

UNIVERSITY OF SASKATCHEWAN Numerical Simulation Laboratory

Higher order operator splitting methods for the bidomain model

Jessica Cervi, Raymond J. Spiteri

Department of Mathematics and Statistics University of Saskatchewan

October 04, 2016

Outline

Operator Splitting Methods Lower Order OS Higher Order OS

イロト イ押ト イヨト イヨト

- ischaemic heart disease leading cause of death (7.4M)
- affects 1 in 4 adults in the U.S.
- \bullet >\$320B annually spent on treatment in the U.S.
- implicate abnormalities in electrical activity

- $\bullet\,$ Human heart has $\sim 10^{10}$ muscle cells.
- Cell has outside and inside, separated by membrane.
- Cell interiors connected via gap junctions.
- Bidomain model: homogenization of cardiac tissue.
- Multi-scale reaction-diffusion PDE system.

- Human heart has $\sim 10^{10}$ muscle cells.
- Cell has outside and inside, separated by membrane.
- Cell interiors connected via gap junctions.
- Bidomain model: homogenization of cardiac tissue.
- Multi-scale reaction-diffusion PDE system.

- $\bullet\,$ Human heart has $\sim 10^{10}$ muscle cells.
- Cell has outside and inside, separated by membrane.
- Cell interiors connected via gap junctions.
- Bidomain model: homogenization of cardiac tissue.
- Multi-scale reaction-diffusion PDE system.

- $\bullet\,$ Human heart has $\sim 10^{10}$ muscle cells.
- Cell has outside and inside, separated by membrane.
- Cell interiors connected via gap junctions.
- Bidomain model: homogenization of cardiac tissue.
- Multi-scale reaction-diffusion PDE system.

- $\bullet\,$ Human heart has $\sim 10^{10}$ muscle cells.
- Cell has outside and inside, separated by membrane.
- Cell interiors connected via gap junctions.
- Bidomain model: homogenization of cardiac tissue.
- Multi-scale reaction-diffusion PDE system.

- $\bullet\,$ Human heart has $\sim 10^{10}$ muscle cells.
- Cell has outside and inside, separated by membrane.
- Cell interiors connected via gap junctions.
- Bidomain model: homogenization of cardiac tissue.
- Multi-scale reaction-diffusion PDE system.

Cell Models

Cell models take the form

$$\begin{aligned} \frac{dv}{dt} &= -\frac{1}{C_m} \sum_{i=1}^{n_{ion}} I_i(t, v, \mathbf{c}, \mathbf{m}), \\ \frac{dc_j}{dt} &= g_j(t, c_j, \mathbf{m}, v), \qquad \qquad j = 1, 2, ..., n_c, \\ \frac{dm_k}{dt} &= \frac{m_{\infty,k} - m_k}{\tau_{m_k}}, \qquad \qquad k = 1, 2, ..., n_m. \end{aligned}$$

Cell Models

Cell models take the form

$$\begin{aligned} \frac{d\mathbf{v}}{dt} &= -\frac{1}{C_m} \sum_{i=1}^{n_{ion}} I_i(t, \mathbf{v}, \mathbf{c}, \mathbf{m}), \\ \frac{dc_j}{dt} &= g_j(t, c_j, \mathbf{m}, \mathbf{v}), \qquad \qquad j = 1, 2, \dots, n_c, \\ \frac{dm_k}{dt} &= \frac{m_{\infty,k} - m_k}{\tau_{m_k}}, \qquad \qquad k = 1, 2, \dots, n_m. \end{aligned}$$

Cell Models

Cell models take the form

$$\begin{aligned} \frac{dv}{dt} &= -\frac{1}{C_m} \sum_{i=1}^{n_{ion}} I_i(t, v, \mathbf{c}, \mathbf{m}), \\ \frac{dc_j}{dt} &= g_j(t, c_j, \mathbf{m}, v), \qquad \qquad j = 1, 2, ..., n_c, \\ \frac{dm_k}{dt} &= \frac{m_{\infty,k} - m_k}{\tau_{m_k}}, \qquad \qquad k = 1, 2, ..., n_m. \end{aligned}$$

Cell Models

Cell models take the form

$$\begin{aligned} \frac{dv}{dt} &= -\frac{1}{C_m} \sum_{i=1}^{n_{ion}} l_i(t, v, \mathbf{c}, \mathbf{m}), \\ \frac{dc_j}{dt} &= g_j(t, c_j, \mathbf{m}, v), \qquad \qquad j = 1, 2, ..., n_c, \\ \frac{dm_k}{dt} &= \frac{m_{\infty,k} - m_k}{\tau_{m_k}}, \qquad \qquad k = 1, 2, ..., n_m. \end{aligned}$$

Cell Models

Cell models take the form

$$\begin{aligned} \frac{dv}{dt} &= -\frac{1}{C_m} \sum_{i=1}^{n_{ion}} I_i(t, v, \mathbf{c}, \mathbf{m}), \\ \frac{dc_j}{dt} &= g_j(t, c_j, \mathbf{m}, v), \qquad \qquad j = 1, 2, ..., n_c, \\ \frac{dm_k}{dt} &= \frac{m_{\infty,k} - m_k}{\tau_{m_k}}, \qquad \qquad k = 1, 2, ..., n_m. \end{aligned}$$

$$m_{\infty,k} = m_{\infty,k}(v), \qquad \tau_{m_k} = \tau_{m_k}(v)$$

Cell Models

Cell models take the form

$$\begin{aligned} \frac{dv}{dt} &= -\frac{1}{C_m} \sum_{i=1}^{n_{ion}} I_i(t, v, \mathbf{c}, \mathbf{m}), \\ \frac{dc_j}{dt} &= g_j(t, c_j, \mathbf{m}, v), \qquad \qquad j = 1, 2, \dots, n_c, \\ \frac{dm_k}{dt} &= \frac{m_{\infty,k} - m_k}{\tau_{m_k}}, \qquad \qquad k = 1, 2, \dots, n_m. \end{aligned}$$

$$m_{\infty,k} = m_{\infty,k}(v), \qquad \tau_{m_k} = \tau_{m_k}(v)$$

Let

 $\mathbf{s} = (\mathbf{c}, \mathbf{m}).$

メロト メポト メラト メラト 一日

The Bidomain Model (Tung, 1978)

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \end{aligned}$$

$$0 = \hat{n} \cdot (\sigma_i \nabla v + \sigma_i \nabla u_e),$$

$$0 = \hat{n} \cdot (\sigma_e \nabla u_e),$$

and initial conditions.

メロト スピト 大陸ト 大陸ト 一陸

The Bidomain Model (Tung, 1978)

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \end{aligned}$$

$$0 = \hat{n} \cdot (\sigma_i \nabla \mathbf{v} + \sigma_i \nabla u_e), \\ 0 = \hat{n} \cdot (\sigma_e \nabla u_e),$$

and initial conditions.

The Bidomain Model (Tung, 1978)

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \end{aligned}$$

$$0 = \hat{n} \cdot (\sigma_i \nabla v + \sigma_i \nabla u_e), \\ 0 = \hat{n} \cdot (\sigma_e \nabla u_e),$$

and initial conditions.

イロト イヨト イヨト イヨト 二日

The Bidomain Model (Tung, 1978)

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla \mathbf{u}_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla \mathbf{u}_e), \\ \text{subject to} \end{aligned}$$

$$0 = \hat{n} \cdot (\sigma_i \nabla v + \sigma_i \nabla u_e),$$

$$0 = \hat{n} \cdot (\sigma_e \nabla u_e),$$

and initial conditions.

メロト スピト 大陸ト 大陸ト 一陸

The Bidomain Model (Tung, 1978)

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \end{aligned}$$

$$0 = \hat{n} \cdot (\sigma_i \nabla v + \sigma_i \nabla u_e), \\ 0 = \hat{n} \cdot (\sigma_e \nabla u_e),$$

and initial conditions.

The Bidomain Model (Tung, 1978)

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \\ 0 &= \hat{n} \cdot (\sigma_i \nabla \mathbf{v} + \sigma_i \nabla u_e), \\ 0 &= \hat{n} \cdot (\sigma_e \nabla u_e). \end{aligned}$$

and initial conditions.

- σ_i and σ_e are conductivity tensors.
- χ is the area of the cell membrane per unit volume.
- C_m is the cell membrane capacitance per unit area.

ロト (局) (日) (日) []

Monodomain Model

$$\frac{\partial \mathbf{s}}{\partial t} = \mathbf{f}(\mathbf{v}, \mathbf{s}), \frac{\partial \mathbf{v}}{\partial t} = \frac{\lambda}{1+\lambda} \frac{1}{\chi C_m} \nabla \cdot \sigma_i \nabla \mathbf{v} - \frac{1}{C_m} (\mathbf{s}, \mathbf{v}, t),$$

subject to boundary

$$\mathbf{0} = \hat{\mathbf{n}} \cdot (\sigma_i \nabla \mathbf{v}),$$

and initial conditions.

イロト イヨト イヨト イヨト

Monodomain Model

$$\frac{\partial \mathbf{s}}{\partial t} = \mathbf{f}(\mathbf{v}, \mathbf{s}),$$

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\lambda}{1+\lambda} \frac{1}{\chi C_m} \nabla \cdot \sigma_i \nabla \mathbf{v} - \frac{1}{C_m} (\mathbf{s}, \mathbf{v}, t),$$

subject to boundary

$$0 = \hat{n} \cdot (\sigma_i \nabla \mathbf{v}),$$

and initial conditions.

Simplifications

• Rewrite u_e in terms of v

• Set
$$\lambda = \sigma_e / \sigma_i$$

イロト イヨト イヨト イヨト

Monodomain Model

$$\frac{\partial \mathbf{s}}{\partial t} = \mathbf{f}(\mathbf{v}, \mathbf{s}), \frac{\partial \mathbf{v}}{\partial t} = \frac{\lambda}{1+\lambda} \frac{1}{\chi C_m} \nabla \cdot \sigma_i \nabla \mathbf{v} - \frac{1}{C_m} (\mathbf{s}, \mathbf{v}, t),$$

subject to boundary

$$0 = \hat{n} \cdot (\sigma_i \nabla v),$$

and initial conditions.

Simplifications

• Rewrite u_e in terms of v

• Set
$$\lambda = \sigma_e / \sigma_i$$

Monodomain Model

$$\frac{\partial \mathbf{s}}{\partial t} = \mathbf{f}(\mathbf{v}, \mathbf{s}),$$

$$\frac{\partial \mathbf{v}}{\partial t} = \frac{\lambda}{1+\lambda} \frac{1}{\chi C_m} \nabla \cdot \sigma_i \nabla \mathbf{v} - \frac{1}{C_m} (\mathbf{s}, \mathbf{v}, t),$$

subject to boundary

$$0 = \hat{n} \cdot (\sigma_i \nabla v),$$

and initial conditions.

Simplifications

• Rewrite u_e in terms of v

• Set
$$\lambda = \sigma_e / \sigma_i$$

イロト イヨト イヨト イヨト

Monodomain Model

$$rac{\partial \mathbf{s}}{\partial t} = \mathbf{f}(\mathbf{v}, \mathbf{s}),$$

 $rac{\partial \mathbf{v}}{\partial t} = rac{\lambda}{1+\lambda} rac{1}{\chi C_m} \nabla \cdot \sigma_i \nabla \mathbf{v} - rac{1}{C_m} (\mathbf{s}, \mathbf{v}, t),$

subject to boundary

$$0 = \hat{n} \cdot (\sigma_i \nabla v),$$

and initial conditions.

Simplifications

• Rewrite u_e in terms of v

• Set
$$\lambda = \sigma_e / \sigma_i$$

<ロト <回 > < 回 > < 回 > < 回 > .

Lower Order OS Higher Order OS

Operator Splitting

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \\ 0 &= \hat{n} \cdot (\sigma_i \nabla \mathbf{v} + \sigma_i \nabla u_e), \\ 0 &= \hat{n} \cdot (\sigma_e \nabla u_e), \end{aligned}$$

and initial conditions.

Lower Order OS Higher Order OS

Operator Splitting

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot (\sigma_i \nabla u_e), \\ 0 &= \nabla \cdot (\sigma_i \nabla \mathbf{v}) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e), \\ \text{subject to} \\ 0 &= \hat{n} \cdot (\sigma_i \nabla \mathbf{v} + \sigma_i \nabla u_e), \\ 0 &= \hat{n} \cdot (\sigma_e \nabla u_e), \end{aligned}$$

and initial conditions.

- Often solved via operator splitting.
- Traditionally employed for large, strongly non-linear systems

ロ ト (同 ト (ヨ ト (ヨ ト) ヨ

Operator Splitting Methods Conclusions Conclusions Operator Splitting

$$\begin{aligned} \frac{\partial \mathbf{s}}{\partial t} &= \mathbf{f}(\mathbf{v}, \mathbf{s}), \\ \chi C_m \frac{\partial \mathbf{v}}{\partial t} + \chi I_{ion}(\mathbf{v}, \mathbf{s}) &= 0, \end{aligned}$$

initial conditions.

- Often solved via operator splitting.
- Traditionally employed for large, strongly non-linear systems

ヘロト 人間 ト イヨト イヨト 二日

Lower Order OS Higher Order OS

Operator Splitting

$$\chi C_m \frac{\partial v}{\partial t} = \nabla \cdot (\sigma_i \nabla v) + \nabla \cdot (\sigma_i \nabla u_e),$$

$$0 = \nabla \cdot (\sigma_i \nabla v) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_e),$$

subject to

$$\begin{aligned} D &= \hat{n} \cdot (\sigma_i \nabla v + \sigma_i \nabla u_e), \\ D &= \hat{n} \cdot (\sigma_e \nabla u_e), \end{aligned}$$

and initial conditions.

- Often solved via operator splitting.
- Traditionally employed for large, strongly non-linear systems

ヘロト ヘアト ヘアト ヘアト コ

Lower Order OS Higher Order OS

Operator Splitting

- Specialized knowledge for each sub-problem.
- Tissue PDEs are linear; preconditioned, solved in parallel.
- Cell PDEs are independent; solver tunable to cell model.

Godunov Splitting

Consider the initial-value problem

$$rac{d\mathbf{y}}{dt} = \mathbf{f}(t,\mathbf{y}) := \mathbf{f}_1(t,\mathbf{y}) + \mathbf{f}_2(t,\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0.$$

One step of Godunov splitting (first-order accurate) is

$$\begin{array}{ll} \text{Step } \Delta t & \frac{d\mathbf{y}^*}{dt} = \mathbf{f}_1(t, \mathbf{y}^*), \qquad \mathbf{y}^*(t_{n-1}) = \mathbf{y}_{n-1}.\\ \text{Step } \Delta t & \frac{d\mathbf{y}^{**}}{dt} = \mathbf{f}_2(t, \mathbf{y}^{**}), \qquad \mathbf{y}^{**}(t_{n-1}) = \mathbf{y}_n^*.\\ \text{Set:} & \mathbf{y}_n = \mathbf{y}_n^{**}. \end{array}$$

Lower Order OS Higher Order OS

Godunov Splitting

Two systems:

$$\frac{\mathbf{s}_n - \mathbf{s}_{n-1}}{\Delta t} = \mathbf{f}(v_{n-1}, \mathbf{s}_{n-1}, t_{n-1}),$$
$$\frac{\hat{v}_n - v_{n-1}}{\Delta t} = -\frac{1}{C_m} I_{\text{ion}}(v_{n-1}, \mathbf{s}_{n-1}, t_{n-1}),$$

and

$$\chi C_m \frac{v_n - \hat{v}_n}{\Delta t} = \nabla \cdot (\sigma_i \nabla v_n) + \nabla \cdot (\sigma_i \nabla u_{e,n}),$$

$$0 = \nabla \cdot (\sigma_i \nabla v_n) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_{e,n}).$$

Lower Order OS Higher Order OS

Godunov Splitting

Two systems:

$$\frac{\mathbf{s}_n - \mathbf{s}_{n-1}}{\Delta t} = \mathbf{f}(\mathbf{v}_{n-1}, \mathbf{s}_{n-1}, t_{n-1}),$$
$$\frac{\hat{\mathbf{v}}_n - \mathbf{v}_{n-1}}{\Delta t} = -\frac{1}{C_m} I_{\text{ion}}(\mathbf{v}_{n-1}, \mathbf{s}_{n-1}, t_{n-1}),$$

and

$$\chi C_m \frac{v_n - \hat{v}_n}{\Delta t} = \nabla \cdot (\sigma_i \nabla v_n) + \nabla \cdot (\sigma_i \nabla u_{e,n}),$$

$$0 = \nabla \cdot (\sigma_i \nabla v_n) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_{e,n}).$$

Lower Order OS Higher Order OS

Godunov Splitting

Two systems:

$$\frac{\mathbf{s}_n - \mathbf{s}_{n-1}}{\Delta t} = \mathbf{f}(v_{n-1}, \mathbf{s}_{n-1}, t_{n-1}),$$
$$\frac{\hat{v}_n - v_{n-1}}{\Delta t} = -\frac{1}{C_m} I_{\text{ion}}(v_{n-1}, \mathbf{s}_{n-1}, t_{n-1}),$$

and

$$\chi C_m \frac{\mathbf{v}_n - \hat{\mathbf{v}}_n}{\Delta t} = \nabla \cdot (\sigma_i \nabla \mathbf{v}_n) + \nabla \cdot (\sigma_i \nabla u_{e,n}),$$

$$\mathbf{0} = \nabla \cdot (\sigma_i \nabla \mathbf{v}_n) + \nabla \cdot ((\sigma_i + \sigma_e) \nabla u_{e,n}).$$

Lower Order OS Higher Order OS

Operator-Splitting methods

Successful First- and Second-Order OS implementation

(日) (四) (王) (王) (王)

Lower Order OS Higher Order OS

Operator-Splitting methods

Successful First- and Second-Order OS implementation

What about Higher Orders?

Background

• Sheng-Suzuki (SS) Theorem : Higher Order OS Method require backward time integration

Background

- Sheng-Suzuki (SS) Theorem : Higher Order OS Method require backward time integration
- Ill-posed for deterministic parabolic equation
 - In the bidomain model we have parabolic PDEs (reaction-diffusion)

< ロ > < 同 > < 回 > < 回 > = 回 > = 回

A different class of OS methods

Consider the initial-value problem

$$rac{d\mathbf{y}}{dt} = \mathbf{f}(t,\mathbf{y}) := \mathbf{f}_1(t,\mathbf{y}) + \mathbf{f}_2(t,\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0.$$

• Idea: express $\exp(\sum_{j=1}^{n} \mathbf{f}_{j} \Delta t)$ as $\left(e^{\alpha \mathbf{f}_{1}} e^{\alpha \mathbf{f}_{2}}, \dots, e^{\alpha \mathbf{f}_{n}}\right)^{b}$

A different class of OS methods

Consider the initial-value problem

$$rac{d\mathbf{y}}{dt} = \mathbf{f}(t,\mathbf{y}) := \mathbf{f}_1(t,\mathbf{y}) + \mathbf{f}_2(t,\mathbf{y}), \quad \mathbf{y}(0) = \mathbf{y}_0.$$

- Idea: express $\exp(\sum_{j=1}^{n} \mathbf{f}_{j} \Delta t)$ as $\left(e^{\alpha \mathbf{f}_{1}} e^{\alpha \mathbf{f}_{2}}, \dots, e^{\alpha \mathbf{f}_{n}}\right)^{b}$
 - $b=\pm 1
 ightarrow$ allows for backward time integration
 - $\alpha \rightarrow$ chosen using the Campbell–Baker–Hausdorff (CBH) formula

Lower Order OS Higher Order OS

The CBH formula

The CBH formula, up to 5^{th} order reads

$$\begin{split} \exp\left(\alpha \mathbf{f}_{1}\right) \exp\left(\alpha \mathbf{f}_{2}\right) &= \exp\left[\alpha(\mathbf{f}_{1} + \mathbf{f}_{2}) + \frac{1}{2}\alpha^{2}\mathbf{f}_{12} \\ &+ \frac{1}{12}\alpha^{3}(\mathbf{f}_{112} + \mathbf{f}_{221}) + \frac{1}{24}\alpha^{4}\mathbf{f}_{1221} \\ &+ \frac{1}{720}\alpha^{5}(\mathbf{f}_{11112} - 2\mathbf{f}_{21112} \\ &- 6\mathbf{f}_{11221} - 6\mathbf{f}_{22111} - 2\mathbf{f}_{12221} + \mathbf{f}_{22221}) + \mathcal{O}(\alpha^{6})] \end{split}$$

イロト 不同 ト イヨト イヨト ニヨー わらぐ

Lower Order OS Higher Order OS

The CBH formula

The CBH formula, up to 5^{th} order reads

$$\begin{split} \exp\left(\alpha \mathbf{f}_{1}\right) \exp\left(\alpha \mathbf{f}_{2}\right) &= \exp\left[\alpha(\mathbf{f}_{1} + \mathbf{f}_{2}) + \frac{1}{2}\alpha^{2}\mathbf{f}_{12} \\ &+ \frac{1}{12}\alpha^{3}(\mathbf{f}_{112} + \mathbf{f}_{221}) + \frac{1}{24}\alpha^{4}\mathbf{f}_{1221} \\ &+ \frac{1}{720}\alpha^{5}(\mathbf{f}_{11112} - 2\mathbf{f}_{21112} \\ &- 6\mathbf{f}_{11221} - 6\mathbf{f}_{22111} - 2\mathbf{f}_{12221} + \mathbf{f}_{22221}) + \mathcal{O}(\alpha^{6})] \end{split}$$

• Here $\mathbf{f}_{kl...mn}$ is a commutator:

$$\mathbf{f}_{kl\dots mn} \doteq [\mathbf{f}_k, [\mathbf{f}_l, \dots, [\mathbf{f}_m, \mathbf{f}_n] \dots]]$$

where $[\mathbf{f}_m, \mathbf{f}_n] \doteq \mathbf{f}_m \mathbf{f}_n - \mathbf{f}_n \mathbf{f}_m$

Lower Order OS Higher Order OS

New class of OS methods

Defining
$$\beta = \left(e^{\Delta t \mathbf{f}_1} e^{\Delta t \mathbf{f}_2}\right)$$
 and $(\beta)^{\mathcal{T}} = \left(e^{\Delta t \mathbf{f}_2} e^{\Delta t \mathbf{f}_1}\right)$

- First-order $\rightarrow \beta$ • $(e^{\Delta t \mathbf{f}_1} e^{\Delta t \mathbf{f}_2}) = e^{(\alpha(\mathbf{f}_1 + \mathbf{f}_2))} \rightarrow \alpha = \Delta t$
- Second-order $\rightarrow (\beta)(\beta)^T$
 - $\alpha = \frac{\Delta t}{2} \rightarrow$ Strang Splitting
- Third-order $\rightarrow (\beta)^T(\beta)(\beta)(\beta)(\beta)^T(-2\beta)^T(\beta)(\beta)(\beta)$ • $\alpha = \frac{\Delta t}{6}$

Lower Order OS Higher Order OS

New class of OS methods

Defining
$$\beta = \left(e^{\Delta t \mathbf{f}_1} e^{\Delta t \mathbf{f}_2}\right)$$
 and $(\beta)^{\mathcal{T}} = \left(e^{\Delta t \mathbf{f}_2} e^{\Delta t \mathbf{f}_1}\right)$

First-order → β (e^{Δtf₁}e^{Δtf₂}) = e^{(α(f₁+f₂))} → α = Δt Second-order → (β)(β)^T α = Δt/2 → Strang Splitting

• Third-order $\rightarrow (\beta)^T(\beta)(\beta)(\beta)(\beta)^T(-2\beta)^T(\beta)(\beta)(\beta)$ • $\alpha = \frac{\Delta t}{6}$

As expected, the third order OS has backward time integration

Lower Order OS Higher Order OS

Numerical Results

• *Mixed root-mean-square error* (MRMS) error of *v*:

$$e_{MRMS} := \sqrt{\frac{1}{N}\sum_{n=1}^{N}\left(\frac{\hat{v}_n - v_n}{1 + |\hat{v}_n|}\right)^2}$$

• Order
$$p = rac{\log(e_1/e_2)}{\log(\Delta t_1/\Delta t_2)}$$

メロト メポト メラト メラト 一日

Lower Order OS Higher Order OS

Numerical Results

• *Mixed root-mean-square error* (MRMS) error of *v*:

$$e_{MRMS} := \sqrt{\frac{1}{N} \sum_{n=1}^{N} \left(\frac{\hat{\mathbf{v}}_n - \mathbf{v}_n}{1 + |\hat{\mathbf{v}}_n|}\right)^2}$$

• Order
$$p = rac{\log(e_1/e_2)}{\log(\Delta t_1/\Delta t_2)}$$

メロト メポト メラト メラト 一日

Lower Order OS Higher Order OS

Numerical Results

• *Mixed root-mean-square error* (MRMS) error of *v*:

$$e_{MRMS} := \sqrt{\frac{1}{N}\sum_{n=1}^{N} \left(\frac{\hat{v}_n - v_n}{1 + |\hat{v}_n|}\right)^2}$$

• Order $p = \frac{\log(e_1/e_2)}{\log(\Delta t_1/\Delta t_2)}$

Numerical Results:Order

Monodomain model

- Mixed root-mean-square error (MRMS)
- Let $p_1 = 1e 6/1e 5$ and $p_2 = 1e 5/1e 4$
- 1D model, Chebyshev nodes, ODE:RK4, PDE:SDIRK3O4

Cell Model	p_1	<i>p</i> ₂
FitzHugh-Nagumo	3.12	3.04
TenTusscher (Epi, 2006)	3.05	2.94

イロト イポト イヨト ニヨ

Numerical Results:Order

Monodomain model

- Mixed root-mean-square error (MRMS)
- Let $p_1 = 1e 6/1e 5$ and $p_2 = 1e 5/1e 4$
- 1D model, Chebyshev nodes, ODE:RK4, PDE:SDIRK3O4

Cell Model	<i>p</i> 1	<i>p</i> ₂
FitzHugh-Nagumo	3.12	3.04
TenTusscher (Epi, 2006)	3.05	2.94

• 1D model, Chebyshev nodes, ODE: RK4, PDE: SDIRK2O3

Cell Model	p_1	<i>p</i> ₂
FitzHugh-Nagumo	2.88	2.95
TenTusscher (Epi, 2006)	3.01	2.91

Lower Order OS Higher Order OS

Numerical Results:Order

Bidomain model

- Mixed root-mean-square error (MRMS)
- Let $p_1 = 1e 6/1e 5$ and $p_2 = 1e 5/1e 4$
- 3D model, Uniform grid, ODE: RK4, PDE: SDIRK2O3

Cell Model	p_1	<i>p</i> ₂
Luo Rudy (1991)	2.98	3.08
TenTusscher (Epi, 2006)	2.91	2.94

イロト イポト イヨト ニヨ

Lower Order OS Higher Order OS

Numerical Results: Efficiency

• *Mixed root-mean-square error* (MRMS) error of *v*:

$$e_{MRMS} := \sqrt{\frac{1}{N}\sum_{n=1}^{N}\left(\frac{\hat{v}_n - v_n}{1 + |\hat{v}_n|}\right)^2}$$

over N = 50 equally spaced points.

- Find largest time step such that $e_{MRMS} \lesssim 5\%$.
- Record CPU time (minimum of 100 runs).

イロト (得) (ほ) (ほ) 三日

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Monodomain model

- OS2: \rightarrow Heun (ODE), Crank–Nicolson (PDE)
- OS3₁: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)
- OS3₂: \rightarrow SDIRK3O4 (ODE), SDIRK3O4 (PDE)

	OS	OS2		OS31		OS3 ₂	
	Δt	Time	Δt	Time	Δt	Time	
LR	5E-05	4.27s	2.1E-05	5.11s	1.2E-04	2.38s	
TT	2E-05	3.46s	1.3E-05	6.18s	5.5E-05	2.91s	
Р	2.2E-05	3.82s	1.4E-05	4.16s	5E-05	3.28s	

Where:

- LR → Luo-Rudy (1991)
- TT → TenTusscher (Epi, 2006)
- P → Pandit (2003)

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Monodomain model

- OS2: \rightarrow Heun (ODE), Crank–Nicolson (PDE)
- OS3₁: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)
- OS3₂: \rightarrow SDIRK3O4 (ODE), SDIRK3O4 (PDE)

	OS	OS2		OS31		OS3 ₂	
	Δt	Time	Δt	Time	Δt	Time	
LR	5E-05	4.27s	2.1E-05	5.11s	1.2E-04	2.38s	
TT	2E-05	3.46s	1.3E-05	6.18s	5.5E-05	2.91s	
Р	2.2E-05	3.82s	1.4E-05	4.16s	5E-05	3.28s	

Where:

- LR → Luo-Rudy (1991)
- TT → TenTusscher (Epi, 2006)
- P → Pandit (2003)

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Monodomain model

- OS2: \rightarrow Heun (ODE), Crank–Nicolson (PDE)
- OS3₁: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)
- OS3₂: \rightarrow SDIRK3O4 (ODE), SDIRK3O4 (PDE)

Coll Model	OS	2	OS31		OS3 ₂	
	Δt	Time	Δt	Time	Δt	Time
LR	5E-05	4.27s	2.1E-05	5.11s	1.2E-04	2.38s
TT	2E-05	3.46s	1.3E-05	6.18s	5.5E-05	2.91s
Р	2.2E-05	3.82s	1.4E-05	4.16s	5E-05	3.28s

Where:

- IR → Luo-Rudy (1991)
- TT → TenTusscher (Epi, 2006)
- P → Pandit (2003)

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Monodomain model

- OS2: \rightarrow Heun (ODE), Crank–Nicolson (PDE)
- OS3₁: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)
- OS3₂: \rightarrow SDIRK3O4 (ODE), SDIRK3O4 (PDE)

	OS2		OS31		OS3 ₂	
	Δt	Time	Δt	Time	Δt	Time
LR	5E-05	4.27s	2.1E-05	5.11s	1.2E-04	2.38s
TT	2E-05	3.46s	1.3E-05	6.18s	5.5E-05	2.91s
Р	2.2E-05	3.82s	1.4E-05	4.16s	5E-05	3.28s

Where:

- LR → Luo-Rudy (1991)
- TT → TenTusscher (Epi, 2006)
- P → Pandit (2003)

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Bidomain model

- OS2: \rightarrow Heun (ODE), SDIRK202 (PDE)
- OS3: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)

Cell Model	Δt	OS	52	OS	3
		Time MRMS		Time	MRMS
LR	2E-03	3402.11s	0.046	3544.91s	0.035
LR	5E-03	2043.45s	0.056	2108.61s	0.044
LR	8E-03	1639.28s	0.063	1679.75s	0.048
TT	2E-03	6583.68s	0.042	7443.42s	0.038
TT	5E-03	3307.87s	0.061	3657.02s	0.043
TT	8E-03	2282.25s	0.064	2443.11s	0.046

Where:

- LR \rightarrow Luo-Rudy (1991)
- TT \rightarrow TenTusscher (Epi, 2006)

Cervi & Spiteri

Numerical Simulation Laboratory, University of Saskatchewan

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Bidomain model

- OS2: \rightarrow Heun (ODE), SDIRK202 (PDE)
- OS3: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)

Cell Model	Δt	OS	52	OS	3
		Time MRMS		Time	MRMS
LR	2E-03	3402.11s	0.046	3544.91s	0.035
LR	5E-03	2043.45s	0.056	2108.61s	0.044
LR	8E-03	1639.28s	0.063	1679.75s	0.048
TT	2E-03	6583.68s	0.042	7443.42s	0.038
TT	5E-03	3307.87s	0.061	3657.02s	0.043
TT	8E-03	2282.25s	0.064	2443.11s	0.046

Where:

- LR \rightarrow Luo-Rudy (1991)
- TT \rightarrow TenTusscher (Epi, 2006)

Cervi & Spiteri

Numerical Simulation Laboratory, University of Saskatchewan

Lower Order OS Higher Order OS

Numerical Results: Efficiency

Bidomain model

- OS2: \rightarrow Heun (ODE), SDIRK202 (PDE)
- OS3: \rightarrow RK3 (ODE), SDIRK2O3 (PDE)

Cell Model	Δt	OS	2	OS	3
		Time MRMS		Time	MRMS
LR	2E-03	3402.11s	0.046	3544.91s	0.035
LR	5E-03	2043.45s	0.056	2108.61s	0.044
LR	8E-03	1639.28s	0.063	1679.75s	0.048
TT	2E-03	6583.68s	0.042	7443.42s	0.038
TT	5E-03	3307.87s	0.061	3657.02s	0.043
TT	8E-03	2282.25s	0.064	2443.11s	0.046

Where:

- LR → Luo-Rudy (1991)
- TT \rightarrow TenTusscher (Epi, 2006)

Cervi & Spiteri

Numerical Simulation Laboratory, University of Saskatchewan

Conclusions

- Hopes of success: High Order Operator Splitting can be applied to the monodomain and bidomain model
- The ODE solver plays an important role when we are considering efficiency
- Third-Order OS methods seems to be faster than the Second-Order methods for the type of cell models we have tested

Future Work

- Perform stability analysis Higher-Order methods
- Perform optimization on the Third-Order method we have
- Study and implement a Fourth-Order OS method

< ロ > < 同 > < 回 > < 回 > = 回 > = 回

References

- L.Tung, A bi-domain model for describing ischemic myocardial d-c potentials. Phd Thesis, MIT, 1978
- J. Sundnes et al., An operator splitting method for solving the bidomain equations coupled to a volume conductor model for the torso, Mathematical Biosciences, 194,1, 233-248, 2005
- R. J. Spiteri et al., Operator Splitting for the bidomain model revisited, Journal of Computational and Applied Mathematics, 296,550-563, 2016.
- A. Sornborger, Higher-order operator splitting methods for deterministic parabolic equations, International Journal of Computer Mathematics, 84, 887-893, 2007.

< ロ > < 同 > < 回 > < 回 > = 回 > = 回