V. A. Bokil
!Department of Mathematics, Oregon State University
Corvallis, OR 97331, USA

In Collaboration with
V. Gyrya?, N. L. Gibson!, and D. A. McGregor3
2Los Alamos National Laboratory, T-5, Applied Mathematics and Plasma Physics
3Sandia National Laboratory, Computational Multiphysics

ME2: Advanced Numerical Methods: Recent Developments, Analysis and Applications
NMPDEs: Institut Henri Poincaré

October 21, 2016
RGO 2  ETD-MFDColdPlasma October 21,2016 1 /27



e Let Q C R? be a bounded domain, d =2,3. Let T > 0. On Q x (0, T]

D:=curl H (Amperé's Law)
B; = —curl E (Faraday's Law)
V-D=0 (Poisson/Gauss Law)
V-B=0 (Gauss Law)
E = Electric field vector D = Electric flux density
H = Magnetic field vector B = Magnetic flux density

e On 002 x [0, T]
E x n =0, (Perfect Electric Conducting Condition)

with n the unit outward normal vector to 9f2.
e Appropriate initial conditions.



@ Maxwell’s equations are completed by constitutive laws that describe
the response of the medium to the electromagnetic field.

o Linear Dispersive Material: Characterized by physical dispersion:
frequency dependent speed of propagation. Modeled by the
macroscopic polarization P.

D =¢y,E+P

B = poH
P = Polarization €0 = vacuum electric permittivity
€ = Relative permittivity up = vacuum magnetic permeability



@ We can define P in terms of a convolution [Taflove & Hagness 2000]

t

P(x,t) = g« E(x,t) = /0 g(x,t —s;q)E(x,s)ds,

where g is the dielectric response function (DRF).



@ We can define P in terms of a convolution [Taflove & Hagness 2000]

t

P(x,t) = g« E(x,t) = /0 g(x,t —s;q)E(x,s)ds,

where g is the dielectric response function (DRF).

@ For most materials of interest, we can replace the convolution by a
system of ODEs describing the evolution of the polarization forced by
the electric field (Auxiliary Differential Equation (ADE)).



@ We can define P in terms of a convolution [Taflove & Hagness 2000]

t

P(x,t) = g« E(x,t) = /0 g(x,t —s;q)E(x,s)ds,

where g is the dielectric response function (DRF).

@ For most materials of interest, we can replace the convolution by a
system of ODEs describing the evolution of the polarization forced by
the electric field (Auxiliary Differential Equation (ADE)).

@ The model for EM wave propagation in the material is given by
Maxwell's equations along with ODEs for the dynamic evolution of P.



@ We can define P in terms of a convolution [Taflove & Hagness 2000]

t

P(x,t) = g« E(x,t) = /0 g(x,t —s;q)E(x,s)ds,

where g is the dielectric response function (DRF).

@ For most materials of interest, we can replace the convolution by a
system of ODEs describing the evolution of the polarization forced by
the electric field (Auxiliary Differential Equation (ADE)).

@ The model for EM wave propagation in the material is given by
Maxwell's equations along with ODEs for the dynamic evolution of P.
@ To obtain a numerical method for simulating wave propagation in

these materials we have to simultaneously discretize the hybrid
PDE-ODE system.
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Cold Plasma (CP) model — special case of the Lorentz model for partially
ionized gases without magnetization effects.

e Define J = P;.

e First order formulation on Q C R?. Eliminate D.

E; = —ealJ + cg curl B
B, = —curl E in Qx (0, T]
J; = eong — Wicrd

Exn=0 on 002 x (0, T]

J — polarization current density;
co — the speed of light;

wicf — ion collision frequency;
wp — plasma frequency;

Subject to appropriate initial conditions.



Second order formulation (eliminating B)

in  Qx(0,T]

Ev+eg'de = —cgcurlcurlE
J; —wicfd + Eong

Exn=0 on 092 x (0, T]

E — electric field intensity; J — polarization current density;

cp — the speed of light; €9 — the electric permittivity of free space;
wicf — ion collision frequency; wp — plasma frequency;

n — unit outward normal to the boundary Q c R2.

Subject to appropriate initial conditions.

MFD discretization will be based on this formulation.
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@ [Kane Yee-1966]: Yee or FDTD method for time domain ME. Second
order accurate method in space/time. Non-dissipative, but dispersive.

@ Electric and magnetic fields staggered in time and space.

o Extended to polarization models by simultaneously discretizing ODE

for P along with ME. Extended Yee scheme is dissipative (energy
decay) and dispersive, ([Taflove & Hagness 200]).

o Nédélec 1980: Mixed FEM for ME. ([Peter Monk], [Jichun Li])

@ Mimetic Finite Differences: Generalization of Yee scheme to
polygonal, polyhedral meshes. ([Hyman & Shashkov]|, [Beirao da
Veiga, Lipnikov and Manzini]).



Goal: Construct a mimetic finite difference method (MFD) for the cold
plasma model that has better dispersion properties than the Yee/FDTD
method using the MFD methodology.

© Build Mimetic Finite Difference (MFD) discretization in space —
parameterized family of methods

Exponential time difference discretization

family.

M-adaptation: Pick the member of parameterized family with lowest

(2]
© Compute Dispersion relation (in general form) for parameterized
(%]
numerical dispersion error.

(5 ]

Numerical tests.



Weak formulation: find E,J € £ := Hy(curl, Q) s.t. for any ¢, € &

{ [Eet, @ + G [curl Eycurl @] + e [, 4l =0,
[Jta 'lp]g + Wicf [Jt7 "/’]5 - EOCUg [Jt7 "/’]g = 07

where

[J,E]. ::/J-EdQ [J,E]F::/JEdQ.
Q Q



Weak formulation: find E,J € £ := Hy(curl, Q) s.t. for any ¢, € &
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Weak formulation: find E,J € £ := Hy(curl, Q) s.t. for any ¢, € &

{ [Eet, @ + G [curl Eycurl @] + e [, 4l =0,
[Jta 'lp]g + Wicf [Jt7 "/’]5 - EOCUg [Jt7 "/’]5 = 07

where
[J,E]5::/J-EdQ [J,E]F::/JEdQ.
Q Q

Semi-discrete formulation, Finite Element viewpoint on MFD:

[EL, h]gh + ¢ [curl” EP, curl” ¢h]fh +et [I0, ¢h]8h =0,
[J?’ wh]gh + Wicf [Jﬁawh]gh - 60“% [J?7wh]g =0

h

Need to define:
e Fp with [-,-]7,,
e &, with [-,]g, and
o curtly : En — Fh.
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o Standard assembly of F}, with [-, -] 7, from the local Fg with [, ] 7,
on each element E.

o Interpolation operator Z7E
Degrees of Freedom:

1
T7E[p] = ] / p dE — constant on E.
JE

o Inner product: [I7¢[p],T7F [q]]FE = |E|Z7€[p]T7¢[q].
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e Interpolation operator Z%#
o Degrees of Freedom:

1
T%[p] = el /p T de  — constant on e.
Je

Te — UNit tangent to e.

S J3’E3$e—>
L, E4 .B T_JZ) E,
€ e




@ MFD Construction is non-unique and leads to parameterized family of
methods with equivalent properties such as base convergence rate.
We obtain a matrix with 3 free parameters wy, wo, ws.

@ Non-standard Mass Lumping: Instead of computing Mg, associated
with the inner product [-,-]¢, we will compute its inverse W¢, ~ MgEl

14 4wy 4wy 1—4w —4w,

We — 1 4wy 1+ dws —Aw, 1—4uws3
& = 4/\x Ay 1— 4w —4wy 144w 4wy
—4wy 1 —4ws 4wy 14 4ws

e Eg wi=w;3= %, wy = 0 gives the Yee-FDTD scheme.

@ M-adaptation — optimize the choice of free parameters w1, wo, w3 for
selected criteria — reduction of numerical dispersion.



1, E4A B " L.E,
e e
-4 Lo
4 B
/ curlJ dE = J T de.
E
<1/crIJdE> Z||< /J de>
u T
E] £ 2 e
o curlg : & — FE
1

[Ax Ay —Ax —Ay].

curlg =

Ax Ny
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@ Dispersion reduction will be achieved by cancelling temporal and
spatial errors at the leading orders (by a proper choice of the MFD
parameters).

@ Standard leapfrog discretization DOES NOT allow for dispersion
reduction beyond second order for linear dispersive media. However,
for non-dispersive materials it does.

@ Thus, the correct choice of time discretization is crucial for
M-adaptation. We use Exponential time differences (ETD as our time
discretization.



Ct:
(e=*u)

@ For a first-order scalar ODE:

@ Integrating factor e~
—ct
=€ “(ur—cu).
u=cu+ F(u,t)
the exponential time difference scheme yields

n+l _ ectun + C—l(ecAt _ 1)Fn+1/2‘

u
@ For a vector ODE with invertible X
u=Xu+F(u,t)
the exponential time difference scheme yields

umtl = KOty 4 yETH/2, Y = x-1 (exm _ ]I) .



@ Original first-order formulation:

E: = —g' +cgeurl B
J; = eong —Wicrd in Qx (0, T]
B = —curlE
o Matrix form:
u; = Xu+F .
{ B, = —curl E in Qx (0, T]
o1 2

u:[E] X:[ (2) € ] F:[cocurlB]

J fowp  —Wicf 0

@ Time discretization:
u™l = eXAtun_'_YFn+1/2
Brti/2 = Bn=1/2 _ Atcurl E



@ Eliminate B by considering u”*! — u™:

1 1
(un+1 _ u") — eXAt(un _ un—l) + Y(Fn+§ _ Fn_f)
Brtl/2 _ =12 —  _Atcurl E"

. l cgcurl(B”Jr% _ B"_%) _ [ ¢ Ateurl curl E" ]
0 0 '

@ Second order formulation:

1 4 E"t! xaey | E" ] xae [ ETY _
AtY (|:Jn+1}_(ﬂ+e ) Jn_+e Jnfl )*
5> [ curlcurl E" ]

=—-q 0

Yi=X" (54 -T).



o Dispersion relation — relation between the wave frequency w and the
wave number k for a plane wave

ei(k~x7wt)u0 — e"k'(xf£’ikvt)uO, k = ‘k|

—w
Wave speed ¢ := .

@ Symbols — generalized eigenvalues of the temporal and the spatial
operators for a plane wave eigenfunction e/(k*=wt)yg
Continuous symbols: 7 (w) and S(k).
Discrete symbols:  Ta¢(w) and Sp(k).

@ Dispersion relations using symbols:

T(w) = S(k) - fully continuous,
T(w) = Sh(k) - continuous in time, discrete in space,
Tarlw) = S(k) - discrete in time, continuous in space,

Tar(w) = Sp(k) - fully discrete,



o Discrete temporal symbol for ETD formulation:

1 . .
Tar(w) = Ey—l (e:Ath C (T4 A 4 e—lAtweAtX) _

A 2
— (—wT + iwX) + %(_m +iwX)? + O(AEY).
@ Discrete spatial symbol:

Sn(k) = — 2 trace(WeA,) =
4 ., [k o [k
:—ﬁsm2< 2X> (1+(1—4w3)sm2< 2X>>—

32¢2 o (kAXN .5 [ kyAy
AxAyw2 sin ( > ) sin 5 -
4c2 . k, A\ . ky A\
- A—}%sm2 (yTY> (1 + (1 — 4wy ) sin? ( y2 y)) .




@ Taylor expansion in h = dx, (yAy/dx):
Sp(k) = —(cok)2{1+
+ (M{—l cos*(6) + 2wy cos?(#) sin?(0) + —72(3‘2171) sin4(6)> k?h?+
+ O(h“)}.
@ Eliminate angular dependence through parameter choice:

_ Bwpy 41
w g
= { !

3wpy 41
3

Bwy—l _ .o 123w —1)
3 T w2 = 3 _
w3 =

@ Result:
Sp(k) = —(cok)2{1 +ywak2h? 4 (’)(h”')}.



@ Combining temporal and spatial symbols:
_ Eo _ h_2 2 4,4 4
(Tat(w) — Sh(k)P1) = (v° + 129wy g k* Py + O(h™).
Jo 12C0
@ Last parameter:
Wy = ——— = (1P +129w) =0 =

(Tad) - Sut9p0) | 50 | = 004t



Cold isotropic plasma with wp = 1 and wic.

Relative dispersion error:

vy=414"1 v= % Ax/Ay-const.

= =ET-Yee ppw=12
= ETMFD ppw=12
ET-Yee ppw=24

== == ETMFD ppw=24

/6

27/3

/2 qg10

0.5
Rl

100.05 1
\

/3

—==ETMFD 7 =4
——ETMFD 7 =1
----- ETMFD ~ = }

/6

S




Exact solution:

—k, cos(kex)sin(kyy)
ky sin(kyx) cos(kyy)

a + wicr) cos(bt) + bsin(bt
J(x,y,t) = eow?,( b2)+ (i +)w_ 7 ( )E(X,% t)

a+ ib = w — complex root of the disp. relation.
€o — the electric permittivity of free space;
wicf — ion collision frequency; w, — plasma frequency;

Relative L2 errors for ETM FD vs ET Yee:

E(x,y,t) = € cos(bt)

Relative L? error E
3




MFD discretization of Maxwell's equation in cold plasma.

Generalized mass lumping for efficiency of time integration on
rectangular meshes.

Using standard leapfrog time discretization does not allow to reduce
the numerical dispersion.

Exponential time differencing (integration factor) allows to perform
m-adaptation. Numerical dispersion reduced from 2nd to 4th order.

The choice of the parameters in the MFD mass matrix is the same as
in the vacuum = generalization.

FUTURE: Analyze divergence-free condition.
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