There exists a unique flat connection ∇[n],Γ on P[n],Γ, whose pull-back to (Cn×H)−Diagn,Γ
is the connection

d−∆(z|τ) d τ −
∑
i

Ki(z|τ) d zi

on the trivial GΓ
n oSn-bundle.

3. The image of (P[n],Γ,∇[n],Γ) under GΓ
noSn −→ ḠΓ

noSn is the pull-back of a flat principal
ḠΓ
n oSn-bundle (P̄[n],Γ, ∇̄[n],Γ) on M̄Γ

1,[n].

Proof. For the proof of the first point, one easily checks that σcg̃(z|τ)σ−1 = cσg̃σ−1(σ−1z), where
g̃ ∈ (Zn)2oSLΓ

2 (Z), σ ∈ Sn. It follows that there is a unique cocycle c(g̃,σ) : Cn×H −→ ḠΓ
noSn

such that c(g̃,1) = cg̃ and c(1,σ)(z|τ) = σ.

For the proof of the second point, taking into account Theorem 6.3.11, one only has to show
that this connection is Sn-equivariant. We have already mentioned that

∑
i K̄i(z|τ) d zi is

equivariant, and ∆̄(z|τ) is also checked to be so.

The third point is obvious.

For every (class of) τ in Y (Γ), one has an action of Γn on the fiber Conf(Eτ,Γ, n,Γ) at τ of
MΓ

1,n � Y (Γ), resp. an action of Γn/Γ on the fiber C(Eτ,Γ, n,Γ) at τ of M̄Γ
1,n � Y (Γ). Recall

that

Conf(Eτ,Γ, n,Γ)/Γn = Conf(Eτ,Γ, n) and C(Eτ,Γ, n,Γ)/(Γn/Γ) = C(Eτ,Γ, n) .

This action depends holomorphically of τ , so that we have an action of Γn onMΓ
1,n, resp. an

action of Γn/Γ on M̄Γ
1,n.

Proposition 6.3.14. 1. There exists a unique principal GΓ
n o Γn-bundle overMΓ

1,n/Γ
n, such

that a section over U ⊂MΓ
1,n/Γ

n is a function

f : π̃−1(U) −→ GΓ
n o Γn
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satisfying the following conditions:

f(z +
δi
M
|τ) = (1̄, 0̄)if(z|τ),

f(z + τ
δi
N
|τ) = e

−2πixi
N (0̄, 1̄)if(z|τ),

f(z, τ + 1) = f(z|τ),

f(
z

τ
| − 1

τ
) = τde

2πi
τ (X+

∑
i zixi)f(z|τ).

Here, π̃ : (Cn × H)−Diagn,Γ −→MΓ
1,n/Γ

n is the canonical projection.
2. There exists a unique flat connection on this bundle whose pull-back to (Cn × H)−Diagn,Γ
is the connection

d−∆(z|τ) d τ −
∑
i

Ki(z|τ) d zi

on the trivial GΓ
n o Γn-bundle.

3. The image of the above flat bundle under GΓ
n o Γn −→ ḠΓ

n o (Γn/Γ) is the pull-back of a
flat principal ḠΓ

n o (Γn/Γ)-bundle on M̄Γ
1,n/(Γ

n/Γ).

Proof. The first assertion is left to the reader. Assertion 3 is evident. Let us prove assertion 2.
By Proposition 6.1.5, we know that the Ki satisfy

(e) Ki(z +
δj
M |τ) = θ((1̄, 0̄)j)Ki(z|τ),

(f) Ki(z +
τδj
N |τ) = θ((0̄, 1̄)j)e

−2πi
N ad(xj)Ki(z|τ).

The fact that ∆(z+
δj
M |τ) = θ((1̄, 0̄)j)∆(z|τ) is immediate. Thus, it remains to show that ∆(z+

τδj
N |τ) = e

−2πiad(xj)

N θ((0̄, 1̄)j)(∆(z|τ)−Kj(z|τ)) which is proved in Lemma 6.3.15 below.

Lemma 6.3.15. We have

∆(z +
τδj
N
|τ) = e

−2πiad(xj)

N θ((0̄, 1̄)j)(∆(z|τ)−Kj(z|τ)). (6.18)

Proof. On the one hand, we have

−2πi∆(z +
τδj
N

) = ∆0 +
1

2

∑
s≥0,γ∈Γ

As,γδs,γ −
∑
k<l
k,l 6=j

gkl(zkl)−
∑
k:k 6=j
α∈Γ

gα(adxj , zjk +
τ

N
)(tαjk).

On the other hand, as

e
−2πiad(xj)

N (∆0) = (1− (1− e
−2πiad(xj)

N )(∆0) = (∆0) +
1− e

−2πiadxj
N

adxj
(yj)

=
e
−2πiadxj

N − 1

(adxj)2

∑
α∈Γ

∑
k:k 6=j

tαjk


and the δs,γ commute with the xj , we compute

2πi

(
Kj(z +

τ

N
δj |τ)− e

−2πiad(xj)

N θ((0̄, 1̄)j)∆(z|τ)

)
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= 2πi

(
θ((0̄,−1)j)Kj(z +

τ

N
δj |τ)− e

−2πiad(xj)

N ∆(z|τ)

)

= 2πiθ((0̄,−1)j)

∑
k:k 6=j

kα(adxj , zjk +
τ

N
)− yj

+ ∆0 +
1− e

−2πiadxj
N

adxj
(yj)

+
1

2

∑
s≥0,
γ∈Γ

As,γδs,γ − e
−2πiadxj

N

∑
k<l

gkl(zkl).

Next, by combining

Kij(z −
τ

N
) = e−

2πi
N ad(xi)θ((0̄, −̄1)i)(Kij(z)) + θ((0̄, −̄1)i)(

∑
α∈Γ

e−2πiadxi − 1

adxi
(tαij)),

and equations

gα(x, z)− 1/x2 = e−2iπax
(
g(x, z − α̃)− 1/x2

)
− 2iπb (kα(x, z) + 1/x) .

We can follow the same lines as in the proof of relation (6.8) to obtain the wanted equation.

We also leave to the reader the task of combining several variants.

6.4 Realizations

6.4.1 Realizations of tΓ1,n, t̄Γ1,n and tΓn,+

Let g be a Lie algebra and tg ∈ S2(g)g be nongenerate. Assume that we have a group morphism
θ : Γ −→ Aut(g, tg) and set l := gΓ and u := ⊕χ∈Γ̂−{0}gχ, where gχ is the eigenspace of g
corresponding to the character χ : Γ −→ C∗. Then we have g = l ⊕ u with [l, u] ⊂ u, and
t = tl + tu with tl ∈ S2(l)l and tu ∈ S2(u)l. We denote by (a, b) 7→ 〈a, b〉 the invariant pairing
on l corresponding to tl and write tl =

∑
ν eν ⊗ eν .

Let Diff(l∗) be the algebra of algebraic differential operators on l∗. It has generators xl, ∂l (l ∈ l)
and relations xtl+l′ = t xl + xl′ , ∂tl+l′ = t∂l + ∂l′ , [xl, xl′ ] = 0 = [∂l, ∂l′ ] and [∂l, xl′ ] = 〈l, l′〉.
Moreover, one has a Lie algebra morphism l −→ Diff(l∗); l 7→ Xl :=

∑
ν x[l,eν ] ∂eν . We denote

by ldiag the image of the induced morphism

l 3 l 7→ Yl := Xl ⊗ 1 + 1⊗
n∑
i=1

l(i) ∈ Diff(l∗)⊗ U(g)⊗n ,

and define Hn(g, l∗) as the Hecke algebra of An := Diff(l∗) ⊗ U(g)⊗n with respect to ldiag.
Namely, Hn(g, l∗) := (An)l/(Anl

diag)l. It acts in an obvious way on (Ol∗ ⊗ (⊗ni=1Vi))
l if

(Vi)1≤i≤n is a collection of g-modules.

Let us set xν := xeν and ∂ν := ∂eν , and write α(i)· for the action of α ∈ Γ on the i-th component
in U(g)⊗n.

Finally, recall that the twisted elliptic Kohno-Drinfeld Lie algebra tΓ1,n is defined in Definition
4.3.3.
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Proposition 6.4.1. There is a unique Lie algebra morphism ρg : tΓ1,n −→ Hn(g, l∗) defined by

xi 7−→M
∑
ν

xν ⊗e(i)
ν ,

yi 7−→ −N
∑
ν

∂ν ⊗ e(i)
ν ,

tαij 7−→ 1⊗ (α(1) · tg)(ij).

It induces a Lie algebra morphism ρ̄g : t̄Γ1,n −→ Hn(g, l∗).

Proof. Let us use the presentation of tΓ1,n coming from Lemma 4.3.5. The only non trivial check
is that the relation [

∑
j xj , yi] = 0 is preserved. We have

ρg

(
n∑
i=1

xi

)
= M

∑
ν

xν ⊗
n∑
i=1

e(i)
ν = M

∑
ν

(xν ⊗ 1)

(
1⊗

n∑
i=1

e(i)
ν

)
≡ M

∑
ν

(xν ⊗ 1) (Yν −Xν ⊗ 1)

≡ M −
∑
ν

xνXν ⊗ 1 = M
∑
ν1,ν2

xeν1 x[eν1 ,eν2 ]∂ν2
⊗ 1 = 0

as xeν1 commutes with x[eν1 ,eν2 ] and tl is invariant. Here the sign ≡ means that both terms
define the same equivalence class in Hn(g, l). Thus,

[ρg

∑
j

xj

 , ρg(yi)] ≡ [0, ρg(yi)] = 0.

The proof that [
∑
j yj , xi] = 0 is preserved is a consequence of the fact that ρ

(∑
j yj

)
= 0,

which was proven in [24, Proposition 6.1]. The fact that this induces a Lie algebra morphism
ρ̄g : t̄Γ1,n −→ Hn(g, l) is then clear.

Let tΓn,+ ⊂ tΓ1,n be the Lie subalgebra generated by xi’s and tαjk’s. Then the restriction of ρg to
tΓn,+ lifts to a Lie algebra morphism tΓn,+ −→ (Ol∗ ⊗ U(g)⊗n)l. Moreover, (Ol∗ ⊗ U(g)⊗n)l is
a subalgebra of Hn(g, l∗) that is a Lie ideal for the commutator and one has a commutative
diagram

tΓ1,n × tΓn,+

��

(u,v) 7→[u,v] // tΓn,+

��
Hn(g, l∗)× (Ol∗ ⊗ U(g)⊗n)l // (Ol∗ ⊗ U(g)⊗n)l .

6.4.2 Realizations of tΓ1,n o dΓ and t̄Γ1,n o dΓ

Let us write tg =
∑
u au ⊗ au.
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Proposition 6.4.2. The Lie algebra morphism ρg (resp. ρ̄g) of Proposition 6.4.1 extends to a
Lie algebra morphism tΓ1,n o dΓ −→ Hn(g, l∗) (resp. t̄Γ1,n o dΓ −→ Hn(g, l∗)) defined by

d 7−→ −1

2
(
∑
ν

xν ∂ν + ∂ν xν)⊗ 1,

X 7−→ 1

2
(
∑
ν

x2
ν)⊗ 1,

∆0 7−→ −
1

2
(
∑
ν

∂2
ν)⊗ 1,

ξs,γ 7−→
1

|Γ|
∑

ν1,··· ,νs,u
xν1
· · · xνs ⊗

n∑
i=1

(ad(eν1
) · · · ad(eνs)(au)� (γ · au))

(i)
.

Here � denotes the symmetric product: A�B := AB +BA.

Proof. Since tg is invariant under the commuting actions of Γ and l then the relation ξs,γ =

(−1)sξs,−γ is also preserved. This invariance argument also implies that [ρg(ξs,γ), ρg(xi)] equals

1

|Γ|
∑

ν1,··· ,νs,ν,u
xν1
· · · xνs xν ⊗

s∑
t=1

(ad(eν1
) · · · ad([eν , eνt ]) · · · ad(eνs)(au)� (γ · au))

(i)

which is zero since the first and second factor are respectively symmetric and antisymmetric
in (ν, νt). Let us now prove that the relation [ξs,γ , t

α
ij ] = [tαij , (adxi)

s(tα−γij ) + (adxj)
s(tα+γ

ij )] is
preserved. It is sufficient to do it for n = 2:

ρg(ξs,γ + (adx1)s(tα−γ12 ) + (adx2)s(tα+γ
12 )) =

∑
ν1,··· ,νs

xν1
· · · xνs ⊗(α(1) ·∆(Bν1,··· ,νs)) ,

where ∆ is the standard coproduct of Ug and Bν1,··· ,νs :=
∑
u ad(eν1) · · · ad(eνs)(au)� (γ · au);

therefore ρg(ξs,γ + (adx1)s(tα−γ12 ) + (adx2)s(tα+γ
12 )) commutes with ρg(tα12). Hence it remains

to prove that the relation [ξs,γ ,
yi
N ] =

∑
j:j 6=iDs,γ( xiM ,

tβij
|Γ| ) is preserved. For this we compute

[ρg(ξs,γ), ρg(yiN )]: it equals

1

|Γ|
∑

ν1,··· ,νs
ν,u

( n∑
j=1

[∂ν , xν1
· · · xνs ]⊗ e(i)

ν

(
ad(eν1

) · · · ad(eνs)(au)� (γ · au)
)(j)

+ xν1
· · · xνs ∂ν ⊗ [eν , ad(eν1

) · · · ad(eνs)(au)� (γ · au)](i)
)

=
1

|Γ|
s∑
l=1

∑
ν1,...,νs,ν

xν1 · · · x̌νl · · · xνs ⊗
n∑
j=1

(
e(i)
ν

(
ad(eν1) · · · ad(eνs)(au)� (γ · au)

)(j) − (i↔ j)
)
.

The term corresponding to j = i is the linear map Ss−1(l) −→ U(g)⊗n such that for x ∈ l

xs−1 7−→ 1

|Γ|
∑

p+q=s−1
ν,u

[eν , ad(x)pad(eν)ad(x)q(au)� (γ · au)](i) .

Using l-invariance of
∑
u au � (γ · au) one obtains that this last expression equals

=
1

|Γ|
∑

p+q+r=s−1
ν,u

(
ad(x)pad([eν , x])ad(x)qad(eν)(adx)r(au)� (γ · au)
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+ad(x)pad(eν)ad(x)qad([eν , x])ad(x)r(au)� (γ · au)
)(i)

,

which is zero from the l-invariance of tl =
∑
ν eν ⊗ eν . The term corresponding to j 6= i is the

linear map Ss−1(l) −→ U(g)⊗n such that for x ∈ l

xs−1 7−→ 1

|Γ|
∑

p+q=s−1
ν,u

(ad(x)pad(eν)ad(x)q(au)� (γ · au))
(j)
e(i)
ν − (i↔ j)

=
1

|Γ|
∑

p+q=s−1
ν,u

(ad(x)p([eν , au])� (−ad(x))q(γ · au))
(j)
e(i)
ν − (i↔ j)

=
1

|Γ|
∑

p+q=s−1
ν,u

(−1)q (ad(x)p([eν , au])� (ad(x))q(γ · au))
(j)
e(i)
ν − (i↔ j)

=
1

|Γ|
∑

p+q=s−1
ν,u

(−1)q (ad(x)p([eν , au])� (ad(x))q(γ · au))
(j)
e(i)
ν − (i↔ j)

=
1

|Γ|2
∑
β∈Γ

∑
p+q=s−1

v,u

(−1)q (ad(x)p([av, au])� (ad(x))q(γ · au))
(j)

(β · av)(i) − (i↔ j)

=
1

|Γ|2
∑
β∈Γ

∑
p+q=s−1

(−1)q
∑
ν,u

(ad(x)p(av)� ad(x)q(γ · au))
(i)

(β · [au, av])(j) − (i↔ j)

=
1

|Γ|2
∑
β∈Γ

∑
p+q=s−1

(−1)q
∑
ν,u

(ad(x)p(β · av)� ad(x)q((β + γ) · au))
(i)

[au, av]
(j) − (i↔ j)

=
1

|Γ|2
∑
β∈Γ

∑
p+q=s−1

(−1)q
∑
ν,u

(ad(x)p((β − γ) · av)� ad(x)q((β) · au))
(i)

[au, av]
(j) − (i↔ j)

which coincides with the image of

Ds,γ

(
xi
M
,
tβij
|Γ|

)
=

∑
p+q=s−1

∑
β∈Γ

[(
ad
xi
M

)p( tβij
|Γ|

)
,
(
−ad

xi
M

)q ( tβij
|Γ|

)]

under ρg. In conclusion we get the relation

ρg

([
ξs,γ ,

yi
N

])
=
[
ρg(ξs,γ), ρg

( yi
N

)]
.

A direct computation shows that the commutation relations of [X, ξs,γ ] = 0, [d, ξs,γ ] = sξs,γ

and ads+1(∆0)(ξs,γ) = 0 are preserved, which finishes the proof.

6.4.3 Reductions

Assume that l is finite dimensional and we have a reductive decomposition l = h⊕m, i.e. h ⊂ l

is a subalgebra and m ⊂ l is a vector subspace such that [h,m] ⊂ m. We also assume that
tl = th + tm with th =

∑
ν̄ eν̄ ⊗ eν̄ ∈ S2(h)h and tm ∈ S2(m)h, and that for a generic h ∈ h,

ad(h)|m ∈ End(m) is invertible. This last condition means that

P (λ) := det(ad(λ∨))|m) ∈ Sdim(m)(h)
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is nonzero, where λ∨ := (λ⊗ id)(th) for any λ ∈ h∗.

We now define Hn(g, h∗reg). As in the previous paragraph, Diff(h∗) has generators x̄h, ∂̄h (h ∈ h)
and relations

x̄th+h′ = tx̄h + x̄h′ ,

∂̄th+h′ = t∂̄h + ∂̄h′ ,

[x̄h, x̄h′ ] = 0 = [∂̄h, ∂̄h′ ],

[∂̄h, x̄h′ ] = 〈h, h′〉,

and Diff(h∗reg) = Diff(h∗)[ 1
P ] with [∂̄l,

1
P ] = − [∂̄l,P ]

P 2 . One has a Lie algebra morphism

h −→ Diff(h∗);h 7−→ X̄h :=
∑
ν̄

x[h,eν̄ ] ∂eν̄ .

We denote by hdiag the image of the map

h 3 h 7−→ Ȳh := X̄h +

n∑
i=1

l(i) ∈ Diff(h∗reg)⊗ U(g)⊗n =: Bn,

and define Hn(g, h∗reg) as the Hecke algebra of Bn with respect to hdiag:

Hn(g, h∗reg) := (Bn)h/(Bnh
diag)h.

It acts in an obvious way on (Oh∗reg
⊗ (⊗ni=1Vi))

h if (Vi)1≤i≤n is a collection of g-modules.
Finally, let us set, for λ ∈ h∗,

r(λ) := (id⊗(adλ∨)−1
|m )(tm).

Then, following [38], r : h∗reg −→ ∧2(m) is an h-equivariant map satisfying the classical
dynamical Yang-Baxter equation (CDYBE)∑

ν̄

e
(1)
ν̄ ∂ν̄r

(23) + [r(12), r(13)] + c.p.(1, 2, 3) = 0 ,

and we write r =
∑
δ aδ ⊗ bδ ⊗ `δ ∈ (m⊗2 ⊗ S(h)[1/P ])h.

Proposition 6.4.3. There is a unique Lie algebra morphism ρg,h : tΓ1,n −→ Hn(g, h∗reg) given
by

xi 7−→M
∑
ν̄

x̄ν̄ ⊗ h(i)
ν̄ ,

yi 7−→ −N
∑
ν̄

∂̄ν̄ ⊗ h(i)
ν̄ +

∑
j

∑
δ

`δ ⊗ a(i)
δ b

(j)
δ ,

tαij 7−→ 1⊗ (α(1) · tg)(ij).

Proof. First of all, the images of the above elements are all h-invariant. As in [24], we will imply
summation over repeated indices, and adopt the following conventions: ∂̄eν̄ = ∂̄ν̄ , x̄eν̄ = x̄ν̄ ,
and 1⊗−’s and −⊗ 1’s may be dropped from the notation.



6.4. REALIZATIONS 211

In particular, ρg,h(x̄i) = h
(i)
ν̄ x̄ν̄ , ρg,h(ȳi) = −h(i)

ν ∂̄ν +
∑n
j=1 r(λ)(ij) (here, for x ⊗ y ∈ g⊗2,

(x⊗ y)(ii) := x(i)y(i)).

We will use the same presentation of t̄Γ1,n as in Lemma 4.3.5. The relations [x̄i, x̄j ] = 0 and
t̄αij = t̄−αji are obviously preserved.

Let us check that [x̄i, ȳj ] =
∑
t̄αij is preserved. We have for i 6= j,

1

MN
[ρg,h(x̄i), ρg,h(ȳj)] = −

∑
ν̄1,ν̄2

[x̄ν̄1 , ∂ν̄2 ]h
(i)
ν̄1
h

(j)
ν̄2

+
∑

ν̄, δ, kx̄ν̄ [h
(i)
ν̄ , `δ ⊗ a(j)

δ b
(k)
δ ]

= t
(ij)
h + t

(ij)
m = t

(ij)
l =

1

MN

∑
α∈Γ

α(i) · t(ij)g

by the same argument as in Proposition 6.4.1.

Let us check that
∑
i x̄i =

∑
i ȳi = 0 are preserved. We have

∑
i ρg,h(x̄i) = 0 and

∑
i ρg,h(ȳi) =∑

ν̄,i h
(i)
ν̄ ∂ν̄ (by the antisymmetry of r), which equals zero as in as in Proposition 6.4.1.

The fact that the relation [ȳi, ȳj ] = 0 is satisfied for i 6= j is a consequence of the dynamical
Yang-Baxter equation (this follows from the exact same argument as in the proof of [24,
Proposition 63]).

Next, [x̄i, t̄
α
jk] = 0 is preserved (i, j, k distinct). Indeed, we have

[ρg,h(x̄i), ρg,h(t̄αjk)] =
∑
ν̄

x̄ν̄ [h
(i)
ν̄ , α(i) · t(jk)

g ] = 0 .

Finally [ȳi, t̄
α
jk] = 0 is preserved (i, j, k distinct): we have

[ρg,h(ȳi), ρg,h(t̄αjk)] =[−
∑
ν̄

h
(i)
ν̄ ∂̄ν̄ +

∑
l

r(il), α(j) · t(jk)
g )]

=[r(λ)(ij) + r(λ)(ik), α(j) · t(jk)
g )] = 0 ,

where the last equality follows the the g-invariance of tg.

Remark 6.4.4. We expect that there is Lie algebra morphism redl,h : Hn(g, l∗) −→ Hn(g, h∗reg)

such that the following diagram commutes

tΓ1,n
ρg //

ρg,h
$$

Hn(g, l∗)

redl,h

��
Hn(g, h∗reg)

6.4.4 Elliptic dynamical r-matrix systems as realizations of the uni-
versal Γ-KZB system on twisted configuration spaces

Let K(z) be a meromorphic function on C with values in the subalgebra t̂Γ2,+ ⊂ t̂Γ1,2 generated
by x1, x2, tα12 (α ∈ Γ), such that K(−z) = −K(z)2,1 and satisfying the universal CDYBE with
a spectral parameter

−[y1,K(z23)2,3] + [K(z12)1,2,K(z13)1,3] + c.p.(1, 2, 3) = 0 .
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On the one hand, it follows from §6.4.1 that the image r(x, z) := ρg(K(z)) of K(z) under
ρg : t̂Γ2,+ −→ (Ôl∗ ⊗ g⊗2)l is a dynamical r-matrix2 with spectral parameter, i.e. a solution of
the CDYBE with a spectral parameter for the pair (l, g)∑

ν

e(1)
ν ∂νr(x, z23)(23) + [r(x, z12)(12), r(x, z13)(13)] + c.p.(1, 2, 3) = 0 ,

which satisfies r(x,−z) = −r(x, z)(21). On the other hand, the image of K(z) under ρg,h :

t̂Γ2,+ −→ (Ôh∗reg ⊗ g⊗2)h is precisely equal to the restriction ρg(K(z))|h∗ ∈ (Ôh∗reg ⊗ g⊗2)h of
ρg(K(z)) to h∗. Then applying [38, Proposition 0.1], we conclude that

r̃(x̄, z) := ρg,h(K(z)) + r(λ)

is a solution of the CDYBE with spectral parameter for (h, g):∑
ν̄

e
(1)
ν̄ ∂ν̄ r̃(x̄, z23)(23) + [r̃(x̄, z12)(12), r̃(x̄, z13)(13)] + c.p.(1, 2, 3) = 0 .

Then for any n-tuple V = (V1, . . . , Vn) of g-modules one has a flat connection ∇(V )
τ,n,Γ on the

trivial vector bundle over Cn −Diagτ,nΓ with fiber (Oh∗reg
⊗ (⊗iVi))h, defined by the following

compatible system of first order differential equations:

∂ziF (x̄, z) =
∑
ν̄

e
(i)
ν̄ · ∂̄ν̄F (x̄, z) +

∑
j:j 6=i

r̃(ij)(x̄, zij) · F (x̄, z) . (6.19)

Here z 7→ F (x̄, z) is a function with values in (Oh∗reg
⊗ (⊗iVi))h.

Starting from K(z) = K12(z) as in §6.1.3, it would be interesting to know if one can recover
(up to gauge equivalence), using the above realization morphisms, the generalization of Felder’s
elliptic dynamical r-matrices [44] constructed in [42, 43].

Letu develop a bit more this idea. Set K(z) = K12(z) like in §6.1.3 and focus on the case when
g is a simple Lie algebra. Let us introduce some standard notation: ∆+ is the set of positive
roots, (hi)i is an orthonomal basis of h = g0, and for any positive root α one has gα = Ceα
and g−α = Cfα with 〈eα, fα〉 = 1. Then one has

tg =
1

2

∑
i

hi ⊗ hi +
∑
α∈∆+

(eα ⊗ fα + fα ⊗ eα) .

Assume that θ(1̄, 0̄) = Ad(e2πiρ/κ), where ρ is the half-sum of positive roots and κ the dual
Coxeter number of g. Observe that this automorphisms can be defined alternatively by hi 7→ hi,
eα 7→ e2πi|α|/κeα and fα 7→ e−2πi|α|/κfα (here |α| is the lenght of the root α). Therefore l ⊂ h,

2Remember that Ol∗ := S(l) and Ôl∗ := Ŝ(l).
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and thus we can compute, writing β := θ(0̄, 1̄),

r(x, z) =
1

κN

∑
γ∈Γ

kγ(ad(x∨)(1), z)(γ(1) · tg)

=
1

κN

∑
k=0,...,κ−1
l=0,...,N−1

( ∑
α∈∆+

(
e−2πil〈x,α〉 θ(z − k

κ − lτ
N + 〈x, α〉)

θ(z − k
κ − lτ

N )θ(〈x, α〉)e
2πik|α|/κβl(eα)⊗ fα

+e2πil〈x,α〉 θ(z − k
κ − lτ

N − 〈x, α〉)
θ(z − k

κ − lτ
N )θ(−〈x, α〉)e

−2πik|α|/κβl(fα)⊗ eα
)

+
∑
i

θ′

θ
(z − k

κ
− lτ

N
)βl(hi)⊗ hi

)
.

This should correspond to the generalization of Felder’s elliptic dynamical r-matrices.

Example 6.4.5. If g = sln and θ(0̄, 1̄) is the conjugation by the cyclic permutation (1 · · ·n)

(hence we have M = N = n) then h = {0} and r(z) is Belavin’s elliptic solution of the classical
(non dynamical) Yang-Baxter equation [6]. In this case the Γ-KZB system realizes as the elliptic
KZ system [40] (see also [76, 79]).

6.4.5 Elliptic structures

Let H,B,D be algebras with units and morphisms ∆H : H −→ H ⊗H, ∆B : B −→ B ⊗H
and a : B −→ D. We also assume that H and B are augmented. We defines two sets of
nonassociative words: Wn is the set of words in the free magma generated by 0, 1, . . . , n,
containing 0, 1, . . . , n exactly once, and starting with 0, and Vn is the set of words in the
free magma generated by 1, . . . , n and containing 1, . . . , n exactly once. For any w ∈ Wn

(resp. v ∈ Vn) we can obviously associate an iterated coproduct ∆
(w)
B : B −→ B ⊗ H⊗n

(resp. ∆
(v)
H : H −→ H⊗n). By convention ∆

(∅)
B = εB and ∆

(∅)
H = εH .

Define Jw to be the left ideal in D ⊗ H⊗n generated by the image of B+ := ker(εB) by
(a⊗ id⊗n) ◦∆

(w)
B .

We then consider Hecke bimodules Hw,w′ := (D⊗H⊗n/Jw′)Jw , and write Hw := Hw,w. There
is an obvious composition morphism Hw,w′ ⊗Hw′,w′′ −→ Hw,w′′ . The symmetric group Sn

acts on the disjoint union of bimodules by permuting the last n factors. In other words for any
σ ∈ Sn on has an isomorphism σ∗ : Hw,w′ −→ Hσ(w),σ(w′), where σ(w) is obtained from w by
replacing i 6= 0 by σ(i). In particular for any fixed w0 we can define an algebra structure on
∪σ∈SnHw0,σ(w0)σ by (hσ)(h′σ′) = h(σ ∗ h′)σσ′.
Given words w ∈ Wn, w0 ∈ Wk0

, and vi ∈ Vki (i = 1, . . . , n), one can construct a new word
w(w0, v1, . . . , vn) by making the following substitutions: 0 ↔ w0, 0 6= i ↔ ṽi, where ṽi is
obtain from vi by replacing j ∈ {1, . . . , n} with

∑
l<i kl + j. We then define a morphism

Hw −→ Hw(w0,v1,...,vn) by

D ⊗H⊗n 3 h 7→ hw0,ṽ1,...,ṽn := (idD ⊗∆
(v1)
H ⊗ · · · ⊗∆

(vn)
H )(h) .

If (H,∆H ,ΦH) is a quasibialgebra then ΦH gives rise to an invertible (w.r.t. the composition
of Hecke bimodules) element of H0(1(23)),0((12)3) that induces an isomorphism H0((12)3) −→
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H0(1(23)) defined by X 7→ ΦHXΦ−1
H . Then given two words w = 0(v) and w′ = 0(v′) having the

same underlying associative word, one can use ΦH to construct an isomorphism Hw −→ Hw′ ;
moreover, all possible isomorphisms constructed in this way are equal, providing that ΦH

satisfies the pentagon identity.

If (B,∆B ,ΨB) is a quasicomodule algebra over H then ΨB gives rise to an invertible element of
H0(12),(0(1)2 that induces an isomorphism H(01)2 −→ H0(12) defined by X 7→ ΨBXΨ−1

B . Then
given two words w and w′ having the same underlying associative word, one can use ΦH and
ΨB to construct an isomorphism Hw −→ Hw′ ; moreover, all possible isomorphisms constructed
in this way are equal, providing that the pair (ΦH ,ΨB) satisfies the pseudotwist equation.

Recall ([33]) that if (H,∆H , RH ,ΦH) is a QTQBA and (B,EB ,ΨB) is a QRA quasireflection
algebra (QRA) over it then RH (resp. EB) gives rise to an element in H0(21),0(12) (resp. H01,01)
that induces an isomorphism H0(12) −→ H0(21) (resp. H01 −→ H01). Therefore one obtains
naturally a group morphism

B(1)
n −→ ∪σ∈Sn(Hw0,σ(w0))×σ ,

where B(1)
n is the braid group with n strands on C× and w0 any fixed word in Wn.
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Applications

7.1 Formality of subgroups of the pure braid group on the
torus

7.1.1 Relative formality

Let G and S be two affine groups over k and let ϕ : G −→ S be a surjective group morphism
with finitely generated kernel Kerϕ. We then consider the category of pro-algebraic groups
G′ under G, together with a surjective morphism ϕ′ : G′ −→ S with k-prounipotent kernel.
This category has an initial object, denoted ϕ(k) : G −→ G(ϕ,k), which we call the relative
(k-prounipotent) completion of G with respect to ϕ. One can easily check that the kernel
Ker

(
ϕ(k)

)
of ϕ(k) is the usual k-prounipotent completion

(
Kerϕ

)
(k) of the kernel of ϕ, which

we can therefore unambiguously denote Kerϕ(k).

Observe that this coincides with the partial completion defined [33, §1.1], and with the relative
completion defined in [62] (which is somehow slightly more general).

Lemma 7.1.1. If S is finite then the extension

1 −→ Kerϕ(k) −→ G(ϕ,k) −→ S −→ 1

splits.

Proof. We consider the filtration (Fi)i given by the lower central series of Kerϕ(k), and prove
by induction by induction that

1 −→ Kerϕ(k)/Fi −→ G(ϕ,k)/Fi −→ S −→ 1

splits.
Initial step (i = 2): Recall that F1 = Kerϕ(k), and that F1/F2 is abelian and finitely generated,
so that

1 −→ Kerϕ(k)/F2 −→ G(ϕ,k)/F2 −→ S −→ 1

215
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splits as every extension of a finite group by a finite dimensional representation splits (this is
because the cohomology of a finite group with coefficients in a divisible module vanishes).
Induction step: We have a (surjective) morphism of extensions

1 // Kerϕ(k)/Fi+1
//

��

G(ϕ,k)/Fi+1
//

��

S //

��

1

1 // Kerϕ(k)/Fi // G(ϕ,k)/Fi // S // 1

Assuming (by induction) that the bottom extension splits, we have that the corresponding
obstruction class in the first non-abelian cohomology H1

(
S,Kerϕ(k)/Fi

)
is trivial. Hence, by

exactness of

H1
(
S, Fi/Fi+1

)
−→ H1

(
S,Kerϕ(k)/Fi+1

)
−→ H1

(
S,Kerϕ(k)/Fi

)
we get that the obstruction class for the splitting of the top extension lies in the image of

H1
(
S, Fi/Fi+1

)
−→ H1

(
S,Kerϕ(k)/Fi+1

)
.

We conclude by using the vanishing of group cohomology of a finite group in a finite dimensional
representation.

The above Lemma tells us in particular that G(ϕ,k) ' Ker(ϕ)(k)oS, and justifies the following
definition from [33, §1.2].

Definition 7.1.2. If S is finite, we say that the surjective group morphism ϕ : G −→ S with
finitely generated kernel is relatively formal if there exists a group isomorphism

G(k, ϕ)−̃→ exp
(
ĝr Lie Kerϕ(k)

)
o S

over S. This is equivalent to having an S-equivariant formality isomorphism

Kerϕ(k)−̃→ĝr Lie Kerϕ(k) .

Example 7.1.3. The surjective morphism Bn � Sn is formal, where Bn is the standard n
strands braid group. This morphism, or rather the exact sequence

1 −→ PBn −→ Bn −→ Sn −→ 1 ,

can be deduced from the covering map Conf(C, n) −→ Conf(C, n)/Sn. It is interesting to say
that this relative formality result follows from [75] when k = C, and from [31] for k = Q. We
also refer to [62, Example 1.5] for interesting considerations about this example. More precisely,
one has an Sn-equivariant isomorphism PBn(k)−̃→ exp(̂tn).

Example 7.1.4. Let G = Z/NZ. From the covering map Conf(C×, n,G) −→ Conf(C×, n)/Sn

one also gets an exact sequence

1 −→ PBGn −→ B1
n −→ Gn oSn −→ 1 .

It follows from [33, §1.3–1.6] that the surjective morphism B1
n � GnoSn is formal. More pre-

cisely, Enriquez proves the existence of a GnoSn-equivariant isomorphism PBGn (k)−̃→ exp(̂tΓn).
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7.1.2 Relation between relative completion and completion of groupoids

In this paragraph we briefly compare the notion of relative k-prounipotent completion with the
k-prounipotent completion for groupoids defined in §2.5.7.

There is a functor that goes

• from the category of surjective morphisms G −→ S with finitely generated kernel and
with S a finite group.

• to the category of groupoids.

This functor sends ϕ : G −→ S to the groupoid G(ϕ) defined as follows:

• the set of objects of of G(ϕ) is S.

• for s, s′ ∈ S,
HomG(ϕ)(s, s

′) := {g ∈ G|ϕg = s−1s′}

• the multiplication of arrows in G(ϕ) is the multiplication in G.

Example 7.1.5. It is easy to check that G(Bn −→ Sn) is the colored braid groupoid CoB(n)

from [47, §5.2.8], which is an unparenthesized variant of PaB(n). Similarly:

• the groupoid
CoBN (n) := G

(
B1
n −→ (Z/NZ)n oSn

)
is an unparenthezised variant of the twisted parenthesized braid groupoid PaBN (n) from
§4.2.5.

• the groupoid
CoBe``(n) := G

(
B1,n −→ Sn

)
is an unparenthezised variant of the parenthezised elliptic braid groupoid PaBe``(n) from
§4.1.2.

• the groupoid
CoBΓ

e``(n) := G
(
B1,n −→ (Γn/Γ) oSn

)
is an unparenthezised variant of the twisted parenthezised elliptic braid groupoid PaBΓ

e``(n)

from §4.3.2.

We let the reader prove that the following is true:

ˆG(ϕ)(k) ' G
(
ϕ(k)

)
.

7.1.3 Subgroups of B1,n

For τ ∈ H and Γ = Z/MZ × Z/NZ, let Uτ,n,Γ ⊂ Cn − Diagτ,n,Γ be the open subset of
all z = (z1, . . . , zn) of the form zi = ai + τbi, where 0 < a1 < · · · < an < 1/M and
0 < b1 < · · · < bn < 1/N . If z0 ∈ Uτ,n,Γ then it both defines a point in the Γ-twisted
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configuration space Conf(Eτ,Γ, n,Γ) and in the (non twisted) unordered configuration space
Conf(Eτ,Γ, [n]):

z1
0

z2
0

z1
(1,0)

z1
(0,1)

BN

AM

Recall that the map

Conf(Eτ,Γ, n,Γ)� Conf(Eτ,Γ, [n])

is a a covering map with structure group Γn oSn. Hence we get a short exact sequence

1 −→ PBΓ
1,n −→ B1,n

ϕn−→ Γn oSn −→ 1 ,

where PBΓ
1,n := π1(Conf(Eτ,Γ, n,Γ), z0) and B1,n = π1

(
Conf(Eτ,Γ, [n]), z0

)
.

We will also consider PB1,n = π1

(
Conf(Eτ,Γ, n), z0

)
, and the short exact sequence

1 −→ PBΓ
1,n −→ PB1,n −→ Γn −→ 1

associated with the Γn-covering map

Conf(Eτ,Γ, n,Γ)� Conf(Eτ,Γ, n) .

Our main aim in this Section is to prove that the surjective morphism

B1,n � Γn oSn

is relatively formal, which in turns implies the relative formality of PB1,n −→ Γn, and the
formality of PBΓ

1,n.

Moreover, we will have an explicit description of the relative completion in terms of the Lie
algebra tΓ1,n.

7.1.4 The monodromy morphism B1,n −→ exp(̂tΓ1,n) o (Γn oSn)

The monodromy of the flat exp(̂tΓ1,n)o(ΓnoSn)-bundle (P(τ,Γ),[n],∇(τ,Γ),[n]) on Conf(Eτ,Γ, [n])

provides us with a group morphism

µz0,(τ,Γ),[n] : B1,n −→ exp(̂tΓ1,n) o (Γn oSn) .
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This actually fits into a morphism of short exact sequences

1 // PBΓ
1,n

//

��

B1,n
//

��

Γn oSn
// 1

1 // exp(̂tΓ1,n) // exp(̂tΓ1,n) o (Γn oSn) // Γn oSn
// 1

,

where the first vertical morphism is the monodromy morphism

µz0,τ,n,Γ : PBΓ
1,n −→ exp(̂tΓ1,n)

of associated with the flat exp(̂tΓ1,n)-bundle (Pτ,n,Γ,∇τ,n,Γ) on Conf(Eτ,Γ, n,Γ).

Indeed, this comes from the fact that ∇(τ,Γ),[n] is obtained by descent, from ∇τ,n,Γ and using
its equivariance properties (see §6.1.2). More precisely, the monodromy of ∇(τ,Γ),[n] along a
loop γ based at z0 in Conf(Eτ,Γ, [n]) can be computed along the following steps:

• First consider the unique lift γ̃ of γ departing from z0 ∈ Conf(Eτ,Γ, n,Γ). Note that it
ends at g · z0, g ∈ Γn oSn.

• Then compute the holonomy of ∇τ,n,Γ along γ̃: this is an element in exp(̂tΓ1,n), as ∇τ,n,Γ
is defined on a principal exp(̂tΓ1,n)-bundle obtained as a quotient of the trivial one on
Cn −Diagτ,n,Γ (see §6.1.1), that we abusively denote µz0,τ,n,Γ(γ̃).

• Finally, µz0,(τ,Γ),[n](γ) = gµz0,τ,n,Γ(γ̃).

Having such a morphism of exact sequences guaranties that it factors through a morphism

1 // P̂B
Γ

1,n(C) //

��

B̂1,n(ϕn,C) //

��

Γn oSn
// 1

1 // exp(̂tΓ1,n) // exp(̂tΓ1,n) o (Γn oSn) // Γn oSn
// 1

,

where B̂1,n(ϕn,C) is is the relative prounipotent completion of the morphism B1,n −→ ΓnoSn,
and P̂B

Γ

1,n(C) is the prounipotent completion of PBΓ
1,n.

We will call the vertical maps the completed monodromy morphisms.

In the remainder of this Section we will prove that these completed monodromy morphisms are
isomorphisms, which implies in particular the relative formality of B1,n −→ Γn oSn.

Theorem 7.1.6. The completed monodromy morphism

B̂1,n(ϕn,C) −→ exp(̂tΓ1,n) o (Γn oSn)

is an isomorphism. Equivalently, the completed monodromy morphism

P̂B
Γ

1,n(C) −→ exp(̂tΓ1,n)

is an isomorphism.
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Our aim now is to prove that Theorem 7.1.6, namely that the completed monodromy morphism

µ̂z0,τ,n,Γ(C) : P̂B
Γ

1,n(C) −→ exp(̂tΓ1,n)

is an isomorphism. For this we will prove that the induced morphism on Malcev Lie algebras

Lie(µz0,τ,n,Γ) : pbΓ
1,n −→ t̂Γ1,n

is an isomorphism of filtered Lie algebras.

7.1.5 A morphism tΓ1,n −→ gr(pbΓ
1,n)

Let us start with a few algebraic facts about PB1,n and PBΓ
1,n.

The group PB1,n is generated by the Xi’s and Yi’s (i = 1, . . . , n), where Xi (resp. Yi) is the
class of the path given by [0, 1] 3 t 7→ z0 − tδi/M (resp. [0, 1] 3 t 7→ z0 − tτδi/N). One
sees very easily that XM

i (resp. Y Ni ) is the class of the path given by [0, 1] 3 t 7→ z0 − tδi
(resp. [0, 1] 3 t 7→ z0 − tτδi), so that XM

i and Y Ni are elements of PBΓ
1,n. One has an obvious

inclusion PBn ↪→ PBΓ
1,n coming from the identification of C with the fundamental domain

{z = a+ bτ ∈ C|0 < a <
1

M
, 0 < b <

1

N
}

of Eτ,Γ.

Then one can check (by simply drawing) that the following relations are satisfied in PB1,n:

(T1) (Xi, Xj) = 1 = (Yi, Yj) (i < j),

(T2) (Xj , Y
−1
i ) = Pij = (Xi, Y

−1
j ) (i < j),

(T3) (Xn, Yn) = Pn−1,n · · ·P1n,

(T4) (Xi, Pjk) = 1 = (Yi, Pjk) (∀i, j < k),

(T5) (XiXj , Pij) = 1 = (YiYj , Pij) (i < j).

In particular PBn identifies with the subgroup of commutators in PB1,n. Moreover, one observes
that X1 · · ·Xn and Y1 · · ·Yn are central in PB1,n.

Now it follows from the geometric description of PBΓ
1,n that it is generated by XM

i , Y Ni
(i = 1, . . . , n) and Pαij := X−pj Y −qj PijY

q
j X

p
j (i < j, 1 ≤ p ≤ M , 1 ≤ q ≤ N and α = (p̄, q̄)).

One can for instance represent lifts of X3, Y3 and P (1̄,1̄)
12 in Conf(Eτ,Γ, n,Γ) as follows

P
12

(1̄,1̄)

X3

z1
z2

z3

Y3
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Observe that the standard descending filtration on t̂Γ1,n coincides with the descending filtration
coming from the grading of tΓ1,n defined in §4.3.3.

Proposition 7.1.7. There is a surjective graded Lie algebra morphism pn : tΓ1,n −→ gr(pbΓ
1,n),

sending

• xi 7−→ σ
(

log(XM
i )
)
for i = 1, . . . , n,

• yi 7−→ σ
(

log(Y Ni )
)
for i = 1, . . . , n,

• tαij 7−→ σ
(

log(Pαij)
)
for i < j,

• tαij 7−→ σ
(

log(P−αji )
)
for j < i,

where σ denotes the symbol map pbΓ
1,n −→ gr(pbΓ

1,n).

Proof. It is sufficient to check that the defining relations of tΓ1,n are preserved by the above
assignment.

The relation [xi, xj ] = 0 = [yi, yj ] is obviously preserved. Now using (T2) and the relation

(XM , Y N ) =

M−1∏
i=0

XM−i+1(

N−1∏
j=0

Y j(X,Y )Y −j)Xi−M−1

(which is true in the free group F2, and thus in any group) with X = Xi and Y = Yj (i 6= j),
one obtains that [xi, yj ] = [xj , yi] =

∑
α t

α
ij is preserved. Using (T3) one also obtains that

[x1, y1] = −∑α

∑
j:16=j t

α
1j is preserved. Now it is obvious that the centrality of

∑
i xi and∑

i yi is preserved, and thus it follows that [xi, yi] = −∑α

∑
j:j 6=i t

α
ij is also preserved for any

i ∈ {1, . . . , n}. For any α = (p̄, q̄) we compute

(XM
i , Pαjk) = XM

i X−pk Y −qk PjkY
q
kX

p
kX
−M
i X−pk Y −qk P−1

jk Y
q
kX

p
k

= X−pk (XM
i , Y −qk )Y −qk XM

i PjkX
−M
i Y qk (XM

i , Y −qk )−1Y −qk P−1
jk Y

q
kX

p
k

= X−pk (XM
i , Y −qk )Y −qk PjkY

q
k (XM

i , Y −qk )−1Y −qk P−1
jk Y

q
kX

p
k .

One sees that the log of the l.h.s. lies in (pbΓ
1,n)3 and its symbol is equal to [σ(log(XM

i )), σ(log(Pαjk))],
and that the log of the r.h.s. lies in (pbΓ

1,n)4. Hence one obtains that [xi, t
α
jk] = 0 is preserved.

The proof that [yi, t
α
jk] = 0 is preserved is identical, and the proof that [xi + xj , t

α
ij ] = 0 =

[yi + yj , t
α
ij ], [tαij , t

β
kl] = 0 and [tαij , t

α+β
ik + tβjk] = 0 are preserved is very similar.

7.1.6 The formality of PBΓ
1,n (end of the proof of Theorem 7.1.6)

To prove that Lie(µz0,τ,n,Γ) is an isomorphism, it is sufficient to prove that it is an isomorphism
on associated graded. According to Proposition 7.1.7, we simply have to prove that φ :=

grLie(µz0,τ,n,Γ) ◦ pn is an isomorphism of graded Lie algebras.

We will actually be more specific on prove the following:

Lemma 7.1.8. We have φ(xi) = −yi, φ(yi) = 2πixi − τyi and φ(tαij) = 2πitαij. In particular,
φ is an automorphism.
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Proof. Recall that µz0,τ,n,Γ can be computed as follows. Let Fz0
: Uτ −→ exp(̂tΓ1,n) be such

that (∂/∂zi)Fz0
(z) = KΓ

i (z|τ)Fz0
(z) ,

Fz0
(z0) = 1 .

Then consider

HΓ
τ,n :=

{
z = (z1, ..., zn)|zi = ai + τbi, 0 < an < ... < a1 <

1

M

}
and

V Γ
τ,n :=

{
z = (z1, ..., zn)|zi = ai + τbi, 0 < bn < ... < b1 <

1

N

}
.

Let FH
Γ

z0
(resp. FV

Γ

z0
) be the analytic prolongations of Fz0

to HΓ
τ,n (resp. V Γ

τ,n). Then

F
HΓ
τ

z0 (z− δi) = F
HΓ
τ

z0 (z)µz0,τ,n,Γ(XM
i ) and e2πixiF

V Γ
τ

z0 (z− τδi) = F
V Γ
τ

z0 (z)µz0,τ,n,Γ(Y Ni ) .

Knowing that logF
HΓ
τ

z0 (z) = −∑i(zi − z0
i )yi + terms of degree ≥ 2, we get

logµz0,τ,n,Γ(XM
i ) = −yi + terms of degree ≥ 2

and

logµz0,τ,n,Γ(Y Ni ) = 2πixi − τyi + terms of degree ≥ 2 .

This gives us that φ(xi) = −yi and φ(yi) = 2πixi − τyi.

In order to compute logµz0,τ,n,Γ(Pαij), which is also equal to logµz0,(τ,Γ),n(Pαij), we will need
to compute µz0,(τ,Γ),n(Xi), µz0,(τ,Γ),n(Yi) and µz0,(τ,Γ),n(Pij):

• As usual, we have

µz0,(τ,Γ),n(Pij) = exp(2πit0ij + terms of degree ≥ 3) ,

where 0 = (0̄, 0̄).

• We also have

FH
Γ

z0
(z +

δi
M

) = (1̄, 0̄)iF
HΓ

z0
(z)µz0,(τ,Γ),n(Xi) ,

which implies that

µz0,(τ,Γ),n(Xi) ∈ (−1̄, 0̄)i exp(tΓ1,n) .

• We finally have

e2πi
xi
N FV

Γ

z0
(z +

τδi
N

) = (0̄, 1̄)iF
V Γ

z0
(z)µz0,(τ,Γ),n(Yi) ,

which implies that

µz0,(τ,Γ),n(Yi) ∈ (0̄, −̄1)i exp(tΓ1,n) .
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Hence, if α = (p̄, q̄) ∈ Γ, then

µz0,(τ,Γ),n(X−pi Y −qj ) = g(p̄, 0̄)i(0̄, q̄)j ,

with g ∈ exp(tΓ1,n), and

µz0,(τ,Γ),n(Y qj X
p
i ) = (0̄, −̄q)j(−̄p, 0̄)ig

−1 .

Therefore

µz0,(τ,Γ),n(Pαij) = g(p̄, 0̄)i(0̄, q̄)j exp(t0ij)(0̄, −̄q)j(−̄p, 0̄)ig
−1

= g exp(tαij + terms of degree ≥ 3)g−1 .

This shows that logµz0,(τ,Γ),n(Pαij) = tαij + terms of degree ≥ 3, so that φ(tαij) = 2πitαij . This
ends the proof of the Lemma.

7.2 The KZB ellipsitomic associator

First of all, recall that t̄Γ1,2 is the Lie C-algebra generated by x := x1, y := y2 and tα := tα12, for
α ∈ Γ, such that [x, y] =

∑
α∈Γ t

α. We define the KZB ellipsitomic associator as the couple
eΓ(τ) := (AΓ(τ), BΓ(τ)) ∈ exp(̂̄tΓ1,2)× exp(̂̄tΓ1,2) consisting in the renormalized holonomies from
the straight paths from 0 to 1/M and from 0 to τ/N respectively of the differential equation

J ′(z) = −
∑
α∈Γ

e−2πiax θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα) · J(z), (7.1)

with values in the group exp(̂̄tΓ1,2)oΓn/Γ. More precisely, for all α ∈ Γ and α̃ = (a0, a) ∈ Λτ,Γ a
lift of α, this equation has a unique solution Jα(z) defined over {α̃+ s1

M + s2
N τ, for s1, s2 ∈]0, 1[}

such that we have
Jα(z) ' (−2πi(z − α̃))e

−2πia ad(x)tα

at z − α̃ −→ 0. By denoting J(z) := J0(z) we define

AΓ(τ) := J(z)−1(1̄, 0̄)J(z +
1

M
) = J(z)−1θ(1̄, 0̄) · (J(z +

1

M
))(1̄, 0̄) ∈ exp(̂̄tΓ1,2) o Γn/Γ.

Then the A-associator AΓ is

AΓ(τ) := J(z)−1θ(1̄, 0̄) · J(z +
1

M
) ∈ exp(̂̄tΓ1,2).

In the same way, we define

BΓ(τ) := J(z)−1(0̄, 1̄)e
2π i
N xJ(z +

τ

N
) = J(z)−1θ((0̄, 1̄)) · (e 2π i

N xJ(z +
τ

N
))(0̄, 1̄),

and the B-associator is then

BΓ(τ) := J(z)−1θ((0̄, 1̄)) · (e 2π i
N xJ(z +

τ

N
)) ∈ exp(̂̄tΓ1,2).
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We have Ap ∈ exp(̂tΓ1,2)(p̄, 0̄). Indeed, one checks for example that

A3 = A ·A ·A ·
= A(1̄, 0̄)A(1̄, 0̄)A(1̄, 0̄)

= A(θ((1̄, 0̄)) ·A)(θ((2̄, 0̄)) ·A(3̄, 0̄))

= A(θ((1̄, 0̄)) ·A)(θ((2̄, 0̄)) ·A)(3̄, 0̄).

Now, let p, q ≥ 1. Define A(p) and B(q) such that Ap = A(p)(p̄, 0̄) and Bq = A(q)(0̄, q̄). These
are elements of exp(̂tΓ1,2) and we have

A(p) =

→∏
k=0,...,p−1

(θ((k̄, 0̄)) ·A) = A(θ((1̄, 0̄)) ·A)(θ((2̄, 0̄)) ·A) · · · (θ((p− 1, 0̄)) ·A)

and

B(q) =

→∏
k=0,...,q−1

(θ((0̄, k̄)) ·B) = B(θ((0̄, 1̄)) ·B)(θ((0̄, 2̄)) ·B) · · · (θ((0̄, q − 1)) ·B).

Recall from Theorem 4.3.10 that the set of ellipsitomic associators EllΓ(k) can be regarded

either as the set of Γ-equivariant P̂aB(k)-module isomorphisms P̂aB
Γ

e``(k) −→ GPaCDΓ
e``(k)

which are the identity on objects or either as tuples (λ,Φ, AΓ, BΓ), where (λ,Φ) ∈ Ass(k) and
AΓ, BΓ ∈ exp(̂̄tΓ1,2(k)), satisfying relations (tN1), (tN2) and (tE). We are ready to show that
the set EllΓ(C) is not empty. Write EllΓKZB := EllΓ(C)×Ass(C) {2πi,ΦKZ}.

Theorem 7.2.1. There is an analytic map

h −→ EllΓKZB

τ 7−→ eΓ(τ) = (AΓ(τ), BΓ(τ)).

In particular, for each τ ∈ h, the element (2πi,ΦKZ, A
Γ(τ), BΓ(τ)) is an ellipsitomic C-

associator (i.e. it belongs to EllΓ(C)).

The rest of this section is devoted to the proof of the above theorem.

7.2.1 The solution F
(n)
Γ (z|τ)

The ellipsitomic KZB system is

(∂/∂zi)F
Γ(z|τ) = K̄Γ

i (z|τ)FΓ(z|τ), (∂/∂τ)FΓ(z|τ) = ∆̄Γ(z|τ)FΓ(z|τ),

where FΓ(z|τ) is a function (Cn ×H)−∆n,Γ ⊃ U −→ Gn oSn invariant under translation by
C(
∑
i δi). Let

DΓ
n :=

{
(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 < ... < an < a1 +

1

M
, b1 < b2 < ... < bn < b1 +

1

N

}
.
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Then DΓ
n ⊂ (Cn × H)−∆n,Γ is simply connected and invariant under C(

∑
i δi). A solution of

the ellipsitomic KZB system on this domain is then unique, up to right multiplication by a
constant. We now determine a particular solution F (n)

Γ (z|τ) of the ellipsitomic KZB system.

Let us denote zij = z0
i − z0

j and let us compute the expansions of K̄i(z|τ) and ∆̄(z|τ) in the
region zij � 1, τ → i∞. We have

K̄i(z|τ) = −ȳi +
∑
j;j 6=i

∑
α∈Γ

(
e−2πia ad(x̄i)

θ(zi − zj − α̃+ ad(x̄i); τ)

θ(zi − zj − α̃; τ)θ(ad(x̄i); τ)
− 1

ad(x̄i)

)
(t̄αij)

=
∑
j;j 6=i

∑
α∈Γ

(
1

ad(x̄i)
+

t̄αij
zi − zj − α̃

− 1

ad(x̄i)

)
(t̄αij) +O(1)

=
∑
j;j 6=i

∑
α∈Γ

t̄αij
zi − zj − α̃

+O(1) =
∑
j;j 6=i

∑
α∈Γ

t̄αij
zi − zj − a0

M

+O(1)

Notice the resemblance with the function which defines the universal cyclotomic KZ connection
defined in [33, Section 1.4].

For the expansion of ∆̄, recall that if γ ∈ Γ and γ̃ = (c0, c) ∈ Λτ,Γ is any lift of γ, we have
gγ(z, x|τ) := ∂xkγ(z, x|τ) and

g−γ(0, x|τ) =
∑
s≥0

As,γ(τ)xs.

We then have

∆̄Γ(z|τ) =
−1

2iπ

∆0 +
1

2

∑
s>0

∑
γ∈Γ

As,γ(τ)

δs,γ + 2
∑
i,j:i<j

ad(x̄i)
s(t̄−γij )

+ o(1),

for zij � 1 and any τ ∈ H.

In section 13 we will relate As,γ(τ) to Eisenstein-Hurwitz series which have a qN -expansion
and we define the normalized version Ãs,γ(τ) of the twisted Eisenstein series As,γ(τ) such that

As,γ(τ) = as,γÃs,γ(τ),

and such that we have an expansion Ãs,γ(τ) = 1 +
∑
l>0 akl,γe

2πilτ/N as τ −→ i∞. Then, by
applying Proposition 3 in Appendix A of [24] with un = zn1, un−1 = zn−1,1/zn1,..., u2 = z21/z31,
u1 = q(τ) = e2πiτ/N , we obtain a unique solution F (n)

Γ (z|τ) with the expansion

F
(n)
Γ (z|τ) 'zt̄

0
12

21 z
t̄013+t̄023
31 ...z

t̄01n+...+t̄0n−1,n

n1

exp

− τ

2πi

∆0 +
1

2

∑
s≥0,γ∈Γ

as,γ

δs,γ − 2
∑
i<j

ads(x̄i)(t̄
−γ
ij )


in the region z21 � z31 � ...� zn1 � 1, τ −→ i∞, (z, τ) ∈ DΓ

n. The sign ' means here that
any of the ratios of both sides is of the form

1 +
∑
k>0

∑
i,a1,...,an

ri,a1,...,an
k (u1, ..., un),
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where the second sum is finite with ai ≥ 0, i ∈ {1, ..., n}, ri,a1,...,an
k (u1, ..., un) has degree k,

and is O(ui(log u1)a1 ...(log un)an). We denote F ([n])
Γ the solution with values on Gn o (ΓnSn)

induced by F (n)
Γ

7.2.2 A presentation of B̄
Γ
1,n

We use the same presentation of B̄1,n coming from [24] that we used in the proof of Theorem 4.3.2.
Let us define BΓ

1,n := π1(Conf(Eτ,Γ, [n],Γ), [z0]) and recall that B1,n = π1(Conf(Eτ,Γ, [n]), [z0]).
Now, since the canonical surjective map Conf(Eτ,Γ, [n],Γ) � Conf(Eτ,Γ, [n]) defines a Γ-
covering, then BΓ

1,n = ker(ρ), where ρ : B1,n −→ Γ sends σi to 0 = (0̄, 0̄), Ai to (1̄, 0̄) and
Bi to (0̄, 1̄). If AMi (resp. BNi ) is the class of the path given by [0, 1] 3 t 7→ z0 + t

∑n
j=i δi

(resp. [0, 1] 3 t 7→ z0 + tτ
∑n
j=i δi), then it follows from the geometric description of BΓ

1,n that
AMi , BNi (i = 1, . . . , n) and

Rαij := X−pj Y −qj CijY
q
j X

p
j

(for i < j, 1 ≤ p ≤M , 1 ≤ q ≤ N and α = (p̄, q̄)) are generators of BΓ
1,n.

We denote again AMi and BNi (i = 1, ..., n) for the projections of these elements to B̄
Γ
1,n.

7.2.3 The monodromy morphism γn : B1,n −→ GΓ
n o (Γn oSn)

The monodromy of the flat GΓ
n o (Γn oSn)-bundle (PΓ,[n],∇Γ,[n]) onM1,[n] provides us with

a group morphism

µz0,Γ,[n] : π1(MΓ
1,n/(Γ

n oSn)) −→ GΓ
n o (Γn oSn),

where π1(MΓ
1,n/(Γ

n oSn)) is the mapping class group (i.e. the orbifold fundamental group)
associated toMΓ

1,n/(Γ
n oSn). This actually fits into a morphism of short exact sequences

1 // PBΓ
1,n

//

��

B1,n
//

��

Γn oSn
// 1

1 // MCGΓ
1,n

//

��

π1(MΓ
1,n/(Γ

n oSn)) //

��

Γn oSn
// 1

1 // GΓ
n

// GΓ
n o (Γn oSn) // Γn oSn

// 1

,

where MCGΓ
1,n := π1(MΓ

1,n) is the mapping class group associated toMΓ
1,n, the top vertical

arrows are injections and the bottom first vertical morphism is the monodromy morphism

µz0,n,Γ : MCGΓ
1,n −→ GΓ

n

of associated with the flat GΓ
n-bundle (Pn,Γ,∇n,Γ) onMΓ

1,n.

Indeed, this comes from the fact that ∇Γ,[n] is obtained by descent, from ∇n,Γ and using its
equivariance properties of Proposition 6.3.14. We denote

γ̃Γ
n : PBΓ

1,n −→ GΓ
n
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and
γΓ
n : B1,n −→ GΓ

n o (Γn oSn)

the corresponding vertical composites.

Let FΓ(z|τ) be a solution of the ellipsitomic KZB system defined on DΓ
n with values in GΓ

noΓn.
Let us consider the domains

HΓ
n :=

{
(z, τ) ∈ Cn × H|zi = ai + biτ, ai, bi ∈ R, a1 < a2 < ... < an < a1 +

1

M

}
and

V Γ
n :=

{
(z, τ) ∈ Cn × H|zi = ai + biτ, ai, b1 < b2 < ... < bn < b1 +

1

N

}
.

Both of these domains are simply connected and invariant. We denote FHΓ (z|τ) and FVΓ (z|τ)

the prolongations of FΓ(z|τ) to these domains.

Then

(z, τ) 7−→ FHΓ

z +

n∑
j=i

δi
M
|τ


(z, τ) 7−→ e2πi

(x̄i+...+x̄n)

N FVΓ

z + τ(

n∑
j=i

δi
N

)|τ


are solutions of the ellipsitomic KZB system on HΓ

n and V Γ
n respectively. Let us define

AFi , B
F
i ∈ GΓ

n o Γn by

FHΓ

z +

n∑
j=i

δi
M
|τ

 =

n∏
j=i

(1̄, 0̄)jF
H
Γ (z|τ)AFi ,

e2πi
(x̄i+...+x̄n)

N FVΓ

z + τ(
n∑
j=i

δi
N

)|τ

 =
n∏
j=i

(0̄, 1̄)jF
V
Γ (z|τ)BFi .

We also define σFi ∈ Sn by means of

σiFΓ(σ−1
i z|τ) = FΓ(z|τ)σFi ,

where, on the left hand side, FΓ is extended to the universal cover of (Cn×h)−Diagn,Γ. Notice
that σi exchanges z0

i and z0
i+1, z0

i+1 passing to the right of z0
i . Its monodromy is given by

eπit0i(i+1) .

Let us denote Xp
i := Api (A

p
i+1)−1 and Y qi := Bqi (B

q
i+1)−1, X(p)

i := A
(p)
i (A

(p)
i+1)−1 and Y (q)

i :=

B
(q)
i (B

(q)
i+1)−1 and recall that θ((−α)j) · t̄0ij = t̄αij .

Lemma 7.2.2. The morphism γ̃n : PBΓ
1,n −→ GΓ

n induced by the solution FΓ takes AMi to
(AFi )M , BNi to (BFi )N . Let us denote Rαij := X−pj Y −qj CijY

q
j X

p
j for all α = (p̄, q̄) ∈ Γ and

denote X̃
p

i := γ̃n(Xp
i ) and Ỹ

q

i := γ̃n(Xq
i ). Then Rαij is sent via γ̃n to

R̃
α

ij = g1(p̄, 0̄)j(0̄, q̄)je
2πit0ij (0̄, −̄q)j(−̄p, 0̄)jg

−1
1
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and σαi is sent via γ̃n to

C̃
α

i = g2(p̄, 0̄)i+1(0̄, q̄)i+1e
πit0i,i+1(0̄, −̄q)i(−̄p, 0̄)ig

−1
2

Proof. This follows from the geometric description of the generators of B1,[n]: if (z0, τ0) ∈ DΓ
n,

then Ai is the class of the projection of the path [0, 1] 3 t 7→ (z0 + t
∑n
j=i(δj/M), τ0) and Bi

is the class of the projection of [0, 1] 3 t 7→ (z0 + tτ
∑n
j=i(δj/N), τ0). Finally, as paths in HΓ

n ,
AM and A(M) are homotopic. Likewise, as paths in V Γ

n , BN and B(N) are homotopic.

Thus, following the same conventions as before, we set the following elements in GΓ
n

R̃αij := g1 =

p−1∏
l=0

(θ((p− l, q̄))·X−1
j )

q−1∏
l=0

(θ((0̄, q − l))·Y −1
j )e2πit0ij

q−1∏
l=0

(θ((0̄, l̄))·Yj)
p−1∏
l=0

(θ((l̄, q̄))·Xj),

and

C̃αi := g2 =

p−1∏
l=0

(θ((p− l, q̄))·X−1
i+1)

q−1∏
l=0

(θ((0̄, q − l))·Y −1
i+1)eπit0i,i+1

q−1∏
l=0

(θ((0̄, l̄))·Yi)
p−1∏
l=0

(θ((l̄, q̄))·Xi).

We will denote by γ̃n : PBΓ
1,n −→ GΓ

n the morphism induced by the solution F (n)
Γ (z|τ) and

γn : B1,n −→ GΓ
n o (Γn oSn) the one induced by F ([n])

Γ .

7.2.4 Expression of γn : B1,n −→ GΓ
n o (Γn oSn) using γ1 and γ2

Lemma 7.2.3. γ̃2(AM2 ) and γ̃2(BN2 ) belong to exp(̂̄tΓ1,2) ⊂ GΓ
2 .

Proof. If FΓ(z|τ) : HΓ
2 −→ GΓ

2 is a solution of the ellipsitomic KZB equation for n = 2, then
AF2 = FHΓ (z−δ2|τ)FHΓ (z|τ)−1 is the iterated integral, from z0 ∈ DΓ

n to z0−δ2, of K2(z|τ) ∈ t̂Γ1,2.
Thus, AF2 ∈ exp(̂tΓ1,2). Then, as γ2(AM2 ) is a conjugate of (AF2 )M , it belongs to exp(̂tΓ1,2) as
exp(̂tΓ1,2) ⊂ GΓ

2 oS2 is normal. One proves in the same way that γ2(BN2 ) ∈ exp(̂tΓ1,2).

We let the reader check that the above lemma remains true in the reduced case.

7.2.5 Algebraic relations for the ellipsitomic KZB associator

Let us set
Φi := Φ1...i−1,i,i+1...n...Φ1...n−2,n−1,n ∈ exp(̂tn),

and denote by x 7→ {x} the morphism exp(̂tn) −→ exp(̂tΓ1,n) induced by tij 7→ t0ij .

Proposition 7.2.4. If n ≥ 3, then

γn(Ai) = {Φi}γ2(A2)1...i−1,i...n(1̄, 0̄)i{Φi}−1,

γn(Bi) = {Φi}γ2(B2)1...i−1,i...n(0̄, 1̄)i{Φi}−1, (i = 1, ..., n),
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and

γn(σαi ) = g2(p̄, 0̄)i+1(0̄, q̄)i+1e
πit0i,i+1(0̄, −̄q)i(−̄p, 0̄)ig

−1
2

where i = 1, ..., n− 1, and α = (p̄, q̄).

Proof. Let GΓ
i (z|τ) be the solution of the elliptic Γ-KZB system, such that

GΓ
i (z|τ) =z

t012
21 ...z

t012+...+t01,i−1

i−1,1 z
t0i,n+...+t0n−1,n

n,i ...z
t0n−1,n

n,n−1

× exp

− τ

2πi

∆0 +
1

2

∑
s≥0,γ∈Γ

as,γ

δs,γ − 2
∑
i<j

ads(xi)(t
−γ
ij )

 ,

when z21 � ... � zi−1,1 � 1, zn,n−1 � ... � zn,i � 1, τ −→ i∞ and (z, τ) ∈ DΓ
n (we set

zij = z0
i − z0

j as before). Then

GΓ
i (z +

n∑
j=i

δi|τ) =

n∏
j=i

(1̄, 0̄)jG
Γ
i (z|τ)γ2(AM2 )1...i−1,i...n,

because in the domain considered Ki(z|τ) is close to K2(z1, zn|τ)1...i−1,i...n (where K2(...)

corresponds to the 2-point system); on the other hand, FΓ(z|τ) = GΓ
i (z|τ){Φi}, which implies

the formula for γn(Ai). The formula for γn(Bi) is proved in the same way. Finally, the behavior
of F (n)

Γ (z|τ) for z0
21 � ...� z0

n1 � 1 is similar to that of a solution of the KZ equations and
we know that the twisted elliptic KZB connection is Γ-equivariant. This implies the formula
for γn(σαi ).

Let us now finish the proof of Theorem 7.2.1. We set, for α ∈ Γ,

θ((α)i) ·A10,20,...,i0,...,n0 = A10,20,...,iα,...,n0 .

changer a partir d’ici

Set Ã := γ2(A2), B̃ := γ2(B2). The image of the relation

A2(θ((1̄, 0̄)1) ·A−1
3 ) = (σα1 )−1θ((−α)1) · (A−1

2 (σα1 )−1)

by γ3 yields

Ã12,3 = {Φ}1,2,3Ã1,23θ((1̄, 0̄)1) ·(
({Φ}1,2,3)−1C̃α1 θ((α)2)

(
{Φ}2,1,3Ã2,13θ ((1̄, 0̄)2) · (({Φ}2,1,3)−1C̃α1 )

))
.

This relation can be depicted as follows:
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(10

(1γ

20)

2γ)

30

30

A12,3

γ =

(10

(1γ

20)

2γ)

30

30

A1,23

γ

α

A2,13

γ

α

(TNAbis)

where γ = (1̄, 0̄) and α ∈ Γ. In the same way, we obtain

B̃12,3 = {Φ}1,2,3B̃1,23θ((0̄, 1̄)1) ·(
({Φ}1,2,3)−1(C̃α1 )−1θ((α)2)

(
{Φ}2,1,3B̃2,13θ ((0̄, 1̄)2) · (({Φ}2,1,3)−1(C̃α1 )−1)

))
Accordingly, the image by γ3 of the lift of the relation (B3, A3A

−1
2 ) = (B3B

−1
2 , A3) = C23 to

B̄
Γ
1,n then gives

B̃12,3θ((0̄, 1̄)1,2)
(

Φ(Ã1,23)−1θ((−1, 0̄)1)
(

Φ−1Ã12,3θ((1̄, 0̄)1,2)
(

(B̃12,3)−1θ
((

0̄,−1
)

1,2

)
·X
)))

= Φ(B̃1,23)−1θ((0̄,−1)1)
(

Φ−1B̃12,3θ((0̄, 1̄)1,2)
(
Ã12,3θ((1̄, 0̄)1,2)

(
(B̃12,3)−1θ

(
(0̄,−1)1,2

)
· Y
)))

= Φ−1e2πit̄123Φ,

where 1 = (1̄, 1̄),

X = ((Ã12,3)−1Φ−1θ((−1, 0̄)1,2)(ΦÃ1,23θ((1̄, 0̄)1)Φ−1)),

and

Y = (ΦB̃1,23θ((0̄, 1̄)1)((Φ)−1(Ã12,3)−1)).

One can simply draw the l.h.s. of these double equation as follows: we simplify the paths by
just neglecting the associators and we suppose that the central portion of the torus corresponds
to the (0̄, 0̄)-labelled region with respect to the sublattice Λτ,Γ. Then we enumerate the different
movements (read from left to right in the l.h.s of the equation) of the marked points in the
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twisted configuration space:

z3
0

z2
0

z1
0

z3
(1,1)

z2
(1,0)

3
2

5

1
14

3

5

46

We can see that the z0
2 is only braided with z0

3 since z0
1 moved to z(0̄,1̄)

1 in the first movement.

By applying x 7→ x∅,1,2, this identity implies

Ã(θ((1̄, 0̄)) · B̃)(θ((1̄, 1̄)) · Ã−1)(θ((0̄, 1̄)) · B̃−1
) = e−2πit̄012 .

Since the universal twited elliptic KZB connection is Γ-equivariant, then this equations are
also Γ-equivariant. Now, let us denote

S = B̃12,3θ((0̄, 1̄)1,2)
(

Φ(Ã1,23)−1θ((−1, 0̄)1)
(

Φ−1Ã12,3θ((1̄, 0̄)1,2)
(

(B̃12,3)−1θ
((

0̄,−1
)

1,2

)
·X
)))

.

We then have

e−2πi
∑M−1
i=0 t̄

(ī,0̄)
12 =

SA1θ((1, 0̄)1,2,3) · (SA−1
1 )A

(2)
1 θ((2, 0̄)1,2,3) · (SA−2

1 ) · · ·A(M−1)
1 θ((M − 1, 0̄)1,2,3) · (SA−(M−1)

1 ).

Now denoting by T the r.h.s of this equation we get

e−2πi
∑
α∈Γ t̄

α
12 =

TB1θ((0, 1̄)1,2,3) · (TB−1
1 )B

(2)
1 θ((0, 2̄)1,2,3) · (TB−2

1 ) · · ·B(N−1)
1 θ((0̄, N − 1)1,2,3) · (TB−(N−1)

1 ).

By taking the log of this last equation we retrieve relation [x1, y2] =
∑
α∈Γ t̄

α
12. In the same

way, one can show that A(M) satisfy the elliptic first nonagon equation. The same will be
satisfied by B(N). The elliptic mixed equation for n = 2 will be then written as

(Ã(M), B̃(N)) = e
−2πi

∑
β∈Γ

t̄β12

.

Finally, one can see that if we take Γ to be trivial, we retrieve equations (22), (23), (24), (25)
and (26) in [24].



232 CHAPTER 7. APPLICATIONS

In order to finish the proof of Theorem 7.2.1, one has to take different boundary conditions for

our KZB solutions. The couple eΓ(τ) := (AΓ(τ), BΓ(τ)) ∈ exp(̂t
Γ

1,2)× exp(̂t
Γ

1,2) is defined by

AΓ(τ) := J(z)−1θ(1̄, 0̄)J(z +
1

M
), BΓ(τ) := J(z)−1θ(0̄, 1̄)e

2πi
N xJ(z +

τ

N
),

where J(z) is the unique solution defined over { aM + b
N τ, for a, b ∈]0, 1[} such that we have

J(z) ' (−2πiz)t
0

at z −→ 0. The couple (ÃΓ, B̃Γ) ∈ exp(̂t
Γ

1,2)× exp(̂t
Γ

1,2) is defined by

ÃΓ := J̃(z)−1θ(1̄, 0̄)J̃(z +
1

M
), B̃Γ := J̃(z)−1θ(0̄, 1̄)e

2πi
N xJ̃(z +

τ

N
),

where J̃(z) is the unique solution defined over { aM + b
N τ, for a, b ∈]0, 1[} such that we have

J̃(z) ' zt0ϕ(τ) at z −→ 0, where

ϕ(τ) := exp

− τ

2πi

∆0 +
1

2

∑
s≥0,γ∈Γ

as,γ ξ̄
(2)
s,γ

 .

Thus, we have J(z) = (−2πi)t
0

J̃(z)ϕ(τ)−1 and J̃(z) = (−2πi)−t
0

J(z)ϕ(τ). We compute

(1̄, 0̄)J(z +
1

M
)J(z)−1 = (−2πi)t

0

(1̄, 0̄)J̃(z +
1

M
)ϕ(τ)−1ϕ(τ)J̃(z)−1(−2πi)−t

0

(1̄, 0̄)J(z +
1

M
)J(z)−1 = Ad((−2πi)t

0

)((1̄, 0̄)J̃(z +
1

M
)J̃(z)−1)

This means that AΓ(τ) = Ad((−2πi)t
0

)((1̄, 0̄)Ã
Γ
). The same argument for BΓ(τ) and B̃

Γ

shows that BΓ(τ) = Ad((−2πi)t
0

)((0̄, 1̄)B̃
Γ
). We conclude that eΓ(τ) = (AΓ

+(τ), AΓ
−(τ)) satisfy

(tN1) and (tN2). Next, (tE) is obtained in the same way as in the untwisted case (see [34]
Proposition 3.8) and this concludes the proof of Theorem 7.2.1.

Remark 7.2.5. The modularity relations of eΓ(τ), depending on the chosen congruence
subgroup of SL2(Z), will be investigated in forthcoming works by the second author.

7.3 The Eisenstein-Hurwitz series

For any γ ∈ Γ, recall that gγ(z, x|τ) := ∂xkγ(z, x|τ). Until now, the terms As,γ(τ) were
determined as the coefficients of the expansion

g−γ(0, x|τ) =
∑
s≥0

As,γ(τ)xs.

In this section we give an explicit definition of these functions, show that they are modular
forms for the group SLΓ

2 (Z) and relate them to cyclotomic zeta values. We also determine their
normalized variant Ãs,γ(τ) with constant term 1 on their qN -expansion that we used to apply
[24, Proposition A.3] at the end of Section 11.1.

Recall that the Weierstrass function is the function ℘ : C −→ C given by

℘(z) =
1

z2
+

∑
(m,n)∈Z2−{(0,0)}

(
1

(z +m+ nτ)2
− 1

(m+ nτ)2

)
.
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It is even, periodic with respect to the latice (Z⊕ τZ) and meromorphic with poles of order
exactly 2 in (Z⊕ τZ).

We have the following identities for z ∈ C− (Z⊕ τZ):

℘(z, τ) = −
(
θ′

θ

)′
(z, τ) + c = −∂2

z (log(θ(z, τ))) + c,

for a constant c ∈ C. Next, for z in a suitable punctured neighborhood of z0 = 0 (i.e. in the
maximal punctured open disk centered at 0 which does not contain any non-zero lattice point),
we have a Laurent expansion

℘(z, τ) =
1

z2
+

∞∑
k=0

b2kz
2k =

1

z2
+

∞∑
k=1

(2k + 1)G2k+2(τ)z2k,

where b2n = f(2n)(0)
(2n)! with f(z) = ℘(z)− 1

z2 . Here Gk(τ) are the Eisenstein series defined for all
k ≥ 1, by

Gk(τ) :=

∞∑
n=−∞

 ∞∑
m=−∞
m6=0 if n=0

1

(m+ nτ)k

 = 2ζ(k) +
2 · (2πi)k

(k − 1)!

∞∑
m=1

σk−1(m)qm,

where σα(k) =
∑
d|k d

α. We have Gk(τ) = 0 if k is odd. We will also use the normalized

Eisenstein series Ek(τ), defined for k ≥ 4 even, by Ek := Gk(τ)
2ζ(k) so that, for n ≥ 1, we have

(2n+ 1)G2n+2(τ) = ã2nE2n+2(τ)

where

ã2n = −(2n+ 1)B2n+2(2iπ)2n+2/(2n+ 2)!,

where Bn are the Bernoulli numbers given by x/(ex − 1) =
∑
r≥0(Br/r!)xr. In particular, the

constant term in the q-expansion of the series E2n is equal to 1.

Finally, also recall the expansion θ(x, τ) = x+ 2πi∂τ log η(τ)x3 +O(x5).

7.3.1 Twisted Eisenstein series

First of all, set γ = 0. We get, as in [24, Section 4.1],

g0(0, x|τ) = (θ′/θ)′(x) + 1/x2 = −
∑
k≥0

ã2kE2k+2(τ)x2k,

where ã0 = π2/3, E2(τ) = 24
2πi∂τ log η(τ), and for n ≥ 1, .

We now concentrate to the case where γ ∈ Γ−0. Let γ ∈ Γ−{0} and let γ̃ = (c0, c) ∈ Λτ,Γ−Λτ

be any lift of γ.
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By using the identity ∂xf(x) = ∂x(log(f(x)))× f(x), we get

gγ(z, x|τ) = ∂xkγ(z, x|τ)

=

(
2πic+

(
θ′

θ

)
(z + x− γ̃)−

(
θ′

θ

)
(x)

)
e2πicx θ(z − γ̃ + x)

θ(z − γ̃)θ(x)
+

1

x2

=

∞∑
n=0

g
(n)
γ (0, x|τ)

n!
zn.

Let us determine g−γ(0, x|τ) =
∑
s≥0As,γ(τ)xs =

∑
s≥0

g
(s)
−γ(0,0|τ)

s! xs. We have

g−γ(0, x|τ) = lim
z→0

((
2πic+

(
θ′

θ

)
(z + x+ γ̃)−

(
θ′

θ

)
(x)

)
e2πicx θ(z + γ̃ + x)

θ(z + γ̃)θ(x)

)
+

1

x2

=

(
2πic+

(
θ′

θ

)
(x+ γ̃)−

(
θ′

θ

)
(x)

)
e2πicx θ(γ̃ + x)

θ(γ̃)θ(x)
+

1

x2

= (2πic+

(
θ′

θ

)
(γ̃)− 1

x
)(1 + 2πicx+ 2πicx2)(

1

x
+

(
θ′

θ

)
(γ̃)) +

1

x2
+ o(x)

= (2πic)2 −
(
θ′

θ

)2

(γ̃)− 2πic

(
θ′

θ

)
(γ̃)− πic+ o(x).

Set Fγ(x) := e2πicx θ(γ̃+x)
θ(γ̃)θ(x) so that

log(Fγ(x)) = log(θ(γ̃ + x))− log(θ(x)) + 2πicx− log(θ(γ̃)). (7.2)

We have

∂2
x(log(Fγ(x))) = ∂2

x(log(θ(γ̃ + x)))− ∂2
x(log(θ(x)))

= ℘(x)− ℘(γ̃ + x)

=
1

x2
− 1

(x+ γ̃)2
+

∑
(m,n)∈Z2−{(0,0)}

(
1

(x+m+ nτ)2
− 1

(x+ γ̃ +m+ nτ)2

)
.

Now let s > 0. Recall the expansion

1

(x+ y)2
=
∑
s>0

as
xs

ys+2
,

where as is the generalized binomial coefficient(
−2

s

)
= (−1)s

(
2 + s− 1

s

)
= (−1)s(s+ 1).

On the one hand, for y = m+ nτ , we have

H(x, τ) :=
∑

(m,n)∈Z2−{(0,0)}

(
1

(x+m+ nτ)2
− 1

(m+ nτ)2

)
=

∑
s>1

(2s+ 1)G2s+2(τ)x2s.
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On the other hand, for y = m+ nτ + γ̃, we obtain

Hγ(x, τ) :=
∑

(m,n)∈Z2−{(0,0)}

(
1

(x+ γ̃ +m+ nτ)2
− 1

(γ̃ +m+ nτ)2

)

=
∑

(m,n)∈Z2−{(0,0)}

∑
s>1

1

(m+ nτ + γ̃)2
as

xs

(γ̃ +m+ nτ)s

=
∑
s>1

∑
(m,n)∈Z2−{(0,0)}

as
xs

(γ̃ +m+ nτ)s+2

=
∑
s>1

(−1)s(s+ 1)Gs+2,γ(τ)xs,

where, for s ≥ 3, we define

Gs,γ(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ nτ + γ̃)s
.

Then, for s ≥ 3, we write Bs,γ(τ) = Gs(τ)−Gs,γ(τ) and we have

H(x, τ)−Hγ(x, τ) =
∑
s>1

(−1)s(s+ 1)Bs+2,γ(τ)xs.

and we write Ās,γ(τ) = Gs(τ) +Gs,γ(τ) = −Bs,γ(τ), as H(x, τ) and Gs(τ) are even. If Γ is
the trivial group, Ās,γ(τ) reduces to twice the classical Eisenstein series Gs(τ).

Notice that Gs,γ(τ) is not pair for the variable x but is pair for the variable x + γ i.e. it is
invariant under the transformation x + γ̃ 7→ −x − γ̃. Thus, we obtain Gs,γ = (−1)sGs,−γ ,
which implies that Ās,γ = (−1)sĀs,−γ .

In conclusion, we obtain

∂2
x(log(Fγ(x))) =

1

x2
− 1

(x+ γ̃)2
+
∑
s>1

(−1)s+1(s+ 1)Ās+2,γ(τ)xs,

which gives

log(Fγ(x)) = log(x)− log(x+ γ̃) +
∑
s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2 + lx+m,

Thus,

Fγ(x) = −x(x+ γ̃) exp

∑
s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2 + 2πicx− log(θ(γ̃))


=
−x(x+ γ̃)

θ(γ̃)
e2πicx exp

∑
s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2


where the term +2πicx − log(θ(γ̃)) comes from the identification of the above formula with
equation (7.2).
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We conclude that

g−γ(0, x|τ) = ∂x(Fγ(x)) +
1

x2

=
1

x2
+
−2x− γ̃
θ(γ̃)

e2πicx exp

∑
s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2


−2πic

x(x+ γ̃)

θ(γ̃)
e2πicx exp

∑
s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2


−−x(x+ γ̃)

θ(γ̃)
e2πicx

∑
s>1

(−1)s+1Ās+2,γ(τ)xs+1

 exp

∑
s>1

(−1)s+1 Ās+2,γ(τ)

s+ 2
xs+2

 .

Now, we define G2,γ(τ) by

G2,γ(τ) =

∞∑
n=−∞

 ∞∑
m=−∞
m6=0 if n=0

1

(γ̃ +m+ nτ)2

 .

and Ā2,γ(τ) := G2(τ) +G2,γ(τ). We also define

A2,γ(τ) := (2πic)2 −
(
θ′

θ

)2

(γ̃)− 2πic

(
θ′

θ

)
(γ̃)− πic.

7.3.2 Modularity of the Eisenstein-Hurwitz series As,γ

Consider for s ≥ 2, the function

Gs,γ(τ) :=

∞∑
n=−∞

 ∞∑
m=−∞
m6=0 if n=0

1

(m+ nτ + γ̃)k

 .

and denote as above Ās,γ(τ) = Gs(τ) +Gs,γ(τ).

Proposition 7.3.1. Let s ≥ 3. The function Ās,γ is a modular form of weight s for SLΓ
2 (Z).

Proof. We will proceed as follows. First, we will show the modular quasi-invariance. Then we
will show holomorphy at the cusps by characterising holomorphy in terms of a qN -expansion,
where qN = e2πiτ/N (see [30, Definition 1.2.3]). For s ≥ 3, the series Ās,γ(τ) converge normally.

Let us first show that, if α =

(
a b

c d

)
∈ SLΓ

2 (Z), then Ās,γ(α · τ) = (cτ + d)sĀs,γ(τ). We

already know that the Eisenstein series Gs(τ) are modular forms of weight s, for s ≥ 4 and
G3(τ) = 0. We have

Gs,γ(τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ u
M + (n+ v

N )τ)s
.

Thus,



7.3. THE EISENSTEIN-HURWITZ SERIES 237

Gs,γ(α · τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(m+ u
M + (n+ v

N )aτ+b
cτ+d )s

= (cτ + d)s
∑

(m,n)∈Z2−{(0,0)}

1

(md+ nb+ (mc+ na)τ + u
M d+ v

N b+ ( uM c+ v
N a)τ)s

= (cτ + d)s
∑

(m,n)∈Z2−{(0,0)}

1

(m+ nτ + γ̃′)s

for some lift γ̃′ of γ ∈ Γ. The last line holds by the fact that, since a ≡ 1 mod M , d ≡ 1 mod
N , b ≡ 0 mod N and c ≡ 0 mod M , we have u

M d ∈ Z
M , v

N b ∈ Z, u
M c ∈ Z and v

N a ∈ Z
N . Then

we can rewrite the term md+ nb+ (mc+ na)τ as m+ nτ by applying

(
n m

)
7−→

(
n m

)(a b

c d

)
,

and we can rewrite the term u
M d+ v

N b+ ( uM c+ v
N a)τ as m+ nτ + γ̃′ by applying

(
v
N

u
M

)
7−→

(
v
N

u
M

)(a b

c d

)
,

where

(
a b

c d

)
is invertible. Finally, as we already know that Ās,γ does not depend on the

choice of the lift γ̃ of γ, we obtain Gs,γ(α · τ) = (cτ + d)sGs,γ(τ). The function Ās,γ being
holomorphic on h, it remains to show that it is also holomorphic at all cusps of the compactified
modular curve X(Γ).

Recall that the Hurwitz zeta function is defined by

ζ(s, z) :=
∑
m≥0

1

(m+ z)s
,

where s, q ∈ C are such that Re(s) > 1 and Re(q) > 0.

Lemma 7.3.2. The function Gs,γ(τ) admits a qN -expansion, where qN = e2πiτ/N .

Proof. We have

Gs,γ(τ) =
∑
m∈Z

1

(m+ γ̃)s
+
∑

n∈Z−0

∑
m∈Z

1

(m+ nτ + γ̃)s

=
∑
m∈Z

1

(m+ γ̃)s
+
∑

n∈Z−0

∑
m∈Z

1

(m+ u
M + (n+ v

N )τ)s

=
∑
m∈Z

1

(m+ γ̃)s
+

(−2iπ)s

(s− 1)!

∑
n−∈Z−0

∑
r≥1

rs−1e2πir( uM +τ(n+ v
N ))

=
∑
m∈Z

1

(m+ γ̃)s
+

(−2πi)s

(s− 1)!

∑
n∈Z−0

∑
r≥1

rs−1e
2πiru
M q

(Nn+v)r
N

=
∑
m≥0

1

(m+ γ̃)s
+ (−1)s

∑
m≥1

1

(m− γ̃)s
+

(−2πi)s

(s− 1)!

∑
n≥1

∑
r≥1

rs−1e
2πiru
M q

(Nn+v)r
N
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+
(2πi)s

(s− 1)!

∑
n≥1

∑
r≥1

rs−1e
−2πiru
M q

(Nn−v)r
N

= − 1

γ̃s
+ ζ(s, γ) + (−1)sζ(s,−γ)

+
(−2πi)s

(s− 1)!

∑
n≥1

∑
r≥1

rs−1e
2πiru
M q

(Nn+v)r
N +

(2πi)s

(s− 1)!

∑
n≥1

∑
r≥1

rs−1e
−2πiru
M q

(Nn−v)r
N ,

where ζ(s, γ) is the Hurwitz zeta function evaluated at (s, γ).

This shows that Gs,γ(τ) is N -periodic and is holomorphic at i∞ and we define, for γ = u/M ,

as,γ = − 1

γ̃s
+ ζ(s, γ) + (−1)sζ(s,−γ)

to be the constant term in this expansion (it also depends on τ but logarithmically). In other
words, Gs,γ(τ) has constant term equal to as,γ if γ = u/M and 0 else.

The term as,γ tends to 0 when τ −→ i∞.

We now show that this function is also holomorphic at the remaining cusps of the modular
curve X(Γ).

Lemma 7.3.3. For all α ∈ SL2(Z), the function

τ 7→ (cτ + d)−sGs,γ(α · τ)

has a qN -expansion.

Proof. We have

(cτ + d)−sGs,γ(α · τ) =
∑

(m,n)∈Z2−{(0,0)}

1

(md+ nb+ (mc+ na)τ + u
M d+ v

N b+ ( uM c+ v
N a)τ)s

=
∑

(m,n)∈Z2−{(0,0)}

1

((m+ u
M )d+ ( vN + n)b+ (mc+ na+ u

M c+ v
N a)τ)s

=
∑

(m,n)∈Z2−{(0,0)}

1

(md+ u
M d+ ( vN + n)b+ (mc+ na+ u

M c+ v
N a)τ)s

=
∑

(m,n)∈Z2−{(0,0)}

1(
d
(
m+ 1

d

(
u
M d+ ( vN + n)b+ (mc+ na+ u

M c+ v
N a)τ

)))s
=

1

ds

∑
(m,n)∈Z2−{(0,0)}

1(
m+ 1

d

(
u
M d+ ( vN + n)b+ (mc+ na+ u

M c+ v
N a)τ

))s ,
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By denoting z = 1
d

(
u
M d+ ( vN + n)b+ (mc+ na+ u

M c+ v
N a)τ

)
, we have

(cτ + d)−sGs,γ(α · τ) =
1

ds

∑
(m,n)∈Z2−{(0,0)}

1

(m+ z)s

=
1

ds
(−2πi)s

(s− 1)!

∑
n∈Z

∑
r≥1

rs−1e2πirz

=
1

ds
(−2πi)s

(s− 1)!

∑
n∈Z

∑
r≥1

rs−1e2πir 1
d ( uM d+( vN +n)b+(mc+na+ u

M c+ v
N a)τ)

=
1

ds
(−2πi)s

(s− 1)!

∑
n∈Z

∑
r≥1

rs−1e2πir(m+nb
d + u

M + vb
Nd )e2πirτ(mc+nad + uc

Md+ va
Nd )

=
1

ds
(−2πi)s

(s− 1)!

∑
n∈Z

∑
r≥1

rs−1e2πir(m+nb
d + u

M + vb
Nd )e

2πirτ
N (N(mc+nad + uc

Md )+ va
d )

=
1

ds
(−2πi)s

(s− 1)!

∑
n∈Z

∑
r≥1

rs−1e2πir(m+nb
d + u

M + vb
Nd )q

(N(mc+nad + uc
Md )+ va

d )r

N ,

which concludes the proof.

We conclude that, for all α ∈ SLΓ
2 (Z), the function

τ 7→ (cτ + d)−sĀs,γ(α · τ)

is holomorphic at i∞, which concludes the proof.

Remark 7.3.4. From the expression of the function (cτ + d)−sĀs,γ(α · τ), we can notice that
our functions Ās,γ will degenerate at all cusps of X(Γ) to functions closely related to cyclotomic
zeta values. More precisely, the function

∑
γ∈Γ−{0} Ās,γ(τ) has a qN -expansion whose constant

term (in the sense that if τ −→ i∞, its remaining non zero component) is

∑
1≤u≤M−1

(
−(
M

u
)s + ζ(s,

u

M
) + (−1)sζ(s,− u

M
)

)
.

7.4 Representations of Cherednik algebras

7.4.1 The Cherednik algebra of a wreath product

In this paragraph Γ is any finite group such that Γ ⊂ Aut(C), k = (kα)α ∈ CΓ is such that
kα = k−α and G := Γ oSn. We define the Cherednik algebra HΓ

n (k) as the quotient of the
algebra C〈x1, . . . , xn, y1, . . . , yn〉oC[G] by the relations

• ∑i xi =
∑
i yi = 0

• [xi, xj ] = 0 = [yi, yj ],

• [xi, yj ] = 1
n −

∑
α∈Γ kαs

α
ij (i 6= j),

where sαij = (αi − αj)sij , and sij is the permutation of i and j.



240 CHAPTER 7. APPLICATIONS

Remark 7.4.1. As Γ ⊂ Aut(C), HΓ
n (k) admits a geometric construction. Define X := {z ∈

Cn|∑i zi = 0} and consider the following action of G on it: Sn acts in an obvious way and

αi(z) = (α(i) − 1

n

∑
j

α(j))(z),

where α(k) is the action of α ∈ Γ on the k-th factor of Cn. Following [41] one can construct a
Cherednik algebra H1,k,0(X,G) on X/G. It can be defined as the subalgebra of Diff(X) oC[G]

generated by the function algebra OX , the group G and the Dunkl-Opdam operators Di −Dj,
where

Di = ∂zi +
∑
j:j 6=i
α∈Γ

kα
1− sαij

(−α)(zi)− α(zj)
.

One can then prove that there is a unique isomorphism of algebras HΓ
n (k) −→ H1,k,0(X,G)

defined by

xi 7−→zi,

yi 7−→Di −
1

n

∑
j

Dj ,

G 3 g 7−→g.

7.4.2 Morphisms from t̄Γ1,n to the Cherednik algebra

Proposition 7.4.2. For any a, b ∈ C there is a morphism of Lie algebras φa,b : t̄Γ1,n −→ HΓ
n (k)

defined by

x̄i 7−→ a xi

ȳi 7−→ b yi ,

t̄αij 7−→ ab

(
1

n
− kαsαij

)
.

Proof. Straightforward from the alternative presentation of t̄Γ1,n in Lemma 4.3.5.

Hence any representation V of HΓ
n (k) yields a family of flat connections ∇(V )

a,b over the configu-
ration space C(E, [n],Γ).

7.4.3 Monodromy representations of Hecke algebras

Let E be an elliptic curve and Ẽ −→ E the Γ-covering as in §6.1.1. Define X = Ẽn/Ẽ

and G = (Γ o Sn)/Γdiag. Then the set X ′ ⊂ X of points with trivial stabilizer is such that
X ′/G = C(E, [n],Γ).

Let us recall from [41] the construction of the Hecke algebra HΓ
n(q, t) of X/G. It is the quotient

of the group algebra of the orbifold fundamental group B̄Γ
1,n of C(E, [n],Γ) by the additional
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relations (Tα − q−1tα)(Tα + q−1t−1
α ) = 0, where Tα is an element of B̄Γ

1,n homotopic as a free
loop to a small loop around the divisor Yα := ∪i 6=j{zi = α · zj} in X/G, in the counterclokwise
direction.1

Let us consider the flat connection ∇(V )
a,b and set

q = e−2πiab/n , tα = e−2πikαab .

Then the monodromy representation B̄Γ
1,n −→ GL(V ) of ∇(V )

a,b obviously gives a representation
of HΓ

n(q, t) either if V is finite dimensional or if a, b are formal parameters. In particular, taking
a = b a formal parameter and V = HΓ

n (k), one obtains an algebra morphism

HΓ
n(q, t) −→ HΓ

n (k)[[a]] .

We do not know if this morphism is an isomorphism upon inverting a.

7.4.4 The modular extension of φa,b.

Now assume that a, b 6= 0.

Proposition 7.4.3. The Lie algebra morphism φa,b can be extended to the algebra U (̄tΓ1,n o
dΓ) oG by the formulas

φa,b(s
α
ij) = sαij ,

φa,b(d) =
1

2

∑
i

(xiyi + yixi), φa,b(X) = −1

2
ab−1

∑
i

x2
i ,

φa,b(∆0) =
1

2
ba−1

∑
i

y2
i , φa,b(ξs,γ) = −as−1b−1

∑
i<j

(γ · (xi − xj))
s.

Thus, the flat connections ∇Γ
a,b extend to flat connections onMΓ

1,[n].

1Here the sugroup of G acting trivially on Yα is the order 2 cyclic subgroup generated by sαij .
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Chapter 8

Elliptic multiple zeta values at
torsion points

We propose in this chapter a twisted version uΓ of Pollack’s special derivation algebra contructed
in [90] and [100] by relating it to the twisted derivation algebra dΓ constructed in subsection
6.2. Next, we state and prove a differential equation in the variable τ for the ellipsitomic KZB
associator and use the iterated integral machinery developped in [35] to give a well-defined
notion of elliptic multiple zeta values at torsion points, closely related to that which appeared
in the physics paper [19].

8.1 The Lie algebra uΓ of special twisted derivations

We give a definition of the twisted version of Pollack’s Lie algebra u of special derivations.

8.1.1 The case of the twisted configuration space Conf(E, n,Γ)

Proposition 8.1.1. There is a unique bigraded Lie algebra morphism

ρ : dΓ −→ tΓ1,n o dΓ

ẽ, f̃ , h̃ 7−→ ẽ, f̃ , h̃

δs,γ 7−→ δ(n)
s,γ := δs,γ +

∑
16i<j6n

(adxi)
st−γij + (− adxi)

stγij .

This induces a group morphism GΓ
1 −→ GΓ

n that will be denoted h 7→ h̃.

243
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Proof. Let us first show that the relation δs,γ = (−1)sδs,−γ is preserved by ρ:

(−1)sδ
(n)
s,−γ = (−1)sδs,−γ +

∑
16i<j6n

(−1)s((adxi)
stγij + (− adxi)

st−γij )

= δs,γ +
∑

16i<j6n

(−1)s(adxi)
stγij + (−1)s(−1)s(adxi)

st−γij

= δs,γ +
∑

16i<j6n

(adxi)
st−γij + (− adxi)

stγij

= δ(n)
s,γ .

Next, we show that the highest weight relations are preserved for δ(n)
s,γ i.e. that we have relations

[ẽ, δ
(n)
s,γ ] = 0, [h̃, δ

(n)
s,γ ] = sδ

(n)
s,γ and ads+1(f̃)(δ

(n)
s,γ ) = 0. The relation [ẽ, δ

(n)
s,γ ] = 0 is obviously

satisfied. Next, we have

[h̃, δ(n)
s,γ ] = sδs,−γ + [h̃,

∑
16i<j6n

(adxi)
st−γij + (− adxi)

stγij ]

= sδs,−γ +
∑

16i<j6n

[h̃, (adxi)
st−γij ] + [h̃, (− adxi)

stγij ]

= sδs,−γ +
∑

16i<j6n

s(adxi)
st−γij + s(− adxi)

stγij

= sδ(n)
s,γ ,

and

ads+1(f̃)(δ(n)
s,γ ) = 0 + ads+1(f̃)

 ∑
16i<j6n

(adxi)
st−γij + (− adxi)

stγij


=

∑
16i<j6n

(f̃) · · ·
n times

(f̃)
(

(adxi)
st−γij + (− adxi)

stγij
)

=
∑

16i<j6n

(f̃) · · ·
n−1 times

(f̃)
(

ad(yi)(adxi)
s−1t−γij + ad(yi)(− adxi)

s−1tγij
)

=
∑

16i<j6n

(f̃)
(

(ad yi)
st−γij + (− ad yi)

stγij
)

= 0.

This finishes the proof.

Remark 8.1.2. Since∑
γ∈Γ

As,γ(adxi)
s(t−γij ) =

∑
γ∈Γ

(−1)sAs,−γ(adxi)
s(t−γij ) =

∑
γ∈Γ

As,−γ(− adxi)
stγij ,

we obtain
1

2

∑
γ∈Γ

As,γ((adxi)
s(t−γij ) + (− adxi)

s(tγij)) =
∑
γ∈Γ

As,γ(adxi)
s(t−γij ).

Recall that there is a bigraded Lie algebra morphism

dΓ −→ Der(tΓ1,n)

e, f, h 7−→ ξ(n)
e , ξ

(n)
f , ξ

(n)
h

δs,γ 7−→ ξ(n)
s,γ ,
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where ξ(n)
e := ξe, ξ

(n)
f := ξf , ξ

(n)
h := ξh are the usual derivations given by the sl2-basis {e, f, h}

and

• ξ(n)
s,γ (xi) = 0,

• ξ(n)
s,γ (yi) =

∑
j:j 6=i

∑
p+q=s−1

∑
β∈Γ[(adxi)

ptβ−γij , (− adxi)
qtβij ],

• ξ(n)
s,γ (tαij) = [tαij , (adxi)

stα−γij + (− adxi)
stα+γ
ij ].

This morphism induces a morphism dΓ −→ Der(̄tΓ1,n) and we denote ξ̄(n)
e , ξ̄

(n)
f , ξ̄

(n)
h and ξ̄(n)

s,γ the
images of e, f, h and δs,γ by this map.

Proposition 8.1.3. The derivation ξ̃
(n)
s,γ := ξ

(n)
s,γ +

∑
16i<j6n

[(adxi)
st−γij + (− adxi)

stγij ,−] of

Der(tΓ1,n) is given on generators by

ξ̃(n)
s,γ (xi) =

∑
j;i 6=j

− (adxi)
s+1(t−γij ) + (− adxi)

s+1(tγij)

and

ξ̃(n)
s,γ (tαij) =

∑
k 6=j

[−((adxk)stα−γkj + (− adxk)stα+γ
kj ) + (adxk)st−γkj + (− adxk)stγkj , t

α
ij ].

Proof. We have

ξ̃(n)
s,γ (xi) =

∑
j<k

[(adxj)
st−γjk + (− adxj)

stγjk, xi]

=
∑
j<k

[(adxj)
st−γjk , xi] + [(− adxj)

stγjk, xi]

=
∑
i<k

[(adxi)
st−γik , xi] + [(− adxi)

stγik, xi] +
∑
j<i

[(adxj)
st−γji , xi] + [(− adxj)

stγji, xi]

=
∑
i<j

[(adxi)
st−γij , xi] + [(− adxi)

stγij , xi] +
∑
j<i

[(− adxi)
stγij , xi] + [(adxi)

st−γij , xi]

=
∑
j;i 6=j

[(adxi)
s(t−γij ), xi] + [(− adxi)

s(tγij), xi]

=
∑
j 6=i
− (adxi)

s+1(t−γij ) + (− adxi)
s+1(tγij).

Next,

ξ̃(n)
s,γ (tαij) = [tαij , (adxi)

stα−γij + (− adxi)
stα+γ
ij ] +

∑
k<l

[(adxk)st−γkl + (− adxk)stγkl, t
α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑
i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i
[(adxk)st−γkj , t

α
ij ] +

∑
j<l

[(adxj)
st−γjl , t

α
ij ] +

∑
i<l,l 6=j

[(adxj)
st−γil , t

α
ij ]

+
∑

k<j,k 6=i
[(− adxk)stγkj , t

α
ij ] +

∑
j<l

[(− adxj)
stγjl, t

α
ij ] +

∑
i<l,l 6=j

[(− adxj)
stγil, t

α
ij ]
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+
∑
k<i

[(adxk)st−γki , t
α
ij ] +

∑
k<i

[(− adxk)stγki, t
α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑
i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i
[(adxk)st−γkj , t

α
ij ] +

∑
j<l

[(− adxl)
st−γjl , t

α
ij ] +

∑
i<l,l 6=j

[(− adxl)
st−γil , t

α
ij ]

+
∑

k<j,k 6=i
[(− adxk)stγkj , t

α
ij ] +

∑
j<l

[(adxl)
stγjl, t

α
ij ] +

∑
i<l,l 6=j

[(adxl)
stγil, t

α
ij ]

+
∑
k<i

[(adxk)st−γki , t
α
ij ] +

∑
k<i

[(− adxk)stγki, t
α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑
i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i
[(adxk)st−γkj , t

α
ij ] +

∑
j<k

[(− adxk)st−γjk , t
α
ij ] +

∑
i<k,k 6=j

[(− adxk)st−γik , t
α
ij ]

+
∑

k<j,k 6=i
[(− adxk)stγkj , t

α
ij ] +

∑
j<k

[(adxk)stγjk, t
α
ij ] +

∑
i<k,k 6=j

[(adxk)stγik, t
α
ij ]

+
∑
k<i

[(adxk)st−γki , t
α
ij ] +

∑
k<i

[(− adxk)stγki, t
α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑
i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i
(adxk)s[t−γkj , t

α
ij ] +

∑
j<k

(− adxk)s[t−γjk , t
α
ij ] +

∑
i<k,k 6=j

(− adxk)s[t−γik , t
α
ij ]

+
∑

k<j,k 6=i
(− adxk)s[tγkj , t

α
ij ] +

∑
j<k

(adxk)s[tγjk, t
α
ij ] +

∑
i<k,k 6=j

(adxk)s[tγik, t
α
ij ]

+
∑
k<i

(adxk)s[t−γki , t
α
ij ] +

∑
k<i

(− adxk)s[tγki, t
α
ij ]

= [tαij , (adxi)
stα−γij + (− adxi)

stα+γ
ij ] +

∑
i<j

[(adxi)
st−γij + (− adxi)

stγij , t
α
ij ]

+
∑

k<j,k 6=i
(adxk)s[t−γkj , t

α
ij ] +

∑
j<k

(− adxk)s[t−γjk , t
α
ij ]−

∑
i<k,k 6=j

(− adxk)s[tα+γ
kj , tαij ]

+
∑
j<k

(adxk)s[tγjk, t
α
ij ]−

∑
i<k,k 6=j

(adxk)s[tα−γkj , tαij ]−
∑
k<i

(− adxk)s[tα+γ
kj , tαij ]

+
∑

k<j,k 6=i
(− adxk)s[tγkj , t

α
ij ]−

∑
k<i

(adxk)s[tα−γkj , tαij ]

= −[(adxi)
stα−γij , tαij ]− [(− adxi)

stα+γ
ij , tαij ] +

∑
i<j

[(adxi)
st−γij , t

α
ij ] + [(− adxi)

stγij , t
α
ij ]

−
∑

i<k,k 6=j
(adxk)s[tα−γkj , tαij ] +

∑
k<j,k 6=i

(adxk)s[t−γkj , t
α
ij ] +

∑
j<k

(adxk)s[t−γkj , t
α
ij ]

+
∑

k<j,k 6=i
(− adxk)s[tγkj , t

α
ij ] +

∑
j<k

(− adxk)s[tγkj , t
α
ij ]−

∑
k<i

(− adxk)s[tα+γ
kj , tαij ]

−
∑

i<k,k 6=j
(− adxk)s[tα+γ

kj , tαij ]−
∑
k<i

(adxk)s[tα−γkj , tαij ]
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= −[(adxi)
stα−γij , tαij ]− [(− adxi)

stα+γ
ij , tαij ] +

∑
i<j

[(adxi)
st−γij , t

α
ij ] + [(− adxi)

stγij , t
α
ij ]

−
∑
k 6=i,j

(adxk)s[tα−γkj , tαij ] +
∑
k 6=i,j

(adxk)s[t−γkj , t
α
ij ]−

∑
k 6=i,j

(− adxk)s[tα+γ
kj , tαij ]

+
∑
k 6=i,j

(− adxk)s[tγkj , t
α
ij ]

= −[(adxi)
stα−γij , tαij ]− [(− adxi)

stα+γ
ij , tαij ] +

∑
i<j

[(adxi)
st−γij , t

α
ij ] + [(− adxi)

stγij , t
α
ij ]

−
∑
k 6=i,j

(adxk)s[tα−γkj , tαij ]−
∑
k 6=i,j

(− adxk)s[tα+γ
kj , tαij ] +

∑
k 6=i,j

(adxk)s[t−γkj , t
α
ij ]

+
∑
k 6=i,j

(− adxk)s[tγkj , t
α
ij ]

=
∑
k 6=j

(
[−(adxk)stα−γkj , tαij ]− [(− adxk)stα+γ

kj , tαij ] + [(adxk)st−γkj , t
α
ij ] + [(− adxk)stγkj , t

α
ij ]
)

=
∑
k 6=j

[−((adxk)stα−γkj + (− adxk)stα+γ
kj ) + (adxk)st−γkj + (− adxk)stγkj , t

α
ij ].

This finishes the proof.

Remark 8.1.4. In particular, there is a Lie algebra morphism

tΓ1,n o dΓ −→ Der(tΓ1,n),

e, f, h 7−→ ξ(n)
e , ξ

(n)
f , ξ

(n)
h

δ(n)
s,γ 7−→ ξ̃(n)

s,γ

and the equality

ξ̃(n)
s,γ

(∑
α∈Γ

tij

)
= [ξ̃(n)

s,γ (xi), yj ] + [xi, ξ̃
(n)
s,γ (yj)] (8.1)

implies that it is sufficient to determine the image of the xi’s and all the tαij ’s to fully determine
ξ̃

(n)
s,γ .

8.1.2 The Lie algebra of twisted special derivations

Recall that the fibers at τ of the Γ-punctured universal curve over M̄Γ
1,1 are the spaces E×τ,Γ

consisting of an elliptic curve minus torsion points indexed by a finite group Γ = Z/MZ×Z/NZ
is defined as the space

(
C−

{(
1
M

)
Z+

(
τ
N

)
Z
})
/Λτ , where Λτ = Z+ τZ.

Lemma 8.1.5. The de-Rham fundamental Lie algebra p(E×τ,Γ) of E×τ,Γ is the C-Lie algebra
generated by symbols x, y and tα, for α ∈ Γ, such that [x, y] =

∑
α∈Γ

tα.

Proof. The space E×τ,Γ can be identified with the reduced twisted configuration space C(Eτ,Γ, 2,Γ)

whose de-Rham fundamental Lie algebra is t̄Γ1,2, which is nothing but theC-Lie algebra generated
by symbols x := x̄1, y := ȳ2 and tα := t̄α12, for α ∈ Γ, such that [x, y] =

∑
α∈Γ

tα.
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For any s ∈ N and γ ∈ Γ we set

Ds,γ :=
∑

p+q=s−1

∑
β∈Γ

[(adx)ptβ−γ , (− adx)qtβ ],

and (Cs,γ)α := (adx)stα−γ + (− adx)stα+γ . Observe that (Ds,γ , Cs,γ) = (−1)s(Ds,−γ , Cs,−γ).
One has shown (e.g. Proposition 6.2.4 and the fact that Ds,γ(x, tβ) = Ds,γ(−x, t−β)) that the
bidegree of (Ds,γ , Cs,γ) is (s+ 1, 1). The derivation ξ̄(2)

s,γ is then given by

• ξ̄(2)
s,γ(x) = 0,

• ξ̄(2)
s,γ(y) = Ds,γ(x, tβ),

• ξ̄(2)
s,γ(tα) = [tα, Cαs,γ(x, tβ)].

The image of δ̃s,γ := δs,γ + (adx)st−γ + (− adx)stγ under the Lie algebra morphism dΓ o
Der(̂̄tΓ1,2)→ Der(p(E×τ,Γ)) yields the derivation ¯̃

ξ
(2)
s,γ given by

• ¯̃
ξ

(2)
s,γ(x) = −(adx)s+1(t−γ) + (− adx)s+1(tγ),

• ¯̃
ξ

(2)
s,γ(tα) = [−((adx)stα−γ + (− adx)stα+γ) + (adx)st−γ + (− adx)stγ , tα] .

Remark 8.1.6. We have

ξ̃(2)
s,γ(y) = −ξ(2)

s,γ(y) + [(adx)st−γ + (− adx)stγ , y].

Let uΓ be the Lie subalgebra of Der(p(E×τ,Γ)) generated by the derivations εs,γ for s > 1 and
γ ∈ Γ, defined by

• εs,γ(x) = (adx)s(t−γ) + (− adx)s(tγ),

• εs,γ(tα) = [−((adx)stα−γ + (− adx)stα+γ) + (adx)st−γ + (− adx)stγ , tα] .

Let u be the Pollack’s Lie subalgebra of Der0(f2(a, b)) generated by the εs ∈ Der(f2(x, y)), for
s > 1, given by

• ε2s(x) := ad2s(x)(y),

• ε2s(y) :=
∑

0≤j≤s(−1)j [adj(x)(y), ad2s−1−j(x)(y)].

• ε2s+1(x) = ε2s+1(y) = 0.

Proposition 8.1.7. There is a surjective Lie algebra morphism

uΓ −→ u

εs,γ 7−→ εs.

Proof. This is consequence of the definition of the commutativity of the comparison morphism
diagram

d̃Γ1 n tΓ1
1,n

��

// tΓ1
1,n

��
d̃Γ2 n tΓ2

1,n
// tΓ2

1,n

applied to the case where Γ2 is trivial and of the definition of εs,γ , as ε2s,0(x) = ε2s(x) and
εs,0(t0) = 0.
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8.2 Differential equations in τ

In this section we prove a differential equation in τ for the ellipsitomic KZB associator. Namely
we have :

Theorem 8.2.1. We have

2πi
∂

∂τ
AΓ(τ) =

−∆0 −
1

2

∑
γ∈Γ

∑
s>0

As,γ(τ)
¯̃
ξ(2)
s,γ

AΓ(τ),

2πi
∂

∂τ
BΓ(τ) =

−∆0 −
1

2

∑
γ∈Γ

∑
s>0

As,γ(τ)
¯̃
ξ(2)
s,γ

BΓ(τ).

Proof. Recall that z = z21 x = x̄1, tα = t̄α12. In Remark 8.1.2 we established

1

2

∑
γ∈Γ

As,γ((adx)s(t−γ) + (− adx)s(tγ)) =
∑
γ∈Γ

As,γ(adx)s(t−γ).

Now, seen in Der(̂̄tΓ1,2), the (reduced) ellipsitomic KZB system for n = 2 is

∂

∂z
FΓ(z; τ) =

(
−
∑
α∈Γ

e−2πia ad(x) θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα)

)
FΓ(z; τ)

2iπ
∂

∂τ
FΓ(z; τ) = −

∆0 +
1

2

∑
s≥0,γ∈Γ

As,γ(τ)
¯̃
ξs,γ −

∑
α∈Γ

gα(ad(x), z|τ)(tα)

FΓ(z; τ)

= −

∆0 +
1

2

∑
s≥0,γ∈Γ

As,γ(τ)
¯̃
ξ(2)
s,γ −

∑
α∈Γ

gα(z|τ)(tα)

FΓ(z; τ),

where gα(z|τ) := gα(z, adx|τ)(tα)−gα(0, adx|τ)(tα) and where FΓ(z; τ) is defined on {(z, τ) ∈
C×H|z = a+ bτ, (a, b) ∈]0, 1/M [×R∪R×]0, 1/N [}, valued in exp(̂̄tΓ1,2)oΓoAut(̂̄tΓ1,2)oΓ and
is determined by the behaviour

FΓ(z; τ) ' zt0 exp

− τ

2πi

∆0 +
1

2

∑
s≥0,γ∈Γ

as,γ
¯̃
ξ(2)
s,γ


when z −→ 0+, τ −→ i∞. We have

FHΓ (z +
1

M
|τ) =(1̄, 0̄)FHΓ (z|τ)Ã(τ),

e2πi xN FVΓ (z +
τ

N
|τ) =(0̄, 1̄)FVΓ (z|τ)B̃(τ).

These conditions imply that the image of FΓ(z|τ) in Aut(̂̄tΓ1,2) is independent of z. Now let us
write

xΓ(τ) := ∆0 +
1

2

∑
s≥0,γ∈Γ

As,γ(τ)
¯̃
ξ(2)
s,γ .
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We define
(AΓ)z1z0(τ) := FΓ(z1|τ)FΓ(z0|τ)−1 ∈ exp(̂̄tΓ1,2),

which satisfies

2π i
∂

∂τ
(AΓ)z1z0(τ) = −xΓ(τ)((AΓ)z1z0(τ)) +

∑
γ∈Γ

gγ(z1|τ) · (AΓ)z1z0(τ)− (AΓ)z1z0(τ) · gγ(z0|τ).

The function J(z|τ) appearing in the definition of AΓ(τ), BΓ(τ), is related to the function
FΓ(z|τ) by FΓ(z|τ) = F (z|τ)ϕ(τ), where

ϕ(τ) := (−2πi)t
0

exp

− τ

2πi

∆0 +
1

2

∑
s≥0,γ∈Γ

as,γ
¯̃
ξ(2)
s,γ


takes values in exp(̂̄tΓ1,2) o Aut(̂̄tΓ1,2), because both them satisfy the same differential equation
in z. It follows that

(AΓ)z1z0(τ) = J(z1|τ)J(z0|τ)−1.

We conclude that AΓ(τ) = J(z|τ)−1(1̄, 0̄)(AΓ)
z+ 1

M
z (τ)J(z|τ). Now, taking z −→ 0, this implies

AΓ(τ) = limz−→0(−2π i z)− ad(t0)
(
(1̄, 0̄)(AΓ)

z+ 1
M

z (τ)
)
.

As z is fixed, (−2π i z)− ad(t0)
(
(1̄, 0̄)(AΓ)

z+ 1
M

z (τ)
)
satisfies the same differential equation in τ

as (AΓ)z1z0(τ), with g(z0|τ) replaced by (−2π i z)− ad(t0)(g(z|τ)) and g(z1|τ) replaced by

(−2π i z)− ad(t0)((1̄, 0̄)g(z +
1

M
|τ)),

which both tend to 0 when z −→ 0. It follows that these terms disappear from the differential
equation satisfied by AΓ(τ), so

2π i
∂

∂τ
AΓ(τ) = −(∆0 +

1

2

∑
s≥0,γ∈Γ

As,γ(τ)
¯̃
ξ(2)
s,γ)AΓ(τ).

Let us now show the differential equation for BΓ(τ).

We have, BΓ(τ) = F (z|τ)−1(0̄, 1̄)e
2π i x
N (AΓ)

z+ τ
N

z (τ)F (z|τ), thus

BΓ(τ) = limz−→0(−2π i z)−t
0

(0̄, 1̄)e
2π i x
N (AΓ)

z+ τ
N

z (τ)(−2π i z)t
0

.

One computes, for α̃ = a0

M + τ aN any lift of α ∈ Γ,

∂

∂τ
(AΓ)

z+ τ
N

z (τ) =
−1

2π i
xΓ(τ)((AΓ)

z+ τ
N

z (τ))

+
( 1

2π i
g(z +

τ

N
|τ)−

∑
α∈Γ

e−2πiax θ(z + τ
N − α̃+ adx|τ)

θ(z + τ
N − α̃|τ)θ(adx|τ)

(tα)
)

(AΓ)
z+ τ

N
z (τ)

−(AΓ)
z+ τ

N
z (τ)

1

2π i
g(z|τ).
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Set Xz(τ) := (−2π i z)−t
0

(0̄, 1̄)e
2π i x
N (AΓ)

z+ τ
N

z (τ)(−2π i z)t
0

. If we fix z, we get

2π i
∂

∂τ
Xz(τ) = −xΓ(τ)(Xz(τ))

−Xz(τ) ·
(
(−2π i z)−t

0

g(z|τ)(−2π i z)t
0)

+
(

Ad((−2π i z)−t
0

(0̄, 1̄)e
2π i x
N

(
g(z +

τ

N
|τ)

−2π i
∑
α∈Γ

e−2πiax θ(z + τ
N − α̃+ adx|τ)

θ(z + τ
N − α̃|τ)θ(adx|τ)

(tα)
)

−(−2π i z)−t
0

e
2π i x
N ((0̄, 1̄)xΓ(τ)e−

2π i x
N (−2π i z)t

0
)
·Xz(τ).

Then, as we showed that

∆(z +
τδj
N
|τ) = e

−2πiad(xj)

N θ((0̄, 1̄)j) · (∆(z|τ)−Kj(z|τ)).

then the parenthesis in the last three lines is equal to

Ad((−2π i z)−t
0

)(g(z|τ)).

We conclude that, in the limit z −→ 0,

2π i
∂

∂τ
BΓ(τ) = −(∆0 +

1

2

∑
s≥0,γ∈Γ

As,γ(τ)
¯̃
ξ(2)
s,γ)BΓ(τ).

Remark 8.2.2. If we suppose that the group GRTΓ
ell(C) has a semi-direct product decomposition

into some group RΓ
ell(C) and GRT(C), there is an action of RΓ

ell(C) on EllΓKZB. In this case,
the above theorem can be rewritten in a more compact way by

2πi
∂

∂τ
eΓ(τ) = eΓ(τ) ∗

−∆0 −
1

2

∑
γ∈Γ

∑
s>0

As,γ(τ)
¯̃
ξ(2)
s,γ

 .

where ∗ is here a Lie algebra action.

Let us fix τ ∈ H, γ ∈ Γ and x ∈ C. Define

στx,γ(z) :=
θ(z + γ̃ + x)

θ(z + γ̃)θ(x)
.

Consider x as a formal variable close to 0 and στx,γ as an element of x−1M(C)[[x]], where

M(C) = {meromorphic functions defined over C}.

Proposition 8.2.3. στx,γ has an expansion

στx,γ(z) =
1

x
+
∑
n≥0

kτγ,n(z)xn,

where kτγ,0(z) = (θ′τ/θτ )(z + γ̃) and kτγ,n is regular at 0 and 1 if n > 0.

Proof. In light of [35, Proposition 2.5], the only left thing to prove is that, for γ 6= 0, we have
kτγ,0(z) = (θ′τ/θτ )(z + γ̃) which is true by the very same computation (using that θ is an odd
function) and the fact that for γ 6= 0, the term kτγ,0(z) is regular when z, x −→ 0.
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8.3 Elliptic multiple zeta values at torsion points

The twisted elliptic KZB associator eΓ(τ) := (AΓ(τ), BΓ(τ)) has an expression in terms of
iterated integrals. Let us denote

KΓ(z) := −
∑
α∈Γ

e−2πiax θ(z − α̃+ ad(x)|τ)

θ(z − α̃|τ)θ(ad(x)|τ)
(tα).

By Picard iteration and well-known properties of iterated integrals, we have

IΓ(τ) =

(
lim
t→0

z−t
0

(
(1̄, 0̄) exp

[∫
α
( 1−t
M )

t

KΓ(z)dz

])
zt

0

)op

and

2iπJΓ(τ) =

(
lim
t→0

z−t
0

(
(0̄, 1̄) exp

[∫
β
( τ−tN )
t

KΓ(z)dz

])
zt

0

)op

where the superscript op denotes the opposite multiplication on the algebra C〈〈x, tα;α ∈ Γ〉〉,
defined by (f · g)op = g · f . Here we choose the principal branch of the logarithm so that
log(±i) = ±πi/2.

Definition 8.3.1. Let n1, . . . , nr > 0 and α1, α2, . . . , αr ∈ Γ. The twisted elliptic multizeta
values

IΓ
A

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr
; τ

)
and IΓ

B

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr
; τ

)
are defined equivalently

1. as the coefficients of adn1(x)(tα1) . . . adnr (x)(tαr ) in the renormalized generating series of
regularized iterated integrals

lim
t→0

z−t
(1̄,0̄)

exp

[∫
α
( 1−t
M )

t

FΓ(z)dz

]
zt

0

and lim
t→0

z−t
(0̄,1̄)

exp

[∫
β
( τ−tN )
t

FΓ(z)dz

]
zt

0

2. by means of two functions AΓ(τ) and BΓ(τ), closely related to A(τ) and B(τ), of the form

AΓ(τ) =
∑
n>0

(−1)n
∑

n1,...,nr>0

∑
α1,...,αr∈Γ

IΓ
A

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr
; τ

)
adn1(x)(tα1) . . . adnr (x)(tαr )

and

BΓ(τ) =
∑
n>0

(−1)n
∑

n1,...,nr>0

∑
α1,...,αr∈Γ

IΓ
B

(
n1 n2 , . . . , nr

α1 α2 , . . . , αr
; τ

)
adn1(x)(tα1) . . . adnr (x)(tαr )

One can picturally see the relation between (AΓ(τ,BΓ(τ)) and (A(τ), B(τ)) by means of the
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following picture

A0
1,2R(1̄,0̄)

1,2

B0
1,2(R(0̄,1̄)

2,1 )−1

1

M
− εε

τ

N
− ε

Our approach to multiple zeta values at torsion points is somewhat different to that in the
recent work of Broedel–Matthes–Richter–Schlotterer [19], and generalizes to the case of any
surjective morphism Z2 −→ Γ sending the generators of Z2 to their class modulo M and N ,
respectively. More general surjective morphisms could be considered. The relation between the
twisted elliptic multiple zeta values obtained in this paper and that in [19] will be investigated
by the second author and N. Matthes in a forthcoming collaboration.

Now, multiple Hurwitz values are defined, for n2, ..., nr−1 ≥ 1, nr ≥ 2, as the real numbers

ζ(n1, . . . , nr, a1, . . . , ar) =
∑

0≤k1<···<kr;mi∈Z

1

(k1 − a1)n1(k2 − a2)n2 · · · (kr − ar)nr

where a1, . . . , ar are rational numbers with a1 > 0 and such that ζ(n1, . . . , nr, 1, . . . , 1) =

ζ(n1, . . . , nr).

Then, the differential equation of Theorem 8.2.1 combined with the fact that, for real values
of γ ∈ Λτ,Γ, the Eisenstein-Hurwitz series have Hurwitz zeta values as constant coefficients in
their qN -expansion, permits us to expect the following:

• elliptic multiple zeta values at torsion points should have a qN -expansion whose coefficients
are special linear combinations of multiple Hurwitz values,

• elliptic multiple zeta values at (real) torsion points should degenerate to multiple Hurwitz
values at the cusps of Y (Γ).

• elliptic multiple zeta values at torsion points should be linear combinations of iterated
integrals of Eisenstein-Hurwitz series whose coefficients are controlled by the Lie algebra
uΓ.

This gives hope of finding new periods of P1 − {0, µM ,∞} besides cyclotomic multiple-zeta
values for special values of M .
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EllΓ(k) Operadic ellipsitomic (k)-associators. 255

Assf (k) Operadic framed (k)-associators. 255

Assfg (k) Operadic genus g (k)-associators. 255

Ass(k) (k)-associators. 255

Ell(k) Elliptic (k)-associators. 255

AssΓ(k) Cyclotomic (k)-ssociators. 255

EllΓ(k) Ellipsitomic (k)-associators. 255

Assfg (k) genus g (k)-associators. 255



258 Series

Bundles

Pτ,n,Γ Principal exp(̂tΓ1,n)-bundle over Conf(E,n,Γ). 255

Pτ,[n],Γ Principal exp(̂̄tΓ1,n)-bundle over Conf(E, [n],Γ). 255

P̄τ,[n],Γ Principal exp(̂tΓ1,n) oSn-bundle over C(E, [n],Γ). 255

P̄(τ,Γ),n Principal exp(̂tΓ1,n) o Γn-bundle over Conf(E,n). 255

Pn,Γ Principal GΓ
n-bundle overMΓ

1,n. 255

P[n],Γ Principal GΓ
[n]-bundle overMΓ

1,[n]. 255

P̄n,Γ Principal ḠΓ
n-bundle over M̄Γ

1,n. 255

P(Γ),n Principal GΓ
n o Γn-bundle overMΓ

1,n/Γ
n. 255

Series

ΦKZ KZ associator. 255

e(τ) Elliptic KZB associator. 255

ΨKZ Cyclotomic KZ associator. 255

eΓ(τ) Ellipsitomic KZB associator. 255

AΓ(τ) A-ellipsitomic KZB associator. 255

BΓ(τ) B-ellipsitomic KZB associator. 255

Gs,γ(τ) Eisenstein-Hurwitz series. 255
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