# Spline functions for geometric modeling and numerical simulation 

B. Mourrain

INRIA Méditerranée, Sophia Antipolis
Bernard.Mourrain@inria.fr
Montpellier, October 23-24, 2019

## Objectives



Represent or approximate geometric objects, functions.
High quality description of geometry.
High order of approximation of functions.
based on piecewise polynomial models.


## Spline functions

## Univariate Bernstein representation

For any $f(x) \in \mathbb{R}[x]$ of degree $d$, with

$$
f(x)=\sum_{i=0}^{d} c_{i}\binom{d}{i}(x-a)^{i}(b-x)^{d-i}(b-a)^{-d}=\sum_{i=0}^{d} c_{i} B_{d}^{i}(x ; a, b)
$$

For $c_{i} \in \mathbb{R}^{k}, \mathbf{c}=\left[c_{i}\right]_{i=0, \ldots, d}$ is the control polygon of $f:[a, b] \rightarrow \mathbb{R}^{k}$.

## Properties:



- $\sum_{i=0}^{d} B_{d}^{i}(x ; a, b)=1 ; \sum_{i=0}^{d}\left(a \frac{d-i}{d}+b \frac{i}{d}\right) B_{d}^{i}(x ; a, b)=x ;$
- $f(a)=c_{0}, f(b)=c_{d}$;
- $f^{\prime}(x)=d \sum_{i=0}^{d-1} \Delta(\mathrm{c})_{i} B_{d-1}^{i}(x ; a, b)$ where $\Delta(\mathrm{c})_{i}=c_{i+1}-c_{i}$;
- $(x, f(x))_{x \in[a, b]} \in$ convex hull of the points $\left(a \frac{d-i}{d}+b \frac{i}{d}, c_{i}\right)_{i=0 . . d}$
- $\#\{f(x)=0 ; x \in[a, b]\}=V(\mathbf{c})-2 p, p \in \mathbb{N}$.


## De Casteljau subdivision algorithm

$$
\left\{\begin{array}{l}
c_{i}^{0}=c_{i}, \quad i=0, \ldots, d \\
c_{i}^{r}(t)=\frac{b-t}{b-a} c_{i}^{r-1}(t)+\frac{t-a}{b-a} c_{i+1}^{r-1}(t), \quad i=0, \ldots, d-r
\end{array}\right\} . \mathbf{c}^{-}(t)=\left(c_{0}^{0}(t), c_{0}^{1}(t), \ldots, c_{0}^{d}(t)\right) \text { represents } f \text { on }[a, t] . .
$$

The geometric point of view.


The algebraic point of view.


## Properties

## Proposition (Descartes' rule)

For $f:=(\mathbf{c},[a, b]), \#\{f(x)=0 ; x \in[a, b]\}=V(\mathbf{c})-2 p, p \in \mathbb{N}$.
Theorem
$V\left(\mathbf{c}^{-}\right)+V\left(\mathbf{c}^{+}\right) \leq V(\mathbf{c})$.
Theorem (Vincent)


If there is no complex root in the disc $D\left(\frac{1}{2}, \frac{1}{2}\right) \subset \mathbb{C}$, then $V(\mathbf{c})=0$.

Theorem (Two circles)


If there is no complex root in the union of the discs $D\left(\frac{1}{2} \pm \mathbf{i} \frac{1}{2 \sqrt{3}}, \frac{1}{\sqrt{3}}\right) \subset \mathbb{C}$ except a simple real root, then $V(\mathbf{c})=1$.

## Historical notes:

Pierre Bézier (1910-1999), Renault;
Paul de Casteljau (1930-), Citroën, 1959, 1963 (secret internal reports), SMA Bézier Price 2012;

## Distance between polynomials and their control polygons ${ }^{1}$

Let $L_{i}^{d}(t)$ be the hat function at $a+(b-a) \frac{i}{d}$.

## Proposition

On the interval $[a, b]$,

$$
\left\|\sum_{i}\left(B_{i}^{d}(t)-L_{i}^{d}(t)\right) c_{i}\right\| \leq \frac{d(t-a)(b-t)}{2}\left\|\Delta^{2}(\mathbf{c})\right\|_{\infty}
$$

$C(d, p)\left(\left\|\Delta^{2}(\mathbf{c})\right\|_{\infty}-\left\|\Delta^{3}(\mathbf{c})\right\|_{1}\right) \leq\left\|\sum_{i}\left(B_{i}^{d}(t)-L_{i}^{d}(t)\right) c_{i}\right\|_{p} \leq C(d, p)\left\|\Delta^{2}(\mathbf{c})\right\|_{\infty}$
where $C(p, 1)=\frac{d-1}{12}, C(d, 2)=\left(\frac{3 d^{3}-5 d^{2}+3 d-1}{360 d}\right)^{\frac{1}{2}} C(d, \infty)=\frac{d^{2}-\text { parity }(d)}{8 d}$

Quadratic convergence of the control polygon to the function (error $\times \frac{1}{4}$ when interval split at $\frac{a+b}{2}$ ).

[^0]
## Optimal conditioning of Bernstein basis ${ }^{2}$

For $\phi=\left(\phi_{0}, \ldots, \phi_{d}\right)$ a basis of $\mathbb{R}[t]_{d}$ and $f(t, \mathbf{c})=\sum_{i=0}^{d} c_{i} \phi_{i}(t) \in \mathbb{R}[t]_{d}$,

$$
|f(t, \mathbf{c}+\delta \mathbf{c})-f(t, \mathbf{c})|=|f(t, \delta \mathbf{c})| \leq C_{\phi}(f, t)\|\delta \mathbf{c}\|_{\infty}
$$

Partial order on bases: $\phi \preceq \psi$ if $\psi=M \phi$ with $M_{i, j} \geq 0$.

## Proposition

- If $\phi, \psi$ non-negative bases on $[a, b]$ with $\phi \preceq \psi$ then

$$
C_{\phi}(f, t) \leq C_{\psi}(f, t) \text { for } t \in[a, b] .
$$

- The Bernstein basis $B=\left(B_{i}^{d}(t ; a, b)\right)$ on $[a, b]$ is minimal for $\preceq$.
- If $\phi$ non-negative basis s.t. $\left((t-a)^{i}\right) \preceq \phi \preceq\left((b-t)^{i}\right)$, then $\phi \sim B$.

[^1]
## Piecewise polynomial functions

Knots: $t_{0} \leq t_{1} \leq \cdots \leq t_{l} \in \mathbb{R}$
Polynomials $p_{0}, \ldots, p_{l-1} \in \mathbb{R}[t]_{d}$ of degree $\leq d$ on the intervals $\left[t_{i}, t_{i+1}\right]$.
Regularity $r_{i}$ at $t_{i}$ for $i=1, \ldots, I-1$.

$$
p_{i}-p_{i-1}=\left(t-t_{i}\right)^{r_{i}+1} q_{i} \text { for some } q_{i} \in \mathbb{R}[t]_{d-r_{i}-1}
$$

Definition (Spline space)
For $d \in \mathbb{N}, \mathbf{t}=\left(t_{0}, \ldots, t_{l}\right), \mathbf{r}=\left(r_{1}, \ldots, r_{l-1}\right)$,

$$
\mathcal{S}_{d}^{\mathbf{r}}(\mathbf{t})=\left\{\left[p_{i}\right] \in \mathbb{R}[t]_{d} \mid p_{i}-p_{i-1}=\left(t-t_{i}\right)^{r_{i}+1} q_{i}\right\}
$$

Dimension: $d+1+\sum_{i=1}^{l-1}\left(d-r_{i}\right)_{+} \quad\left(x_{+}=\max \{0, x\}\right)$

## Spline basis representation

Nodes: $t_{0} \leq t_{1} \leq \cdots \leq t_{l} \in \mathbb{R}$ (repeated $d-r_{i}$ times at $\left.t_{i}\right)$.
Basis spline functions (b-spline):

$$
\begin{gathered}
N_{i}^{0}(t)=\left\{\begin{array}{l}
1 \text { if } t_{i} \leq t<t_{i+1} \\
0 \text { otherwise }
\end{array}\right. \\
N_{i}^{d}(t)=\frac{t-t_{i}}{t_{i+d}-t_{i}} N_{i}^{d-1}(t)+\frac{t_{i+d+1}-t}{t_{i+d+1}-t_{i+1}} N_{i+1}^{d-1}(t) .
\end{gathered}
$$

- Basis of $\mathcal{S}_{d}^{\mathbf{t}, \boldsymbol{r}}$;
- Local support $\left(\operatorname{supp}\left(N_{i}^{d}\right)=\left[t_{i}, t_{i+d+1}\right]\right)$;
- Positive functions;
- Sum to 1 ;

Open uniform knot vector: $t_{i+1}-t_{i}$ constant for $d+1 \leq i \leq I-d-1$.

Examples of b-spline functions


Degree: 1 ; Knots: $\left[0^{2}, 0.2,0.4,0.6,0.8,1^{2}\right]$; Regularity: 0


Degree: 3 ; Knots: $\left[0^{4}, 0.2,0.4,0.6,0.8,1^{4}\right]$; Regularity: 2

- Insertion of knot $t$, find the first $k$ s.t. $t_{k} \leq t<t_{k+1}$ and compute:

$$
\mathbf{c}_{i}^{(l+1)}=\frac{t_{i+d}-t}{t_{i+d}-t_{i}} \mathbf{c}_{i-1}^{(I)}+\frac{t-t_{i}}{t_{i+d}-t_{i}} \mathbf{c}_{i}^{(I)}
$$

for $k-d+1 \leq i \leq k$.

- Evaluation at $t$ (de Boor algorithm):

$$
\mathbf{c}_{i}^{[j+1]}=\frac{t_{i+d-j}-t}{t_{i+d-j}-t_{i}} \mathbf{c}_{i-1}^{[j]}+\frac{t-t_{i}}{t_{i+d-j}-t_{i}} \mathbf{c}_{i}^{[j]}
$$

for $k-j+1 \leq i \leq k$.

- Derivative of $f(t)=\sum_{i} \mathbf{c}_{i} N_{i}^{d}(t ; \mathbf{t})$ :

$$
f^{\prime}(t)=d \sum_{i} \frac{\Delta \mathbf{c}_{i}}{t_{d+1+i}-t_{i}} N_{i}^{d-1}(t ; \mathbf{t})
$$

Historical notes: Isaac J. Schoenberg (1946); Carl De Boor (1972-76); Maurice G. Cox (1972); Richard Riesenfeld (1973); Wolfgang Boehm (1980).

## BS vs NURBS

Representation of rational curves:

$$
t \in\left[t_{0}, \ldots, t_{l}\right] \mapsto \frac{\sum_{i} c_{i} N_{i}^{d}(t)}{\sum \omega_{i} N_{i}^{d}(t)}
$$

(Non-Uniform Rational B-Spline function)
Control points: $\left[c_{i}, \omega_{i}\right]$
Example of a circle as a NURBS curve:


$$
\frac{\left(1-t^{2}, 2 t\right)}{1+t^{2}}=\frac{\left((1-t)^{2}+2 t(1-t), 2 t(1-t)+2 t^{2}\right)}{\left((1-t)^{2}+2 t(1-t)+2 t^{2}\right)}
$$

Geometric modeling

## Tensor product B-splines



- Standard in Computer Aided Design (CAD);
- Define on rectangular domains;
- Grid of control points;

Tensor product b-spline functions:

$$
(s, t) \in\left[s_{0}, s_{l}\right] \times\left[t_{0}, t_{m}\right] \mapsto \sum_{i} c_{i, j} N_{i}^{d_{s}}(s ; \mathbf{s}) N_{j}^{d_{t}}(t ; \mathbf{t})
$$



- Local support of $N_{i, j}(s, t)=N_{i}^{d_{s}}(s) N_{j}^{d_{t}}(t)$ in $\left[s_{i}, s_{i+d_{s}+1}\right] \times\left[t_{j}, t_{j+d_{t}+1}\right]$
- Insertion of knots in each direction;
- Derivation formula per variable on the grid of coefficients $c_{i, j}$;


## Hierarchical b-splines


(D. Forsey, R. Bartels, 1988)

- Local refinement of the support of basis function;
- Offsets of b-spline parameterizations at different level;
- Not all possible T-mesh.


## T-Splines



- More control for complex geometry;
- Not piecewise polynomial on the T-subdivision;
- Span by some $N\left(s ; s_{i_{0}}, \ldots, s_{i_{d+2}}\right) \times N\left(t ; t_{j_{0}}, \ldots, t_{j_{d+2}}\right)$;
- Partition of unity with rational functions;
- Problems of linear independency;
- No characterisation of the span space.


## Hierarchical triangular splines


(A. Yvart, S. Hahmann, G.-P. Bonneau, 2005)

- $G^{1}$ continuity;
- Piecewise quintic polynomials;
- Arbitrary topology;


## From curves to surfaces

- Extrusion: $(s, t) \mapsto(C(s), t) \in \mathbb{R}^{3}$
- Surface of revolution: $(s, t) \mapsto\left(c(t) C_{1}(s), s(t) C_{1}(s), C_{2}(s)\right)$ with $c(t)^{2}+s(t)^{2}=1$
- Swept surface: $(s, t) \mapsto O(t)+M(t) C(s)$
- Interpolation surface: $(s, t) \mapsto \lambda_{0}(t) C_{0}(s)+\lambda_{1}(t) C_{1}(s)$ with $\lambda_{0}(t)+\lambda_{1}(t)=1$


## Multi-patch trimmed models



Geometric model made of patches, glued together along intersection curves.

## Intersection of b-spline surfaces


represented by b-spline curves in the parameter domains of the two surfaces and/or by their image on the two surfaces.

- For generic surfaces of bi-degree $\left(d_{1}, d_{2}\right)$ and $\left(d_{1}^{\prime}, d_{2}^{\prime}\right)$,
- degree of surface $2 d_{1} d_{2}, 2 d_{1}^{\prime} d_{2}^{\prime}$,
- degree of intersection curve $4 d_{1} d_{2} d_{1}^{\prime} d_{2}^{\prime}$, of genus $8 d_{1} d_{2} d_{1}^{\prime} d_{2}^{\prime}-2 d_{1} d_{2}\left(d_{1}^{\prime}+d_{2}^{\prime}\right)-2 d_{1}^{\prime} d_{2}^{\prime}\left(d_{1}+d_{2}\right)+1$, is not rational.
- Approximate representation of the intersection curve and gaps in the models.

- Base point for rational param. $(s, t) \mapsto\left[\frac{f_{1}(s, t)}{f_{0}(s, t)}, \frac{f_{2}(s, t)}{f_{0}(s, t)}, \frac{f_{3}(s, t)}{f_{0}(s, t)}\right]: f_{i}\left(s_{0}, t_{0}\right)=0$. Reduce the degree $2 d_{1} d_{2}-\rho$, the genus, $\ldots$

Other geometric operations

- Blending surfaces

- Selfintersection

- Offsets

- Reparametrisation

- Constructive Solid Geometry (CSG)



## Isogeometric Analysis

- Finite Element Analysis (FEA) developed to improve analysis in Engineering.
- FEA was developed before the NURBS theory;
- FEA evolution started in the 1940s and was given a rigorous mathematical foundation around 1970 (E.g, ,1973: Strang and Fix's An Analysis of The Finite Element Method)
- An early believe that higher order representations in most cases did not contribute to better solutions
- Computer Aided Design (CAD) developed to improve the design process.
- CAD (NURBS) and FEA evolved in different communities.
- B-splines, 1972: DeBoor-Cox Calculation, 1980: Oslo Algorithm
- Representation adapted to performance of earlier computers
- Few information exchange between CAD and FEA.

(Isogeometric Analysis: Toward Integration of CAD and FEA - J. A. Cottrell, T.J. R. Hughes, Y. Bazilevs, 2009)

IsoGeometric Analysis aims at a seamless integration of Design and Analysis.

## Historical perspective:



## What is isogeometric analysis ?



- Choose a parametrization $\sigma: \mathcal{P} \rightarrow \Omega$ of a "computational" domain $\Omega$.
- Use finite dimensional function space spanned by

$$
\Phi_{i}: \mathcal{P} \rightarrow \mathbb{R}
$$

to express the approximate solution $S: \Omega \rightarrow \mathbb{R}^{d}$ of a system of differential equations as

$$
S(\mathrm{x})=\left(\sum_{i} \lambda_{i} \Phi_{i}\right) \circ \sigma^{-1}(\mathrm{x}) \text { with } \lambda_{i} \in \mathbb{R}^{d} .
$$

- Pull back the solutions of the differential equations by the parameterization $\sigma$ and project onto the space spanned by $\tilde{\Phi}_{i}(\mathrm{x})=\Phi_{i} \circ \sigma^{-1}$.

$$
\int_{\Omega} E(S) \tilde{\Phi}_{i}(\mathbf{x}) d \mathbf{x}=\int_{\mathcal{P}} E\left(\sum_{i} \lambda_{i} \Phi_{i}(\mathbf{u})\right) \Phi_{i}(\mathbf{u}) J_{\sigma}^{-1}(\mathbf{u}) d \mathbf{u}
$$

## Elliptic problem

Consider the following two-dimensional heat diffusion example as an illustrative model problem:

$$
\begin{align*}
-\Delta u(\mathbf{x}) & =f(\mathbf{x}) & & \text { in } \Omega \subset \mathbb{R}^{2} \\
u(\mathbf{x}) & =g & & \text { on } \partial \Omega_{D}  \tag{1}\\
\partial_{\nu} u(\mathbf{x}) & =h & & \text { on } \partial \Omega_{N}
\end{align*}
$$

where

- $\Delta$ is the Laplacian operator,
- $\Omega$ is the computational domain parameterized by $\sigma: \mathcal{P} \rightarrow \Omega$,
- $u(x)$ is the unknown heat field,
- $f(x)$ is the heat source function.


## Weak/variational formulation, Galerkin method

## Green formula:

$$
-\int_{\Omega} \Delta u v d \mathbf{x}=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x}+\int_{\partial \Omega} \partial_{\nu} u v d \gamma
$$

Variational formulation:
Find $u \in V$ with $u_{\mid \partial \Omega_{D}}=g$ s.t. $\forall v \in V$ with $v_{\mid \partial \Omega_{D}}=0$,

$$
a(u, v)=b(v)
$$

where $a(u, v)=\int_{\Omega} \nabla u \cdot \nabla v d \mathbf{x}$ and $b(v)=\int_{\Omega} f v d \mathbf{x}-\int_{\partial \Omega_{N}} h v d \gamma$.

If $V=\left\langle\phi_{i}\right\rangle=\left\langle N_{i} \circ \sigma^{-1}\right\rangle, u=\sum_{i} c_{i} \phi_{i}$,

$$
A \mathbf{c}=b
$$

where

$$
\begin{aligned}
A_{i, j} & =\int_{\Omega} \nabla \phi_{i} \cdot \nabla \phi_{j} d \mathbf{x}=\int_{\mathcal{P}} \nabla^{t} N_{i} J_{\sigma}^{-t} J_{\sigma}^{-1} \nabla N_{j}\left|J_{\sigma}\right|^{-1} d \mathbf{p} \\
b_{i} & =\int_{\Omega} f \circ \sigma^{-1} N_{i}\left|J_{\sigma}\right|^{-1} d \mathbf{p}-\int_{\partial \Omega_{N}} h \circ \sigma^{-1} N_{i}\left|J_{\sigma}\right|^{-1} d s
\end{aligned}
$$

## IGA with Truncated Hierarchical Bsplines (THB) ${ }^{4}$

Nested spaces of b -splines functions $V_{0} \subset V_{1} \subset \cdots \subset V_{l}$ with bases $\mathbf{b}_{i}^{\prime}(x)$.
Nested subdomains $\Omega_{0} \supset \Omega_{1} \supset \cdots \supset \Omega_{\text {I }}$ and recursive subdivision


Truncated basis:


[^2]
## Linear elasticity with local refinement ${ }^{5}$

$$
\sum_{j} \partial_{j} \sigma_{i j}+f_{i}=0 \text { on } \Omega ; u_{i}=g_{i} \text { on } \partial \Omega_{D_{i}} ; \sum_{j} \sigma_{i j} u_{i}=g_{i} \text { on } \partial \Omega_{N_{i}}
$$



${ }^{5}$ THB-splines: An effective mathematical technology for adaptive refinement in geometric design andisogeometric analysis - Carlotta Giannelli, Bert Jüttler, Stefan Kleiss, Angelos Mantzaflaris, Bernd Simeon, Jaka Speh

## (Singular) splines on general topology ${ }^{6}$



- Take a set of square faces.
- Glue them along edges.
- Choose orthogonal change of coordinates between adjacent faces.

[^3]
## Splines on $\mathcal{M}$

The space $S_{3}^{1}(\mathcal{M})$ of piecewise polynomial functions on $\mathcal{M}$, which are $C^{1}$ of bi-degree $(3,3)$ is spanned by:

- for a vertex $\gamma$ of valence 4: the Hermite basis functions dual to

$$
f \rightarrow\left[f(\gamma), \partial_{u} f(\gamma), \partial_{v} f(\gamma), \partial_{u} \partial_{v} f(\gamma)\right] .
$$

- for a vertex $\gamma$ of valence 2 : the first and last Hermite basis functions with vanishing derivatives $\partial_{U}, \partial_{V}$ at $\gamma$.
- for a vertex $\gamma$ of valence $\notin\{2,4\}$ : the first Hermite basis function with vanishing derivatives $\partial_{u}, \partial_{\nu}, \partial_{u} \partial_{v}$ at $\gamma$.


## Dimension:

$$
\operatorname{dim} \mathcal{S}_{3}^{1}(\mathcal{M})=4\left(N_{b}+N_{0}\right)+2 N_{2}+N_{3}
$$

where $N_{b}$ is the number of boundary vertices and $N_{k}$ is the number of interior basis vertices with $\operatorname{deg}(v) \bmod 4=k$.

## Experimentation

Fixed-boundary Grad-Shafranov equation:

$$
\begin{align*}
-\nabla(R(r) \nabla u) & =-g(r) f(u, r, z) \text { in } \Omega,  \tag{2}\\
u & =0 \text { on } \partial \Omega,
\end{align*}
$$

where $g(r) \in L^{2}(\Omega)$ is a function of $r$ and

$$
R(r)=\left(\begin{array}{cc}
g(r) & 0 \\
0 & g(r)
\end{array}\right)
$$

Solved iteratively the $(i+1)$-th iteration solution $u_{i+1}(r, z)$ from the solution $u_{i}(r, z)$ :

$$
\begin{aligned}
-\nabla\left(R(r) \nabla u_{i+1}(r, z)\right) & =-g(r) f\left(u_{i}(r, z), r, z\right) \text { in } \Omega, \\
u_{i+1} & =0 \text { on } \partial \Omega
\end{aligned}
$$

## Elliptic boundary value problem on a square

$$
\begin{aligned}
& g(r)=1 /(r+2)^{2}, f(u, r, z)=G(r, z)+u^{2} \text { where } \\
& G(r, z)=-\left(1-r^{2}\right)^{2}\left(1-z^{2}\right)^{2}+2\left(1-z^{2}\right)-8\left(1-z^{2}\right) /(r+2)-2\left(1-r^{2}\right)
\end{aligned}
$$



Errors with the $L^{2}$-norm and $H^{1}$-norm:


## Elliptic problem on a more complex domain

$g(r)=1, f=\Delta\left(u^{*}\right)$ with $u^{*}=(r+2)(r+1) \Pi_{i}^{9} F_{i}(r, z) / 10^{4}$ and $\prod_{i} F_{i}(r, z)=0$ on $\partial \Omega$.


Errors with the $L^{2}$-norm and $H^{1}$-norm:


## Spline spaces

## Splines over a subdivision



- A decomposition of a (simply connected) domain $\mathcal{M} \subset \mathbb{R}^{n}$ into polygonal connected regions (cells).
- A regularity function $r$ along the interior edges.


## Definition

$\mathcal{S}_{d}^{r}(\mathcal{M})=$ vector space of piecewise polynomial functions of degree $\leq d$ on each cell and of regularity $r$ across the interior edges.

Problems:

- Determine its dimension;
- Compute a basis of the space $\mathcal{S}_{d}^{r}(\mathcal{M})$, s.t.
- the functions are positive,
- the functions sum to one,
- with small support,
- reproduces $1, s, t, \ldots$
- with good power of approximation,
- with local refinement capabilities,
- ...


## One dimensional topology

Let $\mathcal{M}: t_{0} \leq t_{1} \leq \cdots \leq t_{l} \in \mathbb{R}, \tau_{i}=\left[t_{i}, t_{i+1}\right], \gamma_{i}=t_{i}$.
For each edge $\tau$

$$
\begin{aligned}
\mathcal{F}\left(\tau_{i}\right) & =\mathbb{R}[u] \\
\mathcal{J}\left(\tau_{i}\right) & =(0)
\end{aligned}
$$

$$
0 \rightarrow K \rightarrow \bigoplus_{\tau \in \mathcal{M}_{1}^{1}}[\tau] \mathcal{F}(\tau) \xrightarrow{\partial_{1}} \bigoplus_{\gamma \in \mathcal{M}_{\circ}^{\circ}}[\gamma] \mathcal{F}(\gamma) \xrightarrow{\partial_{0}} 0
$$

with $\partial_{1}\left(\left[\tau_{i}\right] p\right)=\left[\gamma_{i+1}\right] p-\left[\gamma_{i}\right] p$ if $\left[\tau_{i}\right]=\left[\gamma_{i}, \gamma_{i+1}\right]$ and $\left[\gamma_{0}\right]=\left[\gamma_{i}\right]=0$.

$$
\mathbf{p}=\sum\left[\tau_{i}\right] p_{i} \in \operatorname{ker} \partial_{1} \quad \text { iff } \quad p_{i}-p_{i-1} \equiv 0 \quad \bmod \left(u-t_{i}\right)^{r+1}
$$

$K:=\operatorname{ker} \partial_{1}^{i}=S^{r}(\mathcal{M})$ and $\operatorname{im} \partial_{1}=\bigoplus_{\gamma \in \mathcal{M}_{\circ}} \mathcal{F}(\gamma)[\gamma]$.

$$
\operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M})-\sum_{\tau \in \mathcal{M}_{1}} \operatorname{dim} \mathcal{F}(\tau)_{[d]}+\sum_{\gamma \in \mathcal{M}_{\circ}^{\circ}} \operatorname{dim} \mathcal{F}(\gamma)_{[d]}=0
$$

$\operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M})=f_{1}(d+1)-f_{0}^{0}(\min (r, d)+1)$ with $f_{1}=\left|\mathcal{M}_{1}\right|, f_{0}^{0}=\left|\mathcal{M}_{0}^{\circ}\right|$.

## Two dimensional topology

- $\sigma \in \mathcal{M}_{2}$ set of faces of dimension 2 or cells.
- $\tau \in \mathcal{M}_{1}$ (resp. $\mathcal{M}_{1}^{\circ}$ ) set of (resp. interior) faces dimension 1 or edges.
- $\gamma \in \mathcal{M}_{0}$ (resp. $\mathcal{M}_{0}^{o}$ ) set of (resp. interior) faces of dimension 0 or vertices.


## Definitions:

- For $\tau \in \mathcal{M}_{1}$,
- $\ell_{\tau}(s, t)=0$ be the equation of the line supporting $\tau$.
- $\mathfrak{I}^{r}(\tau)=\left(\ell_{\tau}^{r(\tau)+1}\right)$.
- For $\gamma \in \mathcal{M}_{0}$,

$$
\mathfrak{I}^{\mathbf{r}}(\gamma)=\sum_{\tau \ni \gamma} \mathfrak{I}^{\mathbf{r}}(\tau)=\left(\ell_{\tau}^{\mathbf{r}(\tau)+1}\right)_{\tau \ni \gamma} .
$$

Lemma
Let $\tau \in \mathcal{M}_{1}$ be an edge and let $p_{1}, p_{2} \in R$. Their derivatives coincide along $\tau$ up to order $\mathbf{r}(\tau)$ iff $p_{1}-p_{2} \in \Im^{r}(\tau)$.

## Topological chain complex and quotients ${ }^{7}$



[^4]- $R$ is the ring of polynomials in $s, t$.
- $\forall \sigma \in \mathcal{M}_{2}$ with its counter-clockwise boundary formed by edges $\tau_{1}=a_{1} a_{2}, \ldots, \tau_{s}=a_{s} a_{1}$,

$$
\partial_{2}([\sigma])=\left[\tau_{1}\right] \oplus \cdots \oplus\left[\tau_{s}\right]=\left[a_{1} a_{2}\right] \oplus \cdots \oplus\left[a_{s} a_{1}\right] .
$$

- $\forall \tau=\gamma_{1} \gamma_{2} \in \mathcal{M}_{1}^{o}$ with $\gamma_{1}, \gamma_{2} \in \mathcal{M}_{0}$,

$$
\partial_{1}([\tau])=\left[\gamma_{1}\right]-\left[\gamma_{2}\right]
$$

where $[\gamma]=0$ if $\gamma \notin \mathcal{M}_{0}^{\circ}$;

- $\forall \gamma \in \mathcal{M}_{o}^{o}, \partial_{0}([\gamma])=0$.
- For $\tau \in \mathcal{M}_{1}, \ell_{\tau}(s, t)=0$ is the equation of the line supporting $\tau$, $\mathfrak{I}^{r}(\tau)=\left(\ell_{\tau}^{r(\tau)+1}\right)$,
- For $\gamma \in \mathcal{M}_{0}, \mathfrak{I}^{r}(\gamma)=\sum_{\tau \ni \gamma} \mathfrak{J}^{r}(\tau)$.
- The image of the map $\partial_{i}$ in $\mathfrak{F}^{r}$ is taken modulo $\mathfrak{I}^{r}$.


## Homology

Definition: $H_{i}(\mathfrak{C})=\operatorname{ker} \partial_{i} / \operatorname{im} \partial_{i+1}$.
Long exact sequence:

$$
\cdots \rightarrow H_{1}(\mathfrak{R}) \rightarrow H_{1}\left(\mathfrak{F}^{r}\right) \rightarrow H_{0}\left(\mathfrak{I}^{r}\right) \rightarrow H_{0}(\Re) \rightarrow \cdots
$$

Euler characteristics: for a "degree" $d$,

$$
\sum_{i}(-1)^{i} \operatorname{dim} \mathfrak{F}_{d}^{\mathbf{r}, i}=\sum_{i}(-1)^{i} \operatorname{dim} H_{i}\left(\mathfrak{F}_{d}^{r}\right)
$$

Properties:

- $H_{0}(\Re)=H_{1}(\Re)=0$
- $H_{0}\left(\mathfrak{F}^{r}\right)=0$
- $H_{1}\left(\mathfrak{F}^{r}\right)=H_{0}\left(\mathfrak{T}^{r}\right)$
- $H_{2}\left(\mathfrak{F}_{d}^{r}\right)=\mathcal{F}_{d}^{r}(\mathcal{M})$


## Splines on T-meshes

## Splines on T-subdivisions

## T-subdivision:



Regularity distribution: A map r from the horizontal and vertical nodes $\left\{s_{1}, \ldots, s_{n_{1}}\right\},\left\{t_{1}, \ldots, t_{n_{2}}\right\}$ to $\mathbb{N}$, which specifies the regularity along the corresponding vertical or horizontal lines.
Spline space: Let $\mathcal{S}_{m, m^{\prime}}^{r}(\mathcal{M})$ be the vector space of functions which are polynomials of degree $\leqslant m$ in $s, \leqslant m^{\prime}$ on each cell $\sigma \in \mathcal{M}$ and globally of class $C^{\mathbf{r}(\tau)}$ along any interior edge $\tau$ of $\mathcal{M}$.

## Example

- $R=\mathbb{K}[s, t]$ polynomials in $s, t$, with coefficient in $\mathbb{K}$.
- $R_{m, m^{\prime}}=$ polynomials of degree $\leqslant m$ in $s, \leqslant m^{\prime}$ in $t$.

$\Re_{m, m^{\prime}}: \quad \oplus_{i=1}^{3}\left[\sigma_{i}\right] R_{m, m^{\prime}} \quad \xrightarrow{\partial_{2}} \quad \oplus_{i=1}^{3}\left[\beta_{i} \gamma_{1}\right] R_{m, m^{\prime}} \xrightarrow{\partial_{1}} \quad\left[\gamma_{1}\right] R_{m, m^{\prime}} \xrightarrow{\partial_{0}} \quad 0$
- $\partial_{2}\left(\left[\sigma_{1}\right]\right)=\left[\gamma_{1} \beta_{1}\right]+\left[\beta_{3} \gamma_{1}\right], \partial_{2}\left(\left[\sigma_{2}\right]\right)=\left[\beta_{1} \gamma_{1}\right]+\left[\gamma_{1} \beta_{2}\right], \partial_{2}\left(\left[\sigma_{3}\right]\right)=\left[\gamma_{1} \beta_{3}\right]+\left[\beta_{2} \gamma_{1}\right]$,
- $\partial_{1}\left(\left[\beta_{1} \gamma_{1}\right]\right)=\left[\gamma_{1}\right], \partial_{1}\left(\left[\beta_{2} \gamma_{1}\right]\right)=\left[\gamma_{1}\right], \partial_{1}\left(\left[\beta_{3} \gamma_{1}\right]=\left[\gamma_{1}\right]\right.$,
- $\partial_{0}\left(\left[\gamma_{1}\right]\right)=0$.

$$
\left[\partial_{2}\right]=\left(\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -1 & 1 \\
1 & 0 & -1
\end{array}\right),\left[\partial_{1}\right]=\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right)
$$

where $I$ is the $(m+1)\left(m^{\prime}+1\right) \times(m+1)\left(m^{\prime}+1\right)$ identity matrix.

$\mathfrak{F}_{m, m^{\prime}}^{r}: \oplus_{i=1}^{3}\left[\sigma_{i}\right] R_{m, m^{\prime}} \quad \rightarrow \quad \oplus_{i=1}^{3}\left[\beta_{i} \gamma_{\mathbf{1}}\right] R_{m, m^{\prime}} / \mathfrak{J}_{m, m^{\prime}}^{r}\left(\beta_{i} \gamma_{1}\right) \quad \rightarrow \quad\left[\gamma_{\mathbf{1}}\right] R_{m, m^{\prime}} / \mathfrak{I}_{m, m^{\prime}}^{r}\left(\gamma_{\mathbf{1}}\right) \quad \rightarrow \quad 0$

- $\mathfrak{I}_{m, m^{\prime}}^{r}\left(\beta_{1} \gamma_{1}\right)=\mathfrak{I}_{m, m^{\prime}}^{r}\left(\beta_{3} \gamma_{1}\right)=\left(s^{r+1}\right) \cap R_{m, m^{\prime}}$
- $\mathfrak{I}_{m, m^{\prime}}^{r}\left(\beta_{2} \gamma_{1}\right)=\left(t^{r^{\prime}+1}\right) \cap R_{m, m^{\prime}}$
- $\mathfrak{I}_{m, m^{\prime}}^{r}\left(\gamma_{1}\right)=\left(s^{r+1}, t^{r^{\prime}+1}\right) \cap R_{m, m^{\prime}}$

$$
\left[\partial_{2}\right]=\left(\begin{array}{ccc}
-\Pi_{1} & \Pi_{1} & 0 \\
0 & -\Pi_{2} & \Pi_{2} \\
\Pi_{3} & 0 & -\Pi_{3}
\end{array}\right),\left[\partial_{1}\right]=\left(\begin{array}{lll}
P_{1} & P_{2} & P_{3}
\end{array}\right)
$$

where $\Pi_{i}\left(\right.$ resp. $\left.P_{i}\right)$ is the projection matrix of $R_{m, m^{\prime}}\left(\right.$ resp. $\left.R_{m, m^{\prime}} / \mathfrak{I}_{m, m^{\prime}}^{r}\left(\beta_{i} \gamma_{1}\right)\right)$ on $R_{m, m^{\prime}} / \mathfrak{I}_{m, m^{\prime}}^{r}\left(\beta_{i} \gamma_{1}\right)$ (resp. $R_{m, m^{\prime}} / \mathfrak{I}_{m, m^{\prime}}^{r}\left(\gamma_{1}\right)$ ).

## Splines on planar T-meshes

- $\operatorname{dim} \mathcal{F}(\sigma)_{\left[m, m^{\prime}\right]}=(m+1)\left(m^{\prime}+1\right)$
$-\operatorname{dim} \mathcal{F}(\tau)_{\left[m, m^{\prime}\right]}= \begin{cases}(m+1) \times\left(\min \left(r^{\prime}, m^{\prime}\right)+1\right) & \text { if } \tau \text { is horizontal } \\ (\min (r, m)+1) \times\left(m^{\prime}+1\right) & \text { if } \tau \text { is vertical }\end{cases}$
$-\operatorname{dim} \mathcal{F}(\gamma)_{\left[m, m^{\prime}\right]}=\left(\min \left(m, \mathbf{r}\left(\tau_{v}\right)\right)+1\right) \times\left(\min \left(\mathbf{r}\left(\tau_{h}\right), m^{\prime}\right)+1\right)$.


## Dimension formula

## Theorem

$$
\begin{aligned}
\operatorname{dim} \mathcal{F}_{m, m^{\prime}}^{\mathrm{r}}(\mathcal{M}) & =(m+1)\left(m^{\prime}+1\right) f_{2} \\
& -(m+1)\left(r^{\prime}+1\right) f_{1}^{h}-\left(m^{\prime}+1\right)(r+1) f_{1}^{\vee} \\
& +(r+1)\left(r^{\prime}+1\right) f_{0} \\
& +h_{m, m^{\prime}}^{\mathrm{r}}(\mathcal{M})
\end{aligned}
$$

where

- $f_{2}$ is the number of 2-faces $\in \mathcal{M}_{2}$,
- $f_{1}^{h}$ (resp. $f_{1}^{\vee}$ ) is the number of horizontal (resp. vertical) interior edges $\in \mathcal{M}_{1}^{o}$,
- $f_{0}$ is the number of interior vertices $\in \mathcal{M}_{0}^{o}$.
- $h_{m, m^{\prime}}^{r}(\mathcal{M})=\operatorname{dim} H_{0}\left(\mathfrak{I}_{m, m^{\prime}}^{r}\right) \geq 0$.


## The bad and good news.

The dimension of $\mathcal{F}_{m, m^{\prime}}^{\mathbf{r}}(\mathcal{M})$ may depends on the geometry:


$$
0 \leq h_{4,4}^{2} \leq 4
$$

## Definitions:

- A maximal segment is a maximal union of edges of $\mathcal{M}$ that form a segment.
- It is a maximal interior segment if it does not intersect the boundary.
- $\operatorname{MIS}(\mathcal{M})$ is the set of maximal interior segments of $\mathcal{M}$,



## Definitions:

- The maximal interior segments are ordered in some way: $\rho_{1}, \rho_{2}, \ldots$
- For a horizontal (resp. vertical) maximal interior segment $\rho_{i}$, $\omega\left(\rho_{i}\right)=\sum_{\rho \in R_{i}}(m+1-r(\rho))\left(\right.$ resp. $\left.\sum_{\rho \in R_{i}}\left(m^{\prime}+1-r(\rho)\right)\right)$ where $R_{i}$ is the set of maximal segments, which are not a maximal interior segment $\rho_{j}$ of bigger index $j>i$.


## Theorem

Let $\mathcal{M}$ be a hierarchical $T$-subdivision. Then

$$
\begin{aligned}
h_{m, m^{\prime}}^{r}(\mathcal{M}) & \leqslant \sum_{\rho \in \operatorname{MiS}_{h}(\mathcal{M})}(m+1-\omega(\rho))_{+} \times\left(m^{\prime}-r^{\prime}\right) \\
& +\sum_{\rho \in \operatorname{MIS}_{v}(\mathcal{M})}(m-r) \times\left(m^{\prime}+1-\omega(\rho)\right)_{+}
\end{aligned}
$$

## Cases where $h_{m, m^{\prime}}^{r}(\mathcal{M})=0$

## Corollary

If all maximal segments intersect the boundary, then $h_{m, m^{\prime}}^{r}(\mathcal{M})=0$.

Definition: a subdivision is ( $k, k^{\prime}$ )-regular for an ordering of the maximal interior segments if all the horizontal (resp. vertical) maximal interior segments are of weight $\geq k$ (resp. $\geq k^{\prime}$ ).

## Theorem

If $\mathcal{M}$ is $\left(m+1, m^{\prime}+1\right)$-regular. Then $h_{m, m^{\prime}}^{r}(\mathcal{M})=0$.

$$
\begin{aligned}
& \text { Proposition } \\
& \text { If } m \geqslant 2 r+1 \text { and } m^{\prime} \geqslant 2 r^{\prime}+1 \text {, then } h_{m, m^{\prime}}^{r}(\mathcal{M})=0 \text {. }
\end{aligned}
$$

## Biquadratic $C^{1} \mathrm{~T}$-splines

$$
\operatorname{dim} \mathcal{F}_{2,2}^{1,1}(\mathcal{M})=9 f_{2}-6 f_{1}+4 f_{0}+h_{2,2}^{1,1}(\mathcal{M})
$$

Neighborhood: $\mathcal{N}^{1}(\sigma)$ is the smallest rectangle of $\mathcal{M}^{\varepsilon}$ that contains $\sigma$ in its "interior".

Construction of 4-regular subdivisions $\left(h_{2,2}^{1,1}(\mathcal{M})=0\right)$ :


- Choose $\sigma \in \mathcal{M}_{2}$ and split it by an edge $\tau$.
- Extend the edge $\tau$ on both side so that the maximal segment $\rho$ that contains $\tau$ splits $\mathcal{N}^{1}(\sigma)$.

Basis functions associated to a cell $\sigma$ :

$$
N_{\sigma}(s, t):=N\left(s ; s_{i-1}, s_{i-1}, s_{i}, s_{i}, s_{i+1}\right) N\left(t ; t_{j-1}, t_{j-1}, t_{j}, t_{j}, t_{j+1}\right)
$$

## Bicubic $C^{1} \mathrm{~T}$-splines

$$
\operatorname{dim} \mathcal{C}_{3,3}^{1,1}(\mathcal{M})=16 f_{2}-8 f_{1}+4 f_{0}=4\left(f_{0}^{+}+f_{0}^{b}\right)
$$

Construction of 5-regular subdivisions:


- Choose a point $\gamma$ on an edge which is not a crossing vertex;
- Split the adjacent(s) cell(s) at $\gamma$.

Basis functions associated to a crossing vertex $\gamma$ :

$$
\left\{\begin{array}{l}
N_{\gamma}^{0,0}(s, t)=N\left(s ; s_{i-1}, s_{i-1}, s_{i}, s_{i}, s_{i+1}\right) N\left(t ; t_{j-1}, t_{j-1}, t_{j}, t_{j}, t_{j+1}\right) \\
N_{\gamma}^{0,1}(s, t)=N\left(s ; s_{i-1}, s_{i-1}, s_{i}, s_{i}, s_{i+1}\right) N\left(t ; t_{j-1}, t_{j}, t_{j}, t_{j+1}, t_{j+1}\right) \\
N_{\gamma}^{1,0}(s, t)=N\left(s ; s_{i-1}, s_{i}, s_{i}, s_{i+1}, s_{i+1}\right) N\left(t ; t_{j-1}, t_{j-1}, t_{j}, t_{j}, t_{j+1}\right) \\
N_{\gamma}^{1,1}(s, t)=N\left(s ; s_{i-1}, s_{i}, s_{i}, s_{i+1}, s_{i+1}\right) N\left(t ; t_{j-1}, t_{j}, t_{j}, t_{j+1}, t_{j+1}\right)
\end{array}\right.
$$

## Triangular splines

## Triangular splines



- A decomposition of a (simply connected) domain $\mathcal{M}$ into triangular cells (or polygonal regions).
- A regularity function $r$ along the interior edges.


## Definition

$\mathcal{S}_{n}^{r}(\mathcal{M})=$ vector space of piecewise polynomial functions of degree $\leq n$ on each cell and of regularity $\mathbf{r}$.

## The bad and good news.

The dimension may depend on the coordinates of the vertices:


$$
6 \leq \mathcal{C}_{2}^{1}(\mathcal{M}) \leq 7
$$

## Algebraic ingredients

For $d \in \mathbb{N}, \phi_{\sigma, \sigma^{\prime}}=I d$,

- $\operatorname{dim} \mathcal{F}(\sigma)_{d}=\operatorname{dim} \mathbb{R}[u, v]=\binom{d+2}{2}$
$-\operatorname{dim} \mathcal{F}(\tau)_{d}=\operatorname{dim} \mathbb{R}[u, v] /\left(\ell^{r+1}\right)=\binom{d+2}{2}-\binom{d+2-(r+1)}{2}$

- For computing the dimension of $\mathcal{F}(\gamma)_{d}=R /\left(l_{1}^{r+1}, \ldots, l_{t}^{r+1}\right)$, we use the resolution

$$
0 \rightarrow R(-\Omega-1)^{a_{i}} \oplus R(-\Omega)^{b_{i}} \rightarrow \oplus_{j=1}^{t_{i}} R(-r-1) \rightarrow R \rightarrow R / \mathcal{J}(\gamma) \rightarrow 0
$$

where $t$ is the number of different slopes of the edges containing $\gamma$ and $\Omega=\left\lfloor\frac{t r}{t-1}\right\rfloor+1, \quad a=t(r+1)+(1-t) \Omega, \quad b=t-1-a$.

$$
\operatorname{dim} \mathcal{F}(\gamma)_{d}=t\binom{d+2-(r+1)}{2}-b\binom{d+2-\Omega}{2}-a\binom{d+2-(\Omega+1)}{2}
$$

## Lower bound for splines on triangulations

## Theorem

The dimension of $\mathcal{S}_{d}^{r}(\mathcal{M})$ is bounded below by

$$
\begin{aligned}
& \operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M}) \geq\binom{ d+2}{2}+F_{1}^{0}\binom{d+2-(r+1)}{2} \\
& -\sum_{i=1}^{F_{0}^{0}}\left[t_{i}\binom{d+2-(r+1)}{2}-b_{i}\binom{d+2-\Omega_{i}}{2}-a_{i}\binom{d+2-\left(\Omega_{i}+1\right)}{2}\right]
\end{aligned}
$$

where

- $F_{1}^{o}$ is the number of interior edges,
- $F_{0}^{\circ}$ is the number of interior vertices,
- $t_{i}$ is the number of different slopes of the edges containing the vertex $\gamma_{i}$, and

$$
\Omega_{i}=\left\lfloor\frac{t_{i} r}{t_{i}-1}\right\rfloor+1, \quad a_{i}=t_{i}(r+1)+\left(1-t_{i}\right) \Omega_{i} \quad \text { and } \quad b_{i}=t_{i}-1-a_{i} .
$$

## Upper bound for splines on triangulations

Let us fix an ordering $\gamma_{1}, \ldots, \gamma_{f_{0}}$ for the interior vertices.

## Theorem

The dimension of $S_{d}^{r}(\mathcal{M})$ is bounded by

$$
\begin{aligned}
& \operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M}) \leq\binom{ d+2}{2}+F_{1}^{0}\binom{d+2-(r+1)}{2}-\sum_{i, \tilde{f}_{i}=1}^{F_{0}^{0}}\binom{d+2-(r+1)}{2} \\
& -\sum_{i=1, \tilde{t}_{i} \geq 2}^{F_{0}^{0}}\left[\tilde{t}_{i}\binom{d+2-(r+1)}{2}-\tilde{b}_{i}\binom{d+2-\tilde{\Omega}_{i}}{2}-\tilde{a}_{i}\binom{d+2-\left(\tilde{\Omega}_{i}+1\right)}{2}\right],
\end{aligned}
$$

where $\tilde{t}_{i}$ is the number of edges with different slopes attaching the vertex
$\gamma_{i}$ to vertices on the boundary or of lower index, and

$$
\tilde{\Omega}_{i}=\left\lfloor\frac{\tilde{t}_{i} r}{\tilde{t}_{i}-1}\right\rfloor+1, \quad \tilde{a}_{i}=\tilde{t}_{i}(r+1)+\left(1-\tilde{t}_{i}\right) \tilde{\Omega}_{i}, \quad \tilde{b}_{i}=\tilde{t}_{i}-1-\tilde{a}_{i} .
$$

For the following numbering,

the upper bound equals the lower bound: $\operatorname{dim} \mathcal{S}_{2}^{1}(\mathcal{M})=10$.

## Powell-Sabin subdivisions


(M. Powell, M. Sabin, 1977)

- Quadratic $C^{1}$, using 6 sub-triangles.
- Dimension $=3 V_{c}$ where $V_{c}$ is the number of (conformal) vertices of M.


## Volumetric splines

## Splines on tridimensional topological space

A similar topological complex and boundary maps:

$$
0 \rightarrow \mathcal{S}_{d}^{r}(\mathcal{M}) \rightarrow \bigoplus_{\iota \in \mathcal{M}_{3}} \mathcal{F}(\iota) \xrightarrow{\partial_{3}} \bigoplus_{\sigma \in \mathcal{M}_{2}^{0}} \mathcal{F}(\sigma) \xrightarrow{\partial_{2}} \bigoplus_{\tau \in \mathcal{M}_{1}^{0}} \mathcal{F}(\tau) \xrightarrow{\partial_{1}} \bigoplus_{\gamma \in \mathcal{M}_{0}^{0}} \mathcal{F}(\gamma) \xrightarrow{\partial_{0}} 0
$$

We get:

$$
\begin{aligned}
\operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M})= & \sum_{\iota \in \mathcal{M}_{3}^{0}} \operatorname{dim} \mathcal{F}(\iota)_{d}-\sum_{\sigma \in \mathcal{M}_{2}^{0}} \operatorname{dim} \mathcal{F}(\sigma)_{d}+\sum_{\tau \in \mathcal{M}_{1}^{0}} \operatorname{dim} \mathcal{F}(\tau)_{d} \\
& -\sum_{\gamma \in \mathcal{M}_{0}^{0}} \operatorname{dim} \mathcal{F}(\gamma)_{d}+\operatorname{dim} H_{1}(\mathcal{F})_{d}-\operatorname{dim} H_{0}(\mathcal{F})_{d}
\end{aligned}
$$

- For edges $\tau$ :
$\mathrm{F}(\tau)=R[u, v, w] /\left(\ell_{1}^{r+1}, \ldots, \ell_{t}^{r+1}\right)$
as lines trough a point.
- For vertices $\gamma$, by apolarity:

$$
\operatorname{dim} \mathcal{F}(\gamma)_{d}=\operatorname{dim} \mathrm{R} /\left\langle\ell_{1}^{r+1}, \ldots, \ell_{t}^{r+1}\right\rangle_{d}=\operatorname{dim}\left(l_{L}^{(d-r)}\right)_{d}
$$

where $I_{L}^{(d-r)}:=\cap_{i=1}^{t} \mathfrak{m}_{\ell_{i}}^{d-r}$ is the fat point ideal.
Lower bound on $\operatorname{dim} \mathcal{F}(\gamma)$ from generic polynomials, using Froberg conjecture, proved in $\mathbb{P}^{2}$ by D. Anick.

## Upper bound in the tetrahedral case

We use:

$$
\operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M})=\operatorname{dim} R_{d}+\sum_{\sigma \in \mathcal{M}_{2}^{0}} \operatorname{dim} \mathcal{J}(\sigma)_{d}-\operatorname{dimim}\left(\partial_{2}\right)_{d}
$$

## Theorem

The dimension of $\mathcal{S}_{d}^{r}(\mathcal{M})$ is bounded above by

$$
\begin{aligned}
& \operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M}) \leq\binom{ d+3}{3}+f_{2}^{0}\binom{d+3-(r+1)}{3} \\
& -\sum_{i=1}^{f_{1}^{0}}\left[\tilde{S}_{i}\binom{d+3-(r+1)}{3}-\tilde{b}_{i}\binom{d+3-\tilde{\Omega}_{i}}{3}-\tilde{a}_{i}\binom{d+3-\left(\tilde{\Omega}_{i}+1\right)}{3}\right]
\end{aligned}
$$

with $\tilde{\Omega}_{i}=\left\lfloor\tilde{s}_{i} \backslash \tilde{s}_{i}-\underline{\tilde{\Omega}}\right\rfloor+1, \tilde{a}_{i}=\tilde{s}_{i}(r+1)+\left(i-\tilde{s}_{i}\right) \tilde{\Omega}_{i}$, and $\tilde{b}_{i}=\tilde{s}_{i}-1-\tilde{a}_{i}$ if $\tilde{s}_{i}>1$, and $\tilde{a}_{i}=\tilde{b}_{i}=\tilde{\Omega}_{i}=0$ when $\tilde{s}_{i}=1$ or 0 .

## Lower bound on the dimension

$$
F^{\prime}(t, d, k)_{j}=\sum_{i}(-1)^{i} \operatorname{dim} R_{j-d i}\binom{t}{i}, \quad F(t, d, k)=\left|F^{\prime}(t, d, k)\right| .
$$

Froberg conjecture: $F(t, d, k)_{j}=\operatorname{dim} R_{j} /\left(p_{1}, \ldots, p_{t}\right)_{j}$ for generic polynomials $p_{1}, \ldots, p_{t}$ of degree $d$ in $k$ variables.

Lower bound for Hilbert functions of $t$ polynomials of deg. $d$ in $k$ var.
Weak Lefschetz Property: $\times \ell: M_{i} \rightarrow M_{i+1}$ has maximal rank $\forall i \in \mathbb{N}$.
If the WLP for I fails for $R /\left(L_{1}^{r+1}, \ldots, L_{t}^{r+1}\right)$ in $k$ variables, then $\operatorname{dim} R_{n} /\left(L_{1}^{r+1}, \ldots, L_{t}^{r+1}\right)_{n}>F(t, r+1, k)_{n}$.

For $k=4, t=5,6,7,8$, WLP fails when $r+1 \geq 3,27,140,704$ (cf. H. Schenck et al).

Apolarity: $\left(L_{1}^{r+1}, \ldots, L_{t}^{r+1}\right)_{d}^{\frac{1}{d}}=\left\{p \in R_{d}\right.$ which vanishes with order $d-r$ "at" $\left.L_{1}, \ldots L_{t}\right\}$.

For $r=d-2$, by Alexander-Hirschowitz theorem, the dimension for generic linear forms $L_{i}$ is "as expected" except for

$$
(t, d, k)=(5,4,3),(9,4,4),(14,4,5),(7,3,6) .
$$

Segre-Harbourne-Gimigliano-Hirschowitz conjecture: dimension as expected iff there is no $(-1)$-special curve in the blow-up of $\mathbb{P}^{2}$ at $L_{1}, \ldots, L_{t}$.

Known for $t \leq 9$ [Nagata'60], $\forall t$ if $d-r \leq 12$ [Ciliberto-Miranda'98].

## Lower bound in the tetrahedral case

$$
\operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M})=\operatorname{dim} \mathcal{R}_{d}+\sum_{i=1}^{2} \sum_{\beta \in \mathcal{M}_{3-i}^{0}}(-1)^{i} \operatorname{dim} \mathcal{J}(\beta)_{d}+\operatorname{dimim}\left(\partial_{1}\right)_{d}
$$

## Theorem

The dimension of $\mathcal{S}_{d}^{r}(\mathcal{M})$ is bounded below by

$$
\begin{aligned}
& \operatorname{dim} \mathcal{S}_{d}^{r}(\mathcal{M}) \geq\binom{ d+3}{3}+f_{2}^{0}\binom{d+3-(r+1)}{3} \\
& \quad-\sum_{i=1}^{f_{i}^{0}}\left[s_{i}\binom{d+3-(r+1)}{3}-b_{i}\binom{d+3-\Omega_{i}}{3}-a_{i}\binom{d+3-\left(\Omega_{i}+1\right)}{3}\right] \\
& \quad+f_{0}^{0}\binom{d+3}{3}-\sum_{i=1}^{f_{0}^{0}}\left(\sum_{j=1}^{d} F\left(\zeta_{i}, r+1,3\right)_{j}\right)_{+}
\end{aligned}
$$

with $\Omega_{i}=\left\lfloor\frac{s_{i} r}{s_{i}-1}\right\rfloor+1, a_{i}=s_{i}(r+1)+\left(i-s_{i}\right) \Omega_{i}$, and $b_{i}=s_{i}-1-a_{i}$, and where where $F\left(\zeta_{i}, r+1,3\right)$ is the Fröberg sequence for $\zeta_{i}=\min \left(3, \tilde{t}_{i}\right)$.

## No time to talk about

- Lower and upper bound for 3D-splines.
- Geometrically regular splines on surface of arbitrary topology.


## A picture is worth a thousand words




598 patches
1754 patches


G ${ }^{1}$ Spline Surface with 3000 patches.

## Problems which look for a solution

- Dimension and basis for low degree, higher regularity.
- Construction of "good" basis functions associated to vertices, edges, faces.
- Tridimensional extensions.
- Applications in fitting, isogeometric analysis.


## Thanks for your attention

A. Blidia, B. Mourrain, N. Villamizar, $G^{1}$-smooth splines on quad meshes with 4-split macro-patch elements. Computer Aided Geometric Design. 2017, 52-53, pp.106-125. [hal-01491676, arXiv:1703.06717]

目 B. Mourrain and N. Villamizar, Homological techniques for the analysis of the dimension of triangular spline spaces. Journal of Symbolic Computation 50, 564-577, 2013 [arXiv:1210.4639].
B. Mourrain and N. Villamizar Dimension of spline spaces on tetrahedral partitions: a homological approach. Mathematics in Computer Sciences, 8 (2): 157-174, 2014 [arXiv:1403.0748].
B. Mourrain, R. Vidunas and N. Villamizar Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology. Computer Aided Geometric Design, 45, 108-133, 2016. [hal:01196996, arXiv:1509.03274]
B. Mourrain On the dimension of spline spaces on planar $T$-meshes. Mathematics of Computation, American Mathematical Society, 83, 847-871, 2014, [hal:00533187]


[^0]:    ${ }^{1}$ U. Reif, Best bounds on the approximation of polynomials andsplines by their control structure, 2000

[^1]:    ${ }^{2}$ R.T. Farouki N.T. Goodman, On the Optimal Stability of the Bernstein Basis, 1996

[^2]:    ${ }^{4}$ THB-splines: An effective mathematical technology foradaptive refinement in geometric design andisogeometric analysis - Carlotta Giannelli, Bert Jüttler, Stefan Kleiss, Angelos Mantzaflaris, Bernd Simeon, Jaka Speh

[^3]:    ${ }^{6}$ Hermite type Spline spaces over rectangular meshes with complex topological structures - Meng Wu , BM, André Galligo, Boniface Nkonga, 2017

[^4]:    ${ }^{7}$ Billera, L.J. - Homology of smooth splines: generic triangulations and a conjecture of Strang, 1988; Billera, L.J., Rose, L.L. - A dimension series for multivariate splines, 1991.

