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Objectives

Represent or approximate geometric objects, functions.

+ High quality description of geometry.
+ High order of approximation of functions.

based on piecewise polynomial models.
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Spline functions



Univariate Bernstein representation

For any f (x) ∈ R[x ] of degree d , with

f (x) =
d∑

i=0

ci

(
d

i

)
(x − a)i (b − x)d−i (b − a)−d =

d∑
i=0

ci B
i
d(x ; a, b)

For ci ∈ Rk , c = [ci ]i=0,...,d is the control polygon of f : [a, b]→ Rk .

Properties:

•
∑d

i=0 B i
d(x ; a, b) = 1;

∑d
i=0(a d−i

d + b i
d )B i

d(x ; a, b) = x ;
• f (a) = c0, f (b) = cd ;
• f ′(x) = d

∑d−1
i=0 ∆(c)i B

i
d−1(x ; a, b) where ∆(c)i = ci+1 − ci ;

• (x , f (x))x∈[a,b] ∈ convex hull of the points (a d−i
d

+ b i
d
, ci )i=0..d

• #{f (x) = 0; x ∈ [a, b]}=V (c)−2p, p ∈ N. 2



De Casteljau subdivision algorithm c0
i = ci , i = 0, . . . , d ,

c ri (t) = b−t
b−a c

r−1
i (t) + t−a

b−a c
r−1
i+1 (t), i = 0, . . . , d − r .

• c−(t) = (c0
0 (t), c1

0 (t), . . . , cd0 (t)) represents f on [a, t].
• c+(t) = (cd0 (t), cd−1

1 (t), . . . , c0
d (t)) represents f on [t, b].

The geometric point of view. The algebraic point of view.
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Properties

Proposition (Descartes’ rule)
For f := (c, [a, b]), #{f (x) = 0; x ∈ [a, b]}=V (c)−2p, p ∈ N.

Theorem
V (c−) + V (c+) ≤ V (c).

Theorem (Vincent)

If there is no complex root in the disc D(1
2 ,

1
2) ⊂ C,

then V (c) = 0.

Theorem (Two circles)

If there is no complex root in the union of the discs
D(1

2 ± i 1
2
√

3
, 1√

3
) ⊂ C except a simple real root,

then V (c) = 1.
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Historical notes:

Pierre Bézier (1910-1999), Renault;

Paul de Casteljau (1930-), Citroën, 1959, 1963 (secret internal reports),
SMA Bézier Price 2012;
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Distance between polynomials and their control polygons 1

Let Ldi (t) be the hat function at a + (b − a) i
d .

Proposition
On the interval [a, b],

‖
∑
i

(Bd
i (t)− Ldi (t))ci‖ ≤

d (t − a)(b − t)

2
‖∆2(c)‖∞

C (d , p)(‖∆2(c)‖∞−‖∆3(c)‖1) ≤ ‖
∑
i

(Bd
i (t)− Ldi (t))ci‖p ≤ C (d , p) ‖∆2(c)‖∞

where C (p, 1) = d−1
12 , C (d , 2) =

(
3d3−5d2+3d−1

360d

) 1
2
C (d ,∞) = d2−parity(d)

8d

+ Quadratic convergence of the control polygon to the function
(error × 1

4 when interval split at a+b
2 ).

1U. Reif, Best bounds on the approximation of polynomials andsplines by their control structure, 2000
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Optimal conditioning of Bernstein basis2

For φ = (φ0, . . . , φd) a basis of R[t]d and f (t, c) =
∑d

i=0 ciφi (t) ∈ R[t]d ,

|f (t, c + δc)− f (t, c)| = |f (t, δc)| ≤ Cφ(f , t) ‖δc‖∞

Partial order on bases: φ � ψ if ψ = Mφ with Mi ,j ≥ 0.

Proposition
• If φ, ψ non-negative bases on [a, b] with φ � ψ then

Cφ(f , t) ≤ Cψ(f , t) for t ∈ [a, b].

• The Bernstein basis B = (Bd
i (t; a, b)) on [a, b] is minimal for �.

• If φ non-negative basis s.t. ((t − a)i ) � φ � ((b − t)i ), then φ ∼ B .

2R.T. Farouki N.T. Goodman, On the Optimal Stability of the Bernstein Basis, 1996
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Piecewise polynomial functions

Knots: t0 ≤ t1 ≤ · · · ≤ tl ∈ R

Polynomials p0, . . . , pl−1 ∈ R[t]d of degree ≤ d on the intervals [ti , ti+1].

Regularity ri at ti for i = 1, . . . , l − 1.

pi − pi−1 = (t − ti )
ri+1 qi for some qi ∈ R[t]d−ri−1

Definition (Spline space)

For d ∈ N, t = (t0, . . . , tl), r = (r1, . . . , rl−1),

Sr
d(t) = {[pi ] ∈ R[t]d | pi − pi−1 = (t − ti )

ri+1 qi}

Dimension: d + 1 +
∑l−1

i=1(d − ri )+ (x+ = max{0, x})
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Spline basis representation

Nodes: t0 ≤ t1 ≤ · · · ≤ tl ∈ R (repeated d − ri times at ti ).

Basis spline functions (b-spline):

N0
i (t) =

{
1 if ti ≤ t < ti+1

0 otherwise.

Nd
i (t) =

t − ti
ti+d − ti

Nd−1
i (t) +

ti+d+1 − t

ti+d+1 − ti+1
Nd−1
i+1 (t).

• Basis of St,r
d ;

• Local support (supp(Nd
i ) = [ti , ti+d+1]);

• Positive functions;
• Sum to 1;

Open uniform knot vector: ti+1 − ti constant for d + 1 ≤ i ≤ l − d − 1.
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Examples of b-spline functions

Degree: 1; Knots: [02, 0.2, 0.4, 0.6, 0.8, 12]; Regularity: 0

Degree: 3; Knots: [04, 0.2, 0.4, 0.6, 0.8, 14]; Regularity: 2
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• Insertion of knot t, find the first k s.t. tk ≤ t < tk+1 and compute:

c(l+1)
i =

ti+d − t

ti+d − ti
c(l)
i−1 +

t − ti
ti+d − ti

c(l)
i

for k − d + 1 ≤ i ≤ k .

• Evaluation at t (de Boor algorithm):

c[j+1]
i =

ti+d−j − t

ti+d−j − ti
c[j]
i−1 +

t − ti
ti+d−j − ti

c[j]
i

for k − j + 1 ≤ i ≤ k .

• Derivative of f (t) =
∑

i ci N
d
i (t; t):

f ′(t) = d
∑
i

∆ci
td+1+i − ti

Nd−1
i (t; t)
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Historical notes: Isaac J. Schoenberg (1946); Carl De Boor (1972-76);
Maurice G. Cox (1972); Richard Riesenfeld (1973); Wolfgang Boehm
(1980).
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BS vs NURBS

Representation of rational curves:

t ∈ [t0, . . . , tl ] 7→
∑

i ciN
d
i (t)∑

ωiNd
i (t)

(Non-Uniform Rational B-Spline function)

Control points: [ci , ωi ]

Example of a circle as a NURBS curve:

(1−t2,2t)
1+t2

= ((1−t)2+2t(1−t), 2t(1−t)+2 t2)
((1−t)2+2t(1−t)+2 t2)

13



Geometric modeling



Tensor product B-splines

• Standard in Computer Aided Design (CAD);

• Define on rectangular domains;

• Grid of control points;
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Tensor product b-spline functions:

(s, t) ∈ [s0, sl ]× [t0, tm] 7→
∑
i

ci ,jN
ds
i (s; s)Ndt

j (t; t)

• Local support of Ni ,j(s, t) = Nds
i (s)Ndt

j (t) in [si , si+ds+1]× [tj , tj+dt+1]

• Insertion of knots in each direction;
• Derivation formula per variable on the grid of coefficients ci ,j ;
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Hierarchical b-splines

(D. Forsey, R. Bartels, 1988)

• Local refinement of the support of basis function;

• Offsets of b-spline parameterizations at different level;

• Not all possible T-mesh.
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T-Splines

3

• More control for complex geometry;
• Not piecewise polynomial on the T-subdivision;
• Span by some N(s; si0 , . . . , sid+2)× N(t; tj0 , . . . , tjd+2);
• Partition of unity with rational functions;
• Problems of linear independency;
• No characterisation of the span space.

3http://www.tsplines.com/ 17



Hierarchical triangular splines

(A. Yvart, S. Hahmann, G.-P. Bonneau, 2005)

• G 1 continuity;

• Piecewise quintic polynomials;

• Arbitrary topology;
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From curves to surfaces

• Extrusion: (s, t) 7→ (C (s), t) ∈ R3

• Surface of revolution: (s, t) 7→ (c(t)C1(s), s(t)C1(s),C2(s)) with
c(t)2 + s(t)2 = 1

• Swept surface: (s, t) 7→ O(t) + M(t)C (s)

• Interpolation surface: (s, t) 7→ λ0(t)C0(s) + λ1(t)C1(s) with
λ0(t) + λ1(t) = 1

• . . .
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Multi-patch trimmed models

Geometric model made of patches, glued together along intersection curves.
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Intersection of b-spline surfaces

represented by b-spline curves in the parameter domains of the two surfaces
and/or by their image on the two surfaces.
• For generic surfaces of bi-degree (d1, d2) and (d ′1, d

′
2),

• degree of surface 2 d1d2, 2 d ′1d
′
2,

• degree of intersection curve 4 d1d2d
′
1d
′
2, of genus

8 d1d2d
′
1d
′
2 − 2 d1d2(d ′1 + d ′2)− 2 d ′1d

′
2(d1 + d2) + 1, is not rational.

• Approximate representation of
the intersection curve and gaps
in the models.

• Base point for rational param. (s, t) 7→ [ f1(s,t)
f0(s,t) ,

f2(s,t)
f0(s,t) ,

f3(s,t)
f0(s,t) ]: fi (s0, t0) = 0.

Reduce the degree 2d1d2 − ρ, the genus, . . . 21



Other geometric operations

• Selfintersection

• Offsets

• Silhouet

• Blending surfaces

• Reparametrisation

• Constructive Solid Geometry (CSG)

• . . .
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Isogeometric Analysis



• Finite Element Analysis (FEA) developed to improve analysis in
Engineering.
• FEA was developed before the NURBS theory;
• FEA evolution started in the 1940s and was given a rigorous

mathematical foundation around 1970 (E.g, ,1973: Strang and Fix’s An
Analysis of The Finite Element Method)

• An early believe that higher order representations in most cases did not
contribute to better solutions

• Computer Aided Design (CAD) developed to improve the design
process.
• CAD (NURBS) and FEA evolved in different communities.
• B-splines, 1972: DeBoor-Cox Calculation, 1980: Oslo Algorithm
• Representation adapted to performance of earlier computers
• Few information exchange between CAD and FEA.

23



(Isogeometric Analysis: Toward Integration of CAD and FEA - J. A. Cottrell, T.J. R. Hughes, Y.

Bazilevs, 2009)

+ IsoGeometric Analysis aims at a seamless integration of Design
and Analysis. 24



Historical perspective:

25



What is isogeometric analysis ?
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• Choose a parametrization σ : P → Ω of a "computational" domain Ω.
• Use finite dimensional function space spanned by

Φi : P → R

to express the approximate solution S : Ω→ Rd of a system of
differential equations as

S(x) =

(∑
i

λi Φi

)
◦ σ−1(x) with λi ∈ Rd .

• Pull back the solutions of the differential equations by the
parameterization σ and project onto the space spanned by
Φ̃i (x) = Φi ◦ σ−1:∫

Ω
E (S)Φ̃i (x)dx =

∫
P
E (
∑
i

λiΦi (u)) Φi (u) J−1
σ (u)du

(Isoparametric elements: B. Irons, O. Zienkiewicz, 1968, . . . ; T. Hughes, Y. Bazilevs, . . . 2005)
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Elliptic problem

Consider the following two-dimensional heat diffusion example as an
illustrative model problem:

−∆u(x) = f (x) in Ω ⊂ R2

u(x) = g on ∂ΩD

∂νu(x) = h on ∂ΩN

(1)

where

• ∆ is the Laplacian operator,

• Ω is the computational domain parameterized by σ : P → Ω,

• u(x) is the unknown heat field,

• f (x) is the heat source function.
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Weak/variational formulation, Galerkin method

Green formula:

−
∫

Ω

∆u v dx =

∫
Ω

∇u · ∇v dx +

∫
∂Ω

∂νu v dγ

Variational formulation:
Find u ∈ V with u|∂ΩD

= g s.t. ∀v ∈ V with v|∂ΩD
= 0,

a(u, v) = b(v)

where a(u, v) =
∫

Ω
∇u · ∇v dx and b(v) =

∫
Ω
f v dx−

∫
∂ΩN

h v dγ.

If V = 〈φi 〉 = 〈Ni ◦ σ−1〉, u =
∑

i ciφi ,

A c = b

where
Ai,j =

∫
Ω

∇φi · ∇φj dx =

∫
P
∇tNiJ

−t
σ J−1

σ ∇Nj |Jσ|−1dp

bi =

∫
Ω

f ◦ σ−1Ni |Jσ|−1dp−
∫
∂ΩN

h ◦ σ−1Ni |Jσ|−1ds

+ Stiffness matrix A, b computed by quadrature rules on P.
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IGA with Truncated Hierarchical Bsplines (THB)4

Nested spaces of b-splines functions V0 ⊂ V1 ⊂ · · · ⊂ Vl with bases bli (x).

Nested subdomains Ω0 ⊃ Ω1 ⊃ · · · ⊃ Ωl and recursive subdivision

Truncated basis:

4THB-splines: An effective mathematical technology foradaptive refinement in geometric design andisogeometric
analysis – Carlotta Giannelli, Bert Jüttler, Stefan Kleiss, Angelos Mantzaflaris, Bernd Simeon, Jaka Speh 30



Linear elasticity with local refinement5

∑
j

∂jσij + fi = 0 on Ω; ui = gi on ∂ΩDi ;
∑
j

σijui = gi on ∂ΩNi

5THB-splines: An effective mathematical technology for adaptive refinement in geometric design andisogeometric
analysis – Carlotta Giannelli, Bert Jüttler, Stefan Kleiss, Angelos Mantzaflaris, Bernd Simeon, Jaka Speh
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(Singular) splines on general topology6

• Take a set of square faces.

• Glue them along edges.

• Choose orthogonal change of coordinates between adjacent faces.

6Hermite type Spline spaces over rectangular meshes with complex topological structures – Meng Wu, BM, André
Galligo, Boniface Nkonga, 2017
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Splines on M

The space S1
3(M) of piecewise polynomial functions onM, which are C 1

of bi-degree (3, 3) is spanned by:

• for a vertex γ of valence 4: the Hermite basis functions dual to
f → [f (γ), ∂uf (γ), ∂v f (γ), ∂u∂v f (γ)].

• for a vertex γ of valence 2: the first and last Hermite basis functions
with vanishing derivatives ∂u, ∂v at γ.

• for a vertex γ of valence 6∈ {2, 4}: the first Hermite basis function
with vanishing derivatives ∂u, ∂v , ∂u∂v at γ.

Dimension:
dimS1

3 (M) = 4(Nb + N0) + 2N2 + N3

where Nb is the number of boundary vertices and Nk is the number of
interior basis vertices with deg(v) mod 4 = k .
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Experimentation

Fixed-boundary Grad-Shafranov equation:

−∇(R(r)∇u) = −g(r)f (u, r , z) in Ω,

u = 0 on ∂Ω,
(2)

where g(r) ∈ L2(Ω) is a function of r and

R(r) =

(
g(r) 0
0 g(r)

)
.

Solved iteratively the (i + 1)−th iteration solution ui+1(r , z) from the
solution ui (r , z):

−∇(R(r)∇ui+1(r , z)) = −g(r)f (ui (r , z), r , z) in Ω,

ui+1 = 0 on ∂Ω,
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Elliptic boundary value problem on a square

g(r) = 1/(r + 2)2, f (u, r , z) = G (r , z) + u2 where

G (r , z) = −(1− r2)2(1− z2)2 + 2(1− z2)− 8(1− z2)/(r + 2)− 2(1− r2).

Errors with the L2-norm and H1-norm:

0.5 1 1.5 2 2.5 3 3.5
−16

−14

−12

−10

−8

−6

−4

−2

log(1/h)

lo
g

(E
rr

o
rs

)

 

 

Error with L
2
 norm

Error with H
1
 norm

1

≈ 3

1

≈ 4
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Elliptic problem on a more complex domain

g(r) = 1, f = ∆(u∗) with u∗ = (r + 2)(r + 1)Π9
i Fi (r , z)/104 and

∏
i Fi (r , z) = 0

on ∂Ω.

Errors with the L2-norm and H1-norm:

0.5 1 1.5 2 2.5 3 3.5 4 4.5
−12

−10

−8

−6

−4

−2

0

2

4

log(1/h)

lo
g

(E
rr

o
rs

)

 

 

Error with L
2
−norm

Error with H
1
−norm

1

1

1

≈

4

≈ 3
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Spline spaces



Splines over a subdivision

• A decomposition of a (simply connected) domain
M⊂ Rn into polygonal connected regions (cells).

• A regularity function r along the interior edges.

Definition
Sr
d(M) = vector space of piecewise polynomial functions of degree ≤ d on

each cell and of regularity r across the interior edges.

37



Problems:

• Determine its dimension;
• Compute a basis of the space Sr

d(M), s.t.
• the functions are positive,
• the functions sum to one,
• with small support,
• reproduces 1, s, t, . . .
• with good power of approximation,
• with local refinement capabilities,
• . . .
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One dimensional topology

LetM : t0 ≤ t1 ≤ · · · ≤ tl ∈ R, τi = [ti , ti+1], γi = ti .

For each edge τ

F(τi ) = R[u]

J (τi ) = (0)

For each vertex γ

F(γi ) = R[u]/J (γi )

J (γi ) = ((u − ti )
r+1)

0→ K →
⊕
τ∈Mo

1

[τ ]F(τ)
∂1−→

⊕
γ∈Mo

0

[γ]F(γ)
∂0−→ 0

with ∂1([τi ]p) = [γi+1] p − [γi ] p if [τi ] = [γi , γi+1] and [γ0] = [γl ] = 0.

p =
∑
i

[τi ]pi ∈ ker ∂1 iff pi − pi−1 ≡ 0 mod (u − ti )
r+1

+ K := ker ∂1 = S r (M) and im ∂1 =
⊕

γ∈Mo
0
F(γ) [γ].

dimSrd(M)−
∑
τ∈M1

dimF(τ)[d ] +
∑
γ∈Mo

0

dimF(γ)[d ] = 0.

dimSrd(M) = f1(d + 1)− f 0
0 (min(r , d) + 1) with f1 = |M1|, f 0

0 = |Mo
0|.
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Two dimensional topology

• σ ∈M2 set of faces of dimension 2 or cells.
• τ ∈M1 (resp. Mo

1) set of (resp. interior) faces dimension 1 or edges.
• γ ∈M0 (resp. Mo

0) set of (resp. interior) faces of dimension 0 or
vertices.

Definitions:

• For τ ∈M1,
• `τ (s, t) = 0 be the equation of the line supporting τ .
• Ir(τ) = (`

r(τ)+1
τ ).

• For γ ∈M0,
Ir(γ) =

∑
τ3γ I

r(τ) = (`
r(τ)+1
τ )τ3γ .

Lemma
Let τ ∈M1 be an edge and let p1, p2 ∈ R . Their derivatives coincide
along τ up to order r(τ) iff p1 − p2 ∈ Ir(τ). 40



Topological chain complex and quotients7

0 0
↓ ↓

Ir : 0 →
⊕
τ∈Mo

1
[τ ]Ir(τ) →

⊕
γ∈Mo

0
[γ]Ir(γ) → 0

↓ ↓ ↓
R :

⊕
σ∈M2

[σ]R →
⊕
τ∈Mo

1
[τ ]R →

⊕
γ∈Mo

0
[γ]R → 0

↓ ↓ ↓
Fr :

⊕
σ∈M2

[σ]R →
⊕
τ∈Mo

1
[τ ]R/Ir(τ) →

⊕
γ∈Mo

0
[γ]R/Ir(γ) → 0

↓ ↓ ↓
0 0 0

7Billera, L.J. – Homology of smooth splines: generic triangulations and a conjecture of Strang, 1988; Billera, L.J.,
Rose, L.L. – A dimension series for multivariate splines, 1991.
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• R is the ring of polynomials in s, t.

• ∀σ ∈M2 with its counter-clockwise boundary formed by edges
τ1 = a1a2, . . . , τs = asa1,

∂2([σ]) = [τ1]⊕ · · · ⊕ [τs ] = [a1a2]⊕ · · · ⊕ [asa1].

• ∀τ = γ1γ2 ∈Mo
1 with γ1, γ2 ∈M0,

∂1([τ ]) = [γ1]− [γ2]

where [γ] = 0 if γ 6∈ Mo
0;

• ∀γ ∈Mo
o , ∂0([γ]) = 0.

• For τ ∈M1, `τ (s, t) = 0 is the equation of the line supporting τ ,
Ir(τ) = (`

r(τ)+1
τ ),

• For γ ∈M0, Ir(γ) =
∑
τ3γ I

r(τ).

• The image of the map ∂i in Fr is taken modulo Ir.
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Homology

Definition: Hi (C) = ker ∂i/ im ∂i+1.

Long exact sequence:

· · · → H1(R)→ H1(Fr)→ H0(Ir)→ H0(R)→ · · ·

Euler characteristics: for a “degree” d ,∑
i

(−1)i dimFr,i
d =

∑
i

(−1)i dimHi (F
r
d)

Properties:

• H0(R) = H1(R) = 0
• H0(Fr) = 0
• H1(Fr) = H0(Ir)

• H2(Fr
d) = F r

d(M)
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Splines on T-meshes



Splines on T-subdivisions

T-subdivision:

0 1 2 3 4 5

0

1

2

3

4

1

Regularity distribution: A map r from the horizontal and vertical nodes
{s1, . . . , sn1}, {t1, . . . , tn2} to N, which specifies the regularity along the
corresponding vertical or horizontal lines.
Spline space: Let Sr

m,m′(M) be the vector space of functions which are
polynomials of degree 6 m in s, 6 m′ on each cell σ ∈M and globally of
class C r(τ) along any interior edge τ ofM. 44



Example

• R = K[s, t] polynomials in s, t, with coefficient in K.
• Rm,m′ = polynomials of degree 6 m in s, 6 m′ in t.

Rm,m′ :
⊕3

i=1[σi ]Rm,m′
∂2−→

⊕3
i=1[βiγ1]Rm,m′

∂1−→ [γ1]Rm,m′
∂0−→ 0

• ∂2([σ1]) = [γ1β1] + [β3γ1], ∂2([σ2]) = [β1γ1] + [γ1β2], ∂2([σ3]) = [γ1β3] + [β2γ1],
• ∂1([β1γ1]) = [γ1], ∂1([β2γ1]) = [γ1], ∂1([β3γ1] = [γ1],
• ∂0([γ1]) = 0.

[∂2] =

 −I I 0
0 −I I

I 0 −I

 , [∂1] =
(

I I I
)

where I is the (m + 1)(m′ + 1)× (m + 1)(m′ + 1) identity matrix. 45



Fr
m,m′ :

⊕3
i=1[σi ]Rm,m′ →

⊕3
i=1[βiγ1]Rm,m′/I

r
m,m′ (βiγ1) → [γ1]Rm,m′/I

r
m,m′ (γ1) → 0

• Ir
m,m′(β1γ1) = Ir

m,m′(β3γ1) = (s r+1) ∩ Rm,m′

• Ir
m,m′(β2γ1) = (tr

′+1) ∩ Rm,m′

• Ir
m,m′(γ1) = (s r+1, tr

′+1) ∩ Rm,m′

[∂2] =

 −Π1 Π1 0
0 −Π2 Π2

Π3 0 −Π3

 , [∂1] =
(

P1 P2 P3

)
where Πi (resp. Pi ) is the projection matrix of Rm,m′ (resp. Rm,m′/I

r
m,m′ (βiγ1)) on

Rm,m′/I
r
m,m′ (βiγ1) (resp. Rm,m′/I

r
m,m′ (γ1)).
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Splines on planar T-meshes

For d = (m,m′) ∈ N2, φσ,σ′ = Id ,

I dimF(σ)[m,m′] = (m + 1) (m′ + 1)

I dimF(τ)[m,m′] =

{
(m + 1)× (min(r ′,m′) + 1) if τ is horizontal
(min(r ,m) + 1)× (m′ + 1) if τ is vertical

I dimF(γ)[m,m′] = (min(m, r(τv )) + 1)× (min(r(τh),m′) + 1).
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Dimension formula

Theorem

dimF r
m,m′(M) = (m + 1)(m′ + 1)f2

− (m + 1)(r ′ + 1)f h1 − (m′ + 1)(r + 1)f v1

+ (r + 1)(r ′ + 1)f0

+ hr
m,m′(M)

where

• f2 is the number of 2-faces ∈M2,

• f h1 (resp. f v1 ) is the number of horizontal (resp. vertical) interior edges
∈Mo

1 ,

• f0 is the number of interior vertices ∈Mo
0 .

• hr
m,m′(M) = dimH0(Ir

m,m′) ≥ 0.
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The bad and good news.

The dimension of F r
m,m′(M) may depends on the geometry:

0 ≤ h2
4,4 ≤ 4
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Definitions:

• A maximal segment is a maximal union of edges ofM that form a
segment.
• It is a maximal interior segment if it does not intersect the

boundary.
• MIS(M) is the set of maximal interior segments ofM,
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Definitions:

• The maximal interior segments are ordered in some way: ρ1, ρ2, . . .

• For a horizontal (resp. vertical) maximal interior segment ρi ,
ω(ρi ) =

∑
ρ∈Ri

(m + 1− r(ρ)) (resp.
∑

ρ∈Ri
(m′ + 1− r(ρ)))

where Ri is the set of maximal segments, which are not a maximal
interior segment ρj of bigger index j > i .

Theorem

LetM be a hierarchical T-subdivision. Then

hr
m,m′(M) 6

∑
ρ∈MISh(M)

(m + 1− ω(ρ))+ × (m′ − r ′)

+
∑

ρ∈MISv (M)

(m − r)× (m′ + 1− ω(ρ))+ .
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Cases where hr
m,m′(M) = 0

Corollary
If all maximal segments intersect the boundary, then hr

m,m′(M) = 0.

Definition: a subdivision is (k , k ′)-regular for an ordering of the maximal
interior segments if all the horizontal (resp. vertical) maximal interior
segments are of weight ≥ k (resp. ≥ k ′).

Theorem
IfM is (m + 1,m′ + 1)-regular. Then hr

m,m′(M) = 0.

Proposition
If m > 2r + 1 and m′ > 2r ′ + 1, then hr

m,m′(M) = 0.
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Biquadratic C 1 T-splines

dimF1,1
2,2 (M) = 9f2 − 6f1 + 4f0 + h1,1

2,2(M).

Neighborhood: N 1(σ) is the smallest rectangle ofMε that contains σ in
its “interior”.

Construction of 4-regular subdivisions (h1,1
2,2(M) = 0):

• Choose σ ∈M2 and split it by an edge τ .

• Extend the edge τ on both side so that the maximal
segment ρ that contains τ splits N 1(σ).

Basis functions associated to a cell σ:

Nσ(s, t) := N(s; si−1, si−1, si , si , si+1)N(t; tj−1, tj−1, tj , tj , tj+1)
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Bicubic C 1 T-splines

dim C1,1
3,3(M) = 16f2 − 8f1 + 4f0 = 4(f +

0 + f b0 ).

Construction of 5-regular subdivisions:

• Choose a point γ on an edge which is not a crossing
vertex;

• Split the adjacent(s) cell(s) at γ.

Basis functions associated to a crossing vertex γ:
N0,0
γ (s, t) = N(s; si−1, si−1, si , si , si+1)N(t; tj−1, tj−1, tj , tj , tj+1)

N0,1
γ (s, t) = N(s; si−1, si−1, si , si , si+1)N(t; tj−1, tj , tj , tj+1, tj+1)

N1,0
γ (s, t) = N(s; si−1, si , si , si+1, si+1)N(t; tj−1, tj−1, tj , tj , tj+1)

N1,1
γ (s, t) = N(s; si−1, si , si , si+1, si+1)N(t; tj−1, tj , tj , tj+1, tj+1)
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Triangular splines



Triangular splines

• A decomposition of a (simply connected) domainM into triangular
cells (or polygonal regions).
• A regularity function r along the interior edges.

Definition
Srn(M) = vector space of piecewise polynomial functions of degree ≤ n on
each cell and of regularity r.
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The bad and good news.

The dimension may depend on the coordinates of the vertices:

6 ≤ C1
2(M) ≤ 7
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Algebraic ingredients

For d ∈ N, φσ,σ′ = Id ,

I dimF(σ)d = dimR[u, v ] =
(
d+2
2

)
I dimF(τ)d = dimR[u, v ]/(`r+1) =

(
d+2
2

)
−
(
d+2−(r+1)

2

)
I For computing the dimension of F(γ)d = R/(l r+1

1 , . . . , l r+1
t ), we use

the resolution

0→ R(−Ω− 1)ai ⊕ R(−Ω)bi → ⊕ti
j=1R(−r − 1)→ R → R/J (γ)→ 0

where t is the number of different slopes of the edges containing γ and
Ω =

⌊
t r
t−1

⌋
+ 1, a = t (r + 1) + (1− t) Ω, b = t − 1− a.

dimF(γ)d = t

(
d + 2− (r + 1)

2

)
− b

(
d + 2− Ω

2

)
− a

(
d + 2− (Ω + 1)

2

)
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Lower bound for splines on triangulations

Theorem
The dimension of Srd(M) is bounded below by

dimSrd(M) ≥
(
d + 2
2

)
+ F 0

1

(
d + 2− (r + 1)

2

)

−
F0
0∑

i=1

[
ti

(
d + 2− (r + 1)

2

)
− bi

(
d + 2− Ωi

2

)
− ai

(
d + 2− (Ωi + 1)

2

)]
,

where

• F o
1 is the number of interior edges,

• F o
0 is the number of interior vertices,

• ti is the number of different slopes of the edges containing the vertex
γi , and

Ωi =

⌊
ti r

ti − 1

⌋
+ 1, ai = ti (r + 1) + (1− ti ) Ωi and bi = ti − 1− ai .
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Upper bound for splines on triangulations

Let us fix an ordering γ1, . . . , γf 00
for the interior vertices.

Theorem
The dimension of S r

d(M) is bounded by

dimSrd(M) ≤
(
d + 2
2

)
+ F 0

1

(
d + 2− (r + 1)

2

)
−

F0
0∑

i, t̃i=1

(
d + 2− (r + 1)

2

)

−
F0
0∑

i=1,t̃i≥2

[
t̃i

(
d + 2− (r + 1)

2

)
− b̃i

(
d + 2− Ω̃i

2

)
− ãi

(
d + 2− (Ω̃i + 1)

2

)]
,

where t̃i is the number of edges with different slopes attaching the vertex
γi to vertices on the boundary or of lower index, and

Ω̃i =
⌊ t̃i r

t̃i − 1
⌋

+ 1, ãi = t̃i (r + 1) + (1− t̃i ) Ω̃i , b̃i = t̃i − 1− ãi .
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For the following numbering,

b

b

b

b

b
31

2

5
4

t̃1 = 3

b

b

b

b

b
31

2

5
4

t̃2 = 3

b

b

b

b

b
31

2

5
4

t̃4 = 3

b

b

b

b

b
31

2

5
4

t̃5 = 3

the upper bound equals the lower bound: dimS1
2 (M) = 10.
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Powell-Sabin subdivisions

(M. Powell, M. Sabin, 1977)

• Quadratic C 1, using 6 sub-triangles.

• Dimension = 3 Vc where Vc is the number of (conformal) vertices of
M.
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Volumetric splines



Splines on tridimensional topological space

A similar topological complex and boundary maps:

0→ Srd(M)→
⊕
ι∈M3

F(ι)
∂3−→

⊕
σ∈M0

2

F(σ)
∂2−→

⊕
τ∈M0

1

F(τ)
∂1−→

⊕
γ∈M0

0

F(γ)
∂0−→ 0

We get:

dimSrd(M) =
∑
ι∈M0

3

dimF(ι)d −
∑
σ∈M0

2

dimF(σ)d +
∑
τ∈M0

1

dimF(τ)d

−
∑
γ∈M0

0

dimF(γ)d + dimH1(F)d − dimH0(F)d
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I For edges τ :

F(τ) = R[u, v ,w ]/(`r+1
1 , . . . , `r+1

t )

as lines trough a point.

I For vertices γ, by apolarity:

dimF(γ)d = dimR/〈`r+1
1 , . . . , `r+1

t 〉d = dim(I
(d−r)
L )d

where I
(d−r)
L := ∩ti=1m

d−r
`i

is the fat point ideal .

Lower bound on dimF(γ) from generic polynomials,
using Froberg conjecture, proved in P2 by D. Anick.
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Upper bound in the tetrahedral case

We use:

dimSrd(M) = dimRd +
∑
σ∈M0

2

dimJ (σ)d − dim im (∂2)d

Theorem
The dimension of Srd(M) is bounded above by

dimSrd(M) ≤
(
d + 3
3

)
+ f 0

2

(
d + 3− (r + 1)

3

)

−
f 0
1∑

i=1

[
s̃i

(
d + 3− (r + 1)

3

)
− b̃i

(
d + 3− Ω̃i

3

)
− ãi

(
d + 3− (Ω̃i + 1)

3

)]

with Ω̃i = b s̃i r
s̃i−1c+ 1, ãi = s̃i (r + 1) + (i − s̃i )Ω̃i , and b̃i = s̃i − 1− ãi if s̃i > 1,

and ãi = b̃i = Ω̃i = 0 when s̃i = 1 or 0.
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Lower bound on the dimension

F ′(t, d , k)j =
∑
i

(−1)i dimRj−d i

(
t

i

)
, F (t, d , k) = |F ′(t, d , k)|.

Froberg conjecture: F (t, d , k)j = dimRj/(p1, . . . , pt)j for generic
polynomials p1, . . . , pt of degree d in k variables.

+ Lower bound for Hilbert functions of t polynomials of deg. d in k var.

Weak Lefschetz Property: ×` : Mi → Mi+1 has maximal rank ∀i ∈ N.

+ If the WLP for l fails for R/(Lr+1
1 , . . . , Lr+1

t ) in k variables, then
dimRn/(Lr+1

1 , . . . , Lr+1
t )n > F (t, r + 1, k)n.

For k = 4, t = 5, 6, 7, 8, WLP fails when r + 1 ≥ 3, 27, 140, 704 (cf. H.
Schenck et al).
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Apolarity: (Lr+1
1 , . . . , Lr+1

t )⊥d = {p ∈ Rd which vanishes with order d − r

“at” L1, . . . Lt}.

For r = d − 2, by Alexander-Hirschowitz theorem, the dimension for
generic linear forms Li is “as expected” except for

(t, d , k) = (5, 4, 3), (9, 4, 4), (14, 4, 5), (7, 3, 6).

Segre-Harbourne-Gimigliano-Hirschowitz conjecture: dimension as
expected iff there is no (-1)-special curve in the blow-up of P2 at L1, . . . , Lt .

Known for t ≤ 9 [Nagata’60], ∀t if d − r ≤ 12 [Ciliberto-Miranda’98].
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Lower bound in the tetrahedral case

dimSrd(M) = dimRd +
2∑

i=1

∑
β∈M0

3−i

(−1)i dimJ (β)d + dim im (∂1)d

Theorem
The dimension of Srd(M) is bounded below by

dimSrd(M) ≥
(
d + 3
3

)
+ f 0

2

(
d + 3− (r + 1)

3

)

−
f 0
1∑

i=1

[
si

(
d + 3− (r + 1)

3

)
− bi

(
d + 3− Ωi

3

)
− ai

(
d + 3− (Ωi + 1)

3

)]

+ f 0
0

(
d + 3
3

)
−

f 0
0∑

i=1

( d∑
j=1

F (ζi , r + 1, 3)j

)
+

with Ωi = b si r
s̃i−1c+ 1, ai = si (r + 1) + (i − si )Ωi , and bi = si − 1− ai , and where

where F (ζi , r + 1, 3) is the Fröberg sequence for ζi = min(3, t̃i ).
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No time to talk about

• Lower and upper bound for 3D-splines.

• Geometrically regular splines on surface of arbitrary topology.
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A picture is worth a thousand words
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598 patches 1754 patches

G1 Spline Surface with 3000 patches. 70



Problems which look for a solution

• Dimension and basis for low degree, higher regularity.

• Construction of “good” basis functions associated to vertices, edges,
faces.

• Tridimensional extensions.

• Applications in fitting, isogeometric analysis.

• . . .

Thanks for your attention
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