
1. GLn(D) and Hecke algebras

Let F be a local field, o its ring of integers and i the maximal ideal of o. Let
q be the cardinal of the residual field o/i. Let D be a central division algebra of
dimension d2 over F . Let O be the ring of integers of D and I the maximal ideal
of O. Let π be a uniformizer for D. Set G = GLn(D). Set K0 = GLn(O) and, for
all k ∈ N

∗, Kj = 1+Mn(I
dj). Let H be the convolution algebra of locally constant

functions on G with compact support. For each j, let Hj be the sub-algebra of H
formed by the Kj bi-invariant functions. Hj will be called the Hecke algebra of
level j. Let Z be the center of G. If g ∈ G, g is called regular semi-simple if
its characteristic polynomial has distinct roots in an algebraic closure of F . It is
called elliptic if moereover its characteristic polynomial is irreducible (sometimes
this is called regular elliptic).

Recall the Cartan decomposition. Let A be the set of matrices (ai,j)1≤i,j≤n such
that ai,j = δi,jπ

ai where δi,j is the Kronecker symbol and a1 ≤ a2 ≤ ... ≤ an. Then
we have:

G =
∐

A∈A

K0AK0.

So, the caracteristic functions of sets K0AK0 form a basis of H0 when A lies in
A. If j ∈ N, then Kj is a normal sub-group or K0. The kernel of the natural
projection from K0 onto GLn(O/Ij) is Kj , so there is a canonical isomorphim
K0/Kj ' GLn(O/Ij). So we will identify these two groups. In particular we
write:

K0 =
∐

B∈GLn(O/Ij)

KjB =
∐

B∈GLn(O/Ij)

BKj .

Now set Tj = GLn(O/Ij) × GLn(O/Ij). The Cartan decomposition may then be
written:

G =
∐

A∈A

∪(B,C)∈Tj
KjBAC−1Kj .

It is not a disjoint union. However, two sets like in the union are either equal,
either disjoint. Let XA be the sub-group of GLn(O) × GLn(O) made of couples
(B, C) such that BAC−1 = A. Let HA,j be the image of XA in Tj . Then we
have KjBAC−1Kj = KjbAc−1Kj if and only if (b−1B, c−1C) ∈ HA,j. So, the set
KjBAC−1Kj is well defined for (B, C) ∈ Tj/HA,j, and we have:

G =
∐

A∈A

∐

(B,C)∈Tj/HA,j

KjBAC−1Kj.

So, the set of caracteristic functions of sets KjBAC−1Kj is a basis of Hj when A
lies in A and, for every such A, (B, C) lies in Tj/HA,j. For al this, see [Ba2].
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2. GLn(D) and close fields

Now suppose L is another local field. All the objects we described before are
defined for L too, and will take an index F or L in the following, to specify the field
they are attached to. Suppose that there is an isomorphism λj : oF /ijF ' oL/ijL
for some positive integer j. We say then that the fields F and L are j-close. If
DL is the central division algebra of dimension d2 over L with the same Hasse
invariant as DF , then λj induces an isomorphism OF/Idj

F ' OL/Idj
L , which we still

denote by λj . Fix an uniformizer πL of DL such that the image by λj of the class
of πL is the class of πF . The set AL is defined with respect to this choice, and
we get a natural bijection still denoted λj from AF onto AL. It is clear that the

isomorphisme λj : OF/Idj
F ' OL/Idj

L induces an isomorphism λj : Tj,F ' Tj,L. One
may prove that the restriction of this isomorphism induces, for every A ∈ AF an
isomorphisme between the sub-groups HA,j,F and Hλj(A),j,L. So we get a natural
bijection between the basis of Hj,F and Hj,L which defines un isomorphisme λj

between these two vector spaces.
One may show that, if l ≤ j, λj induces an isomorphism between oF/ilF and

oL/ilL, so the fields F and L are also l-close. If we use this isomorphism and the
same choice of uniformizer for DF and DL, then the isomorpism λl : Hl,F ' Hl,L

obtained is induced by the restriction of the isomorphisme λj : Hj,F ' Hj,L. If K
is a compact subset of GF bi-invariant by Kj,F , its characteristic function is an
element of Hj,F , and the image by λj of this function in Hj,L is the charactersitic
function of an open compact set denoted λj(K). Fix Haar mesures on GF (resp.
GL) such that the volume of the sub-group K0,F (resp. K0,L) be one. Then the
volume of λj(K) equals the volume of K. All these results are proven in [Ba2].

3. SLn(D) and Hecke algebras

We forget L for a moment and we turn back to our F , D and the construction
of the beginning. Let G′ be the sub-group SLn(D) of G. For all positive integer
j, set K ′

j = Kj ∩G′. The K ′
j make a basis of open compact neighborwood of 1 in

G′. Let H ′
j be the Hecke algebra of level j of G′ made by K ′

j-bi-invariant functions
on G′ which have compact support. Set A′ = A ∩ G′. The kernel of the natural
projection from K ′

0 onto SLn(O/Ij) is K ′
j, so there is a canonical isomorphim

K ′
0/K

′
j ' SLn(O/Ij) and we will identify these two groups. Now let T ′

j be the

sub-group SLn(O/Ij) × SLn(O/Ij) of Tj . For each A ∈ A′, set H ′
A,j = HA,j ∩ T ′

j .
Let Z ′ = Z ∩ G′ be the center of G′.

Proposition 3.1. For every (B, C) ∈ T ′
j/H

′
A,j, K ′

jBAC−1K ′
j is well

defined and we have

G′ =
∐

A∈A′

∐

(B,C)∈T ′
j/H′

A,j

K ′
jBAC−1K ′

j.
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Proof. We use the Cartan decomposition

G′ =
∐

A∈A′

K ′
0AK ′

0.

As
K ′

0 =
∐

B∈K ′
0/K ′

j

K ′
jB =

∐

B∈K ′
0/K ′

j

BK ′
j .

and K ′
0/K

′
j ' SLn(O/Ij), we have

G′ =
∐

A∈A′

∪(B,C)∈T ′
j
K ′

jBAC−1K ′
j .

Now, suppose that K ′
jBAC−1K ′

j = K ′
jbAc−1K ′

j for some (B, C) and (b, c) in
T ′

j . If we consider (B, C) and (b, c) as elements of Tj, then we must have in G:

KjBAC−1Kj = KjbAc−1Kj , because these two sets has non-void intersection.
So, we know that (b−1B, c−1C) ∈ HA,j. As (b−1B, c−1C) is an element of T ′

j , we

must then have (b−1B, c−1C) ∈ H ′
A,j. The converse is also true, if (b−1B, c−1C) ∈

H ′
A,j, then K ′

jBAC−1K ′
j = K ′

jbAc−1K ′
j (it suffices to consider a representant of

(b−1B, c−1C) in XA). The proposition is proven. �

Choose a Haar mesure on G′ such that the volum of K ′
0 is 1.

Lemma 3.2. If A ∈ G, then, for every j ∈ N we have

card(K ′
j/(AK ′

jA
−1 ∩ K ′

j)) = card(Kj/(AKjA
−1 ∩ Kj)).

As G = K0AK0 and K0 normalizes Kj and K ′
j , it suffices to prove the lemma

for A ∈ A.
Write

Kj =

l
∐

i=1

ki(AKjA
−1 ∩ Kj).

If A ∈ A, then the diagonal matrix with 1 on the first n−1 positions and det(ki)
−1

on the last is always in AKjA
−1 ∩Kj, so we may and will assume that ki ∈ G′ for

all i. Then

K ′
j = Kj∩G′ =

l
∐

i=1

(

ki(AKjA
−1∩Kj)∩G′

)

=

l
∐

i=1

(

ki(AKjA
−1∩Kj∩G′)

)

because ki ∈ G′. But G′ is a normal sub-group of G, so

AKjA
−1 ∩ Kj ∩ G′ = (A(Kj ∩ G′)A−1) ∩ (Kj ∩ G′) = AK ′

jA
−1 ∩ K ′

j

and we proved that

K ′
j =

l
∐

i=1

ki(AK ′
jA

−1 ∩ K ′
j)

hence the equality for cardinals. �
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Lemma 3.3. Let A ∈ A, and let a1 ≤ a2 ≤ ... ≤ an be the powers of
the uniformizer on the diagonal of A. Then:

vol(K ′
jAK ′

j) = qd
∑

1≤i<i′≤n ai′−aivol(K ′
j).

Proof. Using the last lemma, it follows from the proof of lemma 2.10 in [Ba2].
�

Remark. The volumes of K0 and K ′
0 are one and K0/Kj ' GLn(O/Idj) and

K ′
0/K

′
j ' SLn(O/Idj). The determinant is a surjective map GLn(O/Idj) to

GL1(O/Idj) with kernel SLn(O/Idj). So we have

vol(Kj) = card(GL1(O/Idj))vol(K ′
j) = (qd − 1)qdj−dvol(K ′

j).

Proposition 3.4. For every a ∈ G, the automorphism fa : x 7→ axa−1

of G′ is measure prezerving.

Proof. Let us show that vol(aK ′
0a

−1) = 1. Applying the lemma 3.2 to a and
a−1 we get:

card(K ′
0/aK ′

0a
−1 ∩ K ′

0) = card(K0/aK0a
−1 ∩ K0)

and

card(K ′
0/a

−1K ′
0a ∩ K ′

0) = card(K0/a
−1K0a ∩ K0).

On the other hand,

card(K0/aK0a
−1 ∩ K0) = card(K0/a

−1K0a ∩ K0)

because conjugation with a in G is measure preserving with respect to a Haar
measure, and

card(K ′
0/a

−1K ′
0a ∩ K ′

0) = card(aK ′
0a

−1/aK ′
0a

−1 ∩ K ′
0)

because conjugation with a is an isomorphism between these two groups. The
result follows. �

If g ∈ G′, set h(g) = (vol(K ′
j)

−1)1K ′
lgK′

j
.

Lemma 3.5. a) If A, A′ ∈ A′, then h(A) ∗ h(A′) = h(AA′).
b) If (B, C) ∈ T ′

0, then h(B) ∗ h(A) ∗ h(C) = h(BAC).

The proof is exactly like for lemma 2.11 in [Ba2].

Let’s remark that for every function f ∈ Hj, the restriction of f to G′ belongs
to H ′

j. This restriction commutes with the inclusions Hj ⊂ Hi and H ′
j ⊂ H ′

i for
i ≥ j. Conversely, every function f ′ ∈ H ′

j can be lifted in a standard way to
a function f ∈ Hj, using the natural inclusion of the standard basis of H ′

j into
the standard basis of Hj . But this operation doesn’t commute no longer with the
inclusions between Hecke algebras.
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4. SLn(D) and close fields

Let’s consider again the situation of the two j-close fields, F and L, and all the
other constructions from the section 2. Embody in the situation the groups G′

F (=
SLn(DF )) and G′

L(= SLn(DF )). The bijection λj : AF → AL induces a bijection
λ′

j : A′
F → A′

L, and the isomorphism λj : Tj,F → Tj,L induces an isomorphism
λ′

j : T ′
j,F → T ′

j,L. As a consequence, the isomorphism λj : Hj,A,F → Hj,λj(A),L

induces an isomorphism λ′
j : H ′

j,A,F → H ′
j,λj(A),L. (This last result in the case

of GLn (lemma 2.7 in [Ba2]) needed some painfull calculations in the first part
of [Ba2], and to avoid recalling all the notation, we chose to get it here by this
imbedding of G′ in G). We obtain then an isomorphism λ′

j of vector spaces from
H ′

j,F to H ′
j,L. We recall that, if m is an integer bigger than j, if F and L are

m-close, then F and L are also j-close.

Theorem 4.1. There exist an integer m ≥ j such that, if F and L
are m-close, then the isomorphism λ′

j is an isomorphism of (Hecke)
algebras.

Proof. A lemma, first:

Lemma 4.2. Let C be a finite subset of A′
F , and set

G′
F (C) = ∩A∈CK

′
0,FAK ′

0,F .

Then
a) There exist m ≥ j depending on C such that, for all g ∈ G′

F (C),
we have gK ′

m,Fg−1 ⊂ K ′
j,F .

b) If L is m-close to F , then for all f1, f2 ∈ H ′
j,F supported on G′

F (C)
we have

λ′
j(f1 ∗ f2) = λ′

j(f1) ∗ λ′
j(f2).

Proof. This lemma is the analogus for G′ = SLn of the lemma 2.14, proved in
[Ba2] for the groupe G = GLn. The point a) here follows obviously ”by intersection
with G′” from the point a) there. The point b) is then proven exactely like the
point b) of the lemma 2.14 in [Ba2]. �

Now, for the proof of the theorem, it goes exactely like the proof of the theorem
2.13 in [Ba2]. �

5. Hecke algebras and representations

We forget the close fields for a moment and turn back to notations in section
3. Let (π, V ) be an irreducible smooth representation of G′. If K is a subgroup
of G′, let V K be the sub-space of vectors which are fixe under π(k) for all k ∈ K.
If K is open, V K has finite dimension. The level of π is the lowest integer l such
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that V Kl 6= 0. If f ∈ H ′
j, we set

π(f) =

∫

G′

f(g)π(g)dg.

The image of π(f) is included then in V K ′
j . In particular, if j is smaller than l,

then π(f) = 0. If j is bigger or equal to l, then π(f) induces an endomorphism of

V K ′
j . It is also clear that the trace of π(f) equals the trace of this endomorphism.

The space V K ′
j is a H ′

j module with the external low: f ∗ v = π(f)v for all f ∈ H ′
j

and all v ∈ V K ′
j . To any irreducible smooth representation π of level smaller than

j we associate this way a H ′
j module. This construction is a bijection from the set

of equivalence classes of irreducible smooth representations of G′ with level lower
or equal to j and the set of isomorhism classes of irreducible non-degenerated
K ′

j-modules (see [Be] for example).

6. Close fields and representations

Let F , L and m be like in the theorem 4.1; in view of what has been said in
the last section, λ′

j induces a bijection between the set of equivalence classes of
irreducible smooth representations of G′

F with level lower or equal to j and the
set of equivalence classes of irreducible smooth representations of G′

L with level
lower or equal to j. As the applications λ′

i for i ≤ j are compatible with the
inclusions relations between Hecke algebras, we see that λ′

j is level prezerving.
Also, if f ∈ H ′

j,F and π is an irreducible smooth representation of level lower or
equal to j of G′

F , we have obviously trπ(f) = trλ′
j(π)(λ′

j(f)).

Proposition 6.1. The application λ′
j sends cuspidal representations to

cuspidal representations, square integrable representations to square in-
tegrable representations and tempered representations to tempered rep-
resentations.

Proof. For cuspidal and square integrable representations, the proof is the
same as in theorem 2.17 of [Ba2]. Now, the tempered representations of G′

F are
its irreducible unitary representations π such that for all ε > 0, there exist a
non-trivial coefficient of π belonging to L2+ε(G′

F ), and the same for G′
L. The

same proof as for square integrable representations shows that λ′
j sends tempered

representations to tempered representations. �

Corollary 6.2. If π is a square integrable repesentation of G′
F of level

less than or equal to j and f is a pseudo-coefficient of π, then λ′
j(f) is

a pseudo-coefficient of λ′
j(π).

Proof. The corollary is an easy consequence of the above proposition. See
[Ba1], lemma 4.2 for details (as well as section 2 of [Ba1] for a definition and a
survey of pseudocefficients in all characteristics). �
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7. Elliptic orbital integrals

Let F be a local field like in section 1. Here D = F . Recall that we fixed Haar
meaures dg and dg′ on G and G′ such that vol(K0, dg) = 1 and vol(K ′

0, dg′) = 1.
If γ is an element of G and ZG(γ) is the stabiliser of γ in G we put a Haar measure
on ZG(γ) such that the volume of the subgroup of its points over O is one. On
G/ZG(γ) we consider the quotient measure. The same if γ ∈ G′ and we conider its
commutator ZG′(γ) = ZG(γ) ∩ G′ in G′. The orbital integrals Φ(f, .) of functions
f ∈ H or f ∈ H ′ at the point γ will be calculated with respect to this choices of
measures.

Let’s fix the following notations: if A is a subset of F , A[n] is the set of all power
n of elements of A in F . If A is a subset of G, then det(A) is the image in F of A
under the determinant map. If A and B are subsets of G, then AB is the set of
all products ab with a ∈ A and b ∈ B.

From now on we suppose that the characteristics of F is either zero either prime
with n.

Lemma 7.1. We have 1 + I2n ⊂ O∗[n].

Proof. If the characteristics of F is zero, the point a) is an obvious consequence
of the exercice 2, page 46 in [BS] (which is an easy application of their theorem 3,
page 42). In our opinion, there is a mistake in the enouncement of the exercice,
and one has to replace 2δ + 1 by 2δ + 1, which is stronger and come streight from
the standard proof. The δ in the exercice is the greatest power of p dividing n. In
particular, we have δ < n, so 2δ + 1 < 2n, so the exercice implies our statement.
The same proof works in non-zero characteristics if p is prime to n. �

Let S be a set of reprezentatives of O∗/1 + I2n in O∗. Chose a subset S ′ of S
which is a system of reprezentatives of O∗/O∗[n] (always possible, thanks to the
lemma 7.1).

Let XG′ be the set of diagonal matrices in G with 1 in the first n−1 places and
an element of S ′ in the last one. Let X be the set of diagonal matrices in G with
1 in the first n − 1 places and an element of {1, π, π2, ..., πn−1} in the last one.

It is clear that F ∗[n] = det(Z), O∗[n] = det(Z(O)) and F/F ∗[n] =
∐n−1

i=0 πiO∗/O∗[n].
Using the natural inclusion of G′ in G we realise, for all x ∈ G, x(G′/Z ′) as a

subset of G/Z. It is easy to check that G(O)/Z(O) =
∐

x∈XG′
A(G′(O)/Z ′(O))

and G/Z =
∐

A∈XG′X
A(G′/Z ′).

Remark. If j ≥ 2n, the natural inclusion K ′
j/Z(K ′

j) → Kj/Z(Kj) is a bijec-
tion (where Z(K ′

j) is the center of K ′
j and Z(Kj) is the center of Kj).

Let γ ∈ G′. As Z ⊂ ZG(γ), det(Z) ⊂ det(ZG(γ)). So we may (and will) choose
a subset S ′

γ of S ′ which form a system of representatives for O∗/ det(ZG′(γ)(O))
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in O∗. We denote Xγ the corresponding subset of XG′ . The valuation map send
the set det(ZG′(γ)) into a sub-group W of Z containing nZ. Consider a system of
representatives Jγ of Z/W in the set {0, 1, 2, ..., n}. We have

F ∗/det(ZG′(γ)) =
∐

j∈Jγ

πjO∗/det(ZG′(γ)(O)).

So, S ′
γJγ is a system of representatives of F ∗/det(ZG′(γ)) in F ∗. Let Yγ be the set

of diagonal matrices in G with 1 in the first n − 1 places and πj , with j ∈ J , in
the last one.

One may show that

G(O)/ZG(γ)(O) =
∐

x∈Xγ

x(G′(O)/ZG′(γ)(O)).

and
G/ZG(γ) =

∐

x∈XγYγ

x(G′/ZG′(γ)).

Let xγ be the cardinal of Xγ. The first relation shows that, with our choice of
measures, the measure we put on G′/ZG′(γ) is xγ times the restricted measure
from G/ZG(γ).

One may also verify that, if δ is conjugated to γ in G, there exist exactly one
element x ∈ XγYγ such that δ is conjugated to xγx−1 in G′.

Let’s look to this construction form another point of view. We say that U is a
system adapted to γ if for all δ conjugated to γ in G, there exist exactly one
element x ∈ U such that δ is conjugated to xγx−1 in G′. Then we have

G/ZG(γ) =
∐

x∈U

x(G′/ZG′(γ)).

We just proved that XγYγ is a system adapted to γ. But what is remarquable
from our discussion is that knowing just the set det(ZG′(γ)), we may construct
a system adapted to γ and we know xγ (which is the quotient of two cardinals:
those of F ∗/det(ZG′(γ)) and of Z by its sub-group of valuations of elements in
det(ZG′(γ)). Our previous construction alows us to construct a particular such
system depending only on O∗/1 + I2n and on the first n powers of π.

Let now U be a system adapted to γ. We suppose that U contains the identity
matrix. If we donote OG(γ) (resp. OG′(γ)) the orbit in G (resp. in G′) of γ, then:

OG(γ) =
∐

x∈U

OG′(xγx−1).

If dḡ (resp. dḡ′) is the measure fixed on G/ZG(γ) (resp. G′/ZG′(γ)), then we
have that for every f ∈ H(G),

Φ(f, γ) =

∫

G/ZG(γ)

f(gγg−1)dḡ =
∑

x∈U

∫

G′/ZG′ (γ)

f(xgγg−1x−1)dḡ =
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∑

x∈U

∫

G′/ZG′ (γ)

f((xgx−1)(xγx−1)(xg−1x−1))dḡ =

∑

x∈U

∫

G′/ZG′ (γ)

f(g(xγx−1)g−1)dḡ,

the last equality coming from the proposition 3.4. So, if f ′ ∈ H ′ is the restriction
of f to G′, we obtained, as dḡ = 1

xγ
dḡ′:

Φ(f, γ) =
1

xγ

∑

x∈U

Φ(f ′, xγx−1).

Suppose now γ is regular semi-simple. Let Vγ be an open and compact neig-
bourhoud of γ in G′ containing only elements of G′ which are conjugated under
G′ to a regular element in the torus ZG′(γ). Such a neighbourhood always exists
by the submersion tehorem of Harish-Chandra. Then, for all t ∈ Vγ, ZG(t) is
conjugated to ZG(γ) in G, which shows that the system U is adapted to t too and
xt = xγ and the formula

Φ(f, t) =
1

xγ

∑

x∈U

Φ(f ′, xtx−1)

is true in the whole neighbourhood Vγ.
For each x ∈ U , set Vxγx−1 = xVγx

−1 (it is an open and compact neigbourhood of
xγx−1 in G′). If A ⊂ G let AdG′(A) stand for the set of all conjugates of elements in
A by elements of G′. The sets AdG′(Vxγx−1), x ∈ U are disjoint (because for every
g ∈ AdG′(Vxγx−1), ZG(g) is conjugated under G′ with xZG(γ)x−1 and never with
ZG(γ)). They are all open and close also. The fact that they are open is obvious
(union of open sets). Then the fact that they are close would be a consequence of
their union being closed. But their union is AdG(Vγ), and this is closed: if P is the
(continuous!) map characteristic polynomial from G to F n, then P (Vγ) is compact
beacuse Vγ is, hence the reciprocal image P−1(P (Vγ)) = AdG(Vγ) is closed.

Let now f ′ ∈ H ′. We may write f ′ = f ′
0 +

∑

x∈U f ′
x, where the support of f ′

0

does not intersect any AdG′(Vxγx−1), and the support of each f ′
x is included in

AdG′(Vxγx−1). The orbital integral of f ′
0 vanish on all xVγx

−1. The orbital integral
of f ′

x0
vanish on all xVγx

−1 with x ∈ U\{x0}. If f ′
1 ∈ H ′

j, we just lift it to a
function f1 ∈ Hj and we get by the formula about orbital integrals:

Φ(f ′, t) = xγΦ(f1, t)

for all t ∈ Vγ. In particular, if Φ(f1, .) is constant in a neighbourhood V of γ, then
Φ(f ′, .) is constant on Vγ ∩ V .
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8. Orbital integral and local fields

We’ll deal again with two different fields F and L, and the subscript F or L
will indicate the one which the object is attached to. The field F is fixed. If γ
is an elliptic element of G′

F , then we fix Xγ like in the previous section, and, if
L is a field m close to F , with m ≥ 2n, we define λm(Xγ) in the following way:
we take the image of Xγ in O∗

F/1 + Im
F = (OF/Im

F )∗ defined by its last coefficient
on the diagonal; then we take the image of this set under the ring isomorphisme
λm : OF/Im

F → OL/Im
L ; we then consider a system SL of representatns of this set

in O∗
L and finaly we let λm(Xγ) be the set of diagonal matrices in GL with 1 in the

first n − 1 places of the diagonal and an element of SL in the last. The set Yγ is
defined only in terms of powers of the uniformizer πF of F , so there is a canonical
way of defining the corresponding set λm(Yγ) using the uniformizer πL of L. It
is also clear how we define λm(x) for each x in XγYγ. Actaully, Xγ ⊂ K0,F , and
Yγ ⊂ AF , so every x ∈ XγYγ is an element of type BAC−1 (with C = 1) like
those used in the standard decomposition of GF . Hence, for all m ≥ 2n, if L is
m-close to F we automaticly have λm(x) ∈ λm(KmxKm), so for this particular
system we defined a pointwise lifting always compatible with the general lifting of
open compact sets.

Theorem 8.1. (Lemaire) Let γ be an elliptic element of GF . Let j
be a positive integer. Then there exist l and m such that:

a) for every f ∈ Hj,F , Φ(f, .) is constant on Kl,FγKl,F , equal to
Φ(f, γ),

b) m is bigger than j and l and for every field L which is m close to
F , for every f ∈ Hj,F , Φ(λj(f), .) is constant on λl(Kl,FγKl,F ), equal
to Φ(f, γ),

Proof. [Le1], page 1054.

Lemma 8.2. Let γ ∈ GF be an elliptic element and let j be a positive
integer. There exist l et m such that

a) For all γ′ ∈ Kl,FγKl,F , Kj,FZG(γ′)Kj,F = Kj,FZG(γ)Kj,F

b) If L and F are m close, then for all γ, γ′ ∈ λl(Kl,FγKl,F ), Kj,LZG(L)(γ
′)Kj,L) =

Kj,LZG(L)(γ)Kj,L = λl(Kj,FZGF
(γ)Kj,F ).

Proof. It is the proof of (i), page 1043, [Le1]. �

Let γ ∈ G′
F be an elliptic element. Apply the last lemma for a j ≥ 2n. Then

Proposition 8.3. a) For all γ′ ∈ K ′
l,FγK ′

l,F , the system XγYγ is
adapted to γ′ and xγ′ = xγ.

b) If L and F are m close, then for all γ′ ∈ λl(K
′
l,FγK ′

l,F ), the system
λl(Xγ)λl(Yγ) is adapted to γ′ and xγ′ = xγ.
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Proof. a) We have seen that 1 + I2n
F ⊂ det(K2n) ⊂ det(ZGF

(γ′)(OF )) and
1 + I2n

F ⊂ det(K2n) ⊂ det(ZGF
(γ)(OF )). So

det (ZGF
(γ′)(OF )) = det (Kj,FZGF

(γ′)(OF )Kj,F ) =

det (Kj,FZGF
(γ)(OF )Kj,F ) = det (ZGF

(γ)(O)).

b) Using the point b) of the previous lemma, we get

Kj,LZGL
(γ)Kj,L = λl(Kj,FZGF

(γ)Kj,F ).

Now, if V is a Kj,F bi-invariant set, then det(V ) is invariant by 1 + Ij
F , and the

image of det(V ) in O∗
F/1 + Ij

F correspond to the image of detλj(V ) in O∗
L/1 + Ij

L

under the isomorphism λj : OF/Ij
F → OL/Ij

L (it suffices to verify this on basic
type sets KjBAC−1Kj, and this is obvious). �

Let γ be an elliptic element of G′
F .

Theorem 8.4. Let f ′ ∈ H. There exists p and m such that
a) Φ(f ′, .) is constant on K ′

pγK ′
p, equal to Φ(f ′, γ) and

b) for every field L m-close to F , Φ(λm(f ′), .) is constant on λm(K ′
pγK ′

p),
equal to Φ(f ′, γ).

Proof. We start with a lemma studying the behaviour of the lifting under
conjugation. It imply for exemple that if two open compact sets are obtained one
from another by conjugation with an element, the same is true for thier lifting to
a field close enough.

Lemma 8.5. Let H1, H2 be open compact subsets of GF and g ∈ GF

such that gH1g
−1 ⊂ H2. If H1 and H2 are bi-invariant under some

Kj,F , then Kj,FgKj,FH1Kj,Fg−1Kj,F ⊂ H2. Moreover, there exist m >
j such that, if L is m-close to F , then λm(Kj,FgKj,F )λm(H1)λm(Kj,Fg−1Kj,F ) ⊂
λm(H2).

Proof. As gH1g
−1 ⊂ H2 and H1 and H2 are bi-invariant under Kj,F , we obvi-

ously have Kj,FgKj,FH1Kj,Fg−1Kj,F ⊂ H2. For the second assertion, it suffices to
show that λm(Kj,FxKj,FyKj,F ) = λm(Kj,FxKj,F )λm(Kj,FyKj,F ) for all x, y ∈ GF .
But Kj,FxKj,FyKj,F is the support of the function obtained by the convolution
product of characteristic functions 1Kj,F xKj,F

and 1Kj,F yKj,F
. So, when m is big

enough such that the linear isomorphism between Hj,F and Hj,L is an algebra
isomorphism (theorem 4.1), we also have our relation. �

The proof is now clear: thaks to the proposition 8.3 and the lemme 8.5, if L is
m-close to F , m big enough, then the construction for L at the end of the last
section is paralel to that for F (just pick a γL in λm(Vγ) and use the lemma 8.5
to show (for m big enough) that, for all x ∈ XγYγ, λm(Vxγx−1) = Vλm(x)γLλm(x)−1).
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To conclude for the point b) of our theorem, just use the point b) of the thorem
of lemaire 8.1. �

9. The orthogonality relations for characters

If¯denote the complex conjugation, we have the following:

Theorem 9.1. Let F be a local field of non-zero characteristic p. Let n
be a positive integer such that p doesn’t divide n. Then, if π is a square
integrable representation of G′

F = SLn(F ), if f ′
π is a pseudocoefficient

of π, if g is a regular elliptic element of G′
F , then

χπ(g) = Φ(f ′
π, g).

Proof. The proof is then the same as for the theorem 4.3 in [Ba1]. �

Corollary 9.2. The orthogonality relations for characters hold on G′
F .

Proof. The proof is the same as for the theorem 4.4. in [Ba1], as Lemaire
showed the local integrability of characters on SLn in non-zero characteristics
([Le2]). �

10. Removing the condition p 6 |n

What happen if F is of non zero characteristics p, and p divides n? First of all,
the theorem 8.1 is absolutly independent of that. Otherwise, the decomposition
of G/Z as cosets of G′/Z ′ is no longer finite, because F ∗[n] does no longer contain
an open neighbourhood of 1. But, if a field E is an extension of F , then the
norm map from E∗ to F ∗ contain an open neighbourhood of 1, say 1+ IpE∗ ([We],
proposition 5, page 143). So, if γ is an elliptic element of G′

F , then we may still
consider a system of reprezentatives of O∗/1 + I

pZGF
(γ) in O∗, and it will be a

finite set. The diagonal matrix with 1 on the firs n − 1 positions and an element
of this system of representatives on the last will be our Xγ, adapted to γ. All the
other fields involved when applying the close fields theory to GF and G′

F will be
of zero characteristics, so, for them, the valuation of the entries of the matrix in
Xδ will be uniformly bounded by 2n, like before, idependently of the field or of
the element δ. So, the place of 2n as a bound for valuation has just to be replaced
by max(2n, pZGF

(γ)). All the proofs go then the same. Let’s remark that the

proposition 8.3 b) imply in the end that, even in this case of bad characteristics,
we have xγ ≤ 2qn2, where q is the cardinal of the residual field.

11. Removing the condition D = F

Let d2 be the dimension of D over F . If γ is a regular semi-simple element
of GLn(D), if δ is an element of GLdn(F ), we say that δ corresponds to γ
if the caracteristic polynomial of δ is equal to that of γ. Such δ always exist
and are regular semi-simple. If γ is elliptic, then such δ are always elliptic. If
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f ∈ H(GLn(DF )) with compact support, one may function e ∈ H(GLnd(F ))
such that the orbital integral of f in any regular semi-simple element γ is equal
to the orbital integral of e in any element of GLnd(F ) corresponding to γ, and
such that the orbital integral of e vanishes in every regular semi-simple element of
GLnd(F ) which doesn’t correspond to any regular semi-simple element of GLn(D).
This result is proven in [DKV] for F of characteristics zero and in [Ba3] for F of
non-zero characteristics. We will call it orbital integrals transfer over F .

Now, if γ ∈ GLn(D) is elliptic and δ ∈ GLnd(F ) corresponds to γ, then
ZGLn(D)(γ) is canonicaly isomorphic to ZGLnd(F )(δ). This isomorhism commutes
with the determinant map, so S ′

γ = S ′
δ, and the theory of the set Xγ and adapted

systems is exactly the same as before. In particular, as S ′
γ = S ′

δ, and any adapted
system to δ is also an adapted system for γ. Let’s prove an analogus of the the-
orem 8.1 for GLn(D). This version of Lemaire’s thorem that we prove below is
weaker, but we need Lemaire’s result only for any fixed function, as we used it
only for a finite number of functions in the proof of our main theorem.

Theorem 11.1. Let γ be an elliptic element of G = GLn(DF ). Let
f ∈ H(GLr(DF )). Suppose that the support of f is included in the
regular elliptic set. Then there exist l and m such that:

a) Φ(f, .) is constant on Kl,FγKl,F , equal to Φ(f, γ),
b) m is bigger than l and for every field L which is m close to F ,

Φ(λj(f), .) is constant on λl(Kl,FγKl,F ), equal to Φ(f, γ).

Proof. As f is fixed, the real problem is b). We get it by transfering integral
orbitals to GLdn(F ), an using the theorem 8.1. So we will deal with four groups:
GLn(DF ), GLnd(F ), GLn(DL) and GLnd(L), where L is a local field of zero char-
acteristics m-close to F for some m. Let M ∈ GLnd(F ) be the companion matrix
of the caracteristic polynomial of γ. Then M corresponds to γ. We prove the

Lemma 11.2. Let U1 and U2 be neighbourhoods of γ and M respec-
tively. Then there exist open compact neighbourhoods V1 of γ and V2

of M and an integer m such that,
i) V1 ⊂ U1 and V2 ⊂ U2.
ii) for all field L m-proche to F , λm(V1) (⊂ GLn(DL)) and λm(V2)

(⊂ GLnd(L)) are well defined and for all g ∈ λm(V2) there exists h ∈
λm(V1) corresponding to g.

Proof. It is a direct consequence of the propositions 4.5 and 4.10 in [Ba2]. The
reader may verify it by formal logic, without knowing what ”polynômes proches”
means. �

Now, in [Ba3], we proved that, if m is big enough, then the orbital integrals
transfer over F and over L commute with the map λm for functions. So our propo-
sition follows from the last lemma and the theorem 8.1 applied after transering
f . �
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The analogus of the proposition 8.3 in D 6= F case is also true. If the V2 of the
lemma 11.2 is included in the Kl,FγKl,F of the proposition 8.3, if we apply the
proposition and the lemma we find that the proposition is true for GLn(D). One
has just to replace the neighbourhood Kl,FγKl,F of γ with the V1 of the lemma.

Last but not least is the fact that the characters of irreducible smooth repre-
sentations of SLn(D) are locally integrable in non zero characteristics. This result
may be find in Lemaire. The proof of the orthogonality relations for SLn(D) is
now exactly the same as the proof for GLn(F ).

12. Bibliography
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