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Abstract: In this paper we generalize the local Jacquet-Langlands correspondence to all
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1. Introduction

The aim of this paper is to prove the global Jacquet-Langlands correspondence and its con-
sequences for the theory of representations of the inner forms of GLn over a global field of
characteristic zero. In order to define the global Jacquet-Langlands correspondence, it is not
sufficient to transfer only square integrable representations as in the classical local theory ([JL],
[FL2], [Ro], [DKV]). It would be necessary to transfer at least the local components of global
discrete series. This results are already necessary to the global correspondence with a division
algebra (which can be locally any inner form). Here we prove, more generally, the transfer of
all unitary representations. Then we prove the global Jacquet-Langlands correspondence, which
is compatible with this local transfer. As consequences we obtain for inner forms of GLn the
multiplicity one Theorem and strong multiplicity one Theorem, as well as a classification of the
residual spectrum à la Moeglin-Waldspurger and unicity of the cuspidal support à la Jacquet-
Shalika. Using these classifications we give counterexamples showing that the global Jacquet-
Langlands correspondence for discrete series does not extend well to all unitary automorphic
representations.

We give here a list of the most important results, starting with the local study. We would like
to point out that the local results in this paper have already been obtained by Tadić in [Ta6]
in characteristic zero under the assumption that his conjecture U0 holds. After we proved these
results here independently of his conjecture (and some of them in any characteristic), Sécherre
announced the proof of the conjecture U0 ([Se]). The approach is completely different and we
insist on the fact that we do not prove the conjecture U0 here but more particular results which
are enough to show the local transfer necessary for the global correspondence.

Let F be a local non-Archimedean field of characteristic zero and D a central division algebra
over F of dimension d2. For n ∈ N∗ set Gn = GLn(F ) and G′

n = GLn(D). Let ν generically
denote the character given by the absolute value of the reduced norm on groups like Gn or G′

n.
Let σ′ be a square integrable representation of G′

n. If σ′ is a cuspidal representation, then it
corresponds by the local Jacquet-Langlands correspondence to a square integrable representation
σ of Gnd. We set s(σ′) = k, where k is the length of the Zelevinsky segment of σ. If σ′ is not



GLOBAL JACQUET-LANGLANDS 3

cuspidal, we set s(σ′) = s(ρ), where ρ is any cuspidal representation in the cuspidal support of

σ′, and this does not depend on the choice. We set then νσ′ = νs(σ′). For any k ∈ N∗ we denote

then by u′(σ′, k) the Langlands quotient of the induced representation from ⊗k−1
i=0 (ν

k−1
2 −i

σ′ σ′), and

if α ∈]0, 1
2 [, we denote π′(u′(σ′, k), α) the induced representation from να

σ′u′(σ′, k)⊗ν−α
σ′ u′(σ′, k).

The representation π′(u′(σ′, k), α) is irreducible ([Ta2]). Let U ′ be the set of all representations
of type u′(σ′, k) or π′(u′(σ′, k), α) for all G′

n, n ∈ N∗. Tadić conjectured in [Ta2] that
(i) all the representations in U ′ are unitary;
(ii) an induced representation from a product of representations in U ′ is always irreducible

and unitary;
(iii) every irreducible unitary representation of G′

m, m ∈ N∗, is an induced representation
from a product of representations in U ′.

The fact that the u′(σ′, k) are unitary has been proved in [BR1] if the characteristic of the
base field is zero. In the third Section of this paper we complete the proof of the claim (i) (i.e.
π′(u′(σ′, k), α) are unitary; see Corollary 3.6) and prove (ii) (Proposition 3.9).

We also prove the Jacquet-Langlands transfer for all irreducible unitary representations of
Gnd. More precisely, let us write g′ ↔ g if g ∈ Gnd, g

′ ∈ G′
n and the characteristic polynomials

of g and g′ are equal and have distinct roots in an algebraic closure of F . Denote Gnd,d the set
of elements g ∈ Gnd such that there exists g′ ∈ G′

n with g′ ↔ g. We denote χπ the function
character of an admissible representation π. We say a representation π of Gnd is d-compatible
if there exists g ∈ Gnd,d such that χπ(g) 6= 0. We have (Proposition 3.9):

Theorem. If u is a d-compatible irreducible unitary representation of Gnd, then there exists a
unique irreducible unitary representation u′ of G′

n and a unique sign ε ∈ {−1, 1} such that

χu(g) = εχu′(g′)

for all g ∈ Gnd,d and g′ ↔ g.

It is Tadić who first pointed out ([Ta6]) that this should hold if his conjecture U0 were true. The
sign ε and an explicit formula for u′ may be computed. See for instance Subsection 3.3.

The fifth Section contains global results. Let us use the Theorem above to define a map
|LJ| : u 7→ u′ from the set of irreducible unitary d-compatible representations of Gnd to the set
of irreducible unitary representations of G′

n.
Let now F be a global field of characteristic zero and D a central division algebra over F of

dimension d2. Let n ∈ N∗. Set A = Mn(D). For each place v of F let Fv be the completion of
F at v and set Av = A ⊗ Fv. For every place v of F , Av ' Mrv

(Dv) for some positive integer
rv and some central division algebra Dv of dimension d2

v over Fv such that rvdv = nd. We will
fix once and for all an isomorphism and identify these two algebras. We say that Mn(D) is split
at a place v if dv = 1. The set V of places where Mn(D) is not split is finite. We assume in the
sequel that V does not contain any infinite place.

Let Gnd(A) be the group of adèles of GLnd(F ), and G′
n(A) the group of adèles of GLn(D).

We identify Gnd(A) with Mnd(A)× and G′
n(A) with A(A)×.

Let Z(A) be the center of Gnd(A). If ω is a smooth unitary character of Z(A) trivial on Z(F ),
let L2(Z(A)Gnd(F )\Gnd(A);ω) be the space of classes of functions f defined on Gnd(A) with
values in C such that f is left invariant under Gnd(F ), f(zg) = ω(z)f(g) for all z ∈ Z(A) and
almost all g ∈ Gnd(A) and |f |2 is integrable over Z(A)Gnd(F )\Gnd(A). The group Gnd(A) acts
by right translations on L2(Z(A)Gnd(F )\Gnd(A);ω). We call a discrete series of Gnd(A) an
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irreducible subrepresentation of such a representation (for any smooth unitary character ω of
Z(A) trivial on Z(F )). We adopt the analogous definition for the group G′

n(A).
Denote DSnd (resp. DS′

n) the set of discrete series of Gnd(A) (resp. G′
n(A)). If π is a discrete

series of Gnd(A) or G′
n(A), and v is a place of F , we denote πv the local component of π at the

place v. We will say that a discrete series π of Gnd(A) is D-compatible if πv is dv-compatible
for all places v ∈ V .

If v ∈ V , the Jacquet-Langlands correspondence between dv-compatible unitary representa-
tions of GLnd(Fv) and GLrv

(Dv) will be denoted |LJ|v. Recall that if v /∈ V , we have identified
the groups GLrv

(Dv) and GLnd(Fv). We have the following (Theorem 5.1):

Theorem. (a) There exists a unique injective map G : DS′
n → DSnd such that, for all π′ ∈ DS′

n,
we have G(π′)v = π′

v for every place v /∈ V . For every v ∈ V , G(π′)v is dv-compatible and we
have |LJ|v(G(π′)v) = π′

v. The image of G is the set of D-compatible elements of DSnd.
(b) One has multiplicity one and strong multiplicity one Theorems for the discrete spectrum

of G′
n(A).

Since the original work of [JL] (see also [GeJ]), global correspondences with division algebras
under some conditions (on the division algebra or on the representation to be transferred) have
already been carried out (sometimes not explicitly stated) at least in [Fl2], [He], [Ro], [Vi],
[DKV], [Fli] and [Ba4]. They were using simple forms of the trace formula. For the general result
obtained here these formulas are not sufficient. Our work is heavily based on the comparison of
the general trace formulas for G′

n(A) and Gnd(A) carried out in [AC]. The reader should not be
misled by the fact that here we use directly the simple formula Arthur and Clozel obtained in
their over 200 pages long work. Their work overcomes big global difficulties and together with
methods from [JL] and [DKV] reduces the global transfer of representations to local problems.

Let us explain now what are the main extra ingredients required for application of the spectral
identity of [AC] in the proof of the theorem. The spectral identity as stated in [AC] is roughly
speaking (and after using the multiplicity one theorem for Gnd(A)) of the type

∑
tr(σI)(f) +

∑
λJtr(MJπJ )(f) =

∑
m′

i tr(σ′
i)(f

′) +
∑

λ′j tr(M ′
jπ

′
j)(f

′)

where λJ and λ′j are certain coefficients, σI (resp. σ′
i) are discrete series of Gnd(A) (resp. of

G′
n(A) of multiplicity m′

i), πJ (resp. π′
j) are representations of Gnd(A) (resp. of G′

n(A)) which

are induced from discrete series of proper Levi subgroups andMJ andM ′
j are certain intertwining

operators. As for f and f ′, they are functions with matching orbital integrals.
The main step in proving the theorem is to choose a discrete series σ′ of G′

n(A) and to use
the spectral identity to define G(σ′). The crucial result is the local transfer of unitary represen-
tations (Proposition 3.9.c of this paper) which allows to ”globally” transfer the representations
from the left side to the right side. This gives the correspondence when n = 1 as in [JL] or [Vi].
The trouble when n > 1 is that we do not know much about the operators M ′

j . We overcome
this by induction over n. Then the Proposition 3.9.b shows that π′

j are irreducible. This turns

out to be enough to show that the contribution of σ′ to the equality cannot be canceled by
contributions from properly induced representations.

In the sequel of the fifth Section we give a classification of representations of G′
n(A). We define

the notion of a basic cuspidal representation for groups of type G′
k(A) (see Proposition 5.5 and

the sequel). These basic cuspidal representations are all cuspidal. Neven Grbac will show in his
Appendix that these are actually the only cuspidal representations. Then the residual discrete
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series of G′
n(A) are obtained from cuspidal representations in the same way the residual discrete

series of GLn(A) are obtained from cuspidal representations in [MW2]. This classification is
obtained directly by transfer from the Moeglin-Waldspurger classification for Gn.

Moreover, for any (irreducible) automorphic representation π′ of G′
n, we know that ([La])

there exists a couple (P ′, ρ′) where P ′ is a parabolic subgroup of G′
n containing the group of

upper triangular matrices and ρ′ is a cuspidal representation of the Levi factor L′ of P ′ twisted
by a real non ramified character such that π′ is a constituent (in the sense of [La]) of the induced
representation from ρ′ to G′

n with respect to P ′. We prove (Proposition 5.7 (c)) that this couple
(ρ′, L′) is unique up to conjugation. This result is an analogue for G′

n of Theorem 4.4 of [JS].
The last Section is devoted to the computation of L-functions, ε′-factors (in the sense of [GJ])

and their behavior under the local transfer of irreducible (especially unitary) representations.
The behavior of the ε-factors then follows. These calculations are either well known or trivial,
but we feel it is natural to give them explicitly here. The L-functions and ε′-factors in question
are preserved under the correspondence for square integrable representations. In general, ε′-
factors (but not L-functions) are preserved under the correspondence for irreducible unitary
representations.

In the Appendix Neven Grbac completes the classification of the discrete spectrum by showing
that all the representations except the basic cuspidal ones are residual. His approach applies the
Langlands spectral theory.

The essential part of this work has been done at the Institute for Advanced Study, Princeton,
during the year 2004 and I would like to thank the Institute for the warm hospitality and
support. They were expounded in a preprint from the beginning of 2006. The present paper
contains exactly the same local results as that preprint. Two major improvements obtained in
2007 concern the global results. The first one is the proof of the fact that any discrete series of
the inner form transfers (based on a better understanding of the trace formula from [AC]). The
second is a complete classification of the residual spectrum thanks to the Appendix of Neven
Grbac.

The research at the IAS has been supported by the NSF fellowship no. DMS-0111298. I
would like to thank Robert Langlands and James Arthur for useful discussions about global
representations; Marko Tadić and David Renard for useful discussions on the local unitary dual;
Abderrazak Bouaziz who explained to me the intertwining operators. I would like to thank Guy
Henniart and Colette Moeglin for the interest they showed for this work and their invaluable
advices. I thank Neven Grbac for his Appendix where he carries out the last and important
step of the classification, and for his remarks on the manuscript. Discussions with Neven Grbac
have been held during our stay at the Erwin Schrödinger Institute in Vienna and I would like to
thank here Joachim Schwermer for his invitation.

2. Basic facts and notation (local)

In the sequel N will denote the set of non negative integers and N
∗ the set of positive integers.

A multiset is a set with finite repetitions. If x ∈ R, then [x] will denote the biggest integer
inferior or equal to x.

Let F be a non-Archimedean local field and D a central division algebra of a finite dimension
over F . Then the dimension of D over F is a square d2, d ∈ N∗. If n ∈ N∗, we set Gn = GLn(F )
and G′

n = GLn(D). From now on we identify a smooth representation of finite length with
its equivalence class, so we will consider two equivalent representations as being equal. By a
character of Gn we mean a smooth representation of dimension one of Gn. In particular a
character is not unitary unless we specify it. Let σ be an irreducible smooth representation of
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Gn. We say σ is square integrable if σ is unitary and has a non-zero matrix coefficient which
is square integrable modulo the center of Gn. We say σ is essentially square integrable if σ
is the twist of a square integrable representation by a character of Gn. We say σ is cuspidal
if σ has a non-zero matrix coefficient which has compact support modulo the center of Gn. In
particular a cuspidal representation is essentially square integrable.

For all n ∈ N∗ let us fix the following notation:
Irrn is the set of smooth irreducible representations of Gn,
Dn is the subset of essentially square integrable representations in Irrn,
Cn is the subset of cuspidal representations in Dn,
Irru

n (resp. Du
n, Cu

n) is the subset of unitary representations in Irrn (resp. Dn, Cn),
Rn is the Grothendieck group of admissible representations of finite length of Gn,
ν is the character ofGn defined by the absolute value of the determinant (notation independent

of n – this will lighten the notation and cause no ambiguity in the sequel).
For any σ ∈ Dn, there is a unique couple (e(σ), σu) such that e(σ) ∈ R, σu ∈ Du

n and
σ = νe(σ)σu.

We will systematically identify π ∈ Irrn with its image in Rn and consider Irrn as a subset
of Rn. Then Irrn is a Z-basis of the Z-module Rn.

If n ∈ N∗ and (n1, n2, ..., nk) is an ordered set of positive integers such that n =
∑k

i=1 ni then
the subgroup L of Gn consisting of block diagonal matrices with blocks of sizes n1, n2, ..., nk

in this order from the left upper corner to the right lower corner is called a standard Levi
subgroup of Gn. The group L is canonically isomorphic with the product ×k

i=1Gni
, and we will

identify these two groups. Then the notation Irr(L), D(L), C(L), Du(L), Cu(L), R(L) extend
in an obvious way to L. In particular Irr(L) is canonically isomorphic to ×k

i=1Irrni
and so on.

We denote indGn

L the normalized parabolic induction functor where it is understood that we
induce with respect to the parabolic subgroup of Gn containing L and the subgroup of upper
triangular matrices. Then indGn

L extends to a group morphism iGn

L : R(L) → Rn. If πi ∈ Rni

for i ∈ {1, 2, ..., k} and n =
∑k

i=1ni, we denote π1 × π2 × ... × πk or abridged
∏k

i=1 πi the
representation

indGn

×k
i=1Gni

⊗ k
i=1σi

of Gn. Let π be a smooth representation of finite length of Gn. If distinction between quotient,
subrepresentation and subquotient of π is not relevant, we consider π as an element of Rn

(identification with its class) with no extra explanation.
If g ∈ Gn for some n, we say g is regular semisimple if the characteristic polynomial of g

has distinct roots in an algebraic closure of F . If π ∈ Rn, then we let χπ denote the function
character of π, as a locally constant map, stable under conjugation, defined on the set of regular
semisimple elements of Gn.

We adopt the same notation adding a sign ′ for G′
n: Irr′n, D′

n, C′n, Irr
′u
n , D

′u
n , C

′u
n , R′

n.
There is a standard way of defining the determinant and the characteristic polynomial for

elements of G′
n, in spite of D being non commutative (see for example [Pi] Section 16). If

g′ ∈ G′
n, then the characteristic polynomial of g′ has coefficients in F , it is monic and has degree

nd. The definition of a regular semisimple element of G′
n is then the same as for Gn. If π ∈ R′

n,
we let again χπ be the function character of π. As for Gn, we will denote ν the character of G′

n

given by the absolute value of the determinant (there will be no confusion with the one on Gn).

2.1. Classification of Irrn (resp. Irr′n) in terms of Dl (resp. D′
l), l ≤ n. Let π ∈ Irrn.

There exists a standard Levi subgroup L = ×k
i=1Gni

of Gn and, for all 1 ≤ i ≤ k, ρi ∈ Cni
,
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such that π is a subquotient of
∏

k
i=1ρi. The non-ordered multiset of cuspidal representations

{ρ1, ρ2, ...ρk} is determined by π and is called the cuspidal support of π.
We recall the Langlands classification which takes a particularly nice form on Gn. Let L =

×k
i=1Gni

be a standard Levi subgroup of Gn and σ ∈ D(L) = ×k
i=1Dni

. Let us write σ = ⊗k
i=1σi

with σi ∈ Dni
. For each i, write σi = νeiσu

i , where ei ∈ R and σu
i ∈ D

u
ni

. Let p be a permutation

of the set {1, 2, ..., k} such that the sequence ep(i) is decreasing. Let Lp = ×k
i=1Gnp(i)

and

σp = ⊗k
i=1σp(i). Then indGn

Lp
σp has a unique irreducible quotient π and π is independent of

the choice of p under the condition that (ep(i))1≤i≤k is decreasing. So π is defined by the non
ordered multiset {σ1, σ2, ..., σk}. We write then π = Lg(σ). Every π ∈ Irrn is obtained in this

way. If π ∈ Irrn and L = ×k
i=1Gni

and L′ = ×k′

j=1Gn′

j
are two standard Levi subgroups of Gn, if

σ = ⊗k
i=1σi, with σi ∈ Dni

, and σ′ = ⊗k′

j=1σ
′
j , with σ′

j ∈ Dn′

j
, are such that π = Lg(σ) = Lg(σ′),

then k = k′ and there exists a permutation p of {1, 2, ..., k} such that n′
j = np(i) and σ′

j = σp(i).

So the non ordered multiset {σ1, σ2, ..., σk} is determined by π and it is called the essentially
square integrable support of π which we abridge as the esi-support of π.

An element S = iGn

L σ of Rn, with σ ∈ D(L), is called a standard representation of Gn.
We will often write Lg(S) for Lg(σ). The set Bn of standard representations of Gn is a basis of
Rn and the map S 7→ Lg(S) is a bijection from Bn onto Irrn. All these results are consequences
of the Langlands classification (see [Ze] and [Rod]). We also have the following result: if for all
π ∈ Irrn we write π = Lg(S) for some standard representation S and then for all π′ ∈ Irrn\{π}
we set π′ < π if and only if π′ is a subquotient of S, then we obtain a well defined partial order
relation on Irrn.

The same definitions and theory, including the order relation, hold for G′
n (see [Ta2]). The

set of standard representations of G′
n is denoted here by B′

n.
For Gn or G′

n we have the following Proposition, where σ1 and σ2 are essentially square
integrable representations:

Proposition 2.1. (a) The representation Lg(σ1) × Lg(σ2) contains Lg(σ1 × σ2)
as a subquotient with multiplicity 1.

(b) If π is another irreducible subquotient of Lg(σ1)×Lg(σ2), then π < Lg(σ1×
σ2). In particular, if Lg(σ1) × Lg(σ2) is reducible, it has at least two different
subquotients.

For Gn, assertion (a) is proven in its dual form in [Ze] (Proposition 8.4). It is proven in
its present form in [Ta2] (Proposition 2.3) for the more general case of G′

n. Assertion (b) is
then obvious because of the definition (here) of the order relation, and since any irreducible
subquotient of Lg(σ1)× Lg(σ2) is also an irreducible subquotient of σ1 × σ2.

2.2. Classification of Dn in terms of Cl, l|n. Let k and l be two positive integers and set

n = kl. Let ρ ∈ Cl. Then the representation
∏k−1

i=0 ν
iρ has a unique irreducible quotient σ. σ is

an essentially square integrable representation of Gn. We write then σ = Z(ρ, k). Every σ ∈ Dn

is obtained in this way and l, k and ρ are determined by σ. This may be found in [Ze].
In general, a set X = {ρ, νρ, ν2ρ, ..., νa−1ρ}, ρ ∈ Cb, a, b ∈ N

∗, is called a segment, a is the
length of the segment X and νa−1ρ is the ending of X .

2.3. Local Jacquet-Langlands correspondence. Let n ∈ N∗. Let g ∈ Gnd and g′ ∈ G′
n. We

say that g corresponds to g′ if g and g′ are regular semisimple and have the same characteristic
polynomial. We shortly write then g ↔ g′.
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Theorem 2.2. There is a unique bijection C : Dnd → D′
n such that for all π ∈ Dnd

we have
χπ(g) = (−1)nd−nχC(π)(g

′)

for all g ∈ Gnd and g′ ∈ G′
n such that g ↔ g′.

For the proof, see [DKV] if the characteristic of the base field F is zero and [Ba2] for the non
zero characteristic case. I should quote here also the particular cases [JL], [Fl2] and [Ro] which
contain some germs of the general proof in [DKV].

We identify the centers of Gnd and G′
n via the canonical isomorphism. Then the correspon-

dence C preserves central characters so in particular σ ∈ Du
nd if and only if C(σ) ∈ D′u

n .
If L′ = ×k

i=1G
′
ni

is a standard Levi subgroup of G′
n we say that the standard Levi subgroup

L = ×k
i=1Gdni

of Gnd corresponds to L′. Then the Jacquet-Langlands correspondence extends
in an obvious way to a bijective correspondenceD(L) to D′(L′) with the same properties. We will
denote this correspondence by the same letter C. A standard Levi subgroup L of Gn corresponds
to a standard Levi subgroup or G′

r if and only if it is defined by a sequence (n1, n2, ..., nk) such
that each ni is divisible by d. We then say that L transfers.

2.4. Classification of D′
n in terms of C′l, l|n. The invariant s(σ′). Let l be a positive

integer and ρ′ ∈ C′l . Then σ = C−1(ρ′) is an essentially square integrable representation of Gld.

We may write σ = Z(ρ, p) for some p ∈ N∗ and some ρ ∈ C ld
p
. Set then s(ρ′) = p and νρ′ = νs(ρ′).

Let k and l be two positive integers and set n = kl. Let ρ′ ∈ C′l . Then the representation∏k−1
i=0 ν

i
ρ′ρ′ has a unique irreducible quotient σ′. σ′ is an essentially square integrable represen-

tation of G′
n. We write then σ′ = T (ρ′, k). Every σ′ ∈ D′

n is obtained in this way and l, k and
ρ′ are determined by σ′. We set then s(σ′) = s(ρ′). For this classification see [Ta2].

A set S′ = {ρ′, νρ′ρ′, ν2
ρ′ρ′, ..., ν

a−1
ρ′ ρ′}, ρ′ ∈ C′b, a, b ∈ N∗, is called a segment, a is the length

of S′ and νa−1
ρ′ ρ′ is the ending of S′.

2.5. Multisegments, order relation, the function l and rigid representations. Here we
will give the definitions and results in terms of groups Gn, but one may replace Gn by G′

n. We
have seen (Section 2.2 and 2.4) that to each σ ∈ Dn one may associate a segment. A multiset
of segments is called a multisegment. If M is a multisegment, the multiset of endings of its
elements (see Section 2.2 and 2.4 for the definition) is denoted E(M).

If π ∈ Gn, the multiset of the segments of the elements of the esi-support of π is a multiseg-
ment; we will denote it by Mπ. Mπ determines π. The reunion with repetitions of the elements
of Mπ is the cuspidal support of π.

Two segments S1 and S2 are said to be linked if S1 ∪ S2 is a segment different from S1 and
S2. If S1 and S2 are linked, we say they are adjacent if S1 ∩ S2 = Ø.

Let M be a multisegment, and assume S1 and S2 are two linked segments in M . Let M ′ be
the multisegment defined by

- M ′ = (M ∪{S1 ∪S2}∪{S1∩S2})\{S1, S2} if S1 and S2 are not adjacent (i.e. S1 ∩S2 6= Ø),
and

- M ′ = (M ∪ {S1 ∪ S2})\{S1, S2} if S1 and S2 are adjacent (i.e. S1 ∩ S2 = Ø).
We say that we made an elementary operation on M to get M ′, or that M ′ was obtained

from M by an elementary operation. We then say M ′ is inferior to M . It is easy to verify this
extends by transitivity to a well defined partial order relation < on the set of multisegments of
Gn. The following Proposition is a result of [Ze] (Theorem 7.1) for Gn and [Ta2] (Theorem 5.3)
for G′

n.

Proposition 2.3. If π, π′ ∈ Irrn, then π < π′ if and only if Mπ < Mπ′ .
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If π < π′, then the cuspidal support of π equals the cuspidal support of π′.
Define a function l on the set of multisegments as follows: if M is a multisegment, then l(M)

is the maximum of the lengths of the segments in M . If π ∈ Irrn, set l(π) = l(Mπ). The
following Lemma is obvious:

Lemma 2.4. If M ′ is obtained from M by an elementary operation then l(M) ≤
l(M ′) and E(M ′) ⊆ E(M). As a function on Irrn, l is decreasing.

The next important Proposition is also a result from [Ze] and [Ta2]:

Proposition 2.5. Let π ∈ Irrk and π′ ∈ Irrl. If for all S ∈Mπ and S′ ∈Mπ′ the
segments S and S′ are not linked, then π × π′ is irreducible.

There is an interesting consequence of this last Proposition. Let l ∈ N∗ and ρ ∈ Cl. We will
call the set X = {νaρ}a∈Z a line, the line generated by ρ. Of course X is also the line generated
by νρ for example. If π ∈ Irrn, we say π is rigid if the set of elements of the cuspidal support
of π is included in a single line. As a consequence of the previous Proposition we have the

Corollary 2.6. Let π ∈ Irrn. Let X be the set of the elements of the cuspidal
support of π. If {D1, D2, ..., Dm} is the set of all the lines with which X has a
non empty intersection, then one may write in the unique (up to permutation) way
π = π1×π2× ...×πm with πi rigid irreducible and the set of elements of the cuspidal
support of πi included in Di, 1 ≤ i ≤ m.

We will say π = π1×π2× ...×πm is the standard decomposition of π in a product of rigid
representations (this is only the shortest decomposition of π in a product of rigid representations,
but there might exist finer ones).

The same holds for G′
n.

2.6. The involution. Aubert defined in [Au] an involution (studied too by Schneider and Stuh-
ler in [ScS]) of the Grothendieck group of smooth representations of finite length of a reductive
group over a local non-Archimedean field. The involution sends an irreducible representation to
an irreducible representation up to a sign. We specialize this involution to Gn, resp. G′

n, and
denote it in, resp. i′n. We will write i and i′ when the index is not relevant or it is clearly un-
derstood. With this notation we have the relation i(π1)× i(π2) = i(π1×π2), i.e. “the involution
commutes with the parabolic induction”. The same holds for i′. The reader may find all these
facts in [Au].

If π ∈ Irrn, then one and only one among i(π) and −i(π) is an irreducible representation.
We denote it by |i(π)|. We denote |i| the involution of Irrn defined by π 7→ |i(π)|. The same
facts and definitions hold for i′.

The algorithm conjectured by Zelevinsky for computing the esi-support of |i(π)| from the
esi-support of π when π is rigid (and hence more generally for π ∈ Irrn, cf. Corollary 2.6) is
proven in [MW1]. The same facts and algorithm hold for |i′| as explained in [BR2].

2.7. The extended correspondence. The correspondence C−1 may be extended in a natural

way to a correspondence LJ between the Grothendieck groups. Let S′ = i
G′

n

L′ σ′ ∈ B′
n, where

L′ is a standard Levi subgroup of G′
n and σ′ an essentially square integrable representation of

L′. Set Mn(S′) = iGnd

L C−1(σ′), where L is the standard Levi subgroup of Gnd corresponding
to L′. Then Mn(S′) is a standard representation of Gnd and Mn realizes an injective map
from B′

n into Bnd. Define Qn : Irr′n → Irrnd by Qn(Lg(S′)) = Lg(Mn(S′)). If π′
1 < π′

2, then
Qn(π′

1) < Qn(π′
2). So Qn induces on Irr(G′

n), by transfer from Gnd, an order relation << which
is stronger than <.



10 GLOBAL JACQUET-LANGLANDS

Let LJn : Rnd → R′
n be the Z-morphism defined on Bnd by setting LJn(Mn(S′)) = S′ and

LJn(S) = 0 if S is not in the image of Mn.

Theorem 2.7. (a) For all n ∈ N∗, LJn is the unique map from Rnd to R′
n such

that for all π ∈ Rnd we have

χπ(g) = (−1)nd−nχLJn(π)(g
′)

for all g ↔ g′.
(b) The map LJn is a surjective group morphism.
(c) One has

LJn(Qn(π′)) = π′ +
∑

π′

j<<π′

bjπ
′
j

where bj ∈ Z and π′
j ∈ Irr

′
n.

(d) One has

LJn ◦ ind = (−1)nd−ni′n ◦ LJn.

See [Ba4]. We will often drop the index and write only Q, M and LJ. LJ may be extended
in an obvious way to standard Levi subgroups. For a standard Levi subgroup L′ of G′

n which

correspond to a standard Levi subgroup L of Gnd we have LJ ◦ iGnd

L = i
G′

n

L′ ◦ LJ.
We will say that π ∈ Rnd is d-compatible if LJn(π) 6= 0. This means that there exists

a regular semisimple element g of Gnd which corresponds to an element of G′
n and such that

χπ(g) 6= 0. A regular semisimple element of Gnd corresponds to an element of G′
n if and only if

its characteristic polynomial decomposes into irreducible factors with the degrees divisible by d.
So our definition depends only on d, not on D. A product of representations is d-compatible if
and only if each factor is d-compatible.

2.8. Unitary representations of Gn. We are going to use the word unitary for unitarizable.
Let k, l be positive integers and set kl = n.

Let ρ ∈ Cl and set σ = Z(ρ, k). Then σ is unitary if and only if ν
k−1
2 ρ is unitary. We set then

ρu = ν
k−1
2 ρ ∈ Cu

l and we write σ = Zu(ρu, k). From now on, anytime we write σ = Zu(ρ, k), it
is understood that σ and ρ are unitary.

Now, if σ ∈ Du
l , we set

u(σ, k) = Lg(

k−1∏

i=0

ν
k−1
2 −iσ).

The representation u(σ, k) is an irreducible representation of Gn.
If α ∈]0, 1

2 [, we moreover set

π(u(σ, k), α) = ναu(σ, k) × ν−αu(σ, k).

The representation π(u(σ, k), α) is an irreducible representation of G2n (by Proposition 2.5).
Let us recall the Tadić classification of unitary representations in [Ta1].
Let U be the set of all the representations u(σ, k) and π(u(σ, k), α) where k, l range over N∗,

σ ∈ Cl and α ∈]0, 1
2 [. Then any product of elements of U is irreducible and unitary. Every

irreducible unitary representation π of some Gn, n ∈ N∗, is such a product. The non ordered
multiset of the factors of the product are determined by π.

The fact that a product of irreducible unitary representations is irreducible is due to Bernstein
([Be]).

Tadić computed the decomposition of the representation u(σ, k) in the basis Bn of Rn.
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Proposition 2.8. ([Ta4]) Let σ = Z(ρ, l) and k ∈ N∗. Let W l
k be the set of

permutations w of {1, 2, ..., k} such that w(i) + l ≥ i for all i ∈ {1, 2, ..., k}. Then
we have:

u(σ, k) = ν−
k+l
2 (

∑

w∈W l
k

(−1)sgn(w)
k∏

i=1

Z(νiρ, w(i) + l − i)).

One can also compute the dual of u(σ, k).

Proposition 2.9. Let σ = Zu(ρu, l) and k ∈ N∗. If τ = Zu(ρu, k), then

|i(u(σ, k))| = u(τ, l).

This is the Theorem 7.1 iii) [Ta1], and also a consequence of [MW1].

2.9. Unitary representations of G′
n. Let k, l ∈ N∗ and set n = kl. Let ρ ∈ C′l and σ′ =

T (ρ′, k) ∈ D′
n. As for Gn, one has σ′ ∈ D′u

n if and only if ν
k−1
2

ρ′ ρ′ is unitary; we set then

ρ′u = ν
k−1
2 ρ′ and write σ′ = T u(ρ′u, k).

If now σ′ ∈ D
′u
l , we set

u′(σ′, k) = Lg(

k−1∏

i=0

ν
k−1
2 −i

σ′ σ′)

and

ū(σ′, k) = Lg(

k−1∏

i=0

ν
k−1
2 −iσ′).

The representations u′(σ′, k) and ū(σ′, k) are irreducible representations of G′
n.

If moreover α ∈]0, 1
2 [, we set

π(u′(σ′, k), α) = να
σ′u′(σ′, k)× ν−α

σ′ u
′(σ′, k).

The representation π(u′(σ′, k), α) is an irreducible representation ofG′
2n (cf. [Ta2]; a consequence

of the (restated) Proposition 2.5 here).
We have the formulas:

(2.1) ū(σ′, ks(σ′)) =

s(σ′)∏

i=1

νi− s(σ′)+1
2 u′(σ′, k);

and, for all integers 1 ≤ b ≤ s(σ′)− 1,

(2.2) ū(σ′, ks(σ′) + b) = (

b∏

i=1

νi− b+1
2 u′(σ′, k + 1))× (

s(σ′)−b∏

j=1

νj− s(σ′)−b+1
2 u′(σ′, k)),

with the convention that we ignore the second product if k = 0.
The products are irreducible, by Proposition 2.5, because the segments appearing in the esi-

support of two different factors are never linked. The fact that the product is indeed ū(σ′, ks(σ′))
(and resp. ū(σ′, ks(σ′) + b)) is then clear by Proposition 2.1. This kind of formulas has been
used (at least) in [BR1] and [Ta6].

The representations u′(σ′, k) and ū(σ′, k) are known to be unitary at least in zero characteristic
([Ba4] and [BR1]).
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One has

Proposition 2.10. Let σ′ = Zu(ρ′u, l) and k ∈ N∗. If τ ′ = Zu(ρ′u, k), then
(a) |i′(u′(σ′, k))| = u′(τ ′, l) and
(b) |i′(ū(σ′, ks(σ′)))| = ū(τ ′, ls(σ′)).

Proof. The claim (a) is a direct consequence of [BR2]. For the claim (b), it is enough to use
the relation 2.1, the claim (a) here and the fact that i′ commutes with parabolic induction. �

2.10. Hermitian representations and an irreducibility trick. If π ∈ Irr′n, write h(π) for
the complex conjugated representation of the contragredient of π. A representation π ∈ Irr′n is
called hermitian if π = h(π) (we recall, to avoid confusion, that here we use “=” for the usual
“equivalent”). A unitary representation is always hermitian. If A = {σi}1≤i≤k is a multiset
of essentially square integrable representations of some G′

li
, we define the multiset h(A) by

h(A) = {h(σi)}1≤i≤k. If π ∈ Irr′n and x ∈ R, then h(νxπ) = ν−xh(π), so if σ′ ∈ D′
l and we

write σ′ = νeσ′u with e ∈ R and σ′u ∈ D′u
l , then h(σ′) = ν−eσ′u ∈ D′

l. An easy consequence of
Proposition 3.1.1 in [Ca] is the

Proposition 2.11. If π ∈ Irr′n, and A is the esi-support of π, then h(A) is the
esi-support of h(π). In particular, π is hermitian if and only if the esi-support A
of π satisfies h(A) = A.

Let us give a Lemma.

Lemma 2.12. Let π1 ∈ Irr′n1
and π2 ∈ Irr′n2

and assume h(π1) 6= π2. Then there

exists ε > 0 such that for all x ∈]0, ε[ the representation ax = νxπ1 × ν−xπ2 is
irreducible, but not hermitian.

Proof. For all x ∈ R let Ax be the esi-support of νxπ1 and Bx be the esi-support of ν−xπ2.
Then the set X of x ∈ R such that Ax ∩ h(Ax) 6= ∅ or Bx ∩ h(Bx) 6= ∅ is finite (it is enough to
check the central character of the representations in these multisets). The set Y of x ∈ R such
that the cuspidal supports of Ax and Bx have a non empty intersection is finite too. Now, if
x ∈ R\Y , ax is irreducible by the Proposition 2.5. Assume moreover x /∈ X . As ax is irreducible,
if it were hermitian one should have h(Ax)∪h(Bx) = Ax∪Bx (where the reunions are to be taken
with multiplicities, as reunions of multisets) by the Proposition 2.11. But if Ax ∩h(Ax) = ∅ and
Bx∩h(Bx) = ∅, then this would lead to h(Ax) = Bx, and hence to h(π1) = π2 which contradicts
the hypothesis. �

We now state our irreducibility trick.

Proposition 2.13. Let u′i ∈ Irr′uni
, i ∈ {1, 2, ..., k}. If, for all i ∈ {1, 2, ..., k},

u′i × u
′
i is irreducible, then

∏k
i=1 u

′
i is irreducible.

Proof. There exists ε > 0 such that for all i ∈ {1, 2, ..., k} the cuspidal supports of νxu′i
and ν−xu′i are disjoint for all x ∈]0, ε[. Then, for all i ∈ {1, 2, ..., k}, for all x ∈]0, ε[, the
representation νxu′i × ν−xu′i is irreducible. As, by hypothesis, u′i × u′i is irreducible and
unitary, the representation νxu′i× ν

−xu′i is also unitary for all x ∈]0, ε[ (see for example [Ta3],
Section (b)). So

∏
k
i=1ν

xu′i × ν
−xu′i is a sum of unitary representations. But we have (in the

Grothendieck group)

k∏

i=1

(νxu′i × ν
−xu′i) = (νx

k∏

i=1

u′i)× (ν−x
k∏

i=1

u′i).

If
∏

k
i=1u

′
i were reducible, then it would contain at least two different unitary subrepresen-

tations π1 and π2 (Proposition 2.1). But then, for some x ∈]0, ε[, (νx
∏

k
i=1u

′
i)× (ν−x

∏
k
i=1u

′
i)
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contains an irreducible, but not hermitian, subquotient of the form νxπ1 × ν−xπ2 (by Lemma
2.12). This subquotient would be non-unitary which contradicts our assumption. �

3. Local results

3.1. First results. Let σ′ ∈ D′u
n and set σ = C−1(σ′) ∈ Du

nd. Write σ′ = T u(ρ′, l) for some
l ∈ N∗, l|n and ρ′ ∈ Cu

n
l
. As C−1(ρ′) ∈ Du

nd
l

we may write C−1(ρ′) = Zu(ρ, s(σ′)) for some

ρ ∈ Cu
nd

ls(σ′)

. We set l′ = ls(σ′). Then we have σ = Zu(ρ, l′) (means one can recover the

cuspidal support of σ from the cuspidal support of σ′; it is a consequence of the fact that the
correspondence commutes with the Jacquet functor; the original proof for square integrable
representations is [DKV], Theorem B.2.b).

Let k be a positive integer and set k′ = ks(σ′). Let H be the group of permutations w of

{1, 2, ..., k′} such that s(σ′)|w(i) − i for all i ∈ {1, 2, ..., k′}. For the meaning of W l
k and W l′

k′ in
the following, see Proposition 2.8.

This is Lemma 3.1 in [Ta5]:

Lemma 3.1. If w ∈ H, then for each j ∈ {1, 2, ..., s(σ′)}, the set of elements of
{1, 2, ..., k′} equal to j mod s(σ′) is stable under w, and w induces a permutation
wj of {1, 2, ..., k} defined by the fact that, if w(as(σ′) + j) = bs(σ′) + j then wj(a+
1) = b + 1. The map w 7→ (w1, w2, ..., ws(σ′)) is an isomorphism of groups from H

to (Sk)s(σ′). One has w ∈ H ∩W l′

k′ if and only if for all j, wj ∈ W l
k. Moreover,

sgn(w) =
∏s(σ′)

j=1 sgn(wj).

We have the following:

Theorem 3.2. (a) One has

LJ(u(σ, k′)) = ū(σ′, k′).

(b) The induced representation ū(σ′, k′)× ū(σ′, k′) is irreducible.
(c) We have the character formula

ū(σ′, k′) = ν−
k′+l′

2 + s(σ′)−1
2 (

∑

w∈H∩W l′

k′

(−1)sgn(w)
k′∏

i=1

T (νiρ′,
w(i)− i

s(σ′)
+ l)).

Proof. (a) Let τ ′ = T u(ρ′, k) and set τ = C−1(τ ′). For the same reasons as explained for σ,
we have τ = Zu(ρ, k′).

We apply Theorem 2.7 (c) to ū(σ′, k′) and ū(τ ′, l′). We get

(3.1) LJ(u(σ, k′)) = ū(σ′, k′) +
∑

π′

j<<ū(σ′,k′)

bjπ
′
j

and

(3.2) LJ(u(τ, l′)) = ū(τ ′, l′) +
∑

τ ′

q<<ū(τ ′,l′)

cqτ
′
q

We want to show that all the bj vanish.
Let us write the dual equation to 3.1 (cf. Theorem 2.7 (d)). As |i(u(σ, k′))| = u(τ, l′)

(Proposition 2.9) and |i′(ū(σ′, k′))| = ū(τ ′, l′) (Proposition 2.10), we obtain:
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(3.3) LJ(u(τ, l′)) = ε1ū(τ
′, l′) + ε2

∑

π′

j<<ū(σ′,k′)

bji
′(π′

j).

for some signs ε1, ε2 ∈ {−1, 1}. The equations 3.2 and 3.3 imply then the equality:

(3.4) ū(τ ′, l′) +
∑

τ ′

q<<ū(τ ′,l′)

cqτ
′
q = ε1ū(τ

′, l′) + ε2 (
∑

π′

j<<ū(σ′,k′)

bji
′(π′

j)).

First, observe that since π′
j 6= ū(σ′, k′) for all j, we also have |i′(π′

j)| 6= ū(τ ′, l′) for all j. So by
the linear independence of irreducible representations in the Grothendieck group, ε1 = 1 and
the term ū(τ ′, l′) cancels.

We will now show that the remaining equality

∑

τ ′

q<<ū(τ ′,l′)

cqτ
′
q = ε2 (

∑

π′

j<<ū(σ′,k′)

bji
′(π′

j)).

implies that all the coefficients bj vanish. The argument is the linear independence of irreducible
representations and the Lemma:

Lemma 3.3. If π′
j << ū(σ′, k′), it is impossible to have |i′(π′

j)| << ū(τ ′, l′).

Proof. The proof is complicated by the fact that we do not have in general equality < = <<
between the order relations. But this does not really matter. Recall that π′

j << ū(σ′, k′), means

by definition Q(π′
j) < Q(ū(σ′, k′)), i.e. there exists πj < u(σ, k′) such that the esi-support of π′

j

corresponds to the esi-support of πj element by element by Jacquet-Langlands. This implies the
only two properties we need:

(*) the cuspidal support of π′
j equals the cuspidal support of ū(σ′, k′) and

(**) we have the inclusion relation E(Mπ′

j
) ⊂ E(Mū(σ′,k′)) (Lemma 2.4).

The property (*) implies that, if

π′
j = a1 × a2 × ...× ax

is a standard decomposition of π′
j in a product of rigid representations, then:

- x = s(σ′),
- we may assume that for 1 ≤ t ≤ s(σ′) the line of at is generated by νtρ′ and
- the multisegment Mt of at has at most k elements.

So, if one uses the Zelevinsky-Moeglin-Waldspurger algorithm to compute the esi-support M#
t

of |i′(at)| (cf. [BR2]), one finds that l(M#
t ) ≤ k, since each segment in M#

t is constructed by
picking up at most one cuspidal representation from each segment in Mt. This implies that
l(|i′(at)|) ≤ k. As

|i′(π′
j)| = |i

′(a1)| × |i
′(a2)| × ...× |i

′(ax)|

we eventually have l(|i′(π′
j)|) ≤ k.

Assume now |i′(π′
j)| << ū(τ ′, l′). We will show that l(|i′(π′

j)|) > k. Set Q(|i′(π′
j)|) = γ and

we know that γ < u(τ, l′). We obviously have in our particular situation l(γ) = s(σ′)l(|i′(π′
j)|).

So we want to prove l(γ) > k′. The multisegment of γ is obtained by a sequence of elementary
operation from the multisegment of u(τ, l′): at the first elementary operation on the multisegment
of u(τ, l′) we get a multisegment M ′ such that l(M ′) > k′ and then we apply Lemma 2.4. We
get, indeed, l(γ) > k′.

So our assumption leads to a contradiction. �
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(b) The proof uses the claim (a) and is similar to its proof. Let τ and τ ′ be defined like in
(a). By the part (a) we know now that

LJ(u(σ, k′)) = ū(σ′, k′) and LJ(u(τ, l′)) = ū(τ ′, l′),

so
LJ(u(σ, k′)× u(σ, k′)) = ū(σ′, k′)× ū(σ′, k′)

and
LJ(u(τ, l′)× u(τ, l′)) = ū(τ ′, l′)× ū(τ ′, l′).

Let us call K1 the Langlands quotient of the esi-support of ū(σ′, k′) × ū(σ′, k′) and K2 the
Langlands quotient of the esi-support of ū(τ ′, l′) × ū(τ ′, l′). Using [BR2] it is easy to see that
|i′(K1)| = K2. Then we may write, using Theorem 2.7 (c) and Proposition 2.1:

(3.5) LJ(u(σ, k′)× u(σ, k′)) = K1 +
∑

πj<<K1

bjπ
′
j

and

(3.6) LJ(u(τ, l′)× u(τ, l′)) = K2 +
∑

ξ′

m<<K2

cmξ
′
m.

We want to prove that all the bj vanish. Let us take the dual in the equation 3.5 (cf. Proposition
2.7 (d)):

(3.7) LJ(i(u(σ, k′)× u(σ, k′))) = ±(i′(K1) +
∑

πj<<K1

bji
′(π′

j)).

We know that |i(u(σ, k′)× u(σ, k′))| = u(τ, l′)× u(τ, l′) because i commutes with the induction
functor and we have |i(u(σ, k′))| = u(τ, l′) by Proposition 2.9. As |i′(K1)| = K2, we get from
equations 3.6 and 3.7 after cancellation of K2 (as in the equation 3.4):

∑

πj<<K1

bji
′(π′

j) = ±(
∑

ξ′

m<<K2

cmξ
′
m).

To show that all the bj vanish, it is enough, by the linear independence of irreducible represen-
tations, to show the following:

Lemma 3.4. If π′ << K1 it is impossible to have |i′(π′)| << K2.

Proof. The proof of Lemma 3.3 applies here with a minor modification. We write again

π′ = a1 × a2 × ...× as(σ′)

such that the line of at, 1 ≤ t ≤ s(σ′), is generated by νtρ′. The difference here is that the
multisegment M of at may have up to 2k elements. We will prove though, that in this case
again:

Lemma 3.5. The multisegment m# of |i′(at)| verifies l(m#) ≤ k.

This implies that l(π′) ≤ k and the rest of the proof goes the same way as for (a).

Proof. Let us denote m the multisegment of at (m and m# respect the notation in [MW1]).
The multisegment m# is obtained from m using the algorithm in [MW1] (cf. [BR2]). As

π′ << K1, one has E(m) ⊂ {ν
l−k
2 +1

ρ′ ρ′, ν
l−k
2 +2

ρ′ ρ′, ..., ν
l+k
2

ρ′ ρ′} (it is the property (**) given at

the beginning of the proof of Lemma 3.3). One constructs all the segments of m# ending with

ν
l+k
2

ρ′ ρ′ using only cuspidal representations in E(m) (Remark II.2.2 in [MW1]). So the length
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of the constructed segments is at most k. Let m− be the multisegment obtained from m after
we dropped from each segment of m the cuspidal representations used in this construction. We

obviously have then E(m−) ⊂ {ν
l−k
2

ρ′ ρ′, ν
l−k
2 +1

ρ′ ρ′, ..., ν
l+k
2 −1

ρ′ ρ′} which has again k elements. So

going through the algorithm we will find that all the segments of m# have length at most k. �

(c) The claim (a) we have just proven allows us to transfer the formula of the Proposition 2.8
by LJ.

We have

LJ(u(σ, k′)) = ν−
k′+l′

2 (
∑

w∈W l′

k′

(−1)sgn(w)LJ(
k′∏

i=1

Z(νiρ, w(i) + l′ − i))).

The representations
∏k′

i=1 Z(νiρ, w(i)+ l′− i) are standard. If w is such that, for some i, s(σ′)

does not divide w(i)− i, then LJ(
∏k′

i=1 Z(νiρ, w(i) + l′ − i)) = 0.
If w satisfies s(σ′)|w(i) − i for all i, i.e. w ∈ H , then

LJ(

k′∏

i=1

Z(νiρ, w(i) + l′ − i)) =

k′∏

i=1

T (νi+ s(σ′)−1
2 ρ′,

w(i)− i

s(σ′)
+ l).

Hence the formula of (c). �

Corollary 3.6. Let n, k ∈ N∗ and σ′ ∈ D′u
n .

(a) u′(σ′, k)× u′(σ′, k) is irreducible. π(u′(σ′, k), α) are unitary for α ∈]0, 1
2 [.

(b) Write σ′ = T u(ρ′, l) for some unitary cuspidal representation ρ′. Let W l
k be

the set of permutation w of {1, 2, ..., k} such that w(i)+ l ≥ i for all i ∈ {1, 2, ..., k}.
Then we have:

u′(σ′, k) = ν
− k+l

2

σ′ (
∑

w∈W l
k

(−1)sgn(w)
k∏

i=1

T (νi
σ′ρ′, w(i) + l − i))

Proof. (a) It is clear that u′(σ′, k) × u′(σ′, k) is irreducible from the part (b) of Theorem
3.2 and the formula 2.1. The fact that this implies that all the π(u′(σ′, k), α) are unitary is
explained in [Ta2].

(b) We want to show that

u′(σ′, k) = ν
− k+l

2

σ′ (
∑

w∈W l
k

(−1)sgn(w)
k∏

i=1

T (νi
σ′ρ′, w(i) + l− i)).

We use the equality

ū(σ′, ks(σ′)) =

s(σ′)∏

j=1

νj− s(σ′)+1
2 u′(σ′, k)

and the character formula for ū(σ′, ks(σ′)) obtained in Theorem 3.2 (c).
Set

U = ν
− k+l

2

σ′ (
∑

w∈W l
k

(−1)sgn(w)
k∏

i=1

T (νi
σ′ρ′, w(i) + l − i)) ∈ R′

n.

We have
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s(σ′)∏

j=1

νj− s(σ′)+1
2 U =

= ν−
k+l
2 s(σ′)

s(σ′)∏

j=1

νj− s(σ′)+1
2 (

∑

w∈W l
k

(−1)sgn(w)
k∏

i=1

T (νi
σ′ρ′, w(i) + l − i)) =

= ν−
k′+l′

2 + s(σ′)−1
2

s(σ′)∏

j=1

(
∑

w∈W l
k

(−1)sgn(w)
k∏

i=1

T (ν(i−1)s(σ′)+jρ′, w(i) + l − i)) =

ν−
k′+l′

2 +
s(σ′)−1

2

∑

w1,w2,...,ws(σ′)∈W l
k

s(σ′)∏

j=1

(−1)sgn(wj)
k∏

i=1

T (ν(i−1)s(σ′)+jρ′, wj(i)+ l−i)).

Using Lemma 3.1 we find that this last formula is equal to the character formula of ū(σ′, ks(σ′))
(Theorem 3.2.c). As ū(σ′, ks(σ′)) is irreducible, we will show that so is U .

The formula defining U is an alternated sum of |W l
k| terms which are distinct elements of

B′
n. The term

∏k
i=1 ν

i− k+1
2

σ′ σ′, corresponding to the trivial w, is maximal. To prove that, one

may use Lemma 2.4 and the fact that one has l(
∏k

i=1 ν
i− k+1

2

σ′ σ′) = l, while l(t) > l for any other

term t in the sum. The Langlands quotient of this maximal term
∏k

i=1 ν
i− k+1

2

σ′ σ′ is u′(σ′, k) and
appears then in the sum with coefficient 1. So we may write:

U = π′
0 +

m∑

t=1

btπ
′
t

where π′
0 = u′(σ′, k), bt are non-zero integers, π′

t ∈ Irr
′
n and the π′

t, 0 ≤ t ≤ m, are distinct,
with the convention m = 0 if U = u′(σ′, k). The representations π′

t are rigid and supported on

the same line L (generated by ν
− k+l

2

ρ′ ρ′). For different j in {1, 2, ..., s(σ′)}, the lines νj− s(σ′)+1
2 L

are different. So, as the π′
t are distinct (and have distinct esi-support),

∏s(σ′)
j=1 νj− s(σ′)+1

2 U is

a linear combination of exactly (m+ 1)s(σ′) irreducible distinct representations each appearing
with non-zero coefficient. As it is irreducible, we have m = 0. �

3.2. Transfer of u(σ, k). Let k, l, q be positive integers, set n = klq and let ρ ∈ Cu
q and

σ = Zu(ρ, l) ∈ Du
lq, τ = Zu(ρ, k) ∈ Du

kq. Let s be the smallest positive integer such that d|sq. In

the next Proposition we give the general result of the transfer of u(σ, k). The question has no
meaning unless d|n (i.e. s|kl) which we shall assume.

Proposition 3.7. (a) If d|lq (i.e. s|l), then σ′ = C(σ) is well defined; we have
s = s(σ′) and

LJ(u(σ, k)) = ū(σ′, k).

(b) If d|kq (i.e. s|k), then τ ′ = C(τ) is well defined; we have s = s(τ ′) and

LJ(u(σ, k)) = ε|i′(ū(τ ′, l))|

where ε = 1 if s is odd and ε = (−1)
kl
s if s is even.

(c) If d does not divide neither lq, nor kq (i.e. s does not divide neither l nor
k), then LJ(u(σ, k)) = 0.
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Proof. (a) We have the formula for the decomposition of u(σ, k) in the standard basis Bn

(Proposition 2.8) so we may compute the formula for the decomposition of LJ(u(σ, k)) in the
standard basis B′

n by transfer. On the other hand, we have the formula for the decomposition of
ū(σ, k) in the standard basis B′

n using the formula 2.2 and the Corollary 3.6 (b). The equality
of the two decompositions in the basis B′

n leads again to the combinatorial Lemma 3.1 in [Ta5].
(b) Up to the sign ε, this is a consequence of the claim (a) and the dual transform, Theorem

2.7 (d), since |i(u(τ, l))| = u(σ, k). For the sign ε, see Proposition 4.1, b) in [Ba4].
(c) The proof is in [Ta6]. It is a consequence of Proposition 2.8 here, which is also due to

Tadić, and the following Lemma for which we give here a more straightforward proof.

Lemma 3.8. Let k, l, s ∈ N∗. Assume there is a permutation w of {1, 2, ..., k} such
that for all i ∈ {1, 2, ..., k} one has s|l + w(i)− i. Then s|k or s|l.

Proof. Let [x] denote the biggest integer less than or equal to x. If y ∈ N∗, let Ny denote
the set {1, 2, ..., y}.

Assume s does not divide l. Summing up all the k relations s|l + w(i) − i we find that s|kl.
So, if (s, l) = 1, then s|k. Assume (s, l) = p. Then for all i ∈ {1, 2, ..., k}, p|w(i) − i. Let w0 be
the natural permutation of N[ k

p
] induced by the restriction of w to {p, 2p, ..., [k

p ]p} and w1 the

natural permutation of N[ k−1
p

]+1 induced by the restriction of w to {1, p+1, ..., [k−1
p ]p+1}. Then

for all i ∈ N[ k
p
] one has s

p |
l
p +w0(i)− i, and for all j ∈ N[ k−1

p
]+1 one has s

p |
l
p +w1(j)− j. As now

( s
p ,

l
p ) = 1 we have already seen that one has s

p |[
k
p ] and s

p |[
k−1

p ] + 1. This implies [k
p ] = [k−1

p ] + 1

and so p|k. It follows s
p |

k
p , i.e. s|k. �

3.3. New formulas. The reader might have noticed that the dual of representations u(τ, l)
and u′(τ ′, l) are of the same type, while the dual of representations ū(τ ′, l) are in general more
complicated. This is why the claim (b) of Proposition 3.7 looks awkward. We could not express
i′(ū(τ ′, l)) in terms of σ′ = C(σ), and for the good reason that C(σ) is not defined since the
group on which σ lives does not have the appropriate size (divisible by d). Recall the hypothesis
was s(σ′)|k. We explain here that one can get a formula though, in terms of u′(σ′

+,
k

s(σ′) ) and

u′(σ′
−,

k
s(σ′) ), where σ′

+ = C(σ+) and σ′
− = C(σ−), and the representations σ+ and σ− are

obtained from σ by stretching and shortening it to get an appropriate size for the transfer. The
formulas we will give here are required for the global proofs.

Let τ ′ ∈ D′
n and l = as(τ ′) + b with a, b ∈ N, 1 ≤ b ≤ s(τ ′) − 1. We start with the formula

2.2:

ū(τ ′, l) =

b∏

i=1

νi− b+1
2 u′(τ ′, a+ 1)×

s(τ ′)−b∏

j=1

νj− s(τ′)−b+1
2 u′(τ ′, a).

So one may compute the dual of ū(τ ′, l) using Proposition 2.9; if τ ′ = T u(ρ′, k), we set σ′
+ =

T u(ρ′, a+ 1) and, if a 6= 0, σ′
− = T u(ρ′, a); then

(3.8) |i′(ū(τ ′, l))| =
b∏

i=1

νi− b+1
2 u′(σ′

+, k)×

s(τ ′)−b∏

j=1

νj− s(τ′)−b+1
2 u′(σ′

−, k)

with the convention that if a = 0 we ignore the second product.
In particular the dual of a representation of type ū(σ′, k) is of the same type (i.e. some ū(γ, p))

if and only if s(σ′)|k or σ′ is cuspidal and k < s(σ′). One can see that comparing the formula 3.8
with the formula 2.1 and using the fact that a product of representations of the type ναu′(σ′, k)
determines its factors up to permutation ([Ta2]).
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This gives a formula for LJ(u(σ, k)) when s divides k but s does not divide l (case (b) of Propo-
sition 3.7). Let |LJ|(u(σ, k)) stand for the irreducible representation among {LJ(u(σ, k)),−LJ(u(σ, k))}.
Let ρ ∈ Cu

p , σ = Zu(ρ, l) ∈ Du
lp and let s be the smallest positive integer such that d|ps. Assume

s 6= 1 and l = as + b, a, b ∈ N, 1 ≤ b ≤ s − 1. Set σ+ = Zu(ρ, (a + 1)s) and, if a 6= 0,
σ− = Zu(ρ, as). Let σ′

+ = C(σ+) and, if a 6= 0, σ′
− = C(σ−). If s|k and k = k′s, then

(3.9) |LJ|(u(σ, k)) =

b∏

i=1

νi− b+1
2 u′(σ′

+, k
′)×

s(σ′)−b∏

j=1

νj−
s(σ′)−b+1

2 u′(σ′
−, k

′),

with the convention that if a = 0 we ignore the second product.
The following formula for the transfer is somehow artificial, but it has the advantage of being

symmetric in k and l and adapted to the both cases (a) and (b) of Proposition 3.7. Let ρ ∈ Cp
for some p ∈ N

∗, and let s be the smallest positive integer such that d|ps. Set ρ′ = C(Zu(ρ, s))
(in particular ρ′ is cuspidal and s(ρ′) = s). Let k, l ∈ N∗. Set b = k − s[k

s ] + l − s[ l
s ] and define

a sign ε by ε = 1 if s is odd and ε = (−1)
kl
s if s is even. Make the convention that a product∏0

i=1 has to be ignored in a formula. The representation u(Zu(ρ, l), k) is d-compatible if and
only if s|k or s|l. In this case we have

(3.10) LJ(u(Zu(ρ, l), k)) = ε
b∏

i=1

νi− b+1
2 u′

(
T u(ρ′,

[
l

s

]
),

[
k − 1

s

]
+ 1

)

×
s−b∏

j=1

νj− s−b+1
2 u′

(
T u(ρ′,

[
l − 1

s

]
+ 1),

[
k

s

])
,

with the convention that in this formula we ignore the first product if [ l
s ] = 0 and the second

product if [k
s ] = 0. (As s divides either l or k we cannot have [ l

s ] = [k
s ] = 0.)

3.4. Transfer of unitary representations. Let U ′ be the set of all the representations u′(σ′, k)
and π(u′(σ′, k), α) where k, l range over N∗, σ′ ∈ D′

l and α ∈]0, 1
2 [. Here we will use the fact

that the representations u′(σ′, k) are unitary so we will assume the characteristic of the base
field F is zero. As Henniart pointed out to me it is not difficult to lift the result to the non zero
characteristic case by the Kazhdan’s close fields theory ([Ka]), but it has not been written yet.

The next Proposition has been proven in [Ta6] under the assumption of the U0 conjecture of
Tadić. We prove it here without this assumption.

Proposition 3.9. (a) All the representations in U ′ are irreducible and unitary.
(b) If π′

i ∈ U
′, i ∈ {1, 2, ..., k}, then the product

∏
k
i=1π

′
i is irreducible and

unitary.
(c) If u ∈ Irru

nd, then LJ(u) = 0 or LJ(u) is an irreducible unitary representation
u′ of G′

n up to a sign.
(d) Let u′ be an irreducible unitary representation of G′

n. If u′×u′ is irreducible,
then u′ is a product of representations in U ′.

Proof. The claim (a) is a part of the Tadić conjecture U2 in [Ta2]. It has already been
solved for s(σ′) ≥ 3 in [BR1], Remark 4.3, which is actually a remark due to Tadić, not to the
authors. The only problem, as explained in [Ta2], is to show that the product u′(σ′, k)×u′(σ′, k)
is irreducible. This is just our Corollary 3.6 (a).
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(b) This follows from the irreducibility trick (Proposition 2.13) and the Corollary 3.6 (a).
(c) This is a consequence of the Proposition 3.7, the formula 3.9 and of the parts (a) and (b)

here.
(d) Assume u′ × u′ is irreducible. Then any product containing u′ and representations in U ′

is irreducible (by Proposition 2.13). As u′(σ′, k) are prime elements ([Ta2], 6.2), the same proof
as for GL(n) (Tadić, [Ta1]) shows that u′ is a product of representations in U ′. �

If u′ is like in the second situation of the part (c) we write u′ = |LJu|(u).
Let ΠU ′ be the set of products of representations in U ′. Then ΠU ′ is a set of irreducible

unitary representations containing the ū(σ′, k) (formula 2.2). We have:

Proposition 3.10. (a) The set ΠU ′ is stable under |i′|.
(b) If π is a d-compatible unitary representation of Gnd, then |LJu|(π) ∈ ΠU ′.

Proof. (a) is implied by Proposition 2.10 (a).
(b) is implied by Proposition 3.7, the fact that ū(σ′, k) ∈ ΠU ′ and the part (a). �

So we have a map |LJu| from the set of unitary irreducible d-compatible representations of
Gnd to the set ΠU ′. We prove here a Lemma we will need later to construct automorphic unitary
representations of the inner form which do not transfer to the split form.

Lemma 3.11. Assume dimFD = 16. Let St′3 be the Steinberg representation of
GL3(D) and St′4 the Steinberg representation of GL4(D). Let

π = ν−
3
2 u′(St′3, 4)× ν−

1
2u′(St′4, 3)× ν

1
2u′(St′4, 3)× ν

3
2u′(St′3, 4).

Then π is a representation of GL48(D). We have
(i) π is unitary irreducible,
(ii) we have π < ū(St′3, 16) and
(iii) π is not in the image of |LJu|.

Proof. (i) If 11 is the trivial representation ofD×, we have s(11) = 4. So s(St′3) = s(St′4) = 4.
By definition of ΠU ′ it is clear then that π ∈ ΠU ′.

(ii) By the formula 2.1 we get

ū(St′3, 16) = ν−
3
2u′(St′3, 4)× ν−

1
2 u′(St′3, 4)× ν

1
2 u′(St′3, 4)× ν

3
2u′(St′3, 4).

It is easy to prove that the esi-support of u′(St′4, 3) is obtained from the esi-support of
u′(St′3, 4) by elementary operations. So π < ū(St′3, 16)

(iii) Any unitary representation of Gnd decomposes in the unique way up to permutation of
factors in a product of representations of type ναu(σ, k) and any unitary representation of G′

n

decomposes in a unique way up to permutation of factors in a product of representations of type

ναu′(σ′, k) ([Ta2]). The formula 3.10 implies that if ν−
3
2u′(St′3, 4) appear in the decomposition

of an element of the image of |LJu|, then ν−
1
2u′(St′3, 4) should appear too. So π is not in the

image of |LJu|. �

It is natural to ask how big are the fibers of |LJu| over a given element u′ ∈ ΠU ′. A product of
representations of type ū(σ′, k) and |i′|ū(σ′, k) may be equal to several different similar products
and it does not seem to exist a manageable formula for the number of possibilities. They are of
course finite since the cuspidal support is fixed.
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3.5. Transfer of local components of global discrete series. Let γ ∈ Irru
n be a generic

representation. Then one may write

γ =

m∏

i=1

νeiσi

where σi are square integrable and ei ∈] −
1
2 ,

1
2 [ ([Ze]). As it is explained in the Section 4.1 of

[Ba4], for all k ∈ N∗, the representation
∏k−1

i=0 (ν
k−1
2 −iγ) is a standard representation and if we

call Lg(γ, k) its Langlands quotient, then we have

Lg(γ, k) =

m∏

i=1

νeiu(σi, k).

One may show that, as γ was unitary, Lg(γ, k) is unitary. γ is tempered if and only if all ei

are zero. As the local component of global cuspidal representations are generic (see the next
Section), by the Moeglin-Waldspurger classification, all local components of the global discrete
series of GLn are of the type Lg(γ, k). So it is important to know when do they transfer to a
non zero representation under LJ.

Write σi = Zu(ρi, li), ρi ∈ Cu
pi

. Let J be the set of integers j ∈ {1, 2, ...,m} such that d|pj lj .
Let sγ,d be the smallest positive integer s such that for all i ∈ {1, 2, ...,m}\J , d|pis. Then
LJ(Lg(γ, k)) 6= 0 if and only if for all i ∈ {1, 2, ...,m} we have LJ(u(σi, k)) 6= 0 if and only if
sγ,d|k (by Proposition 3.7). Then

LJ(Lg(γ, k)) =
m∏

i=1

νeiLJ(u(σi, k)).

4. Basic facts and notation (global)

Let F be a global field of characteristic zero and D a central division algebra over F of
dimension d2. Let n ∈ N

∗. Set A = Mn(D). For each place v of F let Fv be the completion of
F at v and set Av = A⊗Fv. For every place v of F , Av 'Mrv

(Dv) for some positive integer rv
and some central division algebra Dv of dimension d2

v over Fv such that rvdv = nd. We will fix
once and for all an isomorphism and identify these two algebras. We say that Mn(D) is split
at a place v if dv = 1. The set V of places where Mn(D) is not split is finite. We assume in
the sequel V does not contain any infinite place. For each v, dv divides d, and moreover d is the
smallest common multiple of the dv over all the places v.

Let G′(F ) be the group A× = GLn(D). For every place v ∈ V , set G′
v = A×

v = GLrv
(Dv).

For every finite place v of F , we set Kv = GLrv
(Ov), where Ov is the ring of integers of Dv. We

fix then a Haar measure dgv on G′
v such that vol(Kv) = 1. For every infinite place v, we fix an

arbitrary Haar measure dgv on G′
v. Let A be the ring of adèles of F . With these conventions,

the group G′(A) of adèles of G′(F ) is the restricted product of the G′
v with respect to the family

of compact subgroups Kv. We consider the Haar measure dg on G′(A) which is the restricted
product of the measures dgv (see [RV] for details). We consider G′(F ) as a subgroup of G′(A)
via the diagonal embedding.

4.1. Discrete series. Let Z(F ) be the center of G′(F ). For every place v, let Zv be the center
of G′

v. For every finite place v of F , let dzv be a Haar measure on Zv such that the volume
of Zv ∩ Kv is one. The center Z(A) of G′(A) is canonically isomorphic with the restricted
product of the Zv with respect to the Zv ∩Kv. On Z(A) we fix the Haar measure dz which is
the restricted product of the measures dzv. On Z(A)\G′(A) we consider the quotient measure
dz\dg. As G′(F ) ∩ Z(A)\G′(F ) is a discrete subgroup of Z(A)\G′(A), on the quotient space
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Z(A)G′(F )\G′(A) we have a well defined measure coming from dz\dg. The measure of the whole
space Z(A)G′(F )\G′(A) is finite.

Through all these identifications, Z(F ) is a subgroup of Z(A). Fix a unitary smooth character
ω of Z(A), trivial on Z(F ).

Let L2(Z(A)G′(F )\G′(A);ω) be the space of classes of functions f defined on G′(A) with
values in C such that

i) f is left invariant under G′(F ),
ii) f satisfy f(zg) = ω(z)f(g) for all z ∈ Z(A) and almost all g ∈ G′(A),
iii) |f |2 is integrable over Z(A)G′(F )\G′(A).

We consider the representationR′
ω ofG′(A) by right translations in the space L2(Z(A)G′(F )\G′(A);ω).

We call a discrete series of G′(A) any irreducible subrepresentation of any representation R′
ω

for any unitary smooth character ω of Z(A) trivial on Z(F ).
Every discrete series of G′(A) with the central character ω appears in R′

ω with a finite multi-
plicity. Every discrete series π of G′(A) is isomorphic with a restricted Hilbertian tensor product
of (smooth) irreducible unitary representations πv of the groups G′

v like in [Fl1]. Each represen-
tation πv is determined by π up to isomorphism and is called the local component of π at the
place v. For almost all finite places v, πv has a non zero fixed vector under Kv. We say then
πv is spherical. In general, an admissible irreducible representation σ of G′(A) decomposes
similarly into a restricted tensor product of smooth irreducible representations σv of G′

v and σv

is spherical for almost all v (see [Fl1]).
Let R′

ω,disc be the subrepresentation of R′
ω generated by the discrete series. If π is a discrete

series we call the multiplicity of π in the discrete spectrum the multiplicity with which π
appears in R′

ω,disc.

4.2. Cuspidal representations. Let L2(Z(A)G′(F )\G′(A);ω)c be the subspace of all the
classes f in L2(Z(A)G′(F )\G′(A);ω) satisfying

∫

N(F )\N(A)

f(ng)dn = 0

for almost all g ∈ G′(A) and for all unipotent radicals N of a proper parabolic F -subgroup of
G′(F ).

The space L2(Z(A)G′(F )\G′(A);ω)c is stable under R′
ω and decomposes discretely in a direct

sum of irreducible representations. Such an irreducible subrepresentation is called cuspidal. It
is automatically a discrete series.

We let now n vary. For all n ∈ N∗ let G′
n be the group of adèles of GLn(D) and G′

n,v the
local component of G′

n at a place v. Let DS′
n be the set of classes of discrete series of G′

n.
If (n1, n2, ..., nk) is an ordered set of positive integers such that n1 + n2 + ... + nk = n, we

call a standard Levi subgroup of G′
n(F ) a subgroup formed by block diagonal matrices with

blocks of given sizes n1, n2, ..., nk in this order.
A standard Levi subgroup of G′

n(A) will be by definition a subgroup defined by the adèle
group L(A) of a standard Levi subgroup L of G′

n(F ). Let L be like in the previous paragraph.
For every place v of F , one has dv|nid for all 1 ≤ i ≤ k. If Lv is the subgroup of G′

v formed
by block diagonal matrices with k blocks of sizes n1d/dv, n2d/dv, ..., nkd/dv in this order, then
L(A) is the restricted product of the Lv with respect to Lv ∩Kv. We naturally identify L with
the ordered product ×k

i=1G
′
ni

.
Let ν denote here the character | det |F on G′

n, product of local characters νv = | det |v where
| |v is the normalized absolute value on Fv.
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4.3. Automorphic representations. Let us recall some facts from [La]. Let L = ×k
i=1G

′
ni

be
a standard Levi subgroup of G′

n. For 1 ≤ i ≤ k, let ρi be a cuspidal representation of G′
ni

(A)

and ei a real number. Set ρ = ⊗k
i=1ν

eiρi.

Then for each place v, the induced representation Πv = ind
G′

v

Lv
ρv is of finite length. For every

place v where all the ρi,v are spherical, Πv has a unique subquotient πv which is a spherical

representation. An irreducible subquotient of ind
G′

n(A)

L(A) ρ is said to be a constituent of ind
G′

n(A)

L(A) ρ.

Then an irreducible admissible representation σ of G′
n is a constituent of ind

G′

n

L ρ if and only
if for all v, σv is an irreducible subquotient of Πv and for almost all v, σv = πv. The notion
of a cuspidal representation differs between [La] and here: here we allow only what would be
in the [La] language a unitary cuspidal representation. Using the Proposition 2 in [La], an

automorphic representation A of G′
n will be here by definition a constituent of ind

G′

n(A)

L(A) ρ for

some ρ as above. One would like to prove then that the couples (ρi, ei) are all determined by A up
to permutation. This has been shown in [JS] in the case where D = F , and in the present paper
we will show it for general D. For the case D = F , we will then call the non ordered multiset
{νe1ρ1, ν

e2ρ2, ..., ν
ekρk} the cuspidal support of A. For the classical definition of automorphic

representations we refer to [BJ]; here we used an equivalent one, cf. Proposition 2 in [La]. Let
us point out that a discrete series is always a (unitary) automorphic representation.

In the particular case D = F some other facts are known. However, we make the following
convention: for the case of a general division algebra D we keep the notation adopted above,
while for the particular case D = F we consider another class of groups Gn = GLn(F ). All the
definitions adapt then to Gn by setting D = F and we will write DSn for the set of discrete
series of Gn(A).

4.4. Multiplicity one Theorems for Gn. We recall in this Subsection three facts about Gn.
There is the multiplicity one Theorem: every discrete series of Gn(A) appears with multiplicity
one in the discrete spectrum. And the strong multiplicity one Theorem: if π and π′ are two
discrete series of Gn such that πv = π′

v for almost all place v, then π = π′. This results may be
found in [Sh] and [P-S] (when D = F ). We will prove them in this paper for general G′

n.
One also knows that the local component of a cuspidal representation of Gn at any place

is generic and unitary, hence an irreducible product
∏m

i=1 ν
eiσi where σi are square integrable

representations and ei ∈]−
1
2 ,

1
2 [ (see [Sh] and [Ze]).

4.5. The residual spectrum of Gn. We recall now the Moeglin-Waldspurger classification of
the discrete series for groups Gn(A). Let m ∈ N∗ and ρ ∈ DSm be a cuspidal representation. If

k ∈ N∗, then the induced representation
∏k−1

i=0 (ν
k−1
2 −iρ) has a unique constituent π which is a

discrete series (i.e. π ∈ DSmk). One has πv = Lg(ρv, k) for all place v (we used the definition
of Lg(ρv, k) of Section 3.5 since ρv is generic). We set then π = MW (ρ, k). Discrete series π of
groups Gn(A), n ∈ N∗, are all of this type, k and ρ are determined by π and π is cuspidal if and
only if k = 1. These are the results of [MW2]. We will prove in the sequel the same classification
holds for G′

n(A)
Let us prove, for future purposes, a Proposition generalizing the strong multiplicity one The-

orem.

Proposition 4.1. Let σi ∈ DSni
, i ∈ {1, 2, ..., k1},

∑k1

i=1 ni = n and τj ∈ DSmj
,

j ∈ {1, 2, ..., k2},
∑k2

j=1mj = n. Assume that for almost all finite places v the local

components of the (irreducible) products σ =
∏k1

i=1 σi and τ =
∏k2

j=1 τj at the place

v are equal. Then (σ1, σ2, ..., σk1) equals up to a permutation (τ1, τ2, ..., τk2).
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Proof. By the Theorem 4.4 in [JS], the cuspidal supports of the automorphic representations
σ and τ are equal. We call a line the set of representations {νkρ}k∈Z, where ρ is a cuspidal

representation of some Gm(A). We call a shifted line the set of representations {νk+ 1
2 ρ}k∈Z,

where ρ is a cuspidal representation of some Gm(A). Thanks to the Moeglin-Waldspurger classi-
fication we know that the set of the elements of the cuspidal support of a given σi or τj is either
included in a line, or in a shifted line. So we may then “separate the supports” and reduce the
problem to the case where there exists a line or a shifted line T such that the set of elements of
the cuspidal supports of all the σi and all the τj are included in T . Then there exists a cuspidal
representation ρ such that σi = MW (ρ, pi) for all i and τj = MW (ρ, qj) for all j. And moreover
the pi and the qj are either all odd, or all even. Let X be the cuspidal support of σ and τ in
this case. We show that X determines the σi up to permutation.

If the pi are all odd, the result is a consequence of the following combinatorial Lemma:

Lemma 4.2. Let A be a multiset of integers which may be written as a reunion
with multiplicities of sets of the form B = {−k,−k + 1,−k + 2, ..., k − 2, k − 1, k}.
Then the sets B are determined by A.

Proof. Let f : Z → N be the multiplicity map: f(a) is the multiplicity of a in A. The
number f(a) is also the number of sets B containing a. If a ≥ 1 and a set B contains a,
then it contains also a − 1. So f is decreasing on N and for all p ∈ N, the number of sets
{−p,−p+ 1,−p+ 2, ..., p− 2, p− 1, p} in A is exactly f(p)− f(p+ 1). �

If the pi are even, the proof is essentially the same. This finishes the proof of the Proposition
4.1. �

4.6. Transfer of functions. For each finite place v let H(G′
n,v) be the Hecke algebra of locally

constant functions with compact support on G′
n,v. Let H(G′

n) be the set of functions f :
G′

n(A) → C such that f is a product f =
∏

v fv over all places of F , where fv is C∞ with
compact support when v is infinite, fv ∈ H(G′

n,v) when v is finite and, for almost all finite places
v, fv is the characteristic function of Kv. We write then f = (fv)v. As the local components of
an automorphic representation π are almost all spherical, the product of traces

∏
v trπv(fv) has

a meaning for all f = (fv)v ∈ H(G′
n) and we may set tr(π(f)) =

∏
v trπv(fv). We adopt similar

notation and definitions for the groups Gn.
Let v ∈ V . We fix measures on the maximal tori of Gnd,v and G′

n,v in a compatible way
and define the orbital integrals Φ on Gnd,v and Φ′ on G′

n,v for regular semisimple elements
with respect to these choices (see the Section 2 of [Ba1] for example). If fv ∈ H(Gnd,v) and
f ′

v ∈ H(G′
n,v) we say that fv and f ′

v correspond to each-other, and write fv ↔ f ′
v, if:

- fv and f ′
v are supported in the set of regular semisimple elements, and

- for all g ↔ g′ we have Φ(fv, g) = Φ′(f ′
v, g

′), and
- for all regular semisimple g ∈ Gnd,v which does not correspond to any g′ ∈ G′

n,v we have
Φ(fv, g) = 0.
It is known that for every f ′

v ∈ H(G′
n,v) supported on the regular semisimple set there exists

fv ∈ H(Gnd,v) such that fv ↔ f ′
v. Also, if fv ↔ f ′

v then tr(π(fv)) = 0 for all representation π
induced from a Levi subgroup of Gnd,v which does not transfer (Section 2 of [Ba1] for example).

For f = (fv)v ∈ H(Gnd) and f ′ = (f ′
v)v ∈ H(G′

n) we write f ↔ f ′ and say that f and f ′

correspond to each other if
i) ∀v /∈ V we have fv = f ′

v and
ii) ∀v ∈ V we have fv ↔ f ′

v.
For every f ′ = (f ′

v)v ∈ H(G′
n) such that for all v ∈ V the support of f ′

v is included in the set of
regular semisimple elements of G′

v there exists f ∈ H(Gn) such that f ↔ f ′. If f ∈ H(Gnd), we
say f transfers if there exists f ′ ∈ H(G′

n) such that f ↔ f ′.
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5. Global results

5.1. Global Jacquet-Langlands, multiplicity one and strong multiplicity one for inner
forms. For all v ∈ V , denote LJv (resp. |LJ|v) the correspondence LJ (resp. |LJ|), as defined
in Subsection 2.7, applied to Gnd,v and G′

n,v.
If π ∈ DSnd we say π isD-compatible if, for all v ∈ V , πv is dv-compatible. Then LJ(πv) 6= 0

and |LJ|v(πv) is an irreducible representation of G′
n (Proposition 3.2 (c)).

Theorem 5.1. (a) There exists a unique map G : DS′
n → DSnd such that for all

π′ ∈ DS′
n, if π = G(π′), one has |LJ|v(πv) = π′

v for all places v ∈ V , and πv = π′
v

for all places v /∈ V . The map G is injective. The image of G is the set DSD
nd of

D-compatible discrete series of Gnd(A).
(b) We have the multiplicity one Theorem for discrete series of G′

n(A): if π′ ∈
DS′

n, then the multiplicity of π′ in the discrete spectrum is one.
(c) We have the strong multiplicity one Theorem for discrete series of G′

n(A): if
π′, π′′ ∈ DS′

n, and if π′
v = π′′

v for almost all v, then π′
v = π′′

v for all v.
(d) For all π′ ∈ DS′

n, for all places v ∈ V , π′
v ∈ ΠU ′ (see Section 3.4).

Proof. We will use the results of [AC]. The authors compare the trace formulas of Gnd and
G′

n. We will restate the result here.
Let F ∗

∞ be the product ×iF
∗
i where i runs over the set of infinite places of F . Let µ be a

unitary character of F ∗
∞. We use the embedding of F ∗

∞ in A× trivial at finite places to realize it
as a subgroup of the center Z(A).

Let L(Gnd) be the set of F -Levi subgroups of Gnd which contain the maximal diagonal torus.
Let

Idisc,t,µ,Gnd
(f) =

∑

L∈L(Gnd)

|WL
0 ||W

Gnd

0 |−1
∑

s∈W (aL)reg

| det(s− 1)
a

Gnd
L

|−1tr(MGnd

L (s, 0)ρL,t(0, f))

where, in the order of the appearance:
- t ∈ R+;
- |WL

0 | is the cardinality of the Weyl group of L;

- |WGnd

0 | is the cardinality of the Weyl group of Gnd;
- aL is the real space Hom(X(L)F ,R) where X(L)F is the lattice of rational characters of L;

W (aL) is the Weyl group of aL of L; a
Gnd

L is the quotient of aL by aGnd
; W (aL)reg is the set of

s ∈ W (aL) such that det(s− 1)
a

Gnd
L

6= 0;

- MGnd

L (s, 0) is the intertwining operator associated to s at the point 0; it intertwines repre-

sentations indGnd

L σ and indGnd

sL sσ, where σ is a representation of L;
- ρL,t is the induced representation with respect to any parabolic subgroup with Levi factor

L from the direct sum of discrete series π of L such that π is µ-equivariant and the imaginary
part of the Archimedean infinitesimal character of π has norm t ([AC], page 131-132);

- f is an element of H(Gnd).
For this definition see page 198, and the formula (4.1) page 203, in [AC]. It is the “µ formula”,

and not the original definition-equality (9.2) page 132, which does not contain any µ.
Now let us compute the terms. It turns out that W (aL)reg is empty unless L is conjugated

to a Levi subgroup given by block diagonal matrices with blocks of equal size. Let L be the
Levi subgroup given by block diagonal matrices with l blocks of size m, lm = nd. If we identify
W (aL) with Sl, then W (aL)reg is the set of l-cycles. So the cardinality of W (aL)reg is (l − 1)!

and for any s ∈W (aL)reg, | det(s−1)
a

Gnd
L

| = l. We also have |WL
0 | = (m!)l and |WGnd

0 | = (nd)!.
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So the coefficient of the character attached to L in the linear combination over L(Gnd) is (m!)l

(nd)! l .

Now, if L′ is conjugated with L, the contribution of L′ to the sum is the same as that of L ([AC],
page 207). Let us compute the number of Levi subgroups L′ conjugated to L, and containing
the diagonal torus. The diagonal torus is then a maximal torus of L′, and so the center of L′

is contained in the diagonal torus. As L′ is the centralizer of its center there will be exactly as
many L′ as the non ordered partitions of {1, 2, ..., nd} in l subsets of cardinality m. This number

is l!−1Cnd−m
nd Cnd−2m

nd−m Cnd−3m
nd−2m...C

m
2m (product of binomial coefficients), which is (nd)!

l!(m!)l (for a more

theoretical formula for the same result see [AC], page 207).
So we may rewrite the formula: for all l|nd, if Ll is the Levi subgroup of Gnd given by block

diagonal matrices with l blocks of equal size nd
l , then

Idisc,t,µ,Gnd
(f) =

∑

l|nd

1

l! l

∑

s∈W (aL)reg

tr(MGnd

Ll
(s, 0)ρLl,t(0, f)).

In [AC] it is shown moreover, page 207-208, that for any Ll, the (l−1)! elements s ∈W (aL)reg

give all the same contribution to the sum. So, in the end, if s0 is the cycle (1, 2, ..., l), the definition
of Idisc,t,µ,Gnd

(f) turns out to be simply:

∑

l|nd

1

l2
tr(MGnd

Ll
(s0, 0)ρLl,t(0, f)).

Let us turn now to the operator MGnd

Ll
(s0, 0)ρLl,t(0, f). A discrete series ρ of Ll is an ordered

product ⊗l
i=1ρi, where each ρi is a discrete series of Gnd

l
. Let Stabρ be the subgroup of Sl

which stabilizes the ordered multiset (ρ1, ρ2, ..., ρl) for the obvious action. Let Xρ be a set of
representatives of Sl/Stabρ in Sl. Let Vρ be the subspace ⊕x∈Xρ

×l
i=1 ρx(i) of ρLl,t. Then Vρ

is stable under the operator MGnd

Ll
(s0, 0). But, if the ρi are not all equal, MGnd

Ll
(s0, 0) permutes

without fixed point the subspaces ×l
i=1ρx(i). So the trace of the operator induced by MGnd

Ll
(s0, 0)

on Vρ is zero. Then in the formula only the contributions from representations ρ = ⊗l
i=1ρi of Ll

such that all the ρi are equal remain.

So

(5.1)

Idisc,t,µ,Gnd
(f) =

∑

ρ∈DSnd,t,µ

tr(ρ(f))+
∑

l|nd, l 6=1

1

l2

∑

ρ∈DS nd
l

, t
l

,µl

tr(MGnd

Ll
(s0, 0) ρl(0, f)),

where DSk, t
l
,µl

is the set of discrete series ρ of Gk(A) such that ρ is µ′-equivariant for some

character µ′ of F ∗
∞ such that µ′l = µ and the norm of the imaginary part of its infinitesimal

character is t
l , and ρl is the induced representation ρ× ρ× ... × ρ from Ll. In the last formula

we used the multiplicity one Theorem for Gk, k|nd. The representation ρ being unitary, the

representation ρl is irreducible and hence MGnd

Ll
(s0, 0) acts as a scalar on ρl. As it is also a

unitary operator, the scalar is some complex number λρ of module 1.

The analogous definition of Idisc,t,µ,G′

n
(f ′) is given in [AC] for the groups G′

n and f ′ ∈ H(G′
n):

Idisc,t,µ,G′

n
(f ′) =
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∑

L∈L(G′

n)

|WL
0 ||W

G′

n

0 |
−1

∑

s∈W (aL)reg

| det(s− 1)
a

G′
n

L

|−1tr(M
G′

n

L (s, 0)ρL,t(0, f))

where the symbols have the same definition as for Idisc,t,µ,Gnd
(f) when replacing Gnd by G′

n and
f by f ′. All the computation made for Gnd to simplify the formula, up to formula 5.1 itself,
are combinatorial and work exactly the same for G′

n (replacing nd with n). We get then an
analogous formula to 5.1, taking in account we do not have multiplicity one (yet) for G′

n(A):

(5.2)

Idisc,t,µ,G′

n
(f ′) =

∑

ρ′∈DS′

n,t,µ

mρ′ tr(ρ′(f ′))+
∑

l|n, l 6=1

1

l2

∑

ρ′∈DS′

n
l

, t
l

,µl

ml
ρ′ tr(M

G′

n

L′

l
(s0, 0) ρ′l(0, f ′)),

where mρ′ is the multiplicity of ρ′ in the discrete spectrum (ml
ρ′ is the power l of the positive

integer mρ′) and the other symbols are defined as for Gnd in the formula 5.1.
One of the main results of [AC] is the fundamental equality (equation (17.8) page 198):

(5.3) Idisc,t,µ,Gnd
(f) = Idisc,t,µ,G′

n
(f ′)

for any f ↔ f ′.
We have an easy Lemma.

Lemma 5.2. Let l|nd and ρ ∈ DSnd
l
. Let f ′ ∈ H(G′

n) and f ∈ H(Gnd) such

that f ↔ f ′. If l does not divide n, or if l|n and ρ is not D-compatible, then
tr(M(s0, 0) ρl(f)) = 0.

Proof. Assume l does not divide n. Then d does not divide nd
l . By the class field theory the

smallest common multiple of the integers dv is d, so there exists a place w such that dw does
not divide nd

l . Then ρl
w is not dw-compatible. The same, if ρ is not D-compatible, there exists

a place w such that ρw is not dw-compatible and hence ρl
w is not dw-compatible.

In both cases we have then trρl
w(fw) = 0 and as the operator M(s0, 0) acts as a scalar, the

result follows. �

Another Lemma:

Lemma 5.3. Assume the multiplicity one Theorem is true for all G′
k, k < n. Then

(a)

Idisc,t,µ,G′

n
(f ′) =

∑

ρ′∈DS′

n,t,µ

mρ′trρ′(f ′)+
∑

l|n, l 6=1

1

l2

∑

ρ′∈DS′

n
l

, t
l

,µl

tr(M
G′

n

L′

l
(s0, 0) ρ′l(0, f ′)),

where mρ′ is the multiplicity of ρ′ in the discrete spectrum.
(b) For all f ↔ f ′, one has

(5.4)
∑

ρ∈DSD
nd,t,µ

trρ(f) +
∑

l|n, l 6=1

1

l2

∑

ρ∈DSD
nd
l

, t
l

,µl

tr(MGnd

Ll
(s0, 0) ρl(0, f)) =

∑

ρ′∈DS′

n,t,µ

mρ′trρ′(f ′) +
∑

l|n, l 6=1

1

l2

∑

ρ′∈DS′

n
l

, t
l

,µl

tr(M
G′

n

L′

l
(s0, 0) ρ′l(0, f ′)),

where DSD
? is by definition the subset of D-compatible representations in DS?.
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Proof. (a) Comes straight from the formula 5.2.
(b) We used (a) and the equality 5.3. But the Gnd side has been modified due to Lemma 5.2.

Lemma 5.2 allows also the replacement of DS? by DSD
? . �

Let us finish now the proof of Theorem 5.1 by induction on n. So, among other things, we
will use the formula 5.4. Let us point out, not to recall it all the time, that the correspondence
G, once assumed or proven, preserves the quantities t and µ.

First assume n = 1. Then we get from the relation 5.4:

(5.5)
∑

ρ∈DSD
d,t,µ

trρ(f) =
∑

ρ′∈DS′

1,t,µ

mρ′trρ′(f ′)

for all f ↔ f ′, where mρ′ is the multiplicity of ρ′ in the discrete spectrum.
Let us fix a representation σ′ ∈ DS′

1. Then we have σ′ ∈ DS′
1,t,µ for some t and µ. We

will show there exists σ ∈ DSD
d,t,µ such that |LJ|v(σv) = σ′

v for all v ∈ V and σv = σ′
v for

all v /∈ V , and also that mσ′ = 1. Let S be a finite set of places of F containing all the places
in V , all the infinite places and all the places v such that σ′

v is not a spherical representation.
For any π ∈ DSD

d,t,µ or π ∈ DS′
1,t,µ write πS for the tensor product ⊗v∈Sπv and πS for the

restricted tensor product ⊗v/∈Sπv. Let DSD
d,t,µ,σ′ (resp. DS′

1,t,µ,σ′) be the set of π ∈ DSD
d,t,µ

(resp. π ∈ DS′
1,t,µ) such that πS = σ′S . Then we have for all f ↔ f ′:

∑

ρ∈DSD
d,t,µ,σ′

trρ(f) =
∑

ρ′∈DS′

1,t,µ,σ′

mρ′trρ′(f ′).

This statement is inferred from the equation 5.5 by a standard argument one may find well
expounded in [Fl2]. According to the strong multiplicity one Theorem applied to Gd, the cardi-
nality of DSD

d,t,µ,σ′ is either zero or 1. The cardinality of DS′
1,t,µ,σ′ is finite by [BB]. As fv = f ′

v

for v /∈ S, we may cancel in this equality
∏

v/∈S trσ′
v(f ′

v), by choosing f ′
v such that this product

is not zero. We get

∑

ρ∈DSD
d,t,µ,σ′

∏

v∈S

trρv(fv) =
∑

ρ′∈DS′

1,t,µ,σ′

mρ′

∏

v∈S

trρ′v(f
′
v)

for functions such that fv ↔ f ′
v for all v ∈ V and fv = f ′

v for all v ∈ S\V . On the right
side we have a finite non empty set (containing at least σ′) of distinct characters on a finite
product of groups. The linear independence of characters on these groups implies the linear
independence of characters on the product, and so there exist functions f ′

v ∈ H
′(G′

1,v) for v ∈ S,
supported on the set of regular semisimple elements, such that the right side of the equality
does not vanish on (f ′

v)v∈S . Then DSD
d,t,µ,σ′ is not empty and hence contains one element. Let

us call this element σ. As σ is D-compatible, for every v ∈ V we have that |LJ|v(σv) is an
irreducible unitary representation u′v of G′

1,v such that tr(σv(fv)) = tr(u′v(f ′
v)) for all fv ↔ f ′

v.
So by the linear independence of characters on the group ×v∈SG

′
1,v we must have u′v = σ′

v for
all v ∈ V and σv = σ′

v for all v ∈ S\V . This obviously implies mσ′ = 1 which is the claim (b).
Now G(σ′) is defined. If G(σ′) = G(σ′′) = σ then we have σ′

v = σ′′
v = σv for all v /∈ V and

σ′
v = σ′′

v = |LJ|v(σv) for all v ∈ V , which shows that G is injective.
Let us show the surjectivity of G onto DSD

d . We start again from the equality 5.5
∑

ρ∈DSD
d,t,µ

trρ(f) =
∑

ρ′∈DS′

1,t,µ

trρ′(f ′)
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for all f ↔ f ′ (the multiplicities on the left side have disappeared). Consider σ ∈ DSD
d,t,µ and

let S be a finite set of places containing all the places in V , all the infinite places and all the
places v such that σv is not spherical. Let DSD

d,t,µ,σ (resp. DS′
1,t,µ,σ) be the set of π ∈ DSD

d,t,µ

(resp. π ∈ DS′
1,t,µ) such that πS = σS . By the same arguments as before (simplification of the

trace formula as expounded in [Fl2]), we have for all f ↔ f ′:
∑

ρ∈DSD
d,t,µ,σ

trρ(f) =
∑

ρ′∈DS′

1,t,µ,σ

trρ′(f ′).

But by strong multiplicity one Theorem on Gd, DS
D
d,t,µ,σ contains the unique element σ. As σ

is D-compatible, there exist f ↔ f ′ such that trσ(f) 6= 0. So DS′
1,t,µ,σ is not empty. Consider

σ′ ∈ DS′
1,t,µ,σ. Then G(σ′) is defined. By multiplicity one Theorem on Gd applied to places

outside S, G(σ′) has to be σ.
We have seen that σ′

v = G(σ′)v for all v /∈ V . The strong multiplicity one Theorem for Gd

implies then the strong multiplicity one Theorem for G′
1 ((c)). The claim (d) is obtained now

by transfer under G−1 and Proposition 3.10 (b).
Thus, we finished the proof of the Theorem for n = 1.

Let us now assume the Theorem has been proven for all k < n and call Gk the transfer map
at level k. This hypothesis enables us to apply Lemma 5.3 and implies the relation (5.4) which
we recall:

(5.6)
∑

ρ∈DSD
nd,t,µ

trρ(f) +
∑

l|n, l 6=1

1

l2

∑

ρ∈DSD
nd
l

, t
l

,µl

tr(MGnd

Ll
(s0, 0) ρl(0, f)) =

∑

ρ′∈DS′

n,t,µ

mρ′trρ′(f ′) +
∑

l|n, l 6=1

1

l2

∑

ρ′∈DS′

n
l

, t
l

,µl

tr(M
G′

n

L′

l
(s0, 0) ρ′l(0, f ′)).

Moreover, using the part (d) of the Theorem for Gk, k < n, the induction hypothesis implies

that the representations ρ′l are irreducible (Proposition 3.9 (b)). So M
G′

n

L′

l
(s0, 0) is again a scalar

and as it is unitary the scalar is a complex number λρ′ of module 1. So the equation is actually,
using again the induction to transfer the representations in DS′

n
l
, t

l
,µl

:

(5.7)
∑

ρ∈DSD
nd,t,µ

trρ(f) +
∑

l|n, l 6=1

1

l2

∑

ρ∈DSD
nd
l

, t
l

,µl

λρtr(ρ
l(0, f)) =

∑

ρ′∈DS′

n,t,µ

mρ′trρ′(f ′) +
∑

l|n, l 6=1

1

l2

∑

ρ∈DSD
nd
l

, t
l

,µl

λ
G

−1
n
l

(ρ)tr(ρ
l(0, f))

for f ↔ f ′.
Now the proof goes as for the case n = 1 with a minor modification in the end. Choose a

representation σ′ ∈ DS′
n,t,µ. Fix a finite set S of places of F which contains all the places in

V , all the infinite places and all the places v for which σ′
v is not spherical. By the Theorem

of multiplicity one for Gnd the set A of σ ∈ DSD
nd,t,µ such that σS = σ′S is empty or contains

only one element. If we apply Proposition 4.1 to the representations ρl and all the places out of
S, then we conclude that the set B of representations γ = ρl (where l|n and l 6= 1) such that

γS = σ′S is empty or contains one element. Let DS′
n,t,µ,σ′ be the set of τ ′ ∈ DS′

n,t,µ such that
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τ ′S = σ′S . Then DS′
n,t,µ,σ′ is not empty (contains σ′) and finite ([Ba3]; we do not quote [BB]

again since the representations may not be cuspidal).
By the same argument in [Fl2], already quoted for the case n = 1, we obtain then

∑

σ∈A

∏

v∈S

trσv(fv) +
∑

γ∈B

λγ − λG
−1
n
l

(γ)

l2

∏

v∈S

trγv(fv) =
∑

ρ′∈DS′

n,t,µ,σ′

mρ′

∏

v∈S

trρ′v(f ′
v)

if fv ↔ f ′
v for all v ∈ V and fv ↔ f ′

v for all v ∈ S\V .
If A is not empty and σ is the unique element of A, then the local components of σ are unitary

and we can transfer them. If B is not empty and γ is the unique element of B, then the local
components of γ are unitary and we can transfer them. In any possible case we do so. But the

coefficient

λγ−λ
G

−1
n
l

(γ)

l2 cannot be a non-zero integer because its module is less than 1
2 . So the

linear independence of characters on the group ×v∈SG
′
v implies that B was empty, A was not

empty, on the right side there is only σ′ and mσ′ = 1. The injectivity is proven like for n = 1.
Let us prove the surjectivity of G. Fix σ ∈ DSD

nd,t,µ and let S be a set of places of F which
contains all the places in V , all the infinite places and all the places v for which σv is not
spherical. We start again with the relation 5.7:

∑

ρ∈DSD
nd,t,µ

trρ(f) +
∑

l|n, l 6=1

1

l2

∑

ρ∈DSD
nd
l

, t
l

,µl

λρtr(ρ
l(0, f)) =

∑

ρ′∈DS′

n,t,µ

mρ′trρ′(f ′) +
∑

l|n, l 6=1

1

l2

∑

ρ∈DSD
nd
l

, t
l

,µl

λ
G

−1
n
l

(ρ)tr(ρ
l(0, f))

for f ↔ f ′. As before, we may restrict this relation to representations which have the same local
component as σ outside S.

By strong multiplicity one Theorem for Gnd, the set of π ∈ DSD
n,t,µ such that πS = σS

contains the unique element σ. By the Proposition 4.1, no representation γ = ρl (where l|n and
l 6= 1) can verify γS = σS . The relation becomes then

trσ(f) =
∑

ρ′∈DS′

n,t,µ,σ

mρ′trρ′(f ′)

where DS′
n,t,µ,σ is the set of ρ′ ∈ DS′

n,t,µ such that ρ′S = σS . As σ is D-compatible, there exist
f ↔ f ′ such that trσ(f) 6= 0, and so there exists at least one representation σ′ ∈ DS′

n,t,µ,σ.
Then G(σ′) is defined and, by strong multiplicity one Theorem on Gnd(A), G(σ′) must be σ.
This proves the surjectivity.

Claims (c) and (d) may be proven like for n = 1. �

Corollary 5.4. The intertwining operators MGnd

Ll
(s0, 0) and M

G′

n

L′

l
(s0, 0) are given

by the same scalar. In particular, the computations in [KS] transfer to G′
n(A).

Proof. This is the consequence of λγ − λG
−1
n
l

(γ) = 0 implied by the end of the proof of the

Theorem. �

5.2. A classification of discrete series and automorphic representations of G′
n. If L =

×k
i=1G

′
ni

is a standard Levi subgroup of G′
n, we call essentially square integrable (resp.

essentially cuspidal) representation of L a representation π′ = ⊗k
i=1ν

aiρ′i where, for each i, ρ′i
is a discrete series (resp. cuspidal representation) of G′

ni
and ai is a real number.
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We adopt the same definitions for representations π = ⊗k
i=1ν

aiρi of standard Levi subgroups
of Gnd. Such a representation π is said to be D-compatible if all the ρi are D-compatible.

Proposition 5.5. Let ρ ∈ DSm be a cuspidal representation. Let sρ,D be the
smallest common multiple of sρv ,dv

, v ∈ V (cf. Section 3.5). Then
(a) MW (ρ, k) is D-compatible if and only if sρ,D|k.
(b) G−1(MW (ρ, sρ,D)) = ρ′ ∈ DS′

msρ,D
d

is cuspidal (in particular G−1 sends

cuspidal to cuspidal).

Proof. (a) This is an easy consequence of the discussion in Section 3.5 and the definition of
sρ,D.

(b) Assume ρ′ is not cuspidal. Then there exists an essentially cuspidal representation τ ′ of
a proper standard Levi subgroup L′ of G′

n such that π′ is a constituent of the induced represen-
tation to G′

msρ,D
d

from τ ′. Set τ = G(τ ′). So τ is a D-compatible essentially square integrable

representation of L(A) where L is a proper standard Levi subgroup of Gmsρ,D
corresponding to

L′. By the Theorem 4.4 of [JS], τ has the same cuspidal support as MW (ρ, sρ,D). As it is a
D-compatible essentially square integrable representation and lives on a smaller subgroup, this
contradicts the minimality of sρ,D. �

Remark 5.6. It will be proved in the Appendix that all the cuspidal representations
of G′

n(A) are obtained like in Proposition 5.5. But at this point this proof cannot be
made, so for now we will call these representations basic cuspidal. Later, using the
next Proposition, Grbac will prove in the Appendix that basic cuspidal and cuspidal
is the same thing. Therefore, the reader may drop the word ”basic” in the next
Proposition and have a clean classification.

Let us call basic cuspidal a cuspidal representation obtained as ρ′ = G−1(MW (ρ, sρ,D))
in the part (b) of the Proposition. We then set s(ρ′) = sρ,D and νρ′ = νsρ,D . If L = ×k

i=1G
′
ni

is a standard Levi subgroup of G′
n, we call basic essentially cuspidal representation of L a

representation ⊗k
i=1ν

aiρ′i where, for each i, ρ′i is a basic cuspidal representation of G′
ni

and ai is
a real number.

We now give a classification of discrete series of groups G′
n. The part (a) generalizes [MW2]

and the part (b) generalizes the theorem 4.4 in [JS].

Proposition 5.7. (a) Let ρ′ ∈ DS′
m be a basic cuspidal representation. Let k ∈ N

∗.

The induced representation
∏k−1

i=0 (ν
k−1
2 −i

ρ′ ρ′) has the unique constituent π′ which is

a discrete series. We write then π′ = MW ′(ρ′, k). Every discrete series π′ of
a group G′

n, n ∈ N∗, is of this type, and k and ρ′ are determined by π′. The
discrete series π′ is basic cuspidal if and only if k = 1. If π′ = MW ′(ρ′, k), then
G(ρ′) = MW (ρ, sρ,D) if and only if G(π′) = MW (ρ, ksρ,D).

(b) Let (Li, ρ
′
i), i = 1, 2, be such that Li is a standard Levi subgroup of G′

n and
ρ′i is a basic essentially cuspidal representation of Li(A) for i = 1, 2. Fix any finite
set of places V ′ containing the infinite places and all the finite places where ρ′1 or ρ′2
is not spherical. If, for all places v /∈ V ′, the spherical subquotients of the induced
representations from ρ′i,v to G′

n are equal, then the couples (Li, ρ
′
i) are conjugated.

(c) If π′ is an automorphic representation of G′
n, then there exists a couple (L, ρ′)

where L is a standard Levi subgroup of G′
n and ρ′ is a basic essentially cuspidal

representation of L(A) such that π′ is a constituent of the induced representation
from ρ′ to G′

n(A). The couple (L, ρ′) is unique up to conjugation.
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Proof. (a) Let G(ρ′) = MW (ρ, sρ,D). The discrete series MW (ρ, ksρ,D) is D-compatible
(Proposition 5.5 (a)). We will show directly that G−1(MW (ρ, ksρ,D)) is a constituent of
∏k−1

i=0 (ν
k−1
2 −i

ρ′ ρ′).

It is enough to show that, for every place v ∈ V , |LJ|v(MW (ρ, ksρ,D)v) is a subquotient of

the local representation
∏k−1

i=0 (ν
k−1
2 −i

ρ′ ρ′v). By Proposition 2.1, it is enough to show that the esi-

support of |LJ|v(MW (ρ, ksρ,D)v) is the reunion of the esi-supports of representations ν
k−1
2 −i

ρ′ ρ′v.
As in Section 3.5, we may write the generic representation ρv as a product of essentially square
integrable representations

∏m
j=1 ν

ejσj and we have seen then that

ρ′v = |LJ|v(Lg(ρv, sρ,D)) =

m∏

j=1

νej |LJ|v(u(σj , sρ,D))

and

|LJ|v(Lg(ρv, ksρ,D)) =

m∏

j=1

νej |LJ|v(u(σj , ksρ,D)).

Fix an index j. If σj transfers to σ′
j (case (a) of the Proposition 3.2), we know that |LJ|v(u(σj , sρ,D)) =

ū(σ′
j , sρ,D)) and |LJ|v(u(σj , ksρ,D)) = ū(σ′

j , ksρ,D). One may easily verify that the esi-support

of ū(σ′
j , ksρ,D) is the reunion of the esi-supports of ν( k−1

2 −i)sρ,D ū(σ′
j , sρ,D) for i ∈ {0, ..., k − 1}.

If σj does not transfer (case (b) of the Proposition 3.2), one has to use the formula 3.9 in Section
3.5 involving σ′

j+ and σ′
j−, but then the proof goes exactly the same as for the case when σj

transfers.

So
∏k−1

i=0 (ν
k−1
2 −i

ρ′ ρ′) has a constituent π′ which is a discrete series. The strong multiplicity

one Theorem for discrete series of G′
n (Proposition 5.1 (c)) implies this induced representation

has no other constituent which is a discrete series.
Let π′ ∈ DS′

n be a discrete series and let us show it is obtained in this way. Set G(π′) =
MW (ρ, p). We have sρ,D|p since MW (ρ, p) is D-compatible (Proposition 5.5 (a)). So, if we set
ρ′ = G−1(MW (ρ, sρ,D)), ρ′ is a basic cuspidal, and we have π′ = MW ′(ρ′, p

sρ,D
). The strong

multiplicity one Theorem for Gnd implies p and ρ are determined by π′, so k = p
sρ,D

and ρ′ are

determined by π′. It is clear that π′ is basic cuspidal if and only if p = sρ,D, if and only if k = 1.

(b) G(ρ′1) = ρ1 is a tensor product of the form ⊗p1

i=1ν
αiMW (ξi, sξi,D) and G(ρ′2) = ρ2 is a

tensor product of the form ⊗p2

j=1ν
βjMW (τj , sτj,D), where ξi and τj are cuspidal. As the induced

representations to Gnd from ρ1 and ρ2 have equal spherical subquotient at all finite places which
are not in V ∪V ′, we know that the essentially cuspidal supports of ρ1 and ρ2 are equal (Theorem
4.4 in [JS]). As ξi and τj are cuspidal, it follows from the formulas for ρ1 and ρ2 that the multi-
sets {(αi, ξi)} and {(βj, τj)} are equal and so the tensor products are the same up to permutation.

(c) The existence is proven in (a). The unicity in (b). �

5.3. Further comments. The question whether the transfer of discrete series could be extended
to unitary automorphic representations or not seems natural. Let us extend in an obvious way the
notion of D-compatible from discrete series to unitary automorphic representations of Gnd(A).
Let us formulate two questions.

Question 1. Given a unitary automorphic representation a′ of G′
n(A), is it possible to find a uni-

tary automorphic representation a of Gnd(A) such that av = a′v for all v /∈ V and |LJ|v(av) = a′v
for all v ∈ V ?
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Question 2. Given a D-compatible unitary automorphic representation a of Gnd(A), is it
possible to find a unitary automorphic representation a′ of G′

n(A) such that av = a′v for all
v /∈ V and |LJ|v(av) = a′v for all v ∈ V ?

These questions are independent and the answer is in general “no” for both.

Consider the first question. Roughly speaking the counterexample comes from the fact that
there exist unitary irreducible representations of an inner form of GLn over a local field which
do not correspond to a unitary representation of GLn. The problem is to realize such a represen-
tation as a local component of a unitary automorphic representation. Here is the construction,
based on Lemma 3.11.

Let dimFD = 16. Let G′ = GL3(D). Assume there is a finite place v0 of F such that
the local component of G′(A) at the place v0 is G′

v0
' GL3(Dv0) with dimFv0

Dv0 = 16. It is

possible to choose such a D by the global class field theory. Let ρ′ be a cuspidal representation
of G′(A) such that ρ′v0

is the Steinberg representation of G′
v0

. Then G(ρ′) is cuspidal. Indeed,
its local component at the place v0 has to be the Steinberg representation of GL12(Fv0 ) (the
only unitary irreducible elliptic representations being the trivial representation and the Steinberg
representation). In particular sρ′ = 1.

Let τ ′ = MW ′(ρ′, 16). Let St′3 be the Steinberg representation of GL3(Dv0) and St′4 the
Steinberg representation of GL4(Dv0). Then τ ′v0

= u′(St′3, 16).

Let τ ′′ be the global representation defined by: τ ′′v = τ ′v for all v 6= v0 and τ ′′v0
= ν−

3
2u′(St′3, 4)×

ν−
1
2u′(St′4, 3)× ν

1
2 u′(St′4, 3)× ν

3
2 u′(St′3, 4). Let us show that τ ′′ is an automorphic representa-

tion. We have τ ′′v0
< τ ′v0

by Lemma 3.11 (ii). So τ ′′v0
is a subquotient of ×16

i=1ν
17
2 −iSt′3. So τ ′′

is a constituent of ×16
i=1ν

17
2 −iρ′. As ρ′ is cuspidal, τ ′′ is automorphic. All the local components

of τ ′′ are unitary. It is true by definition for τ ′′v , v 6= v0, and by Lemma 3.11 (i) for τ ′′v0
. So

τ ′′ is a unitary automorphic representation. It cannot correspond to a unitary automorphic
representation of GL192(A) because by Lemma 3.11 (iii) there is a transfer problem at the place
v0.

Consider now the second question. Let dimFD = d2 = 4. Let G′ = GL3(D). Assume there is
a finite place v0 of F such that the local component of G′(A) at the place v0 is G′

v0
' GL3(Dv0)

with dimFv0
Dv0 = 4. For all i ∈ N∗, write Sti for the Steinberg representation of GLi(Fv0 ) and

St′i for the Steinberg representation of GLi(Dv0). Let ρ be a cuspidal representation of GL3(A)
such that ρv0 = St3. Set τ = MW (ρ, 2). We have sρ,D = 2 (since sρ,D always divides d and here
d = 2 and sρ,D 6= 1). So τ is D-compatible and τ ′ = G−1(τ) is a cuspidal representation. We
have τv0 = u(St3, 2). Let π be the representation St4 × St2 of GL6(Fv0). Then π is tempered.

We also have π < τv0 , so π is a subquotient of ν
1
2St3 × ν−

1
2St3. So the representation ξ

defined by ξv = τv if v 6= v0 and ξv0 = π is a constituent of ν
1
2 ρ× ν−

1
2 ρ, hence an automorphic

representation. All its local components are unitary. It is a D-compatible representation because
π is 2-compatible. Let us show that the representation ξ′ defined by ξ′v = |LJ|v(ξv) for all places
v of F is not automorphic. For every place v 6= v0, we have ξ′v = τ ′v. As τ ′ is cuspidal, it is
enough to show that ξ′ 6= τ ′ by Theorem 5.7 (b) applied to τ ′ and the cuspidal support of ξ′.
So this comes to show that |LJv0 |(u(St3, 2)) 6= |LJv0 |(π). Using the formulas we have for the
transfer (Proposition 3.7) we find |LJv0 |(u(St3, 2)) = u(St′1, 3) and |LJv0 |(π) = St′2 × St

′
1. If 12

is the trivial representation of GL2(Dv0), we have u(St′1, 3) = 12 × St′1 hence ξ′v0
6= τ ′v0

.
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6. L-functions and ε′-factors

In this Section we examine the local transfer of L-functions and ε′-factors. The results are
simple computations using [GJ] and [Ja] included here for the completeness.

Let F be again the non-Archimedean local field (of any characteristic) and D a division
algebra of dimension d2 over F . For all n, recall that Gn = GLn(F ) and G′

n = GLn(D).
Suppose the characteristic of the residual field of F is p and its cardinality is q. Let OF be

the ring of integers of F and πF be a uniformizer of F . Fix an additive character ψ of F trivial
on O and non trivial on π−1

F O. For irreducible representations π of Gn or G′
n, we adopt the

notation L(s, π) and ε′(s, π, ψ) for the L-function and the ε′-factor, as defined in [GJ].
In this Section we will specify ν, because confusion may appear. For all n ∈ N∗, νn (resp. ν′n)

will denote the absolute value of the determinant on Gn (resp. G′
n); 1n (resp. 1′n) will denote

the trivial representation of Gn (resp. G′
n); let Stn = Zu(11, n) (resp. St′n = T u(1′1, n)) be

the Steinberg representation of Gn (resp. G′
n). One has Stn = |i(1n)| and St′n = |i′(1′n)|.

The character of the Steinberg representation is constant on the set of elliptic elements, equal
to (−1)n−1. In particular, we have C(Std) = 1′1. This implies that s(1′1) = d (here s(1′1) is the
invariant defined in Section 2.4, nothing to do with the complex variable s). For all n ∈ N∗, one
has C(Stnd) = St′n.

We bring together facts from [GJ] in the following Theorem:

Theorem 6.1. (a) We have L(s, 1′1) = (1− q−s− d−1
2 )−1,

L(s, 1′n) =

n−1∏

j=0

L(s+ d
n− 1

2
− dj, 1′1) =

n−1∏

j=0

(1− q−s+dj− dn−1
2 )−1

and

ε′(s, 1′n, ψ) =
n−1∏

j=0

ε′(s+ d
n− 1

2
− dj, 1′1, ψ) =

dn−1∏

j=0

ε′(s+
dn− 1

2
− j, 11, ψ).

(b) We have L(St′n) = L(s+ dn−1
2 , 1′1) = (1− q−s− dn−1

2 )−1 and

ε′(s, St′n, ψ) =

n−1∏

j=0

ε′(s+ d
n− 1

2
− dj, 1′1, ψ) =

dn−1∏

j=0

ε′(s+
dn− 1

2
− j, 11, ψ).

(c) If ρ′ is a cuspidal representation of G′
x, then L(s, ρ′) = 1 unless x = 1 and

ρ′ is an unramified character of D×. If x = 1 and ρ′ is an unramified character of

D×, then ρ′ = ν′t1 for some t ∈ C and we have L(s, ρ′) = (1− q−s−t− d−1
2 )−1.

(d) Let σ′ = T (ρ′, k) be an essentially square integrable representation of G′
xk

where ρ′ is a cuspidal representation of G′
x. Then L(s, σ′) = L(s, ρ′).

In particular, L(s, σ′) = 1 unless x = 1 and ρ′ is an unramified character of D×.
If x = 1 and ρ′ is an unramified character of D× then ρ′ = ν′t1 for some t ∈ C and

then σ′ = ν
′t+d n−1

2
n St′n. We have L(s, σ′) = (1− q−s−t− d−1

2 )−1 in this case.
We have, in general,

ε′(s, σ′, ψ) =

k−1∏

j=0

ε′(s+ js(σ′), ρ′, ψ)

(in this formula, s(σ′) is the invariant defined in Section 2.4).
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(e) Let σ′
i ∈ D

′u
ni

, i ∈ {1, 2, ..., k},
∑k

i=1 ni = n. Let a1 ≥ a2 ≥ ... ≥ ak be real

numbers. Set S′ = ×k
i=1ν

′ai
ni
σ′

i and π′ = Lg(S′).
Then

L(s, π′) =

k∏

i=1

L(s, σ′
i)

and

ε′(s, π′, ψ) =

k∏

i=1

ε′(s, σ′
i, ψ).

In particular, if ρ′1, ρ
′
2, ..., ρ

′
p is the cuspidal support of π′, then

ε′(s, π′, ψ) =

p∏

i=1

ε′(s, ρ′i, ψ).

Proof. (a) This is shown in the Proposition 6.11 in [GJ], where the formula is slightly wrong.
The reader may verify that the good formula for the L-function in [GJ], Proposition 6.9 is with
(d− 1) instead of (n− 1), as indicated by the proof of this Proposition. Then this typo error is
propagated to [GJ], Proposition 6.9, where the reader may easily verify that the right formula
obtained, after correcting the Proposition 6.9, is our formula. For the ε′-factor our formula fits
the [GJ] one.

(b) The ε′-factor of St′n equals the ε′-factor of 1′n as they are both sub-quotients of the same
induced representation ([GJ], Corollary 3.6).

Let us check the L-function. For the particular caseD = F , the computation of the L-function
is Theorem 7.11 (4), [GJ]. Let us give a general (different) proof by induction on n.

For n = 1 we have St′n = St′1 = 1′1 and the result is implied by (a).
For any n > 1, the representation St′n is a subquotient of the induced representation from

ν
′− d(n−1)

2
1 1′1 ⊗ ν

′ d
2

n−1St
′
n−1. We know that

L(ν
′ d(n−1)

2
1 1′1) = (1− q−s− d−1

2 + d(n−1)
2 )−1

and, by the induction hypothesis, we have

L(s, ν
′ d
2

n−1St
′
n−1) = (1− q−s− dn−1

2 )−1.

By [GJ], Corollary 3.6, L(s, St′n) is equal to one of these two functions or to their product.
But, by [GJ], Proposition 1.3 and Theorem 3.3 (1) and (2), the poles of L(s, St′n) cannot be

greater than d(n−1)
2 − dn−1

2 = − d−1
2 , so there is no positive pole (this trick comes from the

original proof: an L-function of a square integrable representation cannot have a pole with a

positive real part). So L(s, St′n) = L(s, ν
′ d
2

n−1St
′
n−1) = (1 − q−s− dn−1

2 )−1.
(c) The first assertion is a consequence of Lemma 4.1, Proposition 4.4 and Proposition 5.11 of

[GJ] (prop 5.11 is not enough, since the authors assume m > 1 at the beginning of the Section
5). The second assertion is a direct consequence of the part (a) of the present Theorem.

(d) For the particular case of Gn this is explained after Proposition 3.1.3 of [Ja]. The same
proof applies to G′

n, using the calculation for St′1, i.e. the part (b).
(e) This is proven in [Ja] for Gn, but the same proof applies to G′

n. �

Theorem 6.2. Let C be the local Jacquet-Langlands correspondence between Gnd

and G′
n. Then, for all σ ∈ Du

nd, we have L(s, σ) = L(s,C(σ)) and ε′(s, σ, ψ) =
ε′(s,C(σ), ψ).
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Proof. Let us show it first for the Steinberg representation and its twists. We have C(Stnd) =
St′n. Theorem 6.1 (a) and (b) implies the statement in this case. This implies then the statement
for all the twist of Stnd with characters.

Lemma 6.3. For all σ ∈ Du
nd, we have ε′(s, σ, ψ) = ε′(s,C(σ), ψ).

Proof. The proof is standard, using an easy global correspondence (true in all characteristics)
and the previous calculus for the Steinberg representations. See for example [Ba2], page 741 :
Les facteurs ε′. �

Let us complete the proof of the Theorem with the calculation of L-functions. If σ ∈ Du
nd or

D
′u
n which is not a twist of the Steinberg representation, then Theorem 6.1 d) implies that its

L-function is trivial and so its ε′-factor is equal to its ε-factor. As C(σ) is a twist of the Steinberg
representation if and only if σ itself is a twist of the Steinberg representation, the statement has
been now proven for all σ ∈ Du

nd. �

Corollary 6.4. Let σ′
i ∈ D

′u
ni

, i ∈ {1, 2, ..., k},
∑k

i=1 ni = n. Let a1 ≥ a2 ≥ ... ≥ ak

be real numbers. Set S′ = ×k
i=1ν

′ai
ni
σ′

i. Let C−1(σ′
i) = σi ∈ Du

dni
and set S =

×k
i=1ν

ai

nid
σi. Then L(s, Lg(S′)) = L(s, Lg(S)) and ε′(s, Lg(S′), ψ) = ε′(s, Lg(S), ψ).

Proof. This is implied by the previous Theorem and the part (e) of Theorem 6.1. �

Corollary 6.5. Assume the characteristic of F is zero. If u ∈ Irru
nd is such that

LJn(u) 6= 0. Then ε′(s, u, ψ) = ε′(s, |LJ|n(u), ψ).

Proof. It is enough to prove it for u = u(σ, k), σ ∈ Du
p , k, p ∈ N∗, such that |LJpk|(u) = u′ 6=

0. If we are in the case (a) of the Proposition 3.2, then u and u′ are like in the Corollary 6.4. In
particular, their L functions are equal too. If we are in the case (b) of the Proposition 3.2, then
|i(u)| and |i′(u′)| are like in the Corollary 6.4. Now, the ε′-factor depends only on the cuspidal
support (Theorem 6.1 e)). So the ε′-factor is the same for an irreducible representation and its
dual. But in general we do not get equality for the L-functions in this case. �
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[Vi] M.-F. Vignéras, Correspondence betwen GLn and a division algebra, preprint.

[Ze] A. Zelevinsky, Induced representations of reductive p-adic groups II, Ann. Scient. Éc.
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Appendix A. The Residual Spectrum of GLn over a Division Algebra

by Neven GRBAC

A.1. Introduction. In this Appendix the residual spectrum of GLn over a division algebra is
decomposed. The approach is the Langlands spectral theory as explained in [MW3] and [La2].
However, the results in the paper, obtained using the Arthur trace formula of [AC], classify the
entire discrete spectrum of GLn over a division algebra. Hence, the problem reduces to distin-
guishing the residual representations in the discrete spectrum. This simplifies the application of
the Langlands spectral theory since it reduces the region of the possible poles of the Eisenstein
series to a cone well inside the positive Weyl chamber. Having in mind the classification of the
discrete spectrum and the multiplicity one Theorem, we obtain the classification of the cuspidal
spectrum as a consequence of the decomposition of the residual spectrum. In fact, it turns out
that the only cuspidal representations are the basic cuspidal ones.

The idea of writing this Appendix was born during our stay at the Erwin Schrödinger Institute,
Vienna in December 2006 and February 2007. I would like to thank Joachim Schwermer for his
kind invitation. My gratitude goes to Goran Muić for many useful conversations and constant
help. I am grateful to Colette Mœglin for sharing her insight and advices on the normalization
of the standard intertwining operators. Also, I would like to thank Marko Tadić for the support
and interest in my work. I thank Ioan Badulescu for explaining his results and including this
Appendix to the paper. And finally, I would like to thank my wife Tiki for bringing so much joy
into my life.

A.2. Normalization of intertwining operators. Let F be an algebraic number field (a global
field of characteristic zero) andD a central division algebra of dimension d2 over F . Let Fv denote
the completion of F at a place v and A the ring of adèles of F . We use the global notation of
Sections 4 and 5. Let G′

r be the inner form, defined via D, of the split general linear group
Grd = GLrd. Let V be the finite set of places where D is non–split. As in the paper, we assume
that D splits at all infinite places, i.e. V consists only of finite places.

Recall from Section 5.2 the description of the basic cuspidal representations of G′
r(A). Let

ρ be a cuspidal representation of Gq(A) and sρ,D the smallest positive integer such that the
discrete spectrum representation σ ∼= MW (ρ, sρ,D) of Gqsρ,D

(A) is compatible at every place.
Then,

σ′ ∼= G−1(σ) ∼= ⊗v|LJ|v(σv)

is a basic cuspidal representation of G′
r(A). Observe that σ′

v
∼= σv at all places v 6∈ V . The goal

of this Appendix is to show that all cuspidal representations of G′
r(A) are obtained in this way.

In fact, we show that all the remaining representations in the discrete spectrum belong to the
residual spectrum and apply the multiplicity one Theorem.

In the sequel we always assume that the cuspidal representations are such that the poles of the
attached Eisenstein series and L–functions are real. There is no loss in generality since this can
be achieved simply twisting by the imaginary power of the absolute value of the determinant.
Hence, our assumption is just a convenient choice of the coordinates. Furthermore, as in the
paper, along with the notation × for the parabolic induction, we use the notation indG

M when
we want to point out the Levi factor M of the standard parabolic subgroup in G.

Consider first a cuspidal representation σ′ ⊗ σ′ of the Levi factor L′(A) ∼= G′
r(A) ×G′

r(A) of
a maximal proper standard parabolic subgroup in G′

2r(A), where σ′ is basic cuspidal as above.
Let s = (s1, s2) ∈ aL′,C and w the unique nontrivial Weyl group element such that wL′w−1 = L′.
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Lemma A.1. Let v 6∈ V be a split place. The normalizing factor for the standard
intertwining operator

A((s1, s2), σv ⊗ σv, w)

acting on the induced representation

ind
G2rd(Fv)
Grd(Fv)×Grd(Fv) (νs1σv ⊗ ν

s2σv)

is given by
(A.1)

r((s1, s2), σv ⊗ σv, w) =

∏sρ,D

j=1 L(s1 − s2 − sρ,D + j, ρv × ρ̃v)
∏sρ,D

j=1 L(s1 − s2 + j, ρv × ρ̃v) · ε(s1 − s2, σv × σ̃v, ψv)
,

where the L–functions and ε–factors are the local Rankin–Selberg ones of pairs.
Then, the normalized intertwining operator N((s1, s2), σv ⊗ σv, w), defined by

A((s1, s2), σv ⊗ σv, w) = r((s1, s2), σv ⊗ σv, w)N((s1, s2), σv ⊗ σv, w),

is holomorphic and non–vanishing for Re(s1 − s2) ≥ sρ,D.

Proof. This Lemma is a weaker form of Lemma I.10 of [MW2] where the holomorphy
and non–vanishing is proved in a certain region slightly bigger than the closure of
the positive Weyl chamber for any unitary representation. We just show that the
normalizing factor defined in [MW2] is the same as here.

By [MW2],

(A.2) r((s1, s2), σv ⊗ σv, w) =
L(s1 − s2, σv × σ̃v)

L(1 + s1 − s2, σv × σ̃v)ε(s1 − s2, σv × σ̃v, ψv)
.

But, σv is a quotient of the induced representation

ν
sρ,D−1

2 ρv × ν
sρ,D−3

2 ρv × . . .× ν
−

sρ,D−1

2 ρv,

where ρv, being unitary and generic as the local component at v of a cuspidal
representation ρ, is a fully induced representation of the form

νe1,vδ1,v × ν
e2,vδ2,v × . . .× ν

emv,vδmv,v

with ei,v real, |ei,v| < 1/2 and δi,v ∈ Du. We may arrange the indices in such a
way that e1,v ≥ e2,v ≥ . . . ≥ emv,v.

This shows that σv is the Langlands quotient and we can apply the formulas for
the Rankin–Selberg L–function and ε–factor of the Langlands quotient. Having in
mind that ρv is fully induced, we obtain
(A.3)

L(s, σv×σ̃v) = L(s, ρv×ρ̃v)
sρ,D

sρ,D−1∏

j=1

L(s+sρ,D−j, ρv×ρ̃v)
jL(s−sρ,D+j, ρv×ρ̃v)

j

and the ε–factor is of the same form, but since it has no zeroes nor poles we do
not need to refine its form. Inserting the formula for the L–function into equation
(A.2) gives after cancellation the normalizing factor (A.1). �

Lemma A.2. Let v ∈ V be a non–split place. Then the standard intertwining
operator

A((s1, s2), σ
′
v ⊗ σ

′
v, w)

is holomorphic and non–vanishing for Re(s1 − s2) ≥ sρ,D.
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Proof. Sections 3.2, 3.3 and 3.5 give rather precise form of the local component σ′
v

of a basic cuspidal representation of GL′
r(A). By Section 3.5, it is a fully induced

representation of the form

σ′
v
∼= νe1,v |LJ|v (u(δ1,v, sρ,D))× . . .× νemv ,v |LJ|v (u(δmv,v, sρ,D)) ,

where ei,v are real, |ei,v| < 1/2 and δi,v ∈ Du. More precisely, ei,v and δi,v are
defined by

ρv
∼= νe1,vδ1,v × . . .× ν

emv,vδmv ,v.

The precise formula for |LJ|v (u(δi,v, sρ,D)) is given in Proposition 3.7 and equation
3.9. If δi,v is compatible, then

|LJ|v (u(δi,v, sρ,D)) = u(δ′i,v, sρ,D),

and the highest exponent of ν appearing in the corresponding standard module is
sρ,D−1

2 . If δi,v is not compatible, then, by the choice of sρ,D, we have

|LJ|v (u(δi,v, sρ,D)) =
b∏

i=1

νi− b+1
2 u′(δ′i,+,v, sρ,D/s(δi,v))×

s(δi,v)−b∏

j=1

νj−
s(δi,v )−b+1

2 u′(δ′i,−,v, sρ,D/s(δi,v)),

where δ′i,±,v ∈ D
′u are certain unitary discrete series representations. See Section

3.3 for the unexplained notation. In this case the highest exponent of ν appearing
among the standard modules is either

b− 1

2
+ s(δi,v)

sρ,D/s(δi,v)− 1

2
<
sρ,D − 1

2
or

s(δi,v)− b− 1

2
+ s(δi,v)

sρ,D/s(δi,v)− 1

2
≤
sρ,D − 1

2
,

where the upper bounds are obtained using the fact that 0 ≤ b < s(δi,v) (see Section
3.3).

The description of σ′
v shows that the induced representation

νs1σ′
v × ν

s2σ′
v

is a product of possibly twisted representations of the form u(·) and u′(·) which
are the Langlands quotients of the standard module induced from a discrete series
representation. In other words there is a unitary discrete series representation δ′v
of the appropriate Levi factor L′

0(Fv) of G′
2r(Fv) and s ∈ aL′

0,C such that, by the
Langlands classification, the standard intertwining operator

A(s, δ′v, w0) : ind
G′

2r(kv)

L′

0(kv) (s, δ′v)→ ind
G′

2r(kv)

w0(L′

0)(kv)(w0(s), w0(δ
′
v))

is holomorphic and its image is the induced representation νs1σ′
v × ν

s2σ′
v. There-

fore, by the decomposition property of the intertwining operators according to the
reduced decomposition of the Weyl group element ww0, the standard intertwining
operator A((s1, s2), σ

′
v ⊗ σ

′
v, w) fits into the commutative diagram

ind
G′

2r(kv)

L′

0(kv) (s, δ′v)
A(s,δ′

v ,w0)
−−−−−−−−−−−−→ νs1σ′

v × ν
s2σ′

v

A(s,δ′

v,ww0) ↓ ↓ A((s1,s2),σ
′

v⊗σ′

v ,w)

ind
G′

2r(kv)

ww0(L′

0)(kv)(ww0(s), ww0(δ
′
v)) ←↩ νs2σ′

v × ν
s1σ′

v,

where the upper horizontal arrow is surjective. Observe that the right vertical arrow
is in fact just the restriction of the intertwining operator A(w0(s), w0(δ

′
v), w) to the
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subrepresentation νs1σ′
v × ν

s2σ′
v. This follows by the analytic continuation from

the fact that the integrals defining the two intertwining operators are over the same
unipotent subgroups and hence agree in the domain of convergence. The diagram
implies the Lemma if we prove that, for Re(s1 − s2) ≥ sρ,D, the left vertical arrow
is holomorphic and non–vanishing.

By the Langlands classification it suffices to check that the real parts of all the
differences between exponents of ν appearing in the parts of I(s, δ′v) corresponding
to νs1σ′

v and νs2σ′
v are strictly positive. However, we already checked that the

highest exponent appearing among the standard modules in the expressions for

|LJ|v(u(δi,v, sρ,D)) is at most
sρ,D−1

2 . Therefore, in the worst case we obtain the
difference

Re(s1 − s2) + ei,v − ej,v − 2 ·
sρ,D − 1

2
> 0

since ei,v − ej,v > −1. �

Remark A.3. The proof of the previous Lemma follows the idea of the proof of
Lemma I.8 of [MW2]. Since the results of this paper based on the trace formula
reduce the question of determining the residual spectrum to the point Re(s1− s2) =
sρ,D and give bounds on the exponents of the local component at a non–split place
of a cuspidal representation of an inner form, we do not require the full power of
Lemma I.8, and hence the proof becomes simpler. However, its analogue for inner
forms could have been obtained using first the transfer of the Plancherel measure
for discrete series representations (see [MS]) to define the normalization using L–
functions for the split group. For the classical hermitian quaternionic groups we
used this technique to obtain the parts of the residual spectra in [Gr1], [Gr2], [Gr3],
[Gr4].

Corollary A.4. The normalizing factor for the global standard intertwining oper-
ator

A((s1, s2), σ
′ ⊗ σ′, w)

acting on the induced representation

ind
G′

2r(A)

L′(A) (νs1σ′ ⊗ νs2σ′)

is given by

(A.4) r((s1, s2), σ
′ ⊗ σ′, w) =

∏sρ,D

j=1 L
V (s1 − s2 − sρ,D + j, ρ× ρ̃)

∏sρ,D

j=1 L
V (s1 − s2 + j, ρ× ρ̃) · εV (s1 − s2, σ′ × σ̃′)

,

where the L–functions and ε–factors are the partial Rankin–Selberg ones with respect
to the finite set V of non–split places of D. Then, the normalized intertwining
operator N((s1, s2), σ

′ ⊗ σ′, w) defined by

A((s1, s2), σ
′ ⊗ σ′, w) = r((s1, s2), σ

′ ⊗ σ′, w)N((s1, s2), σ
′ ⊗ σ′, w)

is holomorphic and non–vanishing for Re(s1−s2) ≥ sρ,D. Moreover, the only pole of
the standard intertwining operator A((s1, s2), σ

′⊗σ′, w) in the region Re(s1−s2) ≥
sρ,D is at s1 − s2 = sρ,D and it is simple.

Proof. The global normalizing factor is obtained as a product over all places of the
local ones. Note that, for our purposes, at a non–split places the normalizing factor
is taken to be trivial. Then the holomorphy and non–vanishing of the normalized
intertwining operator in the region Re(s1−s2) ≥ sρ,D follows from the local results
of the previous two Lemmas.
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The analytic properties of the Rankin–Selberg L–functions are well–known. The
global Rankin–Selberg L–function L(z, ρ × ρ̃) has the only poles at z = 0 and
z = 1 and they are both simple. It has no zeroes for Re(z) ≥ 1. Writing ρv at
a non–split place v ∈ V as a fully induced representation from the discrete series
representation as in the proof of the previous Lemma shows that the local Rankin–
Selberg L–function equals

L(z, ρv × ρ̃v) =

mv∏

i,j=1

L(z + ei,v − ej,v, δi,v × δ̃j,v).

Since the local L–functions attached to unitary discrete series representations are
holomorphic in the strict right half–plane, and ei,v − ej,v > −1, the L–function
L(z, ρv × ρ̃v) is holomorphic for Re(z) ≥ 1. Local L–functions have no zeroes.

Therefore, the partial L–function LV (z, ρ × ρ̃) is holomorphic for Re(z) ≥ 1
except for a simple pole at z = 1. It has no zeroes for Re(z) ≥ 1. The ε–
factor has neither zeroes nor poles. Since for Re(s1 − s2) ≥ sρ,D real parts of all
the arguments of the L–functions in the global normalizing factor (A.4), except
Re(s1 − s2 − sρ,D + 1) ≥ 1, are strictly greater than one, it has no zeroes and the
only pole occurs for s1 − s2 = sρ,D. Since the normalized intertwining operator is
holomorphic and non–vanishing for Re(s1 − s2) ≥ sρ,D, it turns out that the only
pole in the region Re(s1 − s2) ≥ sρ,D of the global standard intertwining operator
is at s1 − s2 = sρ,D and it is simple. �

A.3. Poles of Eisenstein series. Let σ′ be as above and k > 1 an integer. Let π′ ∼= σ′⊗. . .⊗σ′

be a cuspidal representation of the Levi factor M ′(A) ∼= G′
r(A) × . . . × G′

r(A) of a standard
parabolic subgroup of G′

kr(A), with k copies of G′
r(A) and σ′ in the products. We fix an

isomorphism a∗M ′,C
∼= Ck using the absolute value of the reduced norm of the determinant at

each copy of G′
r and denote its elements by s = (s1, s2, . . . , sk) ∈ a∗M ′,C. By the results of the

paper, the study of the residual spectrum is reduced to the point

s0 =

(
sρ,D(k − 1)

2
,
sρ,D(k − 3)

2
, . . . ,−

sρ,D(k − 1)

2

)
,

i.e. we have to prove that the unique discrete series constituent of the induced representation

ind
G′

kr(A)

M ′(A) (s0, π
′) = ν

sρ,D(k−1)

2 σ′ × ν
sρ,D(k−3)

2 σ′ × . . .× ν−
sρ,D(k−1)

2 σ′,

which is denoted in the paper by MW ′(σ′, k), is in the residual spectrum. Of course, the case
k = 1 is excluded since it gives just the (basic) cuspidal representation σ′.

Lemma A.5. Let

E(s, g;π′, fs)

be the Eisenstein series attached to a ’good’ (in the sense of Sections II.1.1 and
II.1.2 of [MW3]) Section fs of the above induced representation from a cuspidal
representation π′. Then, its only pole in the region Re(si − si+1) ≥ sρ,D, for
i = 1, . . . , k − 1, is at s0 and it is simple. The constant term map gives rise to
an isomorphism between the space of automorphic forms A(σ′, k) spanned by the
iterated residue at s0 of the Eisenstein series and the irreducible image MW ′(σ′, k)
of the normalized intertwining operator

N(s0, π
′, wl),

where wl is the longest among Weyl group elements w such that wM ′w−1 ∼= M ′.
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Proof. By the general theory of the Eisenstein series explained in Section V.3.16
of [MW3], its poles coincide with the poles of its constant term along the standard
parabolic subgroup with the Levi factor M ′ which equals the sum of the standard
intertwining operators

E0(s, g;π
′, fs) =

∑

w∈W (M ′)

A(s, π′, w)fs(g),

where W (M ′) is the set of the Weyl group elements such that wM ′w−1 ∼= M ′.
Hence, the poles of the Eisenstein series are determined by the poles of the standard
intertwining operators.

By Corollary A.4, in the region Re(si−si+1) ≥ sρ,D, for i = 1, . . . , k−1, the only
possibility for the pole is at s0. However, it indeed occurs only for the intertwining
operators corresponding to the Weyl group element inverting the order of any two
successive indices, i.e. the longest element wl in W (M ′). Since the iterated pole is
simple in every iteration, the iterated residue of the constant term, up to a non–zero
constant, equals the normalized intertwining operator

N(s0, π
′, wl),

as claimed.
The irreducibility of its image follows from the uniqueness of the discrete series

constituent in the considered induced representation obtained in Proposition 5.6(a).
The square integrability follows from the Langlands criterion (Section I.4.11 of
[MW3]). �

Remark A.6. The proof of the Lemma shows that MW ′(σ′, k), for k > 1, is at
every place an irreducible quotient of the corresponding induced representation.

Theorem A.7. The residual spectrum L2
res(G

′
n) of an inner form G′

n(A) of the
split general linear group decomposes into a Hilbert space direct sum

L2
res(G

′
n) ∼=

⊕

r|n
1 ≤ r < n

⊕

σ′ ∈ DS′
r

(basic) cuspidal

A(σ′, n/r),

where A(σ′, n/r) ∼= MW ′(σ′, n/r) are the spaces of automorphic forms obtained in
the previous Lemma.

Proof. The results of Section 5 classify the discrete spectrum DS′
n of the inner

form G′
n(A) using the trace formula. The basic cuspidal representations are proved

to be cuspidal. Hence, it remains to show that the representations of the form
MW ′(σ′, k), for k > 1 and a basic cuspidal representation σ′, are in the residual
spectrum. However, this is precisely the content of the previous Lemma A.5. �

Corollary A.8. The cuspidal spectrum of an inner form G′
n(A) consists of the

basic cuspidal representations.

Proof. Theorem A.7 shows that in the discrete spectrum DS′
n of an inner form

G′
n(A) obtained in Section 5 all the representations not being basic cuspidal belong

to the residual spectrum. Hence, the multiplicity one of Theorem 5.1 for inner
forms implies the Corollary. �
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