Arbitrary-order polytopal schemes for the Yang–Mills equations

Jérôme Droniou

joint work with Todd A. Oliynyk and Jia Jia Qian

Monash University, soon CNRS/University Montpellier

12 September 2023

Outline

1 The Yang–Mills equations

Discretisation

Discrete de Rham (DDR) complex Discretisation of brackets Time stepping

B Numerical tests

Notations

- Lie algebra $(\mathfrak{g}, [\cdot, \cdot])$
 - Vector space g
 - Lie bracket $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, antisymmetric, bilinear etc.
- $(e_l)_l$ a basis of the Lie algebra

Example

• $\mathfrak{g} = \mathfrak{su}(2)$ matrix Lie algebra, $[A, B] \coloneqq AB - BA$

$$e_1 = -\frac{i}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, e_2 = -\frac{i}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, e_3 = -\frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- Decomposition of g-valued function $f = \sum_{l} f^{l} \otimes e_{l}$
- Inner product $\langle \cdot, \cdot \rangle : \mathfrak{g} \times \mathfrak{g} \to \mathbb{R}$ s.t.

$$\langle [a,b],c \rangle = \langle a,[b,c] \rangle \qquad \forall a,b,c \in \mathfrak{g}.$$

Yang-Mills equations

- **A**(**x**, t) Gauge potential
- The 'electric field' *E* and 'magnetic field' *B* defined by

$$\boldsymbol{E} = -\partial_t \boldsymbol{A}$$
$$\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$$

Yang-Mills equations:

Evolution:

$$\partial_t E = \operatorname{curl} B + \star [A, B]$$

 $\partial_t B = -\operatorname{curl} E - \star [A, E]$

Constraint:

$$\operatorname{div} \boldsymbol{E} + \star [\boldsymbol{A}, \star \boldsymbol{E}] = 0$$
$$\operatorname{div} \boldsymbol{B} + \star [\boldsymbol{A}, \star \boldsymbol{B}] = 0$$

Non-linear terms

The non-linear terms appearing in the Yang–Mills equations are the Lie algebra generalisation of some familiar operators...

Non-linear operators:

$$[\boldsymbol{q}, \boldsymbol{v}] \coloneqq \sum_{l,J} \boldsymbol{q}^{l} \boldsymbol{v}^{J} \otimes [\boldsymbol{e}_{l}, \boldsymbol{e}_{J}]$$
$$\star [\boldsymbol{v}, \boldsymbol{w}] \coloneqq \sum_{l,J} (\boldsymbol{v}^{l} \times \boldsymbol{w}^{J}) \otimes [\boldsymbol{e}_{l}, \boldsymbol{e}_{J}]$$
$$\star [\boldsymbol{v}, \star \boldsymbol{w}] \coloneqq \sum_{l,J} (\boldsymbol{v}^{l} \cdot \boldsymbol{w}^{J}) \otimes [\boldsymbol{e}_{l}, \boldsymbol{e}_{J}]$$

*L*²-inner products

Scalar and vector *L*²-products:

$$\int_{U} \langle \boldsymbol{q}, \boldsymbol{r} \rangle \coloneqq \sum_{l,J} \int_{U} \boldsymbol{q}^{l} \boldsymbol{r}^{J} \langle \boldsymbol{e}_{l}, \boldsymbol{e}_{J} \rangle, \qquad \int_{U} \langle \boldsymbol{v}, \boldsymbol{w} \rangle \coloneqq \sum_{l,J} \int_{U} \boldsymbol{v}^{l} \cdot \boldsymbol{w}^{J} \langle \boldsymbol{e}_{l}, \boldsymbol{e}_{J} \rangle$$

Properties:

$$\int_{U} \langle \star [\boldsymbol{u}, \boldsymbol{v}], \boldsymbol{w} \rangle = \int_{U} \langle \boldsymbol{u}, \star [\boldsymbol{v}, \boldsymbol{w}] \rangle$$
$$\int_{U} \langle \boldsymbol{v}, [\boldsymbol{w}, q] \rangle = \int_{U} \langle \star [\boldsymbol{v}, \star \boldsymbol{w}], q \rangle$$

*L*²-inner products

Scalar and vector *L*²-products:

$$\int_{U} \langle \boldsymbol{q}, \boldsymbol{r} \rangle \coloneqq \sum_{l,J} \int_{U} \boldsymbol{q}^{l} \boldsymbol{r}^{J} \langle \boldsymbol{e}_{l}, \boldsymbol{e}_{J} \rangle, \qquad \int_{U} \langle \boldsymbol{v}, \boldsymbol{w} \rangle \coloneqq \sum_{l,J} \int_{U} \boldsymbol{v}^{l} \cdot \boldsymbol{w}^{J} \langle \boldsymbol{e}_{l}, \boldsymbol{e}_{J} \rangle$$

Properties:

$$\int_{U} \langle \star [\boldsymbol{u}, \boldsymbol{v}], \boldsymbol{w} \rangle = \int_{U} \langle \boldsymbol{u}, \star [\boldsymbol{v}, \boldsymbol{w}] \rangle$$
$$\int_{U} \langle \boldsymbol{v}, [\boldsymbol{w}, q] \rangle = \int_{U} \langle \star [\boldsymbol{v}, \star \boldsymbol{w}], q \rangle$$

Consequence:

$$\int_{U} \langle \boldsymbol{v}, [\boldsymbol{v}, \boldsymbol{q}] \rangle = \int_{U} \langle \star [\boldsymbol{v}, \star \boldsymbol{v}], \boldsymbol{q} \rangle = 0$$

Weak formulation

Integration by parts:

• Find $(\mathbf{A}, \mathbf{E}) : [0, T] \rightarrow (\mathbf{H}(\mathbf{curl}; U) \otimes \mathfrak{g}) \times (\mathbf{H}(\mathbf{curl}; U) \otimes \mathfrak{g})$ s.t.

$$\partial_t \mathbf{A} = -\mathbf{E},$$

$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle, \qquad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g},$$

where $\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$

- Initial conditions: **A**(0) = **A**₀, **E**(0) = **E**₀ in U
- Constraint (was div *E* + *[*A*, **E*] = 0):

$$\int_{U} \langle \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle = 0, \qquad \forall q \in H^{1}(U) \otimes \mathfrak{g},$$

$$\partial_t \mathbf{A} = -\mathbf{E},$$

$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle, \qquad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g},$$

$$\mathbf{B} = \operatorname{curl} \mathbf{A} + \frac{1}{2} \star [\mathbf{A}, \mathbf{A}].$$

$$\partial_t \int_U \langle \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle = \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle + \int_U \langle \boldsymbol{E}, [\partial_t \boldsymbol{A}, q] \rangle$$

$$\partial_t \mathbf{A} = -\mathbf{E},$$

$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle, \qquad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g},$$

$$\mathbf{B} = \operatorname{curl} \mathbf{A} + \frac{1}{2} \star [\mathbf{A}, \mathbf{A}].$$

$$\partial_t \int_U \langle \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle = \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle + \int_U \langle \boldsymbol{E}, [\partial_t \boldsymbol{A}, q] \rangle$$
$$= \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle - \int_U \langle \boldsymbol{E}, [\boldsymbol{E}, q] \rangle$$

$$\partial_{t} \mathbf{A} = -\mathbf{E},$$

$$\int_{U} \langle \partial_{t} \mathbf{E}, \mathbf{v} \rangle = \int_{U} \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle, \quad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g},$$

$$\mathbf{B} = \operatorname{curl} \mathbf{A} + \frac{1}{2} \star [\mathbf{A}, \mathbf{A}].$$

$$\partial_{t} \int_{U} \langle \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = \int_{U} \langle \partial_{t} \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle + \int_{U} \langle \mathbf{E}, [\partial_{t} \mathbf{A}, q] \rangle$$

$$= \int_{U} \langle \partial_{t} \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle - \int_{U} \langle \mathbf{E}, [\mathbf{E}, q] \rangle$$

 $\operatorname{curl}(\operatorname{grad} q + [\mathbf{A}, q]) + \star [\mathbf{A}, \operatorname{grad} q + [\mathbf{A}, q]] = [\mathbf{B}, q]$

$$\partial_t \mathbf{A} = -\mathbf{E},$$

$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle, \qquad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g},$$

$$\mathbf{B} = \operatorname{curl} \mathbf{A} + \frac{1}{2} \star [\mathbf{A}, \mathbf{A}].$$

$$\partial_t \int_U \langle \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle = \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle + \int_U \langle \boldsymbol{E}, [\partial_t \boldsymbol{A}, q] \rangle$$
$$= \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle - \int_U \langle \boldsymbol{E}, [\boldsymbol{E}, q] \rangle$$
$$= \int_U \langle \boldsymbol{B}, [\boldsymbol{B}, q] \rangle$$

 $\operatorname{curl}(\operatorname{grad} q + [\mathbf{A}, q]) + \star [\mathbf{A}, \operatorname{grad} q + [\mathbf{A}, q]] = [\mathbf{B}, q]$

$$\partial_t \mathbf{A} = -\mathbf{E},$$

$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle, \qquad \forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g},$$

$$\mathbf{B} = \operatorname{curl} \mathbf{A} + \frac{1}{2} \star [\mathbf{A}, \mathbf{A}].$$

$$\partial_t \int_U \langle \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle = \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle + \int_U \langle \boldsymbol{E}, [\partial_t \boldsymbol{A}, q] \rangle$$
$$= \int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle - \int_U \langle \boldsymbol{E}, [\boldsymbol{E}, q] \rangle$$
$$= \int_U \langle \boldsymbol{B}, [\boldsymbol{B}, q] \rangle$$
$$= 0$$

 $\operatorname{curl}(\operatorname{grad} q + [\mathbf{A}, q]) + \star [\mathbf{A}, \operatorname{grad} q + [\mathbf{A}, q]] = [\mathbf{B}, q]$

Some more details...

$$\left\{ \operatorname{curl}(\operatorname{grad} q + [\mathbf{A}, q]) + \star [\mathbf{A}, \operatorname{grad} q + [\mathbf{A}, q]] \right\}_{\alpha}$$

$$= \varepsilon_{\alpha\mu\nu} \partial^{\mu} [\mathbf{A}^{\nu}, q] + \varepsilon_{\alpha\mu\nu} [\mathbf{A}^{\mu}, \partial^{\nu} q + [\mathbf{A}^{\nu}, q]]$$

$$= \varepsilon_{\alpha\mu\nu} [\partial^{\mu} \mathbf{A}^{\nu}, q] + \varepsilon_{\alpha\mu\nu} [\mathbf{A}^{\nu}, \partial^{\mu} q] + \varepsilon_{\alpha\mu\nu} [\mathbf{A}^{\mu}, \partial^{\nu} q] + \varepsilon_{\alpha\mu\nu} [\mathbf{A}^{\mu}, [\mathbf{A}^{\nu}, q]]$$

$$= \left[\varepsilon_{\alpha\mu\nu} \partial_{\mu} \mathbf{A}^{\nu} + \frac{1}{2} \varepsilon_{\alpha\mu\nu} [\mathbf{A}^{\mu}, \mathbf{A}^{\nu}], q \right]$$

$$= \left\{ [\mathbf{B}, q] \right\}_{\alpha}.$$

Constrained formulation

From [Christiansen and Winther, 2006], a *constrained formulation* for the Yang–Mills equations is:

Find

 $(\boldsymbol{A}, \boldsymbol{E}, \boldsymbol{\lambda}) : [0, T] \to (\boldsymbol{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (\boldsymbol{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (H^1(U) \otimes \mathfrak{g})$ s.t. $\forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}; U) \otimes \mathfrak{g}, \forall q \in H^1(U) \otimes \mathfrak{g}$

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \mathbf{\star} [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

where $\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$

Constrained formulation

From [Christiansen and Winther, 2006], a *constrained formulation* for the Yang–Mills equations is:

Find

 $(\boldsymbol{A}, \boldsymbol{E}, \boldsymbol{\lambda}) : [0, T] \to (\boldsymbol{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (\boldsymbol{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (H^1(U) \otimes \mathfrak{g})$ s.t. $\forall \boldsymbol{v} \in \boldsymbol{H}(\operatorname{curl}; U) \otimes \mathfrak{g}, \forall q \in H^1(U) \otimes \mathfrak{g}$

$$\partial_t \boldsymbol{A} = -\boldsymbol{E}$$
$$\int_U \langle \partial_t \boldsymbol{E}, \boldsymbol{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\boldsymbol{A}, \lambda], \boldsymbol{v} \rangle = \int_U \langle \boldsymbol{B}, \operatorname{curl} \boldsymbol{v} + \star [\boldsymbol{A}, \boldsymbol{v}] \rangle$$
$$\int_U \langle \partial_t \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle = 0$$

where $\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$

Choosing *ν* = grad λ + [*A*, λ]:

grad $\lambda + [\mathbf{A}, \lambda] = 0$

Outline

The Yang–Mills equations

2 Discretisation

Discrete de Rham (DDR) complex Discretisation of brackets Time stepping

3 Numerical tests

Outline

1 The Yang–Mills equations

2 Discretisation

Discrete de Rham (DDR) complex

Discretisation of brackets Time stepping

B Numerical tests

Design

• Continuous de Rham complex:

 $\mathbb{R} \xrightarrow{i_U} H^1(U) \xrightarrow{\text{grad}} H(\text{curl}; U) \xrightarrow{\text{curl}} H(\text{div}; U) \xrightarrow{div} L^2(U) \xrightarrow{0} \{0\}.$

• Discrete De Rham complex [Di Pietro and Droniou, 2021, Di Pietro et al., 2020]:

$$\mathbb{R} \xrightarrow{\underline{l}_{grad,h}^{k}} \underline{X}_{grad,h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{curl,h}^{k} \xrightarrow{\underline{C}_{h}^{k}} \underline{X}_{div,h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

Principle of DDR construction:

 A mesh is a collection of sets of elements T_h, faces F_h, edges ε_h and vertices V_h

Design

• Continuous de Rham complex:

$$\mathbb{R} \xrightarrow{i_U} H^1(U) \xrightarrow{\text{grad}} H(\text{curl}; U) \xrightarrow{\text{curl}} H(\text{div}; U) \xrightarrow{\text{div}} L^2(U) \xrightarrow{0} \{0\}.$$

• Discrete De Rham complex [Di Pietro and Droniou, 2021, Di Pietro et al., 2020]:

$$\mathbb{R} \xrightarrow{\underline{l}_{\mathsf{grad},h}^k} \underline{X}_{\mathsf{grad},h}^k \xrightarrow{\underline{\mathbf{G}}_h^k} \underline{X}_{\mathsf{curl},h}^k \xrightarrow{\underline{\mathbf{C}}_h^k} \underline{X}_{\mathsf{div},h}^k \xrightarrow{D_h^k} \mathcal{P}^k(\mathcal{T}_h) \xrightarrow{0} \{0\}$$

Principle of DDR construction:

- Replace continuous spaces by fully discrete ones made of vectors of polynomials,
- Polynomials attached to geometric entities to emulate expected continuity properties of each space,
- Create discrete operators between them.

Discrete de Rham (DDR) complex

$$\mathbb{R} \xrightarrow{\underline{l}_{\mathsf{grad},h}^{k}} \underline{X}_{\mathsf{grad},h}^{k} \xrightarrow{\underline{\mathbf{G}}_{h}^{k}} \underline{\underline{\mathbf{X}}}_{\mathsf{curl},h}^{k} \xrightarrow{\underline{\mathbf{C}}_{h}^{k}} \underline{\underline{\mathbf{X}}}_{\mathsf{div},h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

Discrete spaces: Vector of values attached specific mesh entities:

Space	<i>V</i>	E	F	Т
$\frac{\underline{X}_{\text{grad},h}^{k}}{\underline{X}_{\text{curl},h}^{k}}$ $\frac{\underline{X}_{\text{curl},h}^{k}}{\underline{X}_{\text{div},h}^{k}}$ $\mathcal{P}^{k}(\mathcal{T}_{h})$	$\mathbb{R} = \mathcal{P}^k(V)$	$\mathcal{P}^{k-1}(E)$ $\mathcal{P}^{k}(E)$	$\mathcal{P}^{k-1}(F)$ $\mathcal{RT}^{k}(F)$ $\mathcal{P}^{k}(F)$	$\mathcal{P}^{k-1}(T)$ $\mathcal{RT}^{k}(T)$ $\mathcal{N}^{k}(T)$ $\mathcal{P}^{k}(T)$

Discrete de Rham (DDR) complex

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},h}^{k}} \underline{X}_{\mathsf{grad},h}^{k} \xrightarrow{\underline{\mathbf{G}}_{h}^{k}} \underline{\underline{\mathbf{X}}}_{\mathsf{curl},h}^{k} \xrightarrow{\underline{\mathbf{C}}_{h}^{k}} \underline{\underline{\mathbf{X}}}_{\mathsf{div},h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

Discrete differential operators:

- Mimic integration-by-parts formula to define, from the DOFs, discrete operators in full polynomial spaces (gradient: edge/face/element; curl: face/element; divergence: element)
- **Project** these polynomials on DOFs of next space to create discrete differential operators, e.g. $\underline{C}_{h}^{k} : \underline{X}_{curl,h}^{k} \rightarrow \underline{X}_{div,h}^{k}$.

Discrete de Rham (DDR) complex

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},h}^{k}} \underline{X}_{\mathsf{grad},h}^{k} \xrightarrow{\underline{\mathbf{G}}_{h}^{k}} \underline{X}_{\mathsf{curl},h}^{k} \xrightarrow{\underline{\mathbf{C}}_{h}^{k}} \underline{X}_{\mathsf{div},h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

Reconstructions and *L*²**-products on each space, e.g.:**

- Potential reconstructions $\boldsymbol{P}_{\mathbf{curl},T}^k : \underline{\boldsymbol{X}}_{\mathbf{curl},T}^k \to \mathcal{P}^k(T)$
- Tangential trace reconstruction $\gamma^k_{t,F} : \underline{X}^k_{curl,F} \to \mathcal{P}^k(F)$
- L^2 -inner product $(\cdot, \cdot)_{\operatorname{curl},h} : \underline{\mathbf{X}}_{\operatorname{curl},h}^k \times \underline{\mathbf{X}}_{\operatorname{curl},h}^k \to \mathbb{R}$

Lie algebra DDR (LADDR) complex

$$\mathbb{R} \xrightarrow{I_{\mathsf{grad},h}^{k,\mathfrak{g}}} \underline{X}_{\mathsf{grad},h}^{k} \otimes \mathfrak{g} \xrightarrow{\underline{\mathbf{G}}_{h}^{k,\mathfrak{g}}} \underline{\underline{X}}_{\mathsf{curl},h}^{k} \otimes \mathfrak{g} \xrightarrow{\underline{\mathbf{C}}_{h}^{k,\mathfrak{g}}} \underline{\underline{X}}_{\mathsf{div},h}^{k} \otimes \mathfrak{g} \xrightarrow{\underline{\mathbf{D}}_{h}^{k,\mathfrak{g}}} \mathcal{P}^{k}(\mathcal{T}_{h}) \otimes \mathfrak{g} \xrightarrow{\mathbf{0}} \{\mathbf{0}\}$$

Lie algebra extension of spaces and operators

- Lie algebra values attached to mesh entities
- Tangential trace: $\gamma_{\mathfrak{t},F}^{k,\mathfrak{g}} : \underline{X}_{\operatorname{curl},F}^k \otimes \mathfrak{g} \to \mathcal{P}^k(F) \otimes \mathfrak{g}$

$$\boldsymbol{\gamma}_{t,F}^{k,\mathfrak{g}} \underline{\boldsymbol{\nu}}_{F} \coloneqq \sum_{I} (\boldsymbol{\gamma}_{t,F}^{k} \underline{\boldsymbol{\nu}}_{F}^{I}) \otimes \boldsymbol{e}_{I}$$

• For all $\underline{\boldsymbol{v}}_{h'}, \underline{\boldsymbol{w}}_{h} \in \underline{\boldsymbol{X}}_{\operatorname{curl},h}^{k} \otimes \mathfrak{g}$

$$(\underline{\boldsymbol{v}}_h,\underline{\boldsymbol{w}}_h)_{\mathrm{curl},\mathfrak{g},h} = \sum_{I,J} (\underline{\boldsymbol{v}}_h^I,\underline{\boldsymbol{w}}_h^J)_{\mathrm{curl},h} \langle \boldsymbol{e}_I,\boldsymbol{e}_J \rangle.$$

Discretising the constrained Yang–Mills equations

 $(\mathbf{A}, \mathbf{E}, \lambda) : [0, T] \rightarrow (\mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (\mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (\mathbf{H}^{1}(U) \otimes \mathfrak{g})$ s.t. $\forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}, \forall q \in \mathbf{H}^{1}(U) \otimes \mathfrak{g}$:

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

where $\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$

Discretising the constrained Yang–Mills equations

 $(\mathbf{A}, \mathbf{E}, \lambda) : [0, T] \rightarrow (\mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (\mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (H^1(U) \otimes \mathfrak{g})$ s.t. $\forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}, \forall q \in H^1(U) \otimes \mathfrak{g}$:

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

where $\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$

 Replace spaces/operators by LADDR spaces/operators → deals with linear terms.

Discretising the constrained Yang–Mills equations

 $(\mathbf{A}, \mathbf{E}, \lambda) : [0, T] \rightarrow (\mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (\mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}) \times (H^1(U) \otimes \mathfrak{g})$ s.t. $\forall \mathbf{v} \in \mathbf{H}(\operatorname{curl}; U) \otimes \mathfrak{g}, \forall q \in H^1(U) \otimes \mathfrak{g}$:

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

where $\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$

- Replace spaces/operators by LADDR spaces/operators → deals with linear terms.
- What about the brackets?

Outline

1 The Yang–Mills equations

Discretisation Discrete de Rham (DDR) complex Discretisation of brackets Time stepping

B Numerical tests

Product bracket

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \mathbf{\star} [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, \mathbf{q}] \rangle = 0$$

- q scalar, v vector Lie algebra-valued functions, $(e_l)_l$ a basis of g
- Decompose $q = \sum_{l} q^{l} \otimes e_{l}$, where q^{l} is real-valued (resp. v)

$$[q, \mathbf{v}] \coloneqq \sum_{I,J} q^I \mathbf{v}^J \otimes [e_I, e_J]$$

Product bracket

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

- q scalar, v vector Lie algebra-valued functions, $(e_l)_l$ a basis of g
- Decompose $q = \sum_{l} q^{l} \otimes e_{l}$, where q^{l} is real-valued (resp. v)

$$[q, \mathbf{v}] \coloneqq \sum_{I,J} q^I \mathbf{v}^J \otimes [e_I, e_J]$$

Discretisation requires

$$(\underline{\boldsymbol{v}}_h, [\underline{\boldsymbol{v}}_h, \underline{\boldsymbol{q}}_h])_{\text{curl},\mathfrak{g},h} = 0$$

Product bracket

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

- q scalar, v vector Lie algebra-valued functions, $(e_l)_l$ a basis of g
- Decompose $q = \sum_{l} q^{l} \otimes e_{l}$, where q^{l} is real-valued (resp. \boldsymbol{v})

$$[q, oldsymbol{v}]\coloneqq \sum_{I,J}q^Ioldsymbol{v}^J\otimes [e_I, e_J]$$

Discretisation requires

$$(\underline{\boldsymbol{v}}_h, [\underline{\boldsymbol{v}}_h, \underline{\boldsymbol{q}}_h])_{\text{curl},\mathfrak{g},h} = 0$$

Choice:

$$\int_{U} \langle \boldsymbol{v}, [\boldsymbol{w}, q] \rangle \rightsquigarrow \int_{U} \langle \boldsymbol{P}_{\mathsf{curl}, h}^{k, \mathfrak{g}} \underline{\boldsymbol{v}}_{h}, [\boldsymbol{P}_{\mathsf{curl}, h}^{k, \mathfrak{g}} \underline{\boldsymbol{w}}_{h}, \boldsymbol{P}_{\mathsf{grad}, h}^{k+1, \mathfrak{g}} \underline{q}_{h}] \rangle$$

Cross product bracket

$$\partial_t \mathbf{A} = -\mathbf{E}$$
$$\int_U \langle \partial_t \mathbf{E}, \mathbf{v} \rangle + \int_U \langle \operatorname{grad} \lambda + [\mathbf{A}, \lambda], \mathbf{v} \rangle = \int_U \langle \mathbf{B}, \operatorname{curl} \mathbf{v} + \star [\mathbf{A}, \mathbf{v}] \rangle$$
$$\int_U \langle \partial_t \mathbf{E}, \operatorname{grad} q + [\mathbf{A}, q] \rangle = 0$$

$$\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}].$$

• *v*, *w* vector Lie algebra-valued functions:

$$\star [\mathbf{v}, \mathbf{w}] \coloneqq \sum_{l,J} (\mathbf{v}^l \times \mathbf{w}^J) \otimes [\mathbf{e}_l, \mathbf{e}_J].$$

• $\boldsymbol{B} \in \boldsymbol{H}(\operatorname{div}; \boldsymbol{U}) \otimes \mathfrak{g}$.

 $\star [\cdot, \cdot]^{\mathrm{div}, k, h} : (\underline{\mathbf{X}}^k_{\mathrm{curl}, h} \otimes \mathfrak{g}) \times (\underline{\mathbf{X}}^k_{\mathrm{curl}, h} \otimes \mathfrak{g}) \to \underline{\mathbf{X}}^k_{\mathrm{div}, h} \otimes \mathfrak{g}.$

$$\star [\cdot, \cdot]^{\mathrm{div}, k, h} : (\underline{\mathbf{X}}_{\mathrm{curl}, h}^k \otimes \mathfrak{g}) \times (\underline{\mathbf{X}}_{\mathrm{curl}, h}^k \otimes \mathfrak{g}) \to \underline{\mathbf{X}}_{\mathrm{div}, h}^k \otimes \mathfrak{g}.$$

• Face value in
$$\underline{X}_{div,h}^k \otimes \mathfrak{g}$$
 represents

$$\star [\boldsymbol{v}, \boldsymbol{w}] \cdot \boldsymbol{n}_F = \sum_{l, J} (\boldsymbol{v}^l \times \boldsymbol{w}^J) \cdot \boldsymbol{n}_F \otimes [\boldsymbol{e}_l, \boldsymbol{e}_J]$$

$$\star[\cdot,\cdot]^{\mathrm{div},k,h}:(\underline{\mathbf{X}}_{\mathrm{curl},h}^k\otimes\mathfrak{g})\times(\underline{\mathbf{X}}_{\mathrm{curl},h}^k\otimes\mathfrak{g})\to\underline{\mathbf{X}}_{\mathrm{div},h}^k\otimes\mathfrak{g}.$$

• Face value in
$$\underline{X}_{div,h}^k \otimes \mathfrak{g}$$
 represents

$$\star [\boldsymbol{v}, \boldsymbol{w}] \cdot \boldsymbol{n}_F = \sum_{l, J} (\boldsymbol{v}^l \times \boldsymbol{w}^J) \cdot \boldsymbol{n}_F \otimes [\boldsymbol{e}_l, \boldsymbol{e}_J]$$

• Leads to setting $(\star[\underline{v}_h, \underline{w}_h]^{\text{div},k,h})_F = \pi^k_{\mathcal{P},F}(\star[\gamma^{k,\mathfrak{g}}_{t,F}\underline{v}_F, \gamma^{k,\mathfrak{g}}_{t,F}\underline{w}_F] \cdot \mathbf{n}_F)$

$$\star[\cdot,\cdot]^{\mathrm{div},k,h}:(\underline{\mathbf{X}}_{\mathrm{curl},h}^k\otimes\mathfrak{g})\times(\underline{\mathbf{X}}_{\mathrm{curl},h}^k\otimes\mathfrak{g})\to\underline{\mathbf{X}}_{\mathrm{div},h}^k\otimes\mathfrak{g}.$$

• Face value in
$$\underline{X}_{div,h}^k \otimes \mathfrak{g}$$
 represents

$$\star [\boldsymbol{v}, \boldsymbol{w}] \cdot \boldsymbol{n}_F = \sum_{l, J} (\boldsymbol{v}^l \times \boldsymbol{w}^J) \cdot \boldsymbol{n}_F \otimes [\boldsymbol{e}_l, \boldsymbol{e}_J]$$

• Leads to setting $(\star [\underline{\boldsymbol{v}}_h, \underline{\boldsymbol{w}}_h]^{\text{div},k,h})_F = \pi^k_{\mathcal{P},F}(\star [\boldsymbol{\gamma}^{k,\mathfrak{g}}_{t,F} \underline{\boldsymbol{v}}_F, \boldsymbol{\gamma}^{k,\mathfrak{g}}_{t,F} \underline{\boldsymbol{w}}_F] \cdot \boldsymbol{n}_F)$

Element value built using *P*^k_{curl,T}.

$$\star [\cdot, \cdot]^{\mathrm{div}, k, h} : (\underline{\mathbf{X}}_{\mathrm{curl}, h}^k \otimes \mathfrak{g}) \times (\underline{\mathbf{X}}_{\mathrm{curl}, h}^k \otimes \mathfrak{g}) \to \underline{\mathbf{X}}_{\mathrm{div}, h}^k \otimes \mathfrak{g}.$$

Then

$$\int_{U} \langle \boldsymbol{B}, \operatorname{curl} \boldsymbol{\nu} + \star [\boldsymbol{A}, \boldsymbol{\nu}] \rangle \rightsquigarrow (\underline{\boldsymbol{B}}_{h}, \underline{\boldsymbol{C}}_{h}^{\mathfrak{g}, k} \underline{\boldsymbol{\nu}}_{h} + \star [\underline{\boldsymbol{A}}_{h}, \underline{\boldsymbol{\nu}}_{h}]^{\operatorname{div}, k, h})_{\operatorname{div}, \mathfrak{g}, h}$$

with $\underline{\underline{B}}_h = \underline{\underline{C}}_h^{g,k} \underline{\underline{A}}_h + \frac{1}{2} \star [\underline{\underline{A}}_h, \underline{\underline{A}}_h]^{\text{div},k,h} \in \underline{\underline{X}}_{\text{div},k}^k \otimes \mathfrak{g}.$

Option 2 (O2): potentials in continuous bracket

With
$$\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$$
:

$$\int_{U} \langle \boldsymbol{B}, \operatorname{curl} \boldsymbol{v} + \star [\boldsymbol{A}, \boldsymbol{v}] \rangle = \int_{U} \langle \operatorname{curl} \boldsymbol{A}, \operatorname{curl} \boldsymbol{v} \rangle + \int_{U} \langle \operatorname{curl} \boldsymbol{A}, \star [\boldsymbol{A}, \boldsymbol{v}] \rangle$$

$$+ \int_{U} \langle \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}], \operatorname{curl} \boldsymbol{v} + \star [\boldsymbol{A}, \boldsymbol{v}] \rangle$$

discretised as

$$(\underline{C}_{h}^{\mathfrak{g},k}\underline{A}_{h},\underline{C}_{h}^{\mathfrak{g},k}\underline{v}_{h})_{\mathrm{div},\mathfrak{g},h} + \int_{U} \langle P_{\mathrm{div},h}^{\mathfrak{g},k}\underline{C}_{h}^{\mathfrak{g},k}\underline{A}_{h}, \star [P_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{A}_{h}, P_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{v}_{h}] \rangle + \int_{U} \langle \frac{1}{2} \star [P_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{A}_{h}, P_{\mathrm{curl},h}^{\mathfrak{g},h}\underline{A}_{h}], P_{\mathrm{div},h}^{\mathfrak{g},k}\underline{C}_{h}^{\mathfrak{g},k}\underline{v}_{h} + \star [P_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{A}_{h}, P_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{v}_{h}] \rangle.$$

Option 2 (O2): potentials in continuous bracket

With
$$\boldsymbol{B} = \operatorname{curl} \boldsymbol{A} + \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}]$$
:

$$\int_{U} \langle \boldsymbol{B}, \operatorname{curl} \boldsymbol{v} + \star [\boldsymbol{A}, \boldsymbol{v}] \rangle = \int_{U} \langle \operatorname{curl} \boldsymbol{A}, \operatorname{curl} \boldsymbol{v} \rangle + \int_{U} \langle \operatorname{curl} \boldsymbol{A}, \star [\boldsymbol{A}, \boldsymbol{v}] \rangle$$

$$+ \int_{U} \langle \frac{1}{2} \star [\boldsymbol{A}, \boldsymbol{A}], \operatorname{curl} \boldsymbol{v} + \star [\boldsymbol{A}, \boldsymbol{v}] \rangle$$

discretised as

$$(\underline{\mathbf{C}}_{h}^{\mathfrak{g},k}\underline{\mathbf{A}}_{h},\underline{\mathbf{C}}_{h}^{\mathfrak{g},k}\underline{\mathbf{v}}_{h})_{\mathrm{div},\mathfrak{g},h} + \int_{U} \langle \mathbf{P}_{\mathrm{div},h}^{\mathfrak{g},k}\underline{\mathbf{C}}_{h}^{\mathfrak{g},k}\underline{\mathbf{A}}_{h}, \star [\mathbf{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\mathbf{A}}_{h}, \mathbf{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\mathbf{v}}_{h}] \rangle + \int_{U} \langle \frac{1}{2} \star [\mathbf{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\mathbf{A}}_{h}, \mathbf{P}_{\mathrm{curl},h}^{\mathfrak{g},h}\underline{\mathbf{A}}_{h}], \mathbf{P}_{\mathrm{div},h}^{\mathfrak{g},k}\underline{\mathbf{C}}_{h}^{\mathfrak{g},k}\underline{\mathbf{v}}_{h} + \star [\mathbf{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\mathbf{A}}_{h}, \mathbf{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\mathbf{v}}_{h}] \rangle.$$

• Magnetic field not in the discrete *H*(div; *U*) ⊗ g, but piecewise polynomial:

$$\boldsymbol{B}_{h} = \boldsymbol{P}_{\text{curl},h}^{g,k} \underline{\boldsymbol{C}}_{h}^{g,k} \underline{\boldsymbol{A}}_{h} + \frac{1}{2} \star [\boldsymbol{P}_{\text{curl},h}^{g,k} \underline{\boldsymbol{A}}_{h}, \boldsymbol{P}_{\text{curl},h}^{g,k} \underline{\boldsymbol{A}}_{h}].$$

Outline

1 The Yang–Mills equations

2 Discretisation

Discrete de Rham (DDR) complex Discretisation of brackets Time stepping

3 Numerical tests

Illustration with O1 (discrete bracket)

Time discretisation:

$$\delta_t^{n+1} \boldsymbol{Z} = \frac{1}{\delta t} (\boldsymbol{Z}^{n+1} - \boldsymbol{Z}^n)$$

Scheme: Find families $(\underline{A}_{h}^{n})_{n}, (\underline{E}_{h}^{n})_{n}, (\underline{\lambda}_{h}^{n})_{n}$ such that for all n, $(\underline{A}_{h}^{n}, \underline{E}_{h}^{n}, \underline{\lambda}_{h}^{n}) \in (\underline{X}_{\text{curl},h}^{k} \otimes \mathfrak{g}) \times (\underline{X}_{\text{curl},h}^{k} \otimes \mathfrak{g}) \times (\underline{X}_{\text{grad},h}^{k} \otimes \mathfrak{g})$, and

$$\delta_t^{n+1}\underline{\boldsymbol{A}}_h = -\underline{\boldsymbol{E}}_h^{n+1},$$

$$\begin{split} (\delta_{t}^{n+1}\underline{\boldsymbol{E}}_{h},\underline{\boldsymbol{v}}_{h})_{\mathrm{curl},\mathfrak{g},h} + (\underline{\boldsymbol{G}}_{h}^{\mathfrak{g},k}\underline{\lambda}_{h}^{n+1},\underline{\boldsymbol{v}}_{h})_{\mathrm{curl},\mathfrak{g},h} + \int_{U} \langle [\boldsymbol{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\boldsymbol{A}}_{h}^{n+1}, \boldsymbol{P}_{\mathrm{grad},h}^{\mathfrak{g},k}\underline{\lambda}_{h}^{n+1}], \boldsymbol{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\boldsymbol{v}}_{h} \rangle \\ &= (\underline{\boldsymbol{B}}_{h}^{n+1}, \underline{\boldsymbol{C}}_{h}^{\mathfrak{g},k}\underline{\boldsymbol{v}}_{h} + \star [\underline{\boldsymbol{A}}_{h}^{n+\frac{1}{2}}, \underline{\boldsymbol{v}}_{h}]^{\mathrm{div},k,h})_{\mathrm{div},\mathfrak{g},h}, \qquad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{X}}_{\mathrm{curl},h}^{k} \otimes \mathfrak{g}, \end{split}$$

$$\begin{split} (\delta_t^{n+1}\underline{\boldsymbol{E}}_h,\underline{\boldsymbol{G}}_h^{\mathfrak{g},k}\underline{\boldsymbol{q}}_h)_{\mathrm{curl},\mathfrak{g},h} + \int_U \langle \boldsymbol{P}_{\mathrm{curl},h}^{\mathfrak{g},k}(\delta_t^{n+1}\underline{\boldsymbol{E}}_h), [\boldsymbol{P}_{\mathrm{curl},h}^{\mathfrak{g},k}\underline{\boldsymbol{A}}_h^n, \boldsymbol{P}_{\mathrm{grad},h}^{\mathfrak{g},k}\underline{\boldsymbol{q}}_h] \rangle \\ &= 0, \qquad \forall \underline{\boldsymbol{q}}_h \in \underline{X}_{\mathrm{grad},h}^k \otimes \mathfrak{g}. \end{split}$$

Properties

See [Droniou et al., 2023, Droniou and Qian, 2023].

• Preservation of discrete constraint:

$$\begin{split} \mathfrak{C}^{n}(\underline{q}_{h}) \coloneqq (\underline{\underline{P}}_{h}^{\mathfrak{g},h}, \underline{\underline{G}}_{h}^{\mathfrak{g},h}\underline{q}_{h})_{\mathrm{curl},\mathfrak{g},h} + \int_{U} \langle \underline{P}_{\mathrm{curl},h}^{\mathfrak{g},k} \underline{\underline{P}}_{h}^{\mathfrak{g},h} [\underline{P}_{\mathrm{curl},h}^{\mathfrak{g},k} \underline{\underline{A}}_{h}^{\mathfrak{g}}, \underline{P}_{\mathrm{grad},h}^{\mathfrak{g},k} \underline{q}_{h}] \rangle, \\ \forall \underline{q}_{h} \in \underline{X}_{\mathrm{grad},h}^{k} \otimes \mathfrak{g}. \end{split}$$

Recall the weak form of continuous constraint:

$$\int_{U} \langle \boldsymbol{E}, \operatorname{grad} q + [\boldsymbol{A}, q] \rangle.$$

Properties

See [Droniou et al., 2023, Droniou and Qian, 2023].

• Preservation of discrete constraint:

$$\begin{split} \mathfrak{C}^{n}(\underline{q}_{h}) &\coloneqq (\underline{\underline{E}}_{h}^{n}, \underline{\underline{G}}_{h}^{\mathfrak{g}, k} \underline{q}_{h})_{\mathrm{curl}, \mathfrak{g}, h} + \int_{U} \langle \underline{P}_{\mathrm{curl}, h}^{\mathfrak{g}, k} \underline{\underline{E}}_{h}^{n}, [\underline{P}_{\mathrm{curl}, h}^{\mathfrak{g}, k} \underline{\underline{A}}_{h}^{n}, \underline{P}_{\mathrm{grad}, h}^{\mathfrak{g}, k} \underline{q}_{h}] \rangle, \\ & \forall \underline{q}_{h} \in \underline{X}_{\mathrm{grad}, h}^{k} \otimes \mathfrak{g}. \end{split}$$

• O1: Energy bound, for $(\underline{A}_{h}^{0}, \underline{E}_{h}^{0})$ s.t. $\mathfrak{C}^{0} \equiv 0$:

$$\frac{1}{2} \|\underline{\underline{\boldsymbol{E}}}_{h}^{n}\|_{\operatorname{curl},\mathfrak{g},h}^{2} + \frac{1}{2} \|\underline{\underline{\boldsymbol{B}}}_{h}^{n}\|_{\operatorname{div},\mathfrak{g},h}^{2} \leq \frac{1}{2} \|\underline{\underline{\boldsymbol{E}}}_{h}^{0}\|_{\operatorname{curl},\mathfrak{g},h}^{2} + \frac{1}{2} \|\underline{\underline{\boldsymbol{B}}}_{h}^{0}\|_{\operatorname{div},\mathfrak{g},h}^{2}.$$

Properties

See [Droniou et al., 2023, Droniou and Qian, 2023].

• Preservation of discrete constraint:

$$\begin{split} \mathfrak{C}^{n}(\underline{q}_{h}) &\coloneqq (\underline{\underline{E}}_{h}^{n}, \underline{\underline{G}}_{h}^{\mathfrak{g}, k} \underline{q}_{h})_{\mathrm{curl}, \mathfrak{g}, h} + \int_{U} \langle \underline{P}_{\mathrm{curl}, h}^{\mathfrak{g}, k} \underline{\underline{E}}_{h}^{n}, [\underline{P}_{\mathrm{curl}, h}^{\mathfrak{g}, k} \underline{\underline{A}}_{h}^{n}, \underline{P}_{\mathrm{grad}, h}^{\mathfrak{g}, k} \underline{q}_{h}] \rangle, \\ &\forall \underline{q}_{h} \in \underline{X}_{\mathrm{grad}, h}^{k} \otimes \mathfrak{g}. \end{split}$$

• O2: Energy bound, for $(\underline{A}_{h}^{0}, \underline{E}_{h}^{0})$ s.t. $\mathfrak{C}^{0} \equiv 0$:

$$\begin{split} \frac{1}{2} \|\underline{\boldsymbol{E}}_{h}^{n}\|_{\text{curl},\mathfrak{g},h}^{2} + \frac{1}{2} \|\boldsymbol{B}_{h}^{n}\|_{L^{2}(U)\otimes\mathfrak{g}}^{2} + \operatorname{stab}(\underline{\boldsymbol{C}}_{h}^{\mathfrak{g},k}\underline{\boldsymbol{A}}_{h}^{n},\underline{\boldsymbol{C}}_{h}^{\mathfrak{g},k}\underline{\boldsymbol{A}}_{h}^{n}) \\ &\leq \frac{1}{2} \|\underline{\boldsymbol{E}}_{h}^{0}\|_{\text{curl},\mathfrak{g},h}^{2} + \frac{1}{2} \|\boldsymbol{B}_{h}^{0}\|_{L^{2}(U)\otimes\mathfrak{g}}^{2} + \operatorname{stab}(\underline{\boldsymbol{C}}_{h}^{\mathfrak{g},k}\underline{\boldsymbol{A}}_{h}^{0},\underline{\boldsymbol{C}}_{h}^{\mathfrak{g},k}\underline{\boldsymbol{A}}_{h}^{0}). \end{split}$$

Outline

1 The Yang–Mills equations

Discretisation

Discrete de Rham (DDR) complex Discretisation of brackets Time stepping

3 Numerical tests

Numerical tests

• *k* = 0

- Domain $U = (0, 1)^3$, $t \in [0, 1]$
- Lie algebra g = su(2)

$$e_1 = -\frac{i}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \ e_2 = -\frac{i}{2} \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \ e_3 = -\frac{i}{2} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- Mesh sequences
 - Voronoi polytopal meshes
 - Tetrahedral meshes
 - Cubic meshes
- Newton iterations
 - Stopping criterion $\epsilon = 10^{-6}$
 - Timestep $\delta t = \min\{0.1, 0.2h\}$
 - Direct solver

Newton iterations (O1)

	Voronoi mesh				
	1	2	3	4	5
h	0.83	0.45	0.31	0.22	0.18
δt	0.1	0.083	0.059	0.043	0.034
$N_{\rm avg}~(\epsilon = 10^{-6})$	2	2	2	2.6	1.4
$N_{\rm avg}$ ($\epsilon = 10^{-10}$)	2.3	2.3	2.1	3.3	2

	Tetrahedral mesh				
	1	2	3	4	5
h	0.56	0.50	0.39	0.31	0.26
δt	0.1	0.091	0.077	0.063	0.05
$N_{\rm avg}~(\epsilon = 10^{-6})$	2	2	2	1.9	1.6
$N_{\rm avg}$ ($\epsilon = 10^{-10}$)	2	2	2	2	2

Comparison of total runtimes between O1 and O2

	Voronoi mesh		Tetrahedral mesh		Cubic mesh	
01	1	3	2	4	1	3
<i>k</i> = 0	5.00865	145.77	4.70017	21.1378	0.564665	35.2541
<i>k</i> = 1	35.9231	2836.36	50.997	360.943	3.58296	588.679
<i>k</i> = 2	198.435	43303.9	578.499	5732.1	14.6638	14337.4
02	1	3	2	4	1	3
<i>k</i> = 0	4.57515	135.231	4.16998	19.7708	0.53204	32.879
<i>k</i> = 1	34.2036	2814.14	51.3249	340.817	3.62877	631.546
<i>k</i> = 2	190.447	42083.9	634.162	6421.87	13.8524	14414.9

Table: Total runtime for each test in seconds

Errors on *E*

$$\begin{array}{c} \bullet & \mathbf{E} \ (\text{O1}, \, k = 0); \ \bullet & \mathbf{E} \ (\text{O1}, \, k = 1); \ \bullet & \mathbf{E} \ (\text{O1}, \, k = 2); \\ \bullet & \mathbf{E} \ (\text{O2}, \, k = 0); \ \bullet & \mathbf{E} \ (\text{O2}, \, k = 1); \ \bullet & \mathbf{E} \ (\text{O2}, \, k = 2); \end{array}$$

Errors on *E*

$$- E (O1, k = 0); - * - E (O1, k = 1); - * - E (O1, k = 2);$$

-
$$- E (O2, k = 0); - - E (O2, k = 1); - E (O2, k = 2);$$

Errors on **A**

31/36

Errors on **A**

	Vorono	oi mesh	Tetrahed	lral mesh
01	1	3	2	4
<i>k</i> = 0	8.47329e-15	3.05676e-14	2.06362e-14	4.75412e-14
<i>k</i> = 1	1.4144e-13	8.93075e-13	3.67781e-13	1.81426e-12
<i>k</i> = 2	3.69918e-12	1.18207e-10	3.82037e-12	2.77407e-11
02	1	3	2	4
<i>k</i> = 0	8.16124e-15	3.13617e-14	2.01667e-14	4.77633e-14
<i>k</i> = 1	9.8531e-14	8.83056e-13	3.69107e-13	1.81787e-12
<i>k</i> = 2	4.16428e-12	7.99416e-11	3.81537e-12	2.77391e-11

Table: Maximum over *n* of the difference $\mathfrak{C}^n - \mathfrak{C}^0$ measured in the dual norm

	Cubic mesh			
01	1	3		
<i>k</i> = 0	3.52318e-15	2.16527e-14		
<i>k</i> = 1	2.33678e-14	6.44019e-13		
<i>k</i> = 2	4.45312e-14	6.48608e-12		
02	1	3		
<i>k</i> = 0	4.22851e-15	2.11083e-14		
<i>k</i> = 1	2.52977e-14	6.48934e-13		
<i>k</i> = 2	4.51672e-14	6.48285e-12		

Table: Maximum over *n* of the difference $\mathfrak{C}^n - \mathfrak{C}^0$ measured in the dual norm

Conclusion

Highlights

- Arbitrary order
- Polytopal meshes

Questions

- Scheme to preserve constraint on weak (not constrained) formulation?
- Convergence analysis (error estimates)?
- Other models?

Conclusion

Highlights

- Arbitrary order
- Polytopal meshes

Questions

- Scheme to preserve constraint on weak (not constrained) formulation?
- Convergence analysis (error estimates)?
- Other models?

Thank you!

• Notes and series of introductory lectures to DDR:

https:

//math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html

COURSE OF JEROME DRONIOU FROM MONASH UNIVERSITY, INVITED PROFESSOR AT UCA

- · Introduction to Discrete De Rham complexes
 - Short description (in french)
 - Summary of notations and formulas
 - Part 1, first course: the de Rham complex and its usefulness in PDEs, 22/09/22 (video)
 - Part 1, second course: Low order case, 29/09/22 (video)
 - Part 1, third course: Design of the DDR complex in 2D, 07/10/22 (video)
 - Part 1, fourth course: Exactness of the DDR complex in 2D, 10/10/22 (video)
 - Part 2, fifth course: DDR in 3D, analysis tools, 17/11/22 (video)

References I

Christiansen, S. H. and Winther, R. (2006).

On constraint preservation in numerical simulations of Yang-Mills equations. *SIAM J. Sci. Comput.*, 28(1):75–101.

Di Pietro, D. A. and Droniou, J. (2021).

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency.

Found. Comput. Math. Published online. DOI: 10.1007/s10208-021-09542-8.

Di Pietro, D. A., Droniou, J., and Rapetti, F. (2020).

Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra.

Math. Models Methods Appl. Sci., 30(9):1809–1855.

Droniou, J., Oliynyk, T. A., and Qian, J. J. (2023).

A polyhedral discrete de rham numerical scheme for the yang-mills equations. *J. Comput. Phys.*, page 26p.

Droniou, J. and Qian, J. J. (2023).

Two arbitrary-order constraint-preserving schemes for the yang–mills equations on polyhedral meshes.

page 21p.